哈工大机械原理大作业凸轮

合集下载

哈工大、机械原理大作业、凸轮机构设计20题

哈工大、机械原理大作业、凸轮机构设计20题

Harbin Institute of Technology机械原理大作业二课程名称:机械原理设计题目:凸轮机构设计院系:能源科学与工程学院班级:1102301设计者:刘平成学号:1110200724指导教师:唐德威设计时间:2013年6月7日凸轮机构设计1.设计题目(1) 凸轮机构运动简图:(2)凸轮机构的原始参数表2-1.凸轮机构原始参数 序号 升程(mm )升程运动角 升程运动规律升程许用压力角20 110 120° 正弦加速度35°回程运动角回程运动规律 回程许用压力角 远休止角近休止角 90°正弦加速度 65°90°60°(二)凸轮运动方程及相关图像、程序凸轮推杆升程、回程运动方程及推杆位移、速度、加速度线图: ○1 凸轮推杆升程、回程方程 πϕπϕϕs)650(πϕ≤≤140)(2=ϕs 511()69πφπ≤≤pi))*5708)/(23.2289)/1.-(sin(2+57083.2289)/1.-(-140(1)(3ϕπϕϕ=s1116()99πφπ≤≤)2914(πϕπ≤≤ 0)(4=ϕs ○2速度方程/2.0944;/2.09440))cos(2-140(1)(1πϕϕ=v 16(2)9πφπ≤≤ 0)(2=ϕv 511()69πφπ≤≤ 708;5708))/1.53.2289)/1.-(cos(2-140(1)(3ϕπϕ=v 1116()99πφπ≤≤ 0)(4=ϕv 16(2)9πφπ≤≤○3加速度方程 .0944^2;/2.0944)/2sin(2280)(1πϕπϕ=a )650(πϕ≤≤0)(2=ϕa 511()69πφπ≤≤08^25708)/1.573.2289)/1.-(sin(2280)(3ϕππϕ=a 1116()99πφπ≤≤ 0)(4=ϕa 16(2)9πφπ≤≤推杆位移、速度、加速度线图matlab编程clear,clcpu=0*pi/180:0.0001:120*pi/180; %升程运动角范围pf=120*pi/180:0.0001:210*pi/180; %远休止角范围pd=210*pi/180:0.0001:300*pi/180; %回程运动角范围pn=300*pi/180:0.0001:2*pi; %近休止角范围h=110e-3; %升程w=10; %凸轮角速度p0=120*pi/180; %升程运动角p01=90*pi/180; %回程运动角ps=90*pi/180; %远休止角%----------推程-----------------------------------------su=h.*(pu./p0-sin(2.*pi.*pu./p0)/(2*pi)); %推杆位移vu=h*w/p0*(1-cos(2*pi*pu./p0)); %推程速度au=2*pi*h*w^2/p0^2*sin(2*pi*pu./p0); %推程加速度%------------远休止----------------------------nf=size(pf);sf=h*ones(nf); %推杆位移vf=zeros(nf); %推程速度af=zeros(nf); %推程加速度%---------------回程------------------------------T=pd-(p0+ps);sd=h/2*(1+cos(pi/p01*T)); %回程位移vd=-pi*h*w/(2*p01)*sin(pi/p01*T); %回程速度ad=-pi^2*h*w^2/(2*p01^2)*cos(pi/p01*T); %回程加速度%--------------------近休止---------------------------------nn=size(pn);sn=zeros(nn); %推杆位移vn=zeros(nn); %推程速度an=zeros(nn); % 推程加速度%------画出推杆位移、速度、加速度线图---------------p=[pu,pf,pd,pn];s=[su,sf,sd,sn];subplot(2,3,1),hold onplot(p,s*1e3,'linewidth',2),xlabel('\phi/rad'),ylabel('s/mm'),grid on,title('推杆位移'),axis([0,2*pi,1.1*min(s)*1e3,1.1*max(s)*1e3]) subplot(2,3,2) v=[vu,vf,vd,vn];plot(p,v,'linewidth',2),xlabel('\phi/rad'),ylabel('v/m/s'),grid on,title('推杆速度'),axis([0,2*pi,1.1*min(v),1.1*max(v)]) subplot(2,3,3) a=[au,af,ad,an];plot(p,a,'linewidth',2),xlabel('\phi/rad'),ylabel('a/m/s^2'),grid on,title('推杆加速度'),axis([0,2*pi,1.1*min(a),1.1*max(a)]) hold off(三)凸轮机构s d ds-ϕ图像及程序代码 %--------------------求ds/d_phi-------------------subplot(2,3,4),plot(v/w*1e3,s*1e3,'linewidth',2),xlabel('ds/d\phi/mm'),ylabel('s/mm'),axis equal,grid on,title('ds/d\phi —s')%---------------------凸轮轴心许用区域--------------------------- alpha_up=35*pi/180; %升程许用压力角 alpha_down=65*pi/180; %回程许用压力角 p1=pi/2-alpha_up; %推程斜率角 p2=alpha_down-pi/2; %回程斜率角 ku=tan(p1); %推程切线斜率 kd=tan(p2); %回程切线斜率 R2=[cos(-p2),-sin(-p2);sin(-p2),cos(-p2)];%推程旋转矩阵 R1=[cos(-p1),-sin(-p1);sin(-p1),cos(-p1)];%推程旋转矩阵 nu=size(pu); for i=1:nu(2)Temp=R1*[vu(i)/w;su(i)];vut(i)=Temp(1); %旋转推程ds/dp-s 曲线 sut(i)=Temp(2); endnd=size(pd); for i=1:nd(2)Temp=R2*[vd(i)/w;sd(i)];vdt(i)=Temp(1); %旋转回程ds/dp-s 曲线 sdt(i)=Temp(2); endfor j=1:nu(2)if sut(j)==min(sut)temu=j; %旋转推程ds/dp-s 曲线后求最低点 end endfor j=1:nd(2)if sdt(j)==min(sdt)temd=j; %旋转回程ds/dp-s曲线后求最低点endendt1=1.2*min(vd/w):0.01:1.2*max(vu/w); %切线定义域t2=min(vd/w)/6:0.01:1.2*max(vu/w);t3=0:0.01:1.2*max(vu/w);s1=ku*(t2-vu(temu)/w)+su(temu); %推程切线s2=kd*(t1-vd(temd)/w)+sd(temd); %回程切线s3=tan(-p1)*t3; %推程起点压力角限制线subplot(2,3,5) %画图hold on,axis equal,grid onplot(v/w*1e3,s*1e3,'linewidth',2)plot(t2*1e3,s1*1e3,'linewidth',1,'color','r')plot(t1*1e3,s2*1e3,'linewidth',1,'color','r')plot(t3*1e3,s3*1e3,'linewidth',1,'color','r')xlabel('ds/d\phi/mm'),ylabel('s/mm'),hold off,title('ds/d\phi—s,轴向许用范围')(四)确定凸轮的基圆半径和偏距、绘制凸轮机圆、偏距圆、理论轮廓曲线---------------画理论廓线图-------------------------e=36e-3;s0=52e-3;r0=sqrt(s0^2+e^2);x=(s0+s).*cos(p)-e.*sin(p);y=(s0+s).*sin(p)+e.*cos(p);x1=r0*cos(p);y1=r0*sin(p);subplot(2,3,6)plot(x*1e3,y*1e3,'linewidth',1),axis equal,grid on,hold on,title('廓线图')plot(x1*1e3,y1*1e3,'linewidth',1,'color','r')%-------------求最小曲率半径-----------------------nx=size(x);nx1=nx(2)-2;dydp=diff(y)./diff(p);%求微分dxdp=diff(x)./diff(p);d2ydp2=diff(dydp)./diff(p(1:nx1+1));d2xdp2=diff(dxdp)./diff(p(1:nx1+1));rho=(dxdp(1:nx1).^2+dydp(1:nx1).^2).^1.5./abs((dxdp(1:nx1).*d2ydp2(1:nx1)-dydp(1:nx1).*d2x dp2(1:nx1)));%理论廓线曲率半径rhomin=min(rho);%最小曲率半径rr=rhomin-3e-3;%----------------实际廓线图----------------X=x(1:nx(2)-1)-rr*dydp./(dxdp.^2+dydp.^2).^0.5;%求实际廓线坐标Y=y(1:nx(2)-1)+rr*dxdp./(dxdp.^2+dydp.^2).^0.5;plot(X*1e3,Y*1e3,'linewidth',2,'color','k')%画实际廓线图Legend('理论廓线','基圆','实际廓线'),axis([1.1*min(x)*1e3,1.1*max(x)*1e3,1.1*min(y)*1e3,1.1*max(y)*1e3])得到基圆半径311mm、偏距36mm。

哈工大机械原理大作业第10题凸轮

哈工大机械原理大作业第10题凸轮

凸轮机构设计1.设计题目如图2-1所示直动从动件盘形凸轮机构,其原始参数见表2-1。

从表2-1中选择一组凸轮机构的原始参数,据此设计该凸轮机构。

表2-1 凸轮机构原始参数2.凸轮推杆升程,回程运动方程及推杆位移,速度,加速度,线图(1)推杆升程,回程方程运动方程如下: A.推杆升程方程: 0<ϕ<π65;图6112130sin525s ϕϕππ⎡⎤=-⎢⎥⎣⎦ωϕπ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=512cos 1156v 2512sin 51872ωϕπ⎪⎭⎫ ⎝⎛=a B.推杆回程方程:149ππϕ<<9()651cos 5s ϕπ-⎡⎤=+⎢⎥⎣⎦9()117sin 5v ϕπω-⎡⎤=-⎢⎥⎣⎦210539()cos 55a ϕπω-⎡⎤=-⎢⎥⎣⎦(2)推杆位移,速度,加速度线图如下:A.推杆位移线图Matlab程序:x1=0::5*pi/6;y1=156*x1/pi-65*sin(12*x1/5)/pi; x2=5*pi/6::pi;y2=130;x3=pi::14*pi/9;y3=65+65*cos(9*(x3-pi)/5);x4=14*pi/9::2*pi;y4=0;plot(x1,y1,x2,y2,x3,y3,x4,y4); B.推杆速度线图Matlab程序:x1=0::5*pi/6;y1=156/pi-156*cos(12*x1/5)/pi;x2=5*pi/6::pi;y2=0;x3=pi::14*pi/9;y3=-117*sin**pi);x4=14*pi/9::2*pi;y4=0;plot(x1,y1,x2,y2,x3,y3,x4,y4);C.推杆加速度线图Matlab程序:x1=0::5*pi/6;y1=1872*sin(12*pi*x1/5)/(5*pi); x2=5*pi/6::pi;y2=0;x3=pi::14*pi/9;y3=-1053*cos(9*(x3-pi)/5)/5;x4=14*pi/9::2*pi;y4=0;plot(x1,y1,x2,y2,x3,y3,x4,y4);3、凸轮机构的ds/d φ-s 线图,并以此确定凸轮基圆半径和偏距;(1)凸轮机构的ds/d φ-s 线图(2)确定凸轮的基圆半径和偏距;可取图中,三角框里的一点确定s 0=100mm ;e=50mm ; 基圆半径:r 0=50^2^2100 偏距:e=50mm ;4.滚子半径确定及凸轮理论轮廓线和实际轮廓线滚子半径取r=20mm;。

哈工大—机械原理凸轮大作业

哈工大—机械原理凸轮大作业

一、题目要求及机构运动简图如图1所示直动从动件盘形凸轮机构。

其原始参数见表1。

图一凸轮运动简图表一凸轮原始参数二、计算流程框图凸轮机构分析建立数学模型位移方程速度方程加速度方程速度线图位移线图加速线图ds/dΨ-s曲线升程压力角回程压力角确定轴向及基圆半径压力角图确定滚子半径实际轮廓理论轮廓轮廓图结束三、建立数学模型1.从动件运动规律方程首先,由于设计凸轮轮廓与凸轮角速度无关,所以不妨设凸轮运动角速度为w = 1rad/s。

