天线的基础知识

合集下载

物理天线知识点总结

物理天线知识点总结

物理天线知识点总结一、天线的分类天线可以根据它的结构、工作频率、工作方式等不同特征进行分类。

根据天线的结构,天线可以分为线性天线、面状天线、体状天线等。

根据天线的工作频率,天线可以分为超高频天线、甚高频天线、高频天线等。

根据天线的工作方式,天线可以分为接收天线、发射天线、双工天线等。

此外,根据天线的工作原理,天线还可以分为定向天线、全向天线等。

二、天线的工作原理天线是通过改变电流和电压的分布来产生电磁波。

当电流通过天线时,会在天线上产生一个电磁场。

这个电磁场会向周围空间辐射出去,形成电磁波。

同时,当有外界的电磁波作用在天线上时,天线也会感应出电流和电压。

这样,天线在电磁波的发射和接收中发挥作用。

三、天线的设计方法天线的设计是一个复杂的过程,需要考虑多种因素,包括天线的工作频率、方向性、增益、波束宽度、阻抗匹配等。

在天线的设计中,通常需要用到一些工具,如天线模拟软件、电磁场仿真软件等。

天线的设计方法包括复合结构天线的设计、微带天线的设计、阵列天线的设计等。

这些设计方法大大提高了天线的工作性能和可靠性。

四、天线的性能分析天线的性能分析是对天线的工作性能进行评估和优化的过程。

通过对天线的参数和特性进行测试和分析,可以了解天线的工作状况和性能指标,为天线的改进和优化提供依据。

常用的天线性能分析方法包括天线参数测量、天线阻抗匹配、波束宽度测量等。

五、天线的应用天线在无线通信、雷达、卫星通信、电视广播等领域中有着广泛的应用。

在无线通信系统中,天线是信息传输的关键设备,它的工作性能直接影响到通信系统的稳定性和可靠性。

在雷达系统中,天线是用来发射和接收雷达信号,它的性能直接影响到雷达的探测性能和分辨率。

在卫星通信系统中,天线是用来与卫星间进行通信,它的性能直接影响到卫星通信的质量和覆盖范围。

在电视广播系统中,天线是用来接收广播信号的,它的性能直接影响到电视节目的清晰度和稳定性。

总结:物理天线是无线通信和雷达系统中不可或缺的重要组成部分。

天线基础知识(RFID工程师必会)

天线基础知识(RFID工程师必会)

天线基础知识(RFID⼯程师必会)天线基础知识1 天线1.1 天线的作⽤与地位⽆线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。

电磁波到达接收地点后,由天线接下来(仅仅接收很⼩很⼩⼀部分功率),并通过馈线送到⽆线电接收机。

可见,天线是发射和接收电磁波的⼀个重要的⽆线电设备,没有天线也就没有⽆线电通信。

天线品种繁多,以供不同频率、不同⽤途、不同场合、不同要求等不同情况下使⽤。

对于众多品种的天线,进⾏适当的分类是必要的:按⽤途分类,可分为通信天线、电视天线、雷达天线等;按⼯作频段分类,可分为短波天线、超短波天线、微波天线等;按⽅向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、⾯状天线等;等等分类。

*电磁波的辐射导线上有交变电流流动时,就可以发⽣电磁波的辐射,辐射的能⼒与导线的长度和形状有关。

如图1.1 a 所⽰,若两导线的距离很近,电场被束缚在两导线之间,因⽽辐射很微弱;将两导线张开,如图1.1 b 所⽰,电场就散播在周围空间,因⽽辐射增强。

必须指出,当导线的长度L 远⼩于波长λ时,辐射很微弱;导线的长度L 增⼤到可与波长相⽐拟时,导线上的电流将⼤⼤增加,因⽽就能形成较强的辐射。

1.2 对称振⼦对称振⼦是⼀种经典的、迄今为⽌使⽤最⼴泛的天线,单个半波对称振⼦可简单地单独⽴地使⽤或⽤作为抛物⾯天线的馈源,也可采⽤多个半波对称振⼦组成天线阵。

两臂长度相等的振⼦叫做对称振⼦。

每臂长度为四分之⼀波长、全长为⼆分之⼀波长的振⼦,称半波对称振⼦, 见图1.2 a 。

另外,还有⼀种异型半波对称振⼦,可看成是将全波对称振⼦折合成⼀个窄长的矩形框,并把全波对称振⼦的两个端点相叠,这个窄长的矩形框称为折合振⼦,注意,折合振⼦的长度也是为⼆分之⼀波长,故称为半波折合振⼦, 见图1.2 b。