(1)推程运动规律 (0 < φ < 90°)s=h2×[1−cos⁡(πφ0×φ)]v=πhw2φ0×sin⁡(πφ0×φ)a=⁡π2ℎw22φ02×cos⁡(πφ0×φ)式中:h=65mm,Φ0=π/2(2)远休程运动规律 (90°< φ < 190°)s = 65mmv = 0a = 0(3)回程运动规律 (190°< φ < 240°)s1⁡=⁡h⁡−h4+π∗(π∗(φ−⁡φ0⁡−⁡φs)φ0′−sin(4∗π∗φ−⁡φ0⁡−⁡φsφ0)4)⁡⁡⁡⁡(190°< φ < 196.25°)s2⁡=⁡h⁡−h4+π∗(2+π∗(φ−⁡φ0⁡−⁡φs)φ0′−9∗sin(π3+4∗π∗φ−⁡φ0⁡−⁡φs3∗φ0′)4)⁡⁡⁡(196.25°< φ < 233.75°)s3⁡=⁡h⁡−h4+π∗(4+π∗(φ−⁡φ0⁡−⁡φs)φ0′−sin(4∗π∗φ−⁡φ0⁡−⁡φsφ0′)4)⁡⁡⁡(233.75°< φ < 240°)回程运动中的速度和加速度为位移对时间t的倒数:v=ds dta=dv dt(4)近休程运动规律 (240°< φ < 360°)s = 0v = 0a = 02.从动件位移、速度、加速度线图(1)位移线图(2)速度线图(3)加速度线图(4)位移、速度、加速度线图MATLAB源程序%% 已知条件h = 65; %mmphi_0 = 90./180*pi; %radalpha_up_al = 35./180*pi; %升程许用压力角phi_00 = 50./180*pi;alpha_down_al = 70./180*pi; %回程许用压力角phi_s = 100./180*pi;phi_ss = 120./180*pi;w = 1;%% 绘制从动件位移、速度、加速度线图% 推程阶段t_up = 0 : 0.5 : 90;t_up1 = t_up./180*pi;syms t_up1 phi_up s_up v_up a_upphi_up = w.*t_up1;s_up = h./2.*(1 - cos(pi.*phi_up./phi_0));v_up = diff(s_up,t_up1);a_up = diff(v_up,t_up1);s_up1 = double(subs(s_up,t_up./180*pi));v_up1 = double(subs(v_up,t_up./180*pi));a_up1 = double(subs(a_up,t_up./180*pi));% 远休程t_s = 90 : 0.5 : (90+100);t_s1 = t_up./180*pi;s_s(1:201) = h;v_s(1:201) = 0;a_s(1:201) = 0;% 回程阶段1t_down1 = (90+100) : 0.5 : (90+100+50/8);t_down11 = t_down1./180*pi;syms t_down11 phi_down1 s_down1 v_down1 a_down1phi_down1 = w.*t_down11;s_down1 = h - h./(4+pi).*(pi.*(phi_down1 - phi_0 - phi_s)./phi_00 - ...sin(4.*pi.*(phi_down1 - phi_0 - phi_s)./phi_00)./4);v_down1 = diff(s_down1,t_down11);a_down1 = diff(v_down1,t_down11);s_down11 = double(subs(s_down1,t_down1./180*pi));v_down11 = double(subs(v_down1,t_down1./180*pi));a_down11 = double(subs(a_down1,t_down1./180*pi));% 回程阶段2t_down2 = (90+100+50/8) : 0.5 : (90+100+7*50/8);t_down22 = t_down2./180*pi;syms t_down22 phi_down2 s_down2 v_down2 a_down2phi_down2 = w.*t_down22;s_down2 = h - h./(4+pi).*(2+pi.*(phi_down2 - phi_0 - phi_s)./phi_00 - 9.*sin(pi./3 + 4.*pi.*(phi_down2 - phi_0 - phi_s)./(3.*phi_00))./4); v_down2 = diff(s_down2,t_down22);a_down2 = diff(v_down2,t_down22);s_down22 = double(subs(s_down2,t_down2./180*pi));v_down22 = double(subs(v_down2,t_down2./180*pi));a_down22 = double(subs(a_down2,t_down2./180*pi));% 回程阶段3t_down3 = (90+100+7*50/8) : 0.5 : (90+100+50);t_down33 = t_down3./180*pi;syms t_down33 phi_down3 s_down3 v_down3 a_down3phi_down3 = w.*t_down33;s_down3 = h - h./(4+pi).*(4+pi.*(phi_down3 - phi_0 - phi_s)./phi_00 - …sin(4.*pi.*(phi_down3 - phi_0 - phi_s)./phi_00)./4);v_down3 = diff(s_down3,t_down33);a_down3 = diff(v_down3,t_down33);s_down33 = double(subs(s_down3,t_down3./180*pi));v_down33 = double(subs(v_down3,t_down3./180*pi));a_down33 = double(subs(a_down3,t_down3./180*pi));% 近休程t_ss = (90+100+50) : 0.5 : 360;s_ss(1:241) = 0;v_ss(1:241) = 0;a_ss(1:241) = 0;% 绘图位移t = [t_up t_s t_down1 t_down2 t_down3 t_ss];phi = w .* t ./ 180 .*pi;s = [s_up1 s_s s_down11 s_down22 s_down33 s_ss];v = [v_up1 v_s v_down11 v_down22 v_down33 v_ss];a = [a_up1 a_s a_down11 a_down22 a_down33 a_ss];figure('Name','从动件位移-时间线图');plot(t,s,'k','linewidth',1.0);grid on;title('从动件位移-时间线图');xlabel('转角\phi / 度');ylabel('位移h/mm');% 绘图速度figure('Name','从动件速度-时间线图');plot(t,v,'k','linewidth',1.0);grid on;title('从动件速度-时间线图');xlabel('转角\phi / 度');ylabel('速度v/mm*s^{-1}');% 绘图加速度figure('Name','从动件加速度-时间线图'); plot(t,a,'k','linewidth',1.0);grid on;title('从动件加速度-时间线图');xlabel('转角\phi / 度');ylabel('加速度a/mm*s^{-2}');3.绘制ds/dΦ线图并确定基圆半径和偏距(1)绘制ds/dΦ线图及源程序① MATLAB源程序:%% 绘制ds/dphi-s线图,确定基圆半径和偏距ds_dphi = v ./ w;figure('Name','凸轮ds/dphi - s线图');plot(ds_dphi,s,'k','linewidth',1.5);hold on;axis([-150 150 -70 70]);grid on;title('凸轮ds/dphi - s线图');xlabel('ds/dphi / (mm*s^{-2})');ylabel('s/mm');% 三条临界线x = linspace(-150,150,301);k_up = tan(pi/2 - alpha_up_al);y_up = k_up.*x - 66;plot(x,y_up,'linewidth',1.5);k_down = - tan(pi/2 - alpha_down_al);y_down = k_down.*x - 24.7;plot(x,y_down,'linewidth',1.5);x0 = linspace(0,150,151);k0 = - tan(alpha_up_al);y0 = k0.*x0;plot(x0,y0,'--');% 由图像选取凸轮基圆半径为r0 = sqrt(23^2 + 34^2) = 41 mm,偏距e = 23mm plot(23,-34,'or');r0 = 41;e = 23;plot(linspace(0,23,10),linspace(0,-34,10),'r',linspace(0,23,10),linsp ace(-34,-34,10),'r',linspace(23,23,10),linspace(0,-34,10),'r','linewi dth',1.0);(2)确定基圆半径和偏距在凸轮机构的ds/dφ-s线图里再作斜直线Dt-dt与升程的[ds/dφ-s]曲线相切并使与纵坐标夹角为升程许用压力角[α],则Dt-dt 线的右下方为选择凸轮轴心的许用区。

哈工大机械原理大作业凸轮结构设计3

哈工大机械原理大作业凸轮结构设计3

仅供个人参考Harbin Institute of Technology机械原理大作业二课程名称:机械原理设计题目:凸轮结构设计院系:机电工程学院班级:设计者:学号:指导教师:设计时间:哈尔滨工业大学1、设计题目2、凸轮机构推杆升程、回程运动方程,推杆位移、速度、加速度线图。

(1)推杆各行程运动方程(设定角速度为s s rad /2/1πω==)①从动件推程运动方程(650πϕ≤≤) ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=ϕφπφω0012cos 1h v ; 代入数据,可得:②从动件远休程运动方程(πϕπ≤≤65) ③从动件回程运动方程(914πϕπ≤≤) 代入数据,可得:④从动件进休程运动方程(πϕπ2914≤≤) (2)、推杆位移、速度、加速度线图①推杆的位移线图如下②推杆的速度线图如下③推杆的加速度线图如下 3、凸轮机构的dss d ϕ-线图,并依次确定凸轮的基圆半径和偏距凸轮机构的s d ds -ϕ线图如下图所示 由图中范围选定点(-10,-50)为凸轮转轴O 点,则mm r 99.501050220=+=取基圆半径为r 0 =51mm ,偏距e = 10mm 。

4、滚子半径的确定及凸轮理论廓线和实际廓线的绘制由程序计算得凸轮理论轮廓线最小曲率半径mm r 51min = .由滚子半径选择范围∆-<min ρr r ,mm 5~3=∆得到滚子半径mm r r 46≤.又因为凸轮整体尺寸较小,此范围明显过大,故适当减小滚子半径,这里取半径为mm r r 12= .得到图线为:附录1.求位移、速度、加速度的程序(matlab )function f = tulunh=50;x1=150;t1=30;x2=100;t2=80;w=2*pi;x1=x1*pi/180;x2=x2*pi/180;t1=t1*pi/180;t2=t2*pi/180;%升程x=0:0.001:x1;s = h*(x/x1-sin(2*pi*x/x1)/(2*pi));v = h*w*(1-cos(2*pi*x/x1))/x1;a = 2*pi*h*w*w*sin(2*pi*x/x1)/(x1*x1);subplot(3,1,1),plot(x,s),hold onsubplot(3,1,2),plot(x,v),hold onsubplot(3,1,3),plot(x,a),hold on%远休x = x1:0.001:x1+t1;s = h;v=0;a=0;subplot(3,1,1),plot(x,s),hold onsubplot(3,1,2),plot(x,v),hold onsubplot(3,1,3),plot(x,a),hold on%回程x= x1+t1:0.001:x1+t1+x2;s = h*(1+cos(pi*(x-(x1+t1))/x2))/2;v = -pi*h*w*sin(pi*(x-(x1+t1))/x2)/(2*x2);a = -pi*pi*h*w*w*cos(pi*(x-(x1+t1))/x2)/(2*x2*x2);subplot(3,1,1),plot(x,s),hold onsubplot(3,1,2),plot(x,v),hold onsubplot(3,1,3),plot(x,a),hold on%近休x=x1+t1+x2:0.001:x1+x2+t1+t2;s = 0;v = 0;a = 0;subplot(3,1,1),plot(x,s),xlabel('φ/rad'),ylabel('S/mm'),title('位移-转角图线'),hold onsubplot(3,1,2),plot(x,v),xlabel('φ/rad'),ylabel('v/(mm/s)'),title('速度-转角图线'),hold onsubplot(3,1,3),plot(x,a),xlabel(φ/rad'),ylabel('a/(mm/s^2)'),title('加速度-转角图线'),hold on2.绘制凸轮机构s d ds -ϕ线图 function f= jiyuan;x1=150;t1=30;x2=100;t2=80;h=50;x1=x1*pi/180;x2=x2*pi/180;t1=t1*pi/180;t2=t2*pi/180;x= 0:0.001:150*pi/180;%升程 v/ws = h*(x/x1-sin(2*pi*x/x1)/(2*pi));k =-h*(1-cos(2*pi*x/x1))/x1;plot(k,s,'r'),hold on ;x=180*pi/180:0.001:280*pi/180;%回程 v/ws = h*(1+cos(pi*(x-(x1+t1))/x2))/2;k = pi*h*sin(pi*(x-(x1+t1))/x2)/(2*x2);plot(k,s,'g'),hold on ;%回程切线for i=-11:1:-11;f=@(k)k*tan(pi/6)+i;k =-40:0.1:50;s=f(k);plot(k,s),hold on ;end%升程切线for i=-45:0.2:-45;f=@(k)-k*tan(60*pi/180)+i;k =-40:0.1:50;s=f(k);plot(k,s),hold on ;endgrid onf=@(k)k*tan(50*pi/180);k=-50:0.1:0;s=f(k);plot(k,s),hold onxlabel('ds/d φ');ylabel('s(φ)');title('类速度-位移图线 ');plot(-10,-50,’o ’);3.绘制凸轮轮廓曲线function f= lunkuo;h=50;x1=150;t1=30;x2=100;t2=80;x1=x1.*pi./180;x2=x2.*pi./180;t1=t1.*pi./180;t2=t2.*pi./180;s0=51;e=10;rr=12;%升程x=0:pi/200:150.*pi/180;s = h.*(x./x1-sin(2.*pi.*x./x1)./(2.*pi));X1=(s0+s).*cos(x)-e.*sin(x);Y1=(s0+s).*sin(x)+e.*cos(x);%实际轮廓X11=X1-(rr.*(cos(x).*(s + s0) - e.*sin(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);Y11=Y1-(rr.*(sin(x).*(s + s0) + e.*cos(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);plot(X1,Y1,'r',X11,Y11,'r'),hold on;%远休x=150.*pi/180:pi/180:180.*pi/180;s=50;X2=(s0+s).*cos(x)-e.*sin(x);Y2=(s0+s).*sin(x)+e.*cos(x);X22=X2-(rr.*(cos(x).*(s + s0) - e.*sin(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);Y22=Y2-(rr.*(sin(x).*(s + s0) + e.*cos(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);plot(X2,Y2,'g',X22,Y22,'g'),hold on;%回程x=180.*pi/180:pi/180:280.*pi/180;s = h.*(1+cos(pi.*(x-(x1+t1))./x2))./2;X3=(s0+s).*cos(x)-e.*sin(x);Y3=(s0+s).*sin(x)+e.*cos(x);X33=X3-(rr.*(cos(x).*(s + s0) - e.*sin(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);Y33=Y3-(rr.*(sin(x).*(s + s0) + e.*cos(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);plot(X3,Y3,'k',X33,Y33,'k'),hold on;%近休x=280*pi/180:pi/180:2*pi;s=0;X4=(s0+s).*cos(x)-e.*sin(x);Y4=(s0+s).*sin(x)+e.*cos(x);X44=X4-(rr.*(cos(x).*(s + s0) - e.*sin(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);Y44=Y4-(rr.*(sin(x).*(s + s0) + e.*cos(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);plot(X4,Y4,'b',X44,Y44,'b'),hold on;x=0:pi/200:2*pi;X4=(s0+s).*cos(x)-e.*sin(x); Y4=(s0+s).*sin(x)+e.*cos(x); plot(X4,Y4,'b');text(-40,90,'理论轮廓线');text(-40,72,'实际轮廓线');text(-5,55,'基圆');grid on;axis equal仅供个人用于学习、研究;不得用于商业用途。

哈工大机械原理大作业——凸轮——5号

哈工大机械原理大作业——凸轮——5号

Harbin Institute of Technology机械原理大作业二课程名称:机械原理设计题目:凸轮机构设计院系:机电工程学院班级:设计者:学号:指导教师:设计时间:凸轮机构设计一. 设计题目表1 凸轮机构原始参数二. 凸轮推杆升程、回程运动方程及推杆位移、速度、加速度线图1. 推杆升程运动方程(ϕ为转角)(203ϕπ≤≤) 令1/rad s ω= 位移:001212040[sin()]sin(3)2s h ϕπϕϕϕφπφππ=-=- 速度:1002120120[1cos()]cos(3)h v ωπϕϕφφππ=-=- 加速度:2120022360[sin()]sin(3)h a πωπϕϕφφπ==2. 推杆回程运动方程(ϕ为转角)7563πϕπ≤≤ 位移:''00128001604014[1sin()]sin(4)]233T s h T πϕϕπφπφππ=-+=-+- 速度:1''00216016014[1cos()]cos(4)]3h v T ωπϕϕπφφππ=--=-+- 加速度:21'2'002264014sin()sin(4)]3h a T πωπϕπφφπ=-=-- 式中:027()()326s T πππϕϕϕϕϕ=-+=-+=-由MATLAB编程得到线位移图像:线速度图像:线加速度图像:三.绘制机构的ds sdϕ-线图由dsds vdtdd wtϕϕ==可知线图即vsw-线图,由MATLAB编程后得图四.确定基圆半径和偏距1.画切线图如上页图,得其切线图2.求基圆半径和偏距从图中读取e=50mmr0=111.80mm五.画理论及实际轮廓附:MATLAB编程1.推杆位移线图代码%升程阶段t=0:0.001:2*pi/3;s=120.*t./pi-40./pi.*sin(3.*t);hold onplot(t,s);%远休止阶段t=2*pi/3:0.001:7*pi/6;s=80;hold onplot(t,s);%回程阶段t=7*pi/6:0.001:5*pi/3;s=800/3-160.*t./pi+40./pi.*sin(4.*t-14*pi/3) hold onplot(t,s);%近休止阶段t=5*pi/3:0.001:2*pi;s=0;hold onplot(t,s);grid onhold off2.推杆速度线图代码%升程阶段t=0:0.001:2*pi/3;v=120/pi-120/pi*cos(3.*t);hold onplot(t,s);%远休止阶段t=2*pi/3:0.001:7*pi/6;v=0;hold onplot(t,s);%回程阶段t=7*pi/6:0.001:5*pi/3;v=-160/pi+160/pi*cos(4.*t-14/3*pi) hold onplot(t,s);%近休止阶段t=5*pi/3:0.001:2*pi;v=0;hold onplot(t,s);grid onhold off3.推杆加速度线图代码%升程阶段t=0:0.001:2*pi/3;a=360/pi.*sin(3.*t)hold onplot(t,a);%远休止阶段t=2*pi/3:0.001:7*pi/6;a=0;hold onplot(t,a);%回程阶段t=7*pi/6:0.001:5*pi/3;a=-640/pi.*sin(4.*t-14/3*pi) hold onplot(t,a);%近休止阶段t=5*pi/3:0.001:2*pi;a=0;hold onplot(t,a);grid onhold off4.dssdϕ-线图代码%升程阶段t=0:0.001:2*pi/3;s=120.*t./pi-40./pi.*sin(3.*t);v=120/pi-120/pi*cos(3.*t);hold onplot(v,s);%远休止阶段t=2*pi/3:0.001:7*pi/6;s=80;v=0;hold onplot(v,s);%回程阶段t=7*pi/6:0.001:5*pi/3;s=800/3-160.*t./pi+40./pi.*sin(4.*t-14*pi/3);v=-160/pi+160/pi*cos(4.*t-14/3*pi)hold onplot(v,s);5.最终轮廓线图代码h=80;w=1;e=50;rr=20;s0=100;m=120*pi/180;ms=(120+90)*pi/180;m1=(120+90+90)*pi/180; for i=1:1:120mm(i)=i*pi/180.0;s1=h.*( mm(i)./m -(1/(2*pi)).*sin(2.*pi.*mm(i)./m));v1=(w*h./m)*(1-cos(2*pi*mm(i)/m));x(i)=(s0+s1)*sin(mm(i))+e*cos(mm(i));y(i)=(s0+s1)*cos(mm(i))-e*sin(mm(i));a(i)=(s0+s1)*cos(mm(i))-e*sin(mm(i))+v1/w*sin(mm(i)); b(i)=-(s0+s1)*sin(mm(i))-e*cos(mm(i))+v1/w*cos(mm(i));xx(i)=x(i)+rr*b(i)/sqrt(a(i)*a(i)+b(i)*b(i));yy(i)=y(i)-rr*a(i)/sqrt(a(i)*a(i)+b(i)*b(i));endfor i=121:1:210mm(i)=i*pi/180;s2=h;v2=0;x(i)=(s0+s2)*sin(mm(i))+e*cos(mm(i));y(i)=(s0+s2)*cos(mm(i))-e*sin(mm(i));a(i)=(s0+s2)*cos(mm(i))-e*sin(mm(i))+v2/w*sin(mm(i));b(i)=-(s0+s2)*sin(mm(i))-e*cos(mm(i))+v2/w*cos(mm(i));xx(i)=x(i)+rr*b(i)/sqrt(a(i)*a(i)+b(i)*b(i));yy(i)=y(i)-rr*a(i)/sqrt(a(i)*a(i)+b(i)*b(i));endfor i=211:1:300mm(i)=i*pi/180;s3=800/3-160/pi.*mm(i)+40/pi.*sin(4.*mm(i)-14/3*pi);v3=-160/pi+160/pi.*cos(4*mm(i)-14/3*pi)x(i)=(s0+s3)*sin(mm(i))+e*cos(mm(i));y(i)=(s0+s3)*cos(mm(i))-e*sin(mm(i));a(i)=(s0+s3)*cos(mm(i))-e*sin(mm(i))+v3/w*sin(mm(i));b(i)=-(s0+s3)*sin(mm(i))-e*cos(mm(i))+v3/w*cos(mm(i));xx(i)=x(i)+rr*b(i)/sqrt(a(i)*a(i)+b(i)*b(i));yy(i)=y(i)-rr*a(i)/sqrt(a(i)*a(i)+b(i)*b(i));endfor i=301:1:360mm(i)=i*pi/180;x(i)=(s0+0)*sin(mm(i))+e*cos(mm(i));y(i)=(s0+0)*cos(mm(i))-e*sin(mm(i));a(i)=(s0+0)*cos(mm(i))-e*sin(mm(i))+v3/w*sin(mm(i));b(i)=-(s0+0)*sin(mm(i))-e*cos(mm(i))+v3/w*cos(mm(i));xx(i)=x(i)+rr*b(i)/sqrt(a(i)*a(i)+b(i)*b(i));yy(i)=y(i)-rr*a(i)/sqrt(a(i)*a(i)+b(i)*b(i));endplot(x,y,'r',xx,yy,'g')text(0,20,'实际轮廓线')text(120,100,'理论轮廓线')hold on。

哈工大机械原理大作业-凸轮机构设计

哈工大机械原理大作业-凸轮机构设计

哈工大机械原理大作业-凸轮机构设计(第3题)(共15页)-本页仅作为预览文档封面,使用时请删除本页-机械原理大作业二课程名称:机械原理设计题目:凸轮设计院系:机电学院班级: 1208103完成者: xxxxxxx学号: xx指导教师:林琳设计时间:工业大学凸轮设计一、设计题目如图所示直动从动件盘形凸轮,其原始参数见表,据此设计该凸轮。

二、凸轮推杆升程、回程运动方程及其线图1 、凸轮推杆升程运动方程(650πϕ≤≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,650π=Φ带入正弦加速度运动规律的升程段方程式中得:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=512sin 215650ϕππϕS ;⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=512cos 1601ππωv ; ⎪⎭⎫ ⎝⎛=512sin 14421ϕπωa ; 2、凸轮推杆推程远休止角运动方程(πϕπ≤≤65) mm h s 50==; 0==a v ;3、凸轮推杆回程运动方程(914πϕπ≤≤)回程采用余弦加速度运动规律,故将已知条件mm h 50=,95'0π=Φ,6s π=Φ带入余弦加速度运动规律的回程段方程式中得:⎥⎦⎤⎢⎣⎡-+=)(59cos 125πϕs ;()πϕω--=59sin451v ; ()πϕω-=59cos 81-a 21;4、凸轮推杆回程近休止角运动方程(πϕπ2914≤≤) 0===a v s ;5、凸轮推杆位移、速度、加速度线图根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。