1.3 天线⽅向性的讨论1.3.1 天线⽅向性发射天线的基本功能之⼀是把从馈线取得的能量向周围空间辐射出去,基本功能之⼆是把⼤部分能量朝所需的⽅向辐射。

天线的基础知识

天线的基础知识

第一讲天线的基础知识表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化方式等。

1.1 天线的输入阻抗天线的输入阻抗是天线馈电端输入电压与输入电流的比值。

天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。

天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。

匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。

在我们日常维护中,用的较多的是驻波比和回波损耗。

一般移动通信天线的输入阻抗为50Ω。

驻波比:它是行波系数的倒数,其值在1到无穷大之间。

驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。

在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。

过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。

回波损耗:它是反射系数绝对值的倒数,以分贝值表示。

回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越小表示匹配越好。

0表示全反射,无穷大表示完全匹配。

在移动通信系统中,一般要求回波损耗大于14dB。

1.2 天线的极化方式所谓天线的极化,就是指天线辐射时形成的电场强度方向。

当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。

由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。

因此,在移动通信系统中,一般均采用垂直极化的传播方式。

另外,随着新技术的发展,最近又出现了一种双极化天线。

就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。

天线基本知识介绍

天线基本知识介绍

天线基本知识介绍天线是将电信号转换为电磁波并将其传输或接收的装置。

它是电磁学的一个分支,用于无线通信、电视和广播接收、雷达以及天体物理学研究等领域。

本文将对天线的基本知识进行介绍。

1.天线的作用和原理:天线的主要作用是将电信号转换为电磁波并将其辐射到空间中,或者将接收到的电磁波转换为电信号。

它的工作原理基于法拉第电磁感应定律和亥姆霍兹理论,即通过电流在导体中产生的磁场和由变化的磁场产生的感应电流来实现电磁波的辐射或接收。

2.天线的分类:天线可以根据其结构、工作频率、功率和应用等方面进行分类。

根据结构,天线可分为线性天线(如偶极子天线)、面型天线(如片极天线、光波导天线)和体型天线(如反射天线、波导天线)。

根据工作频率,天线可分为超高频、高频、甚高频、极高频和微波天线等。

根据功率,天线可分为小功率天线和大功率天线。

根据应用,天线还可细分为通信天线、雷达天线、电视天线、卫星天线和微波天线等。

3.天线参数:天线的性能取决于其设计参数。

常见的天线参数包括增益、方向性、波束宽度、驻波比、频率响应、极化方式和带宽等。

增益是天线辐射功率与等效输入功率之比,方向性衡量天线在一些方向上的辐射能力,波束宽度是主瓣的半功率宽度,驻波比是反射功率与输入功率之比,频率响应表示天线在不同频率下的性能表现,极化方式表示电磁波的电场分量与地面垂直或平行的相对方向,带宽表示天线能够工作的频率范围。

4.天线设计方法:天线的设计是一个综合考虑电磁学原理、工作频率和应用要求的过程。

常见的天线设计方法包括试验法、数值法和半经验法。

试验法通过制作实物天线并进行实际测量来调整参数和优化天线性能。

数值法使用计算机模拟和数值算法来预测和分析天线性能,例如有限元法、谱域法和时域法等。

半经验法结合实验和数值方法,通过经验公式和优化算法来设计天线。

5.天线应用:天线的应用非常广泛,涵盖了通信、广播、雷达、航天、医疗和科学研究等领域。

在通信领域,天线用于无线电通信、移动通信和卫星通信等。

天线基础知识大全

天线基础知识大全

天线基础知识大全1天线1.1天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。

电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。

可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。

天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。

对于众多品种的天线,进行适当的分类是必要1天线1.1 天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。

电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。

可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。

天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。

对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。

*电磁波的辐射导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。

如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。

必须指出,当导线的长度L 远小于波长λ 时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。

1.2 对称振子对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。

两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2a 。

天线的基础知识

天线的基础知识
用的天线
八木天线 结构简单、定向性好
三遥系统中常用的天线
吸盘天线 增益低 应用时放置在一 个足够大的金属 板上,一般要求2 个波长以上
天线的安装注意事项
? 尽量选择制高点安装,周围没有明显阻挡 ? 安装在铁塔上,天线与铁塔距离应两个波
长以上 ? 天线固定在金属杆上时,金属杆不应该超
? 天线具有方向性,同样的输入功率,不同天线 在同一方向辐射的强度不同(通常考察最大辐 射方向) ;
? 为表征这种辐射差异性,指定一种天线作为参 考,所有天线与之对比,这个比值就是增益;
? 指定的参考天线不同,比较出来的值不一样。
? 为了统一,通常指定两种参考天线:一种是理 想的各向同性的天线(不存在的),下面称为 理想参考天线;一种是规定了制作方法的半波 对称振子天线。
全向天线2D方向图
全向天线直角坐标方向图
定向天线3D方向图
水平面和垂直面方向图
要关心的方向图指标
一般对方向图比较关心的指标有: 1、半功率角(角度越小,增益越大) 2、前后比 3、副瓣电平
3、方向系数和增益
? 天线在某方向的方向系数D是它在该方向 的辐射强度同把同样的辐射能量向空间 均匀辐射的辐射强度之比。
方向系数和增益
? 9.85dBd=12dBi ? 半波振子的增益是2.15dBi
4、带宽
? 天线所有的电参数都是频率的函数 ? 天线带宽是天线的某个或某些电性能符
合要求的工作频率范围。 ? 方向图带宽和驻波带宽
5、天线的极化
? 设天线的辐射场E(t,r)是简谐场,在 波的传播路径上的某一点作一个垂直于 传播方向的平面,电场将躺在这个平面 上,电场矢量随时间变化一个周期,电 场矢端所描画出的轨迹定义为发射时波 的极化,简称极化。

有关天线的知识点总结

有关天线的知识点总结

有关天线的知识点总结一、天线的工作原理天线的工作原理可以简单地理解为两个方面:接收信号和辐射信号。

当接收信号时,天线将接收到的电磁波转换成电信号;而在辐射信号时,天线将电信号转换成电磁波辐射出去。

这样一来,天线就起到了收发信号的作用。

二、天线的分类根据不同的分类标准,天线可以分为很多种类。

其中最常见的分类方法有以下几种:1. 按照频率分类:根据天线工作的频率范围不同,可以分为超高频天线、甚高频天线、超高频天线、微波天线等;2. 按照结构分类:根据天线的结构和形状不同,可以分为偶极子天线、单极天线、方向性天线、非方向性天线等;3. 按照用途分类:根据天线的用途不同,可以分为通信天线、导航天线、雷达天线、电视天线等。

三、天线的特性1. 增益:天线的增益是指天线辐射的电磁波功率与理想点源辐射的电磁波功率的比值。

增益越高,天线的辐射效率越高。

2. 阻抗:天线的输入阻抗是指天线在工作频率下的端口电阻。

一般来说,天线的阻抗要与传输线的阻抗匹配,否则会导致信号回波,影响通信质量。

3. 方向性:天线的方向性是指天线在空间中辐射和接收电磁波信号的能力。

方向性越好,天线的指向性就越强。

4. 带宽:天线的带宽是指天线可以工作的频率范围。

一般来说,带宽越宽,天线的适用范围就越广。

四、天线的设计和调试天线的设计和调试是天线工程师的主要工作之一。

在设计天线时,需要考虑到天线的工作频率、带宽、增益、方向性等参数,并根据具体的应用场景选择合适的天线结构和材料。

在调试天线时,需要使用专业的测试设备进行天线的性能测试,一般包括驻波比测量、辐射图测量、方向图测量等。

五、天线的应用天线的应用非常广泛,几乎涵盖了各个领域。

在通信领域,天线用于手机、基站、卫星通信等设备;在雷达领域,天线用于目标探测和跟踪;在导航领域,天线用于车载导航、航空导航等设备;在电视领域,天线用于接收地面数字电视信号等。

总的来说,天线作为一种重要的通信装置,在现代社会中有着不可替代的作用。

第一章天线基础知识

第一章天线基础知识


1 2 Pr I Rr 2 30 2 2 则 Rr f ( , ) sin d d


0
0

则方向系数与 辐射电阻之间 的联系为
120 f D Rr
2 max

若要提高天线效率,必须尽可能的减小损耗 电阻和提高辐射电阻。通常,超短波和微波 天线的效率很高,能够接近于1。

半功率点波瓣宽度 (HWFN) ,指主瓣最大 值两边场强等于最大值0.707倍的两辐射方向之 间的夹角,又叫3分贝波束宽度。

副瓣电平,指副瓣最大值与主瓣最大值之比,
一般以分贝表示,

前后比,指主瓣最大值与后瓣最大值之比。
30
(4)方向系数
方向图参数能从一定程度上描述天线方向图的 状态,仅能反映方向图中特定方向的辐射强弱程 度,未能反映全空间的分布状态。
理想点源归一化方向函数:
26



(2)方向图
方向图:将方向函数用曲线描绘出来,称为 方向图,就是与天线等距离处,天线辐射场大 小在空间中的相对分布随方向变化的图形。

工程上常采用两个正交平面方向图,自由空 间中两个最重要的平面方向图是E面和H面。E 面即电场强度矢量所在并包含最大辐射方向的 平面,H面即磁场强度矢量所在并包含最大辐 射方向的平面。
z 电流元
H E H E

r
x

y
方向图立体模型
13
E面方向图
H面方向图
E面直角坐标方向图
H面直角坐标方向图 14
(4)中间区

(1)近区与远区之间,感应场与辐射场 相差不大; (2)电场 Er 和 E 不同相,相差接近90 度且振幅不等,一般在平行于传播方向的 平面内形成一旋转矢量,矢量端点的轨迹 为一椭圆; (3)辐射功率占主导地位。