①位移线图 编程如下: %用t 代替转角 t=0::5*pi/6;s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6::pi; s=50; hold on plot(t,s); t=pi::14*pi/9;s=25*(1+cos(9*(t-pi)/5));hold onplot(t,s);t=14*pi/9::2*pi;s=0;hold onplot(t,s),xlabel('φ/rad'),ylabel('s/mm'); grid onhold off所得图像为:②速度线图编程如下:%用t代替转角,设凸轮转动角速度为1t=0::5*pi/6;v=60/pi*(1-cos((12*t)/5));hold onplot(t,v);t=5*pi/6::pi;v=0;hold onplot(t,v);t=pi::14*pi/9;v=-45*sin(9*(t-pi)/5);hold onplot(t,v);t=14*pi/9::2*pi;v=0;hold onplot(t,v),xlabel('φ(rad)'),ylabel('v(mm/s)'); grid onhold off所得图像为:③加速度线图利用matlab编程如下:%用t代替转角,设凸轮转动角速度为1t=0::5*pi/6;a=144/pi*sin(12*t/5);hold onplot(t,a);t=5*pi/6::pi;a=0;hold onplot(t,a);t=pi::14*pi/9;a=-81*cos(9*(t-pi)/5);hold onplot(t,a);t=14*pi/9::2*pi; a=0; hold onplot(t,a),xlabel('φ(rad)'),ylabel('a(mm/s^2)'); grid on hold off所得图形:三、绘制s d ds -ϕ线图根据运动方程求得:()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤≤≤≤-≤≤≤≤--=πϕππϕππϕπϕππϕπππϕ2914.0914,59sin 4565,0650),512cos 6060(d ds 利用matlab 编程:%用t 代替φ,a 代替ds/d φ, t=0::5*pi/6;a=-(60/pi-60/pi*cos(12*t/5));s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(a,s); t=5*pi/6::pi; a=0; s=50; hold on plot(a,s); t=pi::14*pi/9;a=45*sin(9*(t-pi)/5); s=25*(1+cos(9*(t-pi)/5)); hold on plot(a,s);t=14*pi/9::2*pi; a=0; s=0; hold onplot(a,s),title('ds/d φ-s'),xlabel('ds/d φ(mm/rad)'),ylabel('s(mm)'); grid on hold off 得s d ds-ϕ图:凸轮压力角的正切值s s e d ds +-=0/tan ϕα,左侧为升程,作与s 轴夹6π角等于升程许用压力角的切界线t t d D ,则在直线上或其左下方取凸轮轴心时,可使[]αα≤,同理右侧回程,作与s 轴夹角等于回程许用压力角3π的切界线''t t d D ,则在直线上或其右下方取凸轮轴心时,可使[]αα≤。

哈工大机械原理大作业凸轮设计

哈工大机械原理大作业凸轮设计

哈工大机械原理大作业凸轮设计Harb inIn stituteofTech no logy大作业设计说明书课程名称:设计题目:院班学级:机械原理凸轮机构设计1208103系:机械设计制造及其自动化设计指导教师:设计时间:林琳2019425哈尔滨工业大学一、运动分析题目如图所示直动从动件盘形凸轮机构,其原始数据参数见表2-1,。

从表2-1中选择一组凸轮机构原始参数,据此设计该凸轮机构。

二、凸轮运动规律升程运动角(°)90升程运动规律生程许回程运用压力动角角(°)等加等4080减速回程运动规律回程许远休用压力止角角(°)余弦加7040速度近休止角(°)150升程(mm)1501 、升程运动规律(0 /4)位移s=2h(速度v2 /2 4*150*w( /2)A24*150*w A2( /2)人2加速度a2 、升程运动规律(/4 /2)位移s 1502*150( /2 )A2(/2)A2速度v4*60*w( /2 )( /2)A24*60*wA2( /2)A2加速度a3 、回程运动规律(/2 2/2 2 ) 93 位移s 75*{1 cos[ (/2 2 )]}949速度vhw*sin*[ ( /2 2 )]92*4 499加速度aA2hw A2cos[ ( /2 2 )]94 2*(4 )A299根据运动规律做出的曲线以及源代码如图所示位移线图速度线图加速度线图位移线图源代码fl=pi/180;x0=0:fl:pi/4;x1=pi/4:fl:pi/2;x2=pi/2:fl:13*pi/18;x3=13*pi/18:fl:7*pi/6;x4=7*pi/6:fl:2*pi;s0=300*(2*x0/pi)A 2;s1=150-1200*(pi/2-x1).*(pi/2-x1)/(pi.*pi);s2=150+x2*0;s3=75*(1+cos(9/4*(x3-13*pi/18)));s4=x4*0;Plot(x0,s0,x1,s1,'b',x2,s2,'b',x3,s3,'b',x4,s4,'b')axis([070200])title('杆位移线图')xlabel(' 0 (rad)')ylabel('V(mm⑸')gridon速度源代码fl=pi/180;x0=0:fl:pi/4;x1=pi/4:fl:pi/2;x2=pi/2:fl:13*pi/18;x3=13*pi/18: fl:7*pi/6;x4=7*pi/6:fl:2*pi;w=30;v0=600.*w.*x0/(pi/2)A2;v1=600.*w.*(pi/2-x1)/(pi/2)A2;v2=0*x2;v3=-150*30*pi/(2*4*pi/9).*si n(9/4*(x3-13*pi/18));v4=0*x4;Plot(x0,v0,'b',x1,v1,'b',x2,v2,'b',x3,v3,'b',x4,v4,'b')title('推杆速度')xlabel(' 0 (rad)')ylabel('v(mm/s')gridon加速度源代码fl=pi/180;x0=0:fl:pi/4;x1=pi/4:fl:pi/2;x2=pi/2:fl:13*pi/18;x3=13*pi/18: fl:7*pi/6;x4=7*pi/6:fl:2*pi; w=30;a0=600*w.A2/(pi/2).A2+xO*0;a 仁-600*w.A2/(pi/2)A2+x1*0;a2=x2*0; a3=-pi*pi*150*30*30/(2*4*pi/9)A2.*cos(9/4*(x3-13*pi/18));a4=x4*0;Plot(x0,a0,'b',x1,a1,'b',x2,a2,'b',x3,a3,'b',x4,a4,'b')title('推杆加速度')xlabel(' 0 (rad)')ylabel('a(mm/sA2')gridon三、凸轮机构的dss曲线绘制d由凸轮机构位移公式可知4h(/2)A2(0 /4)ds 4*60 ( /2 )( /4 /2)d ( /2)A275*4*s in 9( 13 )( /2 2 /2 2 4 ) 9418999 则其曲线如图所示其源代码如下clcfl=pi/180;x0=0:fl:pi/4;x1=pi/4:fl:pi/2;x2=pi/2:fl:13*pi/18;x3=13*pi/18: fl:7*pi/6;x4=7*pi/6:fl:2*pi;w=30;d0=-600.*x0/(pi/2)A2;d1=-600.*(pi/2-x1)/(pi/2)A2;d2=0*x2;d3=75*4/9.*si n(9/4*(x3-13*pi/18));d4=0*x4;s0=300*(2*x0/pi)A2;s1=150-1200*(pi/2-x1).*(pi/2-x1)/(pi.*pi);s2=150+x2*0;s3=75*(1+cos(9/4*(x3-13*pi/18)));s4=x4*0;Plot(d0,s0,'b',d1,s1,'b',d2,s2,'b',d3,s3,'b',d4,s4,'b')title(' 类速度-位移曲线')xlabel(' 类速度(mm/rad)')ylabel(' 位移(mmm)')gridon四、确定凸轮的基圆半径和偏距以ds/df-s图为基础,可分别作出二条限制线,以这二条线可确定最小基圆半径及所对应的偏距e,在其下方选择一合适点,即可满足压力角的限制条件图像如图所示由图像可知,设置点(50,-100 )为凸轮轴心位置。

哈工大机械原理大作业-凸轮结构设计 -05

哈工大机械原理大作业-凸轮结构设计 -05

机械原理大作业二课程名称:机械原理设计题目:凸轮机构设计院系:机电工程学院班级:完成者:学号:指导教师:设计时间:设计说明书1 设计题目:如图所示直动从动件盘形凸轮机构,其原始参数见表2-1。

从表2-1中选择一组凸轮机构的原始参数,据此设计该凸轮机构。

注: 5题参数有误,我将远休止角改为45 ,将近休止角改为105 .2、推杆升程、回程运动方程及位移、速度、加速度线图:2.1凸轮运动分析: 推程运动方程; 01cos 2h s πϕ⎡⎤⎛⎫=-⎢⎥ ⎪Φ⎝⎭⎣⎦100sin 2h v πωπϕ⎛⎫=⎪ΦΦ⎝⎭序号 升程 (mm ) 升程运 动角( ) 升程运 动规律 升程 许用压力角 () 回程运动角 () 回程运 动规律 回程许用 压力角 ( ) 远休 止角 ( ) 近休 止角 ( ) 5(改)60120余弦加速度3590等速6545105ω221200cos 2h a πωπϕ⎛⎫=⎪ΦΦ⎝⎭回程运动方程: ()0'01s s h ϕ-Φ+Φ⎡⎤=-⎢⎥Φ⎣⎦1'0h v ω=-Φ 0a =2.2求位移、速度、加速度线图MATLAB 源程序: pi=3.1415926; c=pi/180; h=60; f0=120; fs=45; f01=90; fs1=105;f=0:1:360; %升程阶段 for n=0:f0s(n+1)=h/2*(1-cos(pi/f0*f(n+1)));v(n+1)=pi*h/(2*f0*c)*sin(pi/f0*f(n+1));a(n+1)=pi^2*h/(2*f0^2*c^2)*cos(pi/f0*f(n+1)); end%远休止阶段 for n=f0:f0+fs s(n+1)=60; v(n+1)=0; a(n+1)=0; endfor n=f0+fs:f0+fs+f01 %回程阶段 s(n+1)=h*(1-(f(n+1)-(f0+fs))/f01); v(n+1)=-h/(f01*c); a(n+1)=0; end;for n=f0+fs+f01:360; %近休止阶段 s(n+1)=0; v(n+1)=0; a(n+1)=0; endfigure(1);plot(f,s,'r');xlabel('\phi/\circ');ylabel('s/mm');grid on;title('推杆位移线图')figure(2);plot(f,v,'r');xlabel('\phi/\circ');ylabel('v/\ommiga');grid on;title('推杆速度线图')figure(3);plot(f,a,'r');xlabel('\phi/\circ');ylabel('a/\ommiga');grid on;title('推杆加速度线图')2.3位移、速度、加速度线图:3 凸轮机构的dss d ϕ-线图,确定基圆半径和偏心距: 3.1理论分析:机构压力角α应按下式计算: 0-tan =+ds d es sϕα作出-ds d s ϕ曲线,因凸轮机构压力角0-tan =+ds d e s sϕα,式中,2200=-s r e ,右侧为升程,作与s 轴夹角等于升程许用压力角35的切界线D d t t ,则在直线上或其右下方取凸轮轴心时,可使[]0-=arctan+ds d es sϕαα≤,同理左侧回程,作与s 轴夹角等于回程许用压力角65的切界线D 'd 't t ,则在直线上或其左下方取凸轮轴心时,使[]0-=arctan+ds d es sϕαα≤。

哈工大机械原理大作业 凸轮资料

哈工大机械原理大作业 凸轮资料

机械原理大作业课程名称:机械原理设计题目:直动从动件盘形凸轮机构院系:机电学院班级:完成者:学号:指导教师:设计时间:哈尔滨工业大学题目:如图所示直动从动件盘形凸轮机构,其原始参数见表,据此设计该凸轮机构。

凸轮运动分为五个阶段 1.升程阶段0~5034500010156s h ϕϕϕ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=⨯-⨯+⨯ ⎪ ⎪ ⎪ΦΦΦ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 23410000306030h v ωϕϕϕ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=⨯-⨯+⨯ ⎪ ⎪ ⎪ΦΦΦΦ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 23212000060180120h a ωϕϕϕ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=⨯-⨯+⨯ ⎪ ⎪ ⎪ΦΦΦΦ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2.远休止50~1503.回程等加速150~195()20'202sh s h ϕ=--Φ-ΦΦ()10'204s h s ωϕ=--Φ-ΦΦ21'204h v ω=Φ4.回程等减速195~240()2'00'202s h s ϕ=Φ+Φ+Φ-Φ()'100'24s h v ωϕ=-Φ+Φ+Φ-Φ21'204h v ω=-Φ5.近休止240~360其中,Φ 推程运动角sΦ 远休止角 '0Φ 回程运动角使用Matlab实现1.从动件位移%用fi1,fi2,fi3,fi4,fi5代替转角h=20;fio1=5*pi/18;fis=5*pi/9;fio2=pi/2;fi1=0:0.01:fio1;dfi=fi1/fio1;s1=h*(10*(fi1/fio1).^3-15*(fi1/fio1).^4+6*(fi1/fio1).^5); hold onplot(180*fi1/pi,s1);fi2=fio1:0.01:fio1+fis;s2=h;hold onplot(180*fi2/pi,s2);fi3=fio1+fis:0.01:fio1+fis+fio2/2;s3=h-2*h/fio2^2*(fi3-fio1-fis).^2;hold onplot(180*fi3/pi,s3);fi4=fio1+fis+fio2/2:0.001:fio1+fis+fio2;s4=2*h/fio2^2*(fio1+fis+fio2-fi4).^2;hold onplot(180*fi4/pi,s4);fi5=fio1+fis+fio2:0.001:2*pi;s5=0;hold onplot(180*fi5/pi,s5);title('位移');xlabel('φ/度'),ylabel('s/mm');grid onhold off2.从动件速度%用fi1,fi2,fi3,fi4,fi5代替转角%设角速度为1rad/sw=1;h=20;fio1=5*pi/18;fis=5*pi/9;fio2=pi/2;fi1=0:0.01:fio1;dfi=fi1/fio1;v1=h*w/fio1*(30*(fi1/fio1).^2-60*(fi1/fio1).^3+30*(fi1/fio1).^4); hold onplot(180*fi1/pi,v1);fi2=fio1:0.01:fio1+fis;v2=0;hold onplot(180*fi2/pi,v2);fi3=fio1+fis:0.01:fio1+fis+fio2/2;v3=-4*h*w/fio2^2*(fi3-fio1-fis);hold onplot(180*fi3/pi,v3);fi4=fio1+fis+fio2/2:0.001:fio1+fis+fio2; v4=-4*h*w/fio2^2*(fio1+fis+fio2-fi4); hold onplot(180*fi4/pi,v4);fi5=fio1+fis+fio2:0.001:2*pi;v5=0;hold onplot(180*fi5/pi,v5);title('速度');xlabel('φ/度'),ylabel('v/(mm/s)');grid onhold off3.从动件加速度%用fi1,fi2,fi3,fi4,fi5代替转角%设角速度为1rad/sw=1;h=20;fio1=5*pi/18;fis=5*pi/9;fio2=pi/2;fi1=0:0.01:fio1;dfi=fi1/fio1;a1=h*w^2/fio1*(60*(fi1/fio1)-180*(fi1/fio1).^2+120*(fi1/fio1).^3) ;hold onplot(180*fi1/pi,a1);fi2=fio1:0.01:fio1+fis;a2=0;hold onplot(180*fi2/pi,a2);fi3=fio1+fis:0.01:fio1+fis+fio2/2;a3=-4*h*w/fio2^2;hold onplot(180*fi3/pi,a3);fi4=fio1+fis+fio2/2:0.001:fio1+fis+fio2;a4=4*h*w/fio2^2;hold onplot(180*fi4/pi,a4);fi5=fio1+fis+fio2:0.001:2*pi;a5=0;hold onplot(180*fi5/pi,a5);title('加速度');xlabel('φ/度'),ylabel('v/(mm/s^2)');grid onhold off4.sdsdϕ-线图%用fi1,fi2,fi3,fi4,fi5代替转角h=20;fio1=5*pi/18;fis=5*pi/9;fio2=pi/2;fi1=0:0.01:fio1;s1=h*(10*(fi1/fio1).^3-15*(fi1/fio1).^4+6*(fi1/fio1).^5);ds1=h*(3*10*(fi1/fio1).^2/fio1-4*15*(fi1/fio1).^3/fio1+5*6*(fi1/f io1).^4/fio1);hold onplot(ds1,s1);fi2=fio1:0.01:fio1+fis;s2=h+0*fi2;ds2=0*fi2;hold onplot(ds2,s2);fi3=fio1+fis:0.01:fio1+fis+fio2/2;s3=h-2*h/fio2^2*(fi3-fio1-fis).^2;ds3=-2*h/fio2^2*2*(fi3-fio1-fis);hold onplot(ds3,s3);fi4=fio1+fis+fio2/2:0.001:fio1+fis+fio2; s4=2*h/fio2^2*(fio1+fis+fio2-fi4).^2; ds4=-2*h/fio2^2*2*(fio1+fis+fio2-fi4); hold on plot(ds4,s4);fi5=fio1+fis+fio2:0.001:2*pi; s5=0+0*fi5; ds5=0*fi5; hold on plot(ds5,s5); title('ds/d φ-s');xlabel('ds/d φ(mm/rad)'),ylabel('s(mm)'); grid on hold off5.凸轮轴心位置的确定凸轮压力角的正切值s s e d ds +-=0/tan ϕα,右侧为升程,作与s 轴夹6π角等于升程许用压力角的切界线t t d D ,则在直线上或其下方取凸轮轴心时,可使[]αα≤,同理右侧回程,作与s 轴夹角等于回程许用压力角3π的切界线''t t d D ,则在直线上或其下方取凸轮轴心时,可使[]αα≤。

哈工大机械原理大作业2凸轮机构设计

哈工大机械原理大作业2凸轮机构设计

机械原理大作业(二)作业名称:凸轮机构设计设计题目:23题院系:班级:设计者:学号:指导教师:设计时刻:哈尔滨工业大学机械设计1.运动分析题目:设计直动从动件盘形凸轮机构,其原始参数见下表2.确信凸轮机构推杆升程、回程运动方程(设定角速度为ω=10 rad/s)升程:0°< Φ < 120°由公式可得:s=60-60*cos(3*Φ/2);v=90*ω*sin(3*Φ/2);a=135*ω2 *cos(3*Φ/2);远停止:120°< Φ < 200°由公式可得:s=120;v=0;a=0;回程:200°< Φ < 290°由公式可得:s=h[1-(10T23-15T24+6T25)]v=(-30hω1/Φ0')T22(1–2T2+T22)a=(-60hω12/Φ0'2)T2(1–3T2+2T22)式中:T2=(Φ-Φ0-Φs)/ Φ0'近停止: 290°< Φ < 360°由公式可得:s=0;v=0;a=0;3.绘制推杆位移、速度、加速度线图(设ω=10rad/s)1) 推拉位移曲线代码:%推杆位移曲线;x=0:(pi/1000):(2*pi/3);s1=60-60*cos(1.5*x);y=(2*pi/3):(pi/1000):(10*pi/9);s2=120;z=(10*pi/9):(pi/1000):(29*pi/18);T2=(z-10*pi/9)*2/pi;s3=120*(1-(10*T2.^3-15*T2.^4+6*T2.^5));m=(29*pi/18):(pi/1000):(2*pi);s4=0;plot(x,s1,'b',y,s2,'b',z,s3,'b',m,s4,'b'); xlabel('角度(rad)');ylabel('行程(mm)');title('推杆位移曲线');grid;2)推杆速度曲线代码:%推杆速度曲线;w=10;x=0:(pi/1000):(2*pi/3);v1=90*w*sin(1.5*x);y=(2*pi/3):(pi/1000):(10*pi/9);v2=0;z=(10*pi/9):(pi/1000):(29*pi/18);T2=(z-10*pi/9)*2/pi;v3=(-30*120*w/(pi/2))*T2.^2.*(1-2*T2.^2+T2.^2); % v3=-120*w*sin(2*z-20*pi/9);m=(29*pi/18):(pi/1000):(2*pi);v4=0;plot(x,v1,'r',y,v2,'r',z,v3,'r',m,v4,'r'); xlabel('角度(rad)');ylabel('速度(mm/s)');title('推杆速度曲线(w=10rad/s)');grid;3)凸轮推杆加速度曲线代码:%凸轮推杆加速度曲线;w=10;x=0:(pi/1000):(2*pi/3);a1=135*w^2*cos(3*x/2);y=(2*pi/3):(pi/1000):(10*pi/9);a2=0;z=(10*pi/9):(pi/1000):(29*pi/18);T2=(z-10*pi/9)*2/pi;a3=(-60*120*w^2/(pi/2)^2)*T2.*(1-3*T2.^2+2*T2.^2); m=(29*pi/18):(pi/1000):(2*pi);a4=0;plot(x,a1,'m',y,a2,'m',z,a3,'m',m,a4,'m');xlabel('角度(rad)');ylabel('加速度(mm/s^2)');title('凸轮推杆加速度曲线(w=10rad/s)');grid;4)绘制凸轮机构的dd/dd−d线图,并依次确信凸轮的基圆半径和偏距代码:%dd/dd−d线图,确信e,s0;x=0:(pi/1000):(2*pi/3);s1=60-60*cos(1.5*x);ns1=90*sin(1.5*x);y=(2*pi/3):(pi/1000):(10*pi/9);s2=120;ns2=0;z=(10*pi/9):(pi/1000):(29*pi/18);T2=(z-10*pi/9)*2/pi;s3n=120*(1-(10*T2.^3-15*T2.^4+6*T2.^5));ns3=-120*10*3*T2.^2+120*15*4*T2.^3-120*6*5*T2.^4 ;m=(29*pi/18):(pi/1000):(2*pi);s4=0;ns4=0;x1=0:pi/36000:pi/2;s1n=60-60*cos(1.5*x1);v1=90*sin(1.5*x1);m1=diff(s1n);%求切线1n1=diff(v1);z=m1./n1;for i=1:length(z);if abs(z(i)+tan(-55*pi/180))<0.001;breakendendb11=s1n(i)-z(i)*v1(i);x1=-300:200;y01=z(i)*x1+b11;%切线1k1=z(i);plot(x1,y01)x3=10*pi/9:pi/36000:14*pi/9;%求切线2s3n=120*(1-(10*T2.^3-15*T2.^4+6*T2.^5));v3=-120*10*3*T2.^2+120*15*4*T2.^3-120*6*5*T2.^4 ;m3=diff(s3n);n3=diff(v3);p=m3./n3;for o=1:length(p);if abs(p(o)-tan(-25*pi/180))<0.01;breakendendo;b33=s3n(o)-p(o)*v3(o);x3=-300:700;y03=p(o)*x3+b33;%切线2plot(x3,y03);sym uv[u,v]=solve('u= 1.4281*v-81.7665','u=-0.4663*v-59.6715');%v=11.66332347972972972972972972973 x%u=-65.110107738597972972972972972973 yplot(ns1,s1,'m',ns2,s2,'b',ns3,s3n,'b',ns4,s4,'b',x1,y01,'g',x3,y03,'g',v,u,'*'); xlabel('ds/d¦µ');ylabel('S');axis([-300,200,-300,300]);title('s0,e 的确信');grid;确信凸轮基圆半径与偏距:偏距e=90mm,d020mm;基圆半径为d0=150mm。