天线基本知识汇总

天线基本知识汇总

天线基本知识汇总天线是无线通信系统的重要组成部分,它负责将电能转换为电磁波,将信号从传输介质(如空气)中发射出去或接收回来。

天线的性能直接影响着无线通信系统的质量和可靠性。

下面是关于天线基本知识的汇总。

1.天线的分类:根据应用领域和工作频率不同,天线可以分为不同的类型,如定向天线、全向天线、扇形天线、微带天线等。

2.天线的工作原理:天线的工作原理基于法拉第电磁感应定律,当电流通过天线时,它会产生一个电磁场,从而形成电磁波。

接收时,电磁波会被天线吸收,然后产生电流。

3.天线的参数:天线的主要参数包括频率范围、阻抗、增益、方向性、辐射效率等。

这些参数决定了天线的性能和适用场景。

4.天线的性能指标:-增益:天线将电能转换为电磁能的能力,通常以分贝(dB)为单位表示。

增益越高,天线的发射和接收距离越远。

-方向性:天线辐射或接收信号的特定方向能力。

定向天线具有较高的方向性,可以减少多径传播和干扰。

-阻抗:天线的输入或输出端口的电阻性质。

与发射端口匹配的阻抗可以最大程度地传递电能,减少反射损耗。

-波束宽度:天线主瓣的角度范围。

较窄的波束宽度意味着更好的方向性和更高的增益。

-辐射效率:天线将输入功率转换为有效辐射功率的能力。

辐射效率高的天线可以更好地实现远距离通信。

5.天线的结构和设计:天线的结构包含一个或多个导体元件,并且根据应用需求进行设计。

常见的天线设计包括垂直极化天线、水平极化天线、天线阵列、圆极化天线等。

6.天线的应用:天线在各种无线通信系统中广泛应用,包括移动通信、卫星通信、无线局域网、雷达、无线电广播等。

7.天线的安装和调整:为了确保天线的性能,需要正确地进行安装和调整。

安装位置和方向的选择对天线的性能和覆盖范围至关重要。

8.天线的特殊设计:根据应用需求,一些特殊设计的天线得到了广泛应用,如室内小型天线、宽带天线、增强型天线等。

9.天线的未来发展:随着无线通信技术的不断发展,天线也在不断创新和改进。

天线知识点总结

天线知识点总结

天线知识点总结天线是电子设备中最基本的元件之一,它能够将电磁波转换为电信号或者将电信号转换为电磁波,是广泛应用在通讯、雷达、导航、电视等领域的不可或缺的元器件。

本文将简要介绍一些天线的相关知识点。

1. 天线的基础理论 - 反射、辐射以及电磁波的特性天线的工作原理基于电磁波的传播特性及其与天线之间的相互作用。

天线通过反射、辐射等方式将电磁波与电信号进行转换,因此温度、介质、空气湿度等环境因素都会对天线的性能产生影响。

2. 天线的类型 - 主动、被动及扫描式天线天线可以根据其在电路中的位置和作用方式分为主动和被动两种类型。

主动天线通常带有放大器来增加信号强度,而被动天线则不带放大器。

此外,扫描式天线可以通过旋转、摆动等方式改变辐射方向,以实现扫描覆盖目标区域的效果。

3. 天线的指标 - 增益、方向性、VSWR、带宽等天线的性能可由其各种指标来描述,其中增益、方向性、VSWR、带宽等是较为重要的指标。

增益是天线的辐射能力,方向性是天线辐射能力随方向变化的能力,VSWR是天线对来自外部信号反射时的反射率指标,带宽则是天线能够工作的频率范围。

4. 天线的尺寸 - λ/2、λ/4、全波长天线等天线的尺寸与工作频率密切相关,常见的天线长度有λ/2、λ/4、全波长天线等。

λ/2天线通常用于VHF和UHF频段,λ/4天线适用于较低频段,全波长天线则通常用于HF 等较低频段。

5. 天线的应用 - 通讯、雷达、导航、电视等天线在通讯、雷达、导航、电视等领域都有广泛的应用。

不同应用场景对天线的要求不同,例如通讯领域需要天线具有良好的增益和方向性,而雷达和导航领域则需要具有较高的扫描速度和快速响应能力。

6. 天线的制作和测试 - PCB天线、红外按摩仪等天线的制作和测试涉及到复杂的技术和设备,常用的制作方法包括PCB天线、红外按摩仪等。

测试方法则通常包括VSWR测试、增益测试、方向性测试等。

7. 天线的未来发展趋势 - 新材料、智能化、多功能化等随着技术的不断进步,未来天线的发展趋势将会趋向于新材料、智能化、多功能化等方向。

天线的基本知识

天线的基本知识

天线的基本知识天线是无线通信中的重要组成部分,其作用是将电信号转换为电磁波进行传输或接收。

天线是无线通信系统中的关键元件,其性能直接影响到通信质量和距离等因素。

下面将介绍天线的基本知识。

一、天线的定义和作用天线是一种用于发射或接收电磁波的装置。

在无线通信中,天线的作用是将电信号转换为电磁波发射出去,或者将接收到的电磁波转换为电信号进行处理。

天线在无线通信系统中起着桥梁的作用,连接着发射机和接收机之间的电信号与电磁波之间的转换。

二、天线的基本原理天线的工作原理是基于电磁学的知识。

当电流通过天线时,会在天线附近产生电磁场。

这个电磁场会随着电流的变化而产生变化,从而形成电磁波并辐射出去。

当接收到的电磁波通过天线时,会在天线上感应出电流,从而实现电磁波到电信号的转换。