哈尔滨工业大学机械原理大作业凸轮设计

哈尔滨工业大学机械原理大作业凸轮设计

大作业1连杆机构运动分析1.题目(8)如图所示机构,已知机构各构件的尺寸为==100AC CE l l mm ,==200BC CD l l mm ,90BCD ∠=︒,构件1的角速度为1=10/w rad s ,试求构件5的角位移、角速度和角加速度,并对计算结果进行分析。

1.1机构的运动分析AB 为原动件,AB 转动通过转动导杆机构带动杆BCD 转动,BCD 转动通过转动导杆机构带动杆DE 摆动。

1.2 机构的结构分析杆组可以划分为一个RR I级杆组(杆1)、RRPII级杆组(滑块2,杆3)、RPRII 级杆组(滑块4,杆5)(1)RRI级杆组1:(2)RRPII级杆组2,3:(3)RPRII级杆组4,5:2.分析过程 2.1 建立坐标系建立以点E 为原点的固定平面直角坐标系x-E-y ,如图所示。

2.2 建立数学模型(1)构件1、2、3的分析原动件杆1的转角:1θ=0--360。

原动件杆1的角速度:1ω=.1θ=10/rad s 原动件杆1的角加速度:..1αθ==0运动副A 的坐标:0200A A x y mm =⎫⎬=⎭运动副A 的速度及加速度都为零。

构件1为BC (RRP Ⅱ级杆组)上滑块B 的导路 滑块B 的位置为:132cos cos B A C x x s x l θθ=+=+132sin sin B A C y y s x l θθ=+=+消去s,得:0212arcsinA l θθ=+式中:011()sin ()cos C A C A A x x y y θθ=---构件3的角速度i ω和滑块B 沿导路的移动速度D υ:.211213(Q sin Q cos )/Q ωϕθθ==-+ 1322323(Q cos Q sin )/Q D s l l υθθ⋅==-+式中:..11111211321212Q sin ;Q cos ;Q sin sin cos sin l l l θθθθθθθθ=-==+构件3的角加速度和滑块B 沿导路移动的加速度:..241513(Q sin Q cos )/Q αθθθ==-+..4325323(Q cos Q sin )/Q B s l l υθθ==-+式中:122......21142211111Q cos sin cos 2sin l l l s θθθθθθθθ=---- 122......21152211111Q sin cos sin 2cos l l l s θθθθθθθθ=+-+(2)构件3,4,5的分析构件3,4,5,由1个Ⅰ级基本杆组和一个RRP Ⅱ级杆组组成,与构件1,2,3结构相同,只运动分析过程与其相反。

哈工大机械原理大作业凸轮

哈工大机械原理大作业凸轮

1 / 17机械原理大作业课程名称:机械原理 设计题目:直动从动件盘形凸轮机构 院 系: 机电学院 班 级: 完 成 者: 学 号: 指导教师: 设计时间:哈尔滨工业大学题目:如图所示直动从动件盘形凸轮机构,其原始参数见表,据此设计该凸轮机构。

凸轮运动分为五个阶段1.升程阶段0~5034500010156s h ϕϕϕ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=⨯-⨯+⨯ ⎪ ⎪ ⎪ΦΦΦ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦23410000306030h v ωϕϕϕ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=⨯-⨯+⨯ ⎪ ⎪ ⎪ΦΦΦΦ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦23212000060180120h a ωϕϕϕ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=⨯-⨯+⨯ ⎪ ⎪ ⎪ΦΦΦΦ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2.远休止50~1503.回程等加速150~195()20'202sh s h ϕ=--Φ-ΦΦ()10'204s h s ωϕ=--Φ-ΦΦ21'204h v ω=Φ4.回程等减速195~240()2'00'202s h s ϕ=Φ+Φ+Φ-Φ()'100'204s h v ωϕ=-Φ+Φ+Φ-Φ21'204h v ω=-Φ5.近休止 240~360其中,0Φ 推程运动角 s Φ 远休止角 '0Φ 回程运动角使用Matlab 实现1.从动件位移%用fi1,fi2,fi3,fi4,fi5代替转角h=20;fio1=5*pi/18;fis=5*pi/9;fio2=pi/2;fi1=0:0.01:fio1;dfi=fi1/fio1;s1=h*(10*(fi1/fio1).^3-15*(fi1/fio1).^4+6*(fi1/fio1).^5); hold onplot(180*fi1/pi,s1);fi2=fio1:0.01:fio1+fis;s2=h;hold onplot(180*fi2/pi,s2);fi3=fio1+fis:0.01:fio1+fis+fio2/2;s3=h-2*h/fio2^2*(fi3-fio1-fis).^2;hold onplot(180*fi3/pi,s3);fi4=fio1+fis+fio2/2:0.001:fio1+fis+fio2;s4=2*h/fio2^2*(fio1+fis+fio2-fi4).^2;hold onplot(180*fi4/pi,s4);fi5=fio1+fis+fio2:0.001:2*pi;s5=0;hold onplot(180*fi5/pi,s5);title('位移');xlabel('φ/度'),ylabel('s/mm');grid onhold off2.从动件速度%用fi1,fi2,fi3,fi4,fi5代替转角%设角速度为1rad/sw=1;h=20;fio1=5*pi/18;fis=5*pi/9;fio2=pi/2;fi1=0:0.01:fio1;dfi=fi1/fio1;v1=h*w/fio1*(30*(fi1/fio1).^2-60*(fi1/fio1).^3+30*(fi1/fio1).^4); hold onplot(180*fi1/pi,v1);fi2=fio1:0.01:fio1+fis;v2=0;hold onplot(180*fi2/pi,v2);fi3=fio1+fis:0.01:fio1+fis+fio2/2;v3=-4*h*w/fio2^2*(fi3-fio1-fis);hold onplot(180*fi3/pi,v3);fi4=fio1+fis+fio2/2:0.001:fio1+fis+fio2;v4=-4*h*w/fio2^2*(fio1+fis+fio2-fi4);hold onplot(180*fi4/pi,v4);fi5=fio1+fis+fio2:0.001:2*pi;v5=0;hold onplot(180*fi5/pi,v5);title('速度');xlabel('φ/度'),ylabel('v/(mm/s)');grid onhold off3.从动件加速度%用fi1,fi2,fi3,fi4,fi5代替转角%设角速度为1rad/sw=1;h=20;fio1=5*pi/18;fis=5*pi/9;fio2=pi/2;fi1=0:0.01:fio1;dfi=fi1/fio1;a1=h*w^2/fio1*(60*(fi1/fio1)-180*(fi1/fio1).^2+120*(fi1/fio1).^3); hold onplot(180*fi1/pi,a1);fi2=fio1:0.01:fio1+fis;a2=0;hold onplot(180*fi2/pi,a2);fi3=fio1+fis:0.01:fio1+fis+fio2/2;a3=-4*h*w/fio2^2;hold onplot(180*fi3/pi,a3);fi4=fio1+fis+fio2/2:0.001:fio1+fis+fio2;a4=4*h*w/fio2^2;hold onplot(180*fi4/pi,a4);fi5=fio1+fis+fio2:0.001:2*pi;a5=0;hold onplot(180*fi5/pi,a5);title('加速度');xlabel('φ/度'),ylabel('v/(mm/s^2)');grid onhold off4.sdsdϕ-线图%用fi1,fi2,fi3,fi4,fi5代替转角h=20;fio1=5*pi/18;fis=5*pi/9;fio2=pi/2;fi1=0:0.01:fio1;s1=h*(10*(fi1/fio1).^3-15*(fi1/fio1).^4+6*(fi1/fio1).^5);ds1=h*(3*10*(fi1/fio1).^2/fio1-4*15*(fi1/fio1).^3/fio1+5*6*(fi1/fio1).^4/fio1);hold onplot(ds1,s1);fi2=fio1:0.01:fio1+fis;s2=h+0*fi2;ds2=0*fi2;hold onplot(ds2,s2);fi3=fio1+fis:0.01:fio1+fis+fio2/2;s3=h-2*h/fio2^2*(fi3-fio1-fis).^2; ds3=-2*h/fio2^2*2*(fi3-fio1-fis); hold onplot(ds3,s3);fi4=fio1+fis+fio2/2:0.001:fio1+fis+fio2; s4=2*h/fio2^2*(fio1+fis+fio2-fi4).^2; ds4=-2*h/fio2^2*2*(fio1+fis+fio2-fi4); hold onplot(ds4,s4);fi5=fio1+fis+fio2:0.001:2*pi; s5=0+0*fi5; ds5=0*fi5; hold onplot(ds5,s5);title('ds/d φ-s');xlabel('ds/d φ(mm/rad)'),ylabel('s(mm)'); grid on hold off5.凸轮轴心位置的确定凸轮压力角的正切值s s ed ds +-=0/tan ϕα,右侧为升程,作与s 轴夹6π角等于升程许用压力角的切界线t t dD ,则在直线上或其下方取凸轮轴心时,可使[]αα≤,同理右侧回程,作与s 轴夹角等于回程许用压力角3π的切界线''t t d D ,则在直线上或其下方取凸轮轴心时,可使[]αα≤。

机械原理大作业-凸轮机构

机械原理大作业-凸轮机构

二、凸轮机构一、运动分析凸轮的运动分为4个阶段:推程运动、远休程、回程运动、近休程。

该凸轮机构4个阶段的运动角分别为推程运动角90˚、远休止角100 ˚、回程运动角50 ˚、近休止角120 ˚。

推程运动阶段的运动规律为正弦加速度运动,回程运动的运动规律为4-5-6-7多项式运动。

凸轮的简图如图1所示。

图1对该机构进行简单的运动分析:1.升程阶段采用正弦加速度的运动规律,从动件的位移、速度、加速度、压力角的计算公式如下:计算时将相应的量带入公式即可得到。

类速度可以直接将位移方程对凸轮转角ϕ求导得到。

2.远休程阶段的位移不变,与凸轮升程阶段最后的位移相等,速度、加速度则变为0。

3.回程阶段位移、速度、加速度可通过代入4-5-6-7多项式的方程求得。

4.近休程阶段的位移与回程阶段最后的位移相等,且为0,速度、加速度均变为0.二、流程框图图2三、运用VC编程#include<stdio.h>#include<math.h>#define pi 3.141592654 //定义全局变量int main() //主函数{int i,j,k,l;double s; //定义位移量double v; //定义速度量double a; //定义加速度量double r; //定义弧度制角度量double d,o,m,t=40,x1,x2,y1,y2,d1,d2; //定义中间变量double p; //定义角度制角度量double w=1; //定义并角速度量赋值double R=50; //定义基圆半径double e=30; //定义偏距double n; //定义压力角double u; //定义曲率半径double Rr=17; //定义滚子半径并赋值double x,y,X,Y; //定义实际与理论廓线上点的坐标r=0;for(i=0;i<20;i++){s=20/pi*(4*r-sin(4*r));x=-(t+s)*sin(r)-e*cos(r);y=(t+s)*cos(r)-e*sin(r);d1=-(s+t)*cos(r)+e*sin(r);d2=-(s+t)*sin(r)-e*cos(r);X=x-Rr*d2/pow(d1*d1+d2*d2,0.5);Y=y+Rr*d1/pow(d1*d1+d2*d2,0.5);d=80/pi*(1-cos(4*r));v=80/pi*(1-cos(4*r));a=320/pi*sin(4*r);m=atan(fabs(d-e)/(s+t));n=180*m/pi;x1=(t+s)*cos(r)+v/w*sin(r)-e*sin(r);y1=-(t+s)*sin(r)+v/w*cos(r)-e*cos(r);x2=-(t+s)*sin(r)+v/w*cos(r)+a/(w*w)*sin(r)+v/w*cos(r)-e*cos(r);y2=-(t+s)*cos(r)-v/w*sin(r)+a/(w*w)*cos(r)-v/w*sin(r)+e*sin(r);u=pow(x1*x1+y1*y1,1.5)/fabs(x1*y2-y1*x2);r=r+pi/40;p=180/pi*r;printf("%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n", p,s,v,a,d,n,u,x,y,X,Y);}r=pi/2;for(j=0;j<5;j++){s=s;x=-(t+s)*sin(r)-e*cos(r);y=(t+s)*cos(r)-e*sin(r);d1=-(s+t)*cos(r)+e*sin(r);d2=-(s+t)*sin(r)-e*cos(r);X=x-Rr*d2/pow(d1*d1+d2*d2,0.5);Y=y+Rr*d1/pow(d1*d1+d2*d2,0.5);d=0;v=0;a=0;m=atan(fabs(d-e)/(s+t));n=180*m/pi;x1=(t+s)*cos(r)+v/w*sin(r)-e*sin(r);y1=-(t+s)*sin(r)+v/w*cos(r)-e*cos(r);x2=-(t+s)*sin(r)+v/w*cos(r)+a/(w*w)*sin(r)+v/w*cos(r)-e*cos(r);y2=-(t+s)*cos(r)-v/w*sin(r)+a/(w*w)*cos(r)-v/w*sin(r)+e*sin(r);u=pow(x1*x1+y1*y1,1.5)/fabs(x1*y2-y1*x2);r=r+pi/9;p=180/pi*r;printf("%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n", p,s,v,a,d,n,u,x,y,X,Y);}r=(19*pi)/18;for(k=0;k<20;k++){o=(18*r-19*pi)/(5*pi);s=40*(1-35*pow(o,4)+84*pow(o,5)-70*pow(o,6)+20*pow(o,7));x=-(t+s)*sin(r)-e*cos(r);y=(t+s)*cos(r)-e*sin(r);d1=-(s+t)*cos(r)+e*sin(r);d2=-(s+t)*sin(r)-e*cos(r);X=x-Rr*d2/pow(d1*d1+d2*d2,0.5);Y=y+Rr*d1/pow(d1*d1+d2*d2,0.5);d=18*40/5/pi*(-35*4*pow(o,3)+84*5*pow(o,4)-70*6*pow(o,5)+20*7*pow(o,6));v=-80/pi*(140*pow(o,3)-420*pow(o,4)+420*pow(o,5)-140*pow(o,6));a=-160/pi*(420*pow(o,2)-1680*pow(o,3)+2100*pow(o,4)-840*pow(o,5));m=atan(fabs(d-e)/(s+t));n=180*m/pi;x1=(t+s)*cos(r)+v/w*sin(r)-e*sin(r);y1=-(t+s)*sin(r)+v/w*cos(r)-e*cos(r);x2=-(t+s)*sin(r)+v/w*cos(r)+a/(w*w)*sin(r)+v/w*cos(r)-e*cos(r);y2=-(t+s)*cos(r)-v/w*sin(r)+a/(w*w)*cos(r)-v/w*sin(r)+e*sin(r);u=pow(x1*x1+y1*y1,1.5)/fabs(x1*y2-y1*x2);r=r+pi/72;p=180/pi*r;printf("%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n", p,s,v,a,d,n,u,x,y,X,Y);}r=(4*pi)/3;for(l=0;l<5;l++){s=s;x=-(t+s)*sin(r)-e*cos(r);y=(t+s)*cos(r)-e*sin(r);d1=-(s+t)*cos(r)+e*sin(r);d2=-(s+t)*sin(r)-e*cos(r);X=x-Rr*d2/pow(d1*d1+d2*d2,0.5);Y=y+Rr*d1/pow(d1*d1+d2*d2,0.5);d=0;v=0;a=0;m=atan(fabs(d-e)/(s+t));n=180*m/pi;x1=(t+s)*cos(r)+v/w*sin(r)-e*sin(r);y1=-(t+s)*sin(r)+v/w*cos(r)-e*cos(r);x2=-(t+s)*sin(r)+v/w*cos(r)+a/(w*w)*sin(r)+v/w*cos(r)-e*cos(r);y2=-(t+s)*cos(r)-v/w*sin(r)+a/(w*w)*cos(r)-v/w*sin(r)+e*sin(r);u=pow(x1*x1+y1*y1,1.5)/fabs(x1*y2-y1*x2);r=r+2*pi/15;p=180/pi*r;printf("%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n", p,s,v,a,d,n,u,x,y,X,Y);}return 0;}四、计算结果处理1.输出数据位移s、速度v、加速度a、类速度ds/dϕ、压力角α、曲率半径ρ(其中曲率半径缺失的数据为太大而不合题意的数据,已将其舍去):表1凸轮轮廓:理论廓线坐标、实际廓线坐标:表22.根据输出数据做出图像:图2图3图4图5图6图7图8。

哈工大机械原理大作业二凸轮机构

哈工大机械原理大作业二凸轮机构
#define PI 3.14159265
void main()
{
float fi=0,fi0=90,h=100,S=0,v=0,a=0,fis=110,fi01=80,fis1=80,T2=0,w1=10,A=0,B=0,v0=0,v01=0,v02=0,f11=30,f31=70,A11=0,A12=0,B11=0,B12=0,A21=0,A22=0,B21=0,C11=0,C21=0,W=0;
{
W=fi*2*PI/360.0;
if(fi<=90)
{
S=h*(W/fi0-(1/(2*PI))*sin((2*PI/fi0)*W));
v=(h*w1/fi0)*(1-cos((2*PI/fi0)*W));
a=(2*PI*h*w1*w1/(fi0*fi0))*sin(2*PI*W/fi0);
}
elseif(fi>=90&&fi<200)
{
A=90;
A=A*2*PI/360.0;
S=h*(A/fi0-(1/(2*PI))*sin((2*PI/fi0)*A));
v=(h*w1/fi0)*(1-cos((2*PI/fi0)*A));
a=(2*PI*h*w1*w1/(fi0*fi0))*sin(2*PI*A/fi0);
}
elseif(fi>=200&&fi<=280)
}
printf("%f\n",a);
}
}
此程序计算推杆位移,速度,加速度线图。
程序二:
#include "stdio.h"
#include "math.h"

(完整word版)哈工大机械原理大作业凸轮DOC

(完整word版)哈工大机械原理大作业凸轮DOC

H a r b i n I n s t i t u t e o f T e c h n o l o g y机械原理大作业二课程名称:机械原理设计题目: 凸轮机构设计院系:班级:设计者:学号:指导教师:哈尔滨工业大学一、设计题目如右图所示直动从动件盘形凸轮机构,选择一组凸轮机构的原始参数,据此设计该凸轮机构。

凸轮机构原始参数序号升程(mm)升程运动角升程运动规律升程许用压力角27130150正弦加速度30°回程运动角回程运动规律回程许用压力角远休止角近休止角100°余弦加速度60°30°80°二. 凸轮推杆升程、回程运动方程及推杆位移、速度、加速度线图凸轮推杆升程运动方程:)]512sin(2156[130s ϕππϕ-= )512sin(4.374)]512cos(1[156v 211ϕπϕπωω=-=a% t 表示转角,s 表示位移t=0:0.01:5*pi/6;%升程阶段s= [(6*t)/(5*pi )- 1/(2*pi )*sin(12*t/5)]*130; hold on plot(t ,s ); t= 5*pi/6:0。

01:pi; %远休止阶段s=130; hold on plot(t,s );t=pi :0.01:14*pi/9;%回程阶段s=65*[1+cos(9*(t-pi )/5)]; hold on plot(t ,s );t=14*pi/9:0.01:2*pi ;s=0;hold onplot(t,s);grid onhold off%t表示转角,令ω1=1t=0:0。

01:5*pi/6;%升程阶段v=156*1*[1-cos(12*t/5)]/pi hold onplot(t,v);t= 5*pi/6:0。

01:pi;v=0hold onplot(t,v);t=pi:0.01:14*pi/9;%回程阶段v=—117*1*sin(9*(t—pi)/5) hold onplot(t,v);t=14*pi/9:0。

机械原理大作业3 凸轮结构设计

机械原理大作业3 凸轮结构设计

机械原理大作业(二)作业名称:机械原理设计题目:凸轮机构设计院系:机电工程学院班级:设计者:学号:指导教师:丁刚陈明设计时间:哈尔滨工业大学机械设计1.设计题目如图所示直动从动件盘形凸轮机构,根据其原始参数设计该凸轮。

表一:凸轮机构原始参数2.凸轮推杆运动规律(1)推杆升程运动方程S=h[φ/Φ0-sin(2πφ/Φ0)]V=hω1/Φ0[1-cos(2πφ/Φ0)]a=2πhω12sin(2πφ/Φ0)/Φ02式中:h=150,Φ0=5π/6,0<=φ<=Φ0,ω1=1(为方便计算)(2)推杆回程运动方程S=h[1-T/Φ1+sin(2πT/Φ1)/2π]V= -hω1/Φ1[1-cos(2πT/Φ1)]a= -2πhω12sin(2πT/Φ1)/Φ12式中:h=150,Φ1=5π/9,7π/6<=φ<=31π/18,T=φ-7π/63.运动线图及凸轮线图运动线图:用Matlab编程所得源程序如下:t=0:pi/500:2*pi;w1=1;h=150;leng=length(t);for m=1:leng;if t(m)<=5*pi/6S(m) = h*(t(m)/(5*pi/6)-sin(2*pi*t(m)/(5*pi/6))/(2*pi));v(m)=h*w1*(1-cos(2*pi*t(m)/(5*pi/6)))/(5*pi/6);a(m)=2*h*w1*w1*sin(2*pi*t(m)/(5*pi/6))/((5*pi/6)*(5*pi/6)); % 求退程位移,速度,加速度elseif t(m)<=7*pi/6S(m)=h;v(m)=0;a(m)=0;% 求远休止位移,速度,加速度elseif t(m)<=31*pi/18T(m)=t(m)-21*pi/18;S(m)=h*(1-T(m)/(5*pi/9)+sin(2*pi*T(m)/(5*pi/9))/(2*pi));v(m)=-h/(5*pi/9)*(1-cos(2*pi*T(m)/(5*pi/9)));a(m)=-2*pi*h/(5*pi/9)^2*sin(2*pi*T(m)/(5*pi/9));% 求回程位移,速度,加速度elseS(m)=0;v(m)=0;a(m)=0;% 求近休止位移,速度,加速度endend推杆位移图推杆速度图推杆加速度图4.确定凸轮基圆半径和偏距在凸轮机构的ds/dφ-s线图里再作斜直线D t d t与升程的[d s/dφ-s(φ)]曲线相切并使与纵坐标夹角为升程许用压力角[α],则D t d t线的右下方为选择凸轮轴心的许用区。

机械原理大作业凸轮结构设计

机械原理大作业凸轮结构设计

机械原理大作业(二) 作业名称:机械原理设计题目:凸轮机构设计院系: 机电工程学院班级:设计者:学号:指导教师:丁刚陈明设计时间:哈尔滨工业大学机械设计1、设计题目如图所示直动从动件盘形凸轮机构,根据其原始参数设计该凸轮。