三、天线的结构和类型天线的结构形式多种多样,常见的有单极天线、双极天线、方向天线、全向天线等。

单极天线是指由一个导体构成的天线,常见的有垂直天线和水平天线。

双极天线是由两个导体构成的天线,常见的有偶极子天线和环形天线。

方向天线是指天线辐射或接收信号的主要方向是有限的,适用于需要指向性传输的场景。

全向天线是指天线辐射或接收信号的主要方向是全方向的,适用于需要全向传输的场景。

四、天线的性能指标天线的性能指标主要包括增益、方向性、频率响应、波束宽度、驻波比等。

增益是指天线在某个方向上辐射或接收信号的能力,是衡量天线性能好坏的重要指标。

方向性是指天线在某个方向上辐射或接收信号的能力相对于其他方向的能力。

频率响应是指天线在不同频率上的辐射或接收信号的能力。

波束宽度是指天线主瓣辐射功率下降到峰值功率的一半所对应的角度范围。

驻波比是指天线输入端的驻波比,用来衡量天线和传输线之间的匹配程度。

五、天线的应用领域天线广泛应用于无线通信、卫星通信、雷达、无线电广播、电视、导航系统等领域。

在无线通信中,天线是移动通信、无线局域网等系统中的重要组成部分,直接影响通信质量和距离。

天线的基础知识及应用

天线的基础知识及应用

天线的基础知识及应用1、天线的简介天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播电磁波,一般天线都具有可逆性,即同一种天线既可用作来做发射天线,也可用来作为接收天线。

凡是利用电磁波来传递信息的,都依靠天线来进行工作。

众所周知,天线是无线通信、广播、导航、雷达、测控、微波遥感、天文和电子对抗等各种民用和军用无线电系统必不可少的设备之一。

随着信息时代的到来,我们几乎天天都看得见天线,也正在使用天线带来的各种无线信号,如电视塔上的电视发射天线、移动电话基站塔上的通信天线、无时不在的4G还有正在普及中的5G手机内置天线、大型卫星通信地面站天线、全球定位系统(北斗、GPS 等)接收天线、各种智能穿戴、IOT设备的内置天线等等---天线究竟是一根什么样的“线”,为什么会如此彻底地改变我们的生活?其实,天线之所以牛逼,就是因为电磁波牛逼。

2、天线的历史1987年德国青年学者海因里希·赫兹(Heinrich R. Hertz)的著名实验证实了电磁波的存在,他当时所用的电偶极子谐振器就是最早的发射天线,因此天线发明至今还只有130年左右的历史。

1888年,29岁的亚历山大·波波夫得知德国物理学家赫兹发现电磁波的消息后,这位曾经立志推广电灯的年轻科学家对朋友们说:“我用毕生的精力去安装电灯,对于广阔的俄罗斯来说,只不过照亮了很小的一角:假如我能指挥磁波,那就可以飞越整个世界!”于是,他埋头研究,1896年,终于在相距20m的建筑物之间传送了一份电报,电文就是Heinrich Hertz,无线电天线由此而问世。

无线电开创初期主要使用的是火花式发射机,工作频率主要集中在米波和微波频率。

当今,天线技术已具有成熟科学的许多特征,但它仍然是一个富有活力的技术领域。

主要发展方向是:多功能(一副天线代替多副天线)、智能化(提高信息处理能力)、小型化、集成化以及高性能化(宽频带、高增益、低交叉极化等)。

天线基础知识

天线基础知识

。这种同一天线收发参数相同的性质被称为天线的收发互易性
,它可以用电磁场理论中的互易定理予以证明。
• 1.2.2 有效接收面积 ;

有效接收面积(Effective Aperture)是衡量接收天线接收
无线电波能力的重要指标。接收天线的有效接收面积的定义为
:当天线以最大接收方向对准来波方向进行接收时,并且天线
化,若符合左手螺旋,则为左旋圆极化。

图6显示了某一时刻,以+z轴为传播方向的x方向线极化
的场强矢量线在空间的分布图。图7和图8显示了某一时刻,以
+z轴为传播方向的右、左旋圆极化的场强矢量线在空间的分布
图。要注意到,固定时间的场强矢量线在空间的分布旋向与固
定位置的场强矢量线随时间的旋向相反。椭圆极化的旋向定义
20
20. 5
主轴
图5 天线方向图的一般形状

(2)半功率点波瓣宽度(HalfPower Beam Width, HPBW
)2θ0.5E或2θ0.5H:指主瓣最大值两边场强等于最大值的0.707倍 (或等于最大功率密度的一半)的两辐射方向之间的夹角,又
叫3分贝波束宽度。如果天线的方向图只有一个强的主瓣,其它
第1章 天线基础知识
• 1.1 天线的电参数 • 1.2 天线辐射基础 • 1.3 常见天线分类 • 1.4 阵列天线 • 1.5 智能天线
1.1 发射天线的电参数

描述天线工作特性的参数称为天线电参数(Basic Antenna
Parameters),又称电指标。它们是定量衡量天线性能的尺度。我
,与传输线之间存在阻抗匹配问题。天线与传输线的连接处称
为天线的输入端,天线输入端呈现的阻抗值定义为天线的输入 阻抗(Input Resistance),即天线的输入阻抗Zin为天线的输入端 电压与电流之比:

天线培训资料

天线培训资料

天线培训资料一、天线的基本概念天线,简单来说,就是一种用于发射和接收无线电波的装置。

无论是我们日常使用的手机、无线网络,还是广播电视、卫星通信等,都离不开天线的作用。

天线的主要功能是将传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。

也就是说,它在发射时能将电信号转换成电磁波辐射出去,在接收时能将电磁波转换成电信号。

二、天线的分类天线的种类繁多,常见的分类方式有以下几种:1、按工作频段划分短波天线:工作在 3MHz 到 30MHz 频段。

超短波天线:工作在 30MHz 到 3000MHz 频段,例如我们常见的移动通信基站天线。

微波天线:工作在 3000MHz 以上频段,常用于卫星通信、雷达等领域。

2、按方向性划分全向天线:在水平方向上均匀辐射,例如室内的无线路由器天线。

定向天线:具有较强的方向性,将能量集中在特定方向上辐射,比如卫星电视接收天线。

3、按极化方式划分线极化天线:又分为水平极化和垂直极化,手机天线通常是线极化天线。

圆极化天线:分为左旋圆极化和右旋圆极化,在卫星通信中应用较多。

4、按用途划分通信天线:用于各种通信系统,如手机基站天线、卫星通信天线等。

广播天线:用于广播电视发射。

雷达天线:用于雷达系统,探测目标的位置和速度等信息。

三、天线的参数了解天线的性能,需要关注以下几个重要参数:1、频率范围这是天线能够有效工作的频段。

不同的应用需要不同频段的天线,例如 5G 通信需要特定频段的天线来支持高速数据传输。

2、增益天线增益表示天线在特定方向上辐射或接收电磁波的能力。

增益越高,信号在该方向上的传播距离越远,但覆盖范围可能会变窄。

3、方向性描述天线辐射或接收电磁波的方向性特性。

方向性好的天线可以减少干扰,提高通信质量。

4、输入阻抗天线与传输线之间的匹配程度由输入阻抗决定。

如果阻抗不匹配,会导致信号反射,降低传输效率。

5、驻波比用来衡量天线与传输线之间的匹配程度。

天线基础知识

天线基础知识

目录天线 (1)一、天线理论知识 (1)二、天线的选择原则 (18)三、常用天线的分类 (23)天线一、天线理论知识天线是将射频信号转化为无线信号的关键器件,其质量的优良和是否合理使用对无线通信工程的成败起到重要作用。

所以我们必须全面了解天线。

1、天线的方位图:天线辐射电磁波是有方向性的,它表示天线向一定方面辐射电磁波的能力。

反之,作为接收天线的方向性表示了它接收不同方向来的电磁波的能力。

天线方向图的定义:天线辐射的电磁场在一定距离上随空间角坐标分布的图形。

由于电磁场的矢量特征包含了幅度、相位、极化方向等信息,因此,对应有:幅度方向图、相位方向图。

而电磁场的幅度可用场强和功率密度表示,所以,幅度方向图又分为场强方向图和功率方向图。

除非特殊说明,在一般情况下,通常天线方向图指的是功率方向图,幅度以dB为单位。

根据定义,天线的方向图是三维立体图,但实际获得完整的三维方向图是非常困难的。

通常根据天线的结构特点,选择两个或多个特征面测得该平面内的二维方向图如:E面方向图:通过最大辐射方向并与电场矢量平行的平面;水平面方向图(Horizontal):是指与地面平行的平面内的方向图;垂直面方向图(Vertical):是指与地面垂直的平面内的方向图。

当天线为垂直极化时,H面近似为水平面,E面近似为垂直面,如果天线为水平极化则情况正好相反。

E面图和H面图只是描述了天线的功率密度的分布情况,但不能定量的反映天线的主要特征。

为了更好的描述天线的方向图,常使用半功率波束宽度、副瓣电平、前后比、第一上副瓣抑制、第一下零点填充等都是描述方向图特征的指标。

2、波瓣:零功率点波瓣宽度:主瓣最大值两边两个零辐射方向之间的夹角。

半功率点波瓣宽度:在E面或H面的等距线上,主瓣最大值两边场强等于最大场强的0.707倍(或一半功率密度)的两辐射方向之间的夹角。

副瓣电平:在E面或H面的等距线上,副瓣最大值与主瓣最大值之比,通常用dB表示。

天线基础知识

天线基础知识

天线基础知识⼀. ⽅向性系数:物理意义:⽅向图函数E(,)θφ或f (,)θφ表⽰了离辐射源相同距离上各点在各个⽅向上辐射场的相对⼤⼩,它不能明确表⽰天线辐射能量在某个特定⽅向上集中的程度,因⽽必须引进⽅向性系数这⼀指标参数。

⽅向性系数是⽤来表征天线辐射能量集中程度的⼀个参数。

定义1:在相同辐射功率r r P P =o 情况下,某天线在给定⽅向i i (,)θφ的辐射强度i i U(,)θφ与理想点源天线在同⼀⽅向的辐射强度U o 之⽐,即22204r r i i i i i P i i P i i U(,)f (,)D(,)U f (,)sin d d ππθφπθφθφθφθθφ==oo @定义2:在给定⽅向i i (,)θφ产⽣相同电场强度M E E =o 下,理想点源天线的辐射功率r P o与某天线辐射功率r P 之⽐。

即:22204M ri i i i ri i i E E P f (,)D(,)P f (,)sin d d πππθφθφθφθθφ==oo@图0:两种条件下的某天线⽅向图和理想点源⽅向图⼀般⽅向性系数我们都是指最⼤波束(,)θφo o 处的⽅向性系数(是否可以这么理解,⼯程上主要考虑最⼤波束⽅向上的能量集中的程度),则最⼤波束处的⽅向性系数可以表⽰为:200002204f (,)D(,)f (,)sin d d πππθφθφθφθθφ=⽅向性系数表⽰⽆量纲的量,⼯程上⼀般采⽤分贝表⽰:10dB D (,)lg D(,)θφθφ=o o o o⽅向性系数两种定义的物理解释:前⾯已经提到,天线的⽅向性系数是⽤来表征天线辐射能量集中程度的⼀个参数,对于最⼤辐射⽅向上的⽅向性系数D(,)θφo o 来说,其值愈⼤,天线的能量辐射就愈集中,定向性能就愈强。

下⾯针对⽅向性系数的两种定义⽅法⽤图解来说明。

图0所⽰为⽅向性系数的两种定义⽅法对应的两种条件下某天线和理想点源天线的⽅向图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天线的基础知识(2009-05-17 22:14:38)1 天线工作原理及作用是什么?天线作为无线通信不可缺少的一部分,其基本功能是辐射和接收无线电波。

发射时,把高频电流转换为电磁波;接收时,把电滋波转换为高频电流。

2 天线有多少种类?天线品种繁多,主要有下列几种分类方式:按用途可分为基地台天线(base station antenna)和移动台天线(mobile portable antennas),还有就是手持对讲机用的天线(handhold transceiver antennas)。

基地电台俗称棒子天线;车载天线俗称苗子;手台天线由于绝大部分是橡胶外皮的因此俗称橡胶天线或橡胶棒儿。

按工作频段可划分为超长波、长波、中波、短波、超短波和微波。

按其方向可划分为全向和定向天线。

3 如何选择天线?天线作为通信系统的重要组成部分,其性能的好坏直接影响通信系统的指标,用户在选择天线时必须首先注重其性能。

具体说有两个方面,第一选择天线类型;第二选择天线的电气性能。

选择天线类型的意义是:所选天线的方向图是否符合系统设计中电波覆盖的要求;选择天线电气性能的要求是:选择天线的频率带宽、增益、额定功率等电气指标是否符合系统设计要求。

因此,用户在选择天线时最好向厂家联系咨询或在往上对比分析其技术指标。

4 什么是天线的增益?增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电波大小的表现。

增益大小的选择取决于系统设计对电波覆盖区域的要求,简单地说,在同等条件下,增益越高,电波传播的距离越远,一般基地台天线采用高增益天线,移动台天线采用低增益天线。

5 什么是电压驻波比?天线输入阻抗和馈线的特性阻抗不一致时,产生的反射波和入射波在馈线上叠加形成的磁波,其相邻电压的最大值和最小值之比是电压驻波比,它是检验馈线传输效率的依据,电压驻波比小于1.5,在工作频点的电压驻波比小于1.2,电压驻波比过大,将缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放管,影响通信系统正常工作。

电压驻波比1.0 1.1 1.2 1.5 2.0 3.0反射功率% 0 0.2 0.8 4.0 11.1 25.0传输功率% 100 99.8 99.2 96 88.9 75.06 什么是天线的方向性?天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。

衡量天线方向性通常使用方向图,在水平面上,辐射与接收无最大方向的天线称为全向天线,有一个或多个最大方向的天线称为定向天线。

全向天线由于其无方向性,所以多用在点对多点通信的中心台。

定向天线由于具有最大辐射或接收方向,因此能量集中,增益相对全向天线要高,适合于远距离点对点通信,同时由于具有方向性,抗干扰能力比较强。

7 如何理解天线的工作频带宽度?天线的电参数一般都于工作频率有关,保证电参数指标容许的频率变化范围,即是天线的工作频带宽度。

一般全向天线的工作带宽能达到工作频率范围的3-5%,定向天线的工作带宽能达到工作频率的5-10%。

8 如何选取电缆及电缆长度?移动通信系统常使用特性阻抗为50欧的同轴电缆作为馈线。

为了有效地把电波传输到天线接口,应尽量减小馈线的传输损耗。

传输损耗取决于电缆的直径和长度,同一频率下电缆直径越大,损耗越小,电缆越长损耗越大,原则上,要求电缆的传输损耗不宜超过3分贝。

下表列出常用电缆的衰减值(db/m),用户可根据自已情况,合理选择电缆型号及长度。

频率型号150MHz 400MHz 900MHzSYV-50-7 0.121 0.203 0.295CTC-50-7 0.060 0.100 0.165CTC-50-9 0.050 0.085 0.135CTC-50-12 0.040 0.060 0.105进口10D-FB 0.040 0.070 0.1109 如何选择天线安装地点?由于地形和环境的影响,天线接收到的电磁波是直射波、反射波及散射波的叠加,其结果决定了接收点处的场强幅度和相位,并直接影响天线的应用效果。

因此,选择天线架设位置应注意以下几个方面:a、天线的发射或接收方向应避开障碍物(楼房、铁塔、桥梁等);b、天线架设地点应尽量远离干扰源(高压线、航线、铁塔、公路等);c、天线应尽量架设在附近的制高点;d、如有几付天线同在一个铁塔上工作,应特别注意它们之间的左右和上下的间距,以防相互耦合影响系统性能。

10 天馈系统应如何安装?首先将天线、馈线和配套零部件按产品说明的要求组装好,然后在天线的支撑位置,用卡具固定于塔杆的天线支架上,并使天线与塔杆的平行间距大于使用波长,减少塔杆对天线性能的影响。

在天线端口处,将馈电线用连接器(或称电缆头)与天线接好,弯一个直径约五十倍于馈电线直径的圆环固定于天线支架上,避免连接器部位直接受力而断线或损坏。

11 天馈系统如何防水?天线与馈电线主要是靠连接器连接,采用自粘性橡胶密封带,将其拉伸后,以半搭形式缠绕在接连器上,可起到良好的密封防水作用。

另外,在馈电线进入室内处弯一个返水弯,可避免雨水沿馈电线进入室内设备。

12 如何检测天馈系统?天馈系统架设好后,应由专业技术人员使用专用检测仪器进行检测。

通常可在发射机和天馈系统之间串接通过式功率计,检验设备发射机功率和反射功率的大小来判断系统工作是否正常。

甚高频(VHF)的通讯距离起决于天线的增益、高度,发射机输出功率、接收机灵敏度、电磁环境及有无障碍物等。

本页提供一计算图表,您通过它可以大致算出预定通信系统的通讯距离。

右边公式是如下系统的计算值:*甲台为基地台,架设于10楼高度,采用6dB玻璃钢基地台天线,电缆长度为40米,发射功率25W,接收机灵敏度0.5微伏。

*乙台为移动手持式对讲机,采用3dB拉杆天线,发射功率5W,接收灵敏度0.5微伏。

*根据以上数据在下图中查得对应的分贝值,如右式计算出结果分贝数(X轴,参考电平),即可查出(Y轴,通讯距离)甲乙两机通讯距离为53公里。

从图表中可看出,提高天线的增益、接收机的灵敏度和双方天线的高度比提高发射机功率更有效。

以上计算出的得数是一般通信环境(无干扰、无大障碍物)的通讯距离,和实际环境通讯距离会有些误差。

此主题相关图片如下:按此查看图片详细信息举例说明:以+8dB为X轴,向上查得斜线对应点的Y轴数值即为系统通讯距离此主题相关图片如下:按此查看图片详细信息天线的工作频率范围(频带宽度)无论是发射天线还是接收天线,它们总是在一定的频率范围(频带宽度)内工作的,天线的频带宽度有两种不同的定义------一种是指:在驻波比SWR ≤ 1.5 条件下,天线的工作频带宽度;一种是指:天线增益下降3 分贝范围内的频带宽度。

增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。

它定量地描述一个天线把输入功率集中辐射的程度。

增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。

可以这样来理解增益的物理含义------为在一定的距离上的某点处产生一定大小的信号。

如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为G = 13 dB = 20的某定向天线作为发射天线时,输入功率只需100 / 20 = 5W . 换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。

半波对称振子的增益为G = 2.15 dBi ; 4个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G = 8.15 dBidBi这个单位表示比较对象是各向均匀辐射的理想点源。

如果以半波对称振子作比较对象,则增益的单位是dBd 。

半波对称振子的增益为G = 0 dBd (因为是自己跟自己比,比值为1,取对数得零值。

);垂直四元阵,其增益约为G = 8.15 – 2.15 = 6 dB此主题相关图片如下:按此查看图片详细信息几种常用的短波天线1.八木天线(YagiAntenna)八木天线在短波通信中 通常用于大于6MHz以上频段,八木天线在理想情况下增益可达到19dB,八木天线应用于窄带和高增益短波通信,可架设安装在铁塔上 具有很强的方向性。

在一个铁塔上可同时架设几个八木天线,八木天线的主要优点是价格便宜。

2.对数周期天线(LogPeriodicAntenna)对数周期天线价格昂贵,但可以使用在多种频率和仰角上。

对数周期天线适合于中、短波通信,利用天波信号,效率高,接近于发射期望值。

与其它高增益天线相比,对数周期天线方向性更强,对无用方向信号的衰减更大。

3.长线天线(Long-WireAntennas)长线天线优点是结构简单,价格低,增益适中。

与八木天线和对极周期天线比,长线天线长度方向性和增益低。

但其优势在于,由于其增益与线长度有关,用户可以找到最佳接收线的长度和角度。

通过比较信号波长,计算出线的长度,非常适合于远距离通信。

当线长4倍波长在仰角为25度时与双极天线比增益高3dB,当线长8倍于波长时,增益高6dB,仰角下降到18度,图1为长线天线增益示图。

4.车载移动天线(MobileAntennas)移动天线一般工作在2.0~25MHz频段上,为垂直极性天线,性能与机械特性有关,天线长度较短,在低仰角工作时,发射效率适中。

在通常情况下,车载天线仰角应大于45度,因为天线长度较短,是低效天线。

在汽车上,机械特性限制了天线的选择,但天线可以放置为倒"L"型,这样增加了天线的垂直辐射面,可以提高发射效率,倒"L"天线适宜用于中短波通信。

相关文档
最新文档