表一:凸轮机构原始参数序号升程(mm) 升程运动角(º)升程运动规律升程许用压力角(º)回程运动角(º)回程运动规律回程许用压力角(º)远休止角(º)近休止角(º)12 80 150正弦加速度30 100 正弦加速度60 60 502、凸轮推杆运动规律(1)推杆升程运动方程S=h[φ/Φ0-sin(2πφ/Φ0)]V=hω1/Φ0[1-cos(2πφ/Φ0)]a=2πhω12sin(2πφ/Φ0)/Φ02式中:h=150,Φ0=5π/6,0<=φ<=Φ0,ω1=1(为方便计算)(2)推杆回程运动方程S=h[1-T/Φ1+sin(2πT/Φ1)/2π]V= -hω1/Φ1[1-cos(2πT/Φ1)]a=-2πhω12sin(2πT/Φ1)/Φ12式中:h=150,Φ1=5π/9,7π/6<=φ<=31π/18,T=φ-7π/63、运动线图及凸轮线图运动线图:用Matlab编程所得源程序如下:t=0:pi/500:2*pi;w1=1;h=150;leng=length(t);for m=1:leng;if t(m)<=5*pi/6S(m) = h*(t(m)/(5*pi/6)-sin(2*pi*t(m)/(5*pi/6))/(2*pi));v(m)=h*w1*(1-cos(2*pi*t(m)/(5*pi/6)))/(5*pi/6);a(m)=2*h*w1*w1*sin(2*pi*t(m)/(5*pi/6))/((5*pi/6)*(5*pi/6));% 求退程位移,速度,加速度elseift(m)<=7*pi/6S(m)=h;v(m)=0;a(m)=0;% 求远休止位移,速度,加速度elseif t(m)<=31*pi/18T(m)=t(m)-21*pi/18;S(m)=h*(1-T(m)/(5*pi/9)+sin(2*pi*T(m)/(5*pi/9))/(2*pi));v(m)=-h/(5*pi/9)*(1-cos(2*pi*T(m)/(5*pi/9)));a(m)=-2*pi*h/(5*pi/9)^2*sin(2*pi*T(m)/(5*pi/9));%求回程位移,速度,加速度elseS(m)=0;v(m)=0;a(m)=0;% 求近休止位移,速度,加速度endend推杆位移图推杆速度图推杆加速度图4、确定凸轮基圆半径与偏距在凸轮机构得ds/dφ-s线图里再作斜直线Dt dt与升程得[ds/dφ-s(φ)]曲线相切并使与纵坐标夹角为升程许用压力角[α],则D t d t线得右下方为选择凸轮轴心得许用区。

哈工大机械原理大作业第25题凸轮设计

哈工大机械原理大作业第25题凸轮设计

机械原理大作业二课程名称:机械原理设计题目:凸轮机构设计院系:机电工程学院指导教师:林琳福利设计时间:2014.06工业大学凸轮机构设计1.设计题目(1)凸轮机构运动简图:(2)凸轮机构的原始参数序号升程升程运动角升程运动规律升程许用压力角回程运动角回程运动规律回程许用压力角远休止角近休止角25 130mm 90°等加等减速40°80°等速70°60°130°2.确定凸轮推杆升程、回程运动方程并绘制推杆位移,速度,加速度线图:(1) 凸轮推杆升程,回程运动方程如下:A.推杆升程方程B.推杆回程方程(2)推杆位移,速度,加速度线图如下:A.推杆位移线图(使用matlab画图,程序详见附录1)B.推杆速度线图(使用matlab画图,程序详见附录2)C.推杆加速度线图(使用matlab画图,程序详见附录3)3.凸轮机构的-s线图,并依次确定凸轮的基圆半径和偏距.(1) 凸轮机构的-s线图:(使用matlab画图,程序详见附录4)(2)确定凸轮的基圆半径和偏距:以ds/df-s(f)图为基础,可分别作出三条限制线(推程许用压力角的切界限Dt d t ,回程许用压力角的限制线Dt 'dt',起始点压力角许用线Bd''),以这三条线可确定最小基圆半径及所对应的偏距e,在其下方选择一合适点,即可满足压力角的限制条件。

得图如下:(使用matlab画图,程序详见附录6)得最小基圆对应的坐标位置大约为(55.28,-65.88)经计算取偏距e=55mm,r0=90mm.4.确定滚子半径及绘制凸轮理论轮廓曲线和实际轮廓曲线.为求滚子许用半径,须确定最小曲率半径,以防止凸轮工作轮廓出现尖点或出现相交包络线,确定最小曲率半径数学模型如下:)/)(/()/)(/(])/()/[(22222/322ϕϕϕϕϕϕρd x d d dy d y d d dx d dy d dx -+=其中:ϕϕϕϕcos )(sin ])/[(/0s s e d ds d dx ++-= ϕϕϕϕsin )(cos ])/[(/0s s e d ds d dy +--=ϕϕϕϕϕsin ])/[(cos ])/(2[/02222s s d s d e d ds d x d --+-= ϕϕϕϕϕcos ])/[(sin ])/(2[/02222s s d s d e d ds d y d --+--=利用上式可求的最小曲率半径后可确定实际廓线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械原理大作业二课程名称:_______ 设计题目: 凸轮机构设计院 系: -------------------------班 级: _________________________设计者: ________________________学 号: _________________________指导教师: ______________________哈尔滨工业大学Harbin I nstituteof Techndogy设计题目 如右图所示直动从动件盘形凸轮机构,选择一组凸轮机构的原始参数, 据此设计该凸轮机构。

凸轮机构原始参数二.凸轮推杆升程、回程运动方程及推杆位移、速度、加速度线图 凸轮推杆升程运动方程:冷3唱—亦(中]156 12 ..v 」1 - cos()]兀1 5374.4 212 • a 1si n() 兀 1 5% t 表示转角, s 表示位移 t=0:0.01:5*pi/6; %升程阶段 s= [(6*t)/(5*pi)- 1/(2*pi)*si n(12*t/5)]*130; hold on plot(t,s);t= 5*pi/6:0.01:pi;%远休止阶段s=130;hold onplot(t,s); t=pi:0.01:14*pi/9;%回程阶段s=65*[1+cos(9*(t-pi)/5)];hold onplot(t,s);t=14*pi/9:0.01:2*pi;%近休止阶段s=0;hold onplot(t,s);grid on% t表示转角,令3 1=1t=0:0.01:5*pi/6;%升程阶段v=156*1*[1-cos(12*t/5)]/pi hold on plot(t,v); t= 5*pi/6:0.01:pi;%远休止阶段v=0 hold on plot(t,v);t=pi:0.01:14*pi/9;%回程阶段v=-117*1*si n( 9*(t-pi)/5) hold onplot(t,v); t=14*pi/9:0.01:2*pi;%近休止阶段v=0t=0:0.001:5*pi/6; a=374.4*s in (12*t/5)/pi; hold on plot(t,a); t=5*pi/6:0.01:pi; a=0;hold on plot(t,a);t=pi:0.001:14*pi/9; a=-210.6*cos(9*(t-pi)/5); hold onplot(t,a);t=14*pi/9:0.001:2*pi;a=0;dss三.绘制凸轮机构的d线图% t表示转角,x(横坐标)表示速度ds/d©, y (纵坐标)表示位移s t=0:0.001:5*pi/6;%升程阶段x= 156* (1-cos(12*t/5))/pi;y= 130*((6*t)/(5*pi)-1/(2*pi)*si n(12*t/5)); hold onplot(x,y,'-r');t= 5*pi/6:0.01:pi;%远休止阶段x=0; y=130; hold on plot(x,y,'-r');t=pi:0.001:14*pi/9;%回程阶段x=-117*1*si n( 9*(t-pi)/5); y=65*(1+cos(9*(t-pi)/5)); hold on plot(x,y,'-r'); t=14*pi/9:0.01:2*pi;%近休止阶段x=0;y=0; hold on plot(x,y,'-r'); grid onhold off四•按许用压力角确定凸轮基圆半径和偏距1. 求切点转角(1)在图-4中,右侧曲线为升程阶段的类速度-位移图,作直线D t d t与其相切,且位移轴正方向呈夹角[〉1]=30°,则切点处的斜率与直线D t d t的斜率相等,因为k Dtdt=tan30°,右侧曲线斜率可以表示为,所以,,通过编程求其角度。

编码:%求升程切点位置转角f=sym( I2*tan(pi⑶*sin(12*t/5)+5*cos(12*t/5)-5=0 ';t=solve(f)ptetty(t)t=-5/12*ata n(120/407*3A(1/2))+5/12*pian s=1.1123求得转角t =1.1123, 进而求的切点坐标(x,y ) =( 93.8817, 45.8243)(2)在图-4中,左侧曲线为回程阶段的类速度-位移图,作直线D't d't与其相切,且位移轴正方向呈夹角[:j]=60°,则切点处的斜率与直线D't d't的斜率相等,因为k Dtdt=tan3(f同理求得切点坐标(x,y)=(-110.0654, 42.3144)2. 确定直线方程直线D t d t:y =tan(pi/3)(x-93.8817 )=45.8243;直线Dt'dt':y =-tan(pi/3)(x+84.3144)+110.0654;3. 绘图确定基圆半径和偏距%直线Dtdtx=-125:1:150;y= tan(pi/3)*(x- 93.8798 )+45.8243;hold onplot(x,y);% 直线Dt 'dt'x=-125:1:150;y=-tan(pi/6)*(x+ 110.0654 )+34.3144; hold onplot(x,y);%直线Ddx=0:1:150;y=ta n( 2*pi/3)*x;hold onplot(x,y);t=0:0.001:5*pi/6;%升程阶段x= 156*1*[1-cos(12*t/5)]/pi;y= 130*[(6*t)/(5*pi)-1/(2*pi)*si n( 12*t/5)]; hold onplot(x,y,'-r');t= 5*pi/6:0.01:pi;%远休止阶段x=0;y=130;hold onplot(x,y,'-r');t=pi:0.001:14*pi/9;%回程阶段x=-117*1*sin( 9*(t-pi)/5); y=65*[1+cos(9*(t-pi)/5)]; hold onplot(x,y,'-r'); t=14*pi/9:0.01:2*pi;%近休止阶段x=0;y=0; hold on plot(x,y,'-r'); grid on hold off如图,在这三条直线所围成的公共许用区域,只要在公共许用区域内选定凸轮轴心0的位置,凸轮基圆半径r0和偏距e就可以确定了。

现取轴心位置为x=20,y=-125,则可得偏距e=20,基圆半径命二』岸+祸=127五•绘制凸轮理论轮廓线编码:%凸轮的理论轮廓,t表示转角,x表示横坐标,y表示纵坐标t=0:0.0001:5*pi/6;x=(125+130*[(6*t)/(5*pi)-1/(2*pi)*si n( 12*t/5)] ).*cos(t)-20*si n(t);y=(125+130*[(6*t)/(5*pi)-1/(2*pi)*s in (12*t/5)] ).*si n( t)+20*cos(t);hold onplot(x,y);t= 5*pi/6:0.0001:pi;x=(125+130).*cos(t)- 20*s in (t); y=(125+130).*s in( t)+ 20*cos(t); hold on plot(x,y);t=pi:0.0001:14*pi/9;x=(125+65*[1+cos(9*(t-pi)/5)] ).*cos(t)- 20*s in (t); y=(125+65*[1+cos(9*(t-pi)/5)] ).*si n( t)+ 20*cos(t); hold onplot(x,y);t= 14*pi/9:0.0001:2*pi;x=(125).*cos(t)- 20*s in (t);y=(125).*si n( t)+ 20*cos(t);%基圆t=0:0.001:2*pi;x=20.1074*cos(t);y=20.1074*s in (t);hold onplot(x,y);%偏心圆t=0:0.001:2*pi;x=13.3509*cos(t);y=13.3509*si n( t);hold onplot(x,y);grid onhold off-300 -250 -200 -150 -100 -50 0 50 100 150六、在理论廓线上分别绘出基圆与偏距圆编码:%凸轮的理论轮廓,t表示转角,x表示横坐标,y表示纵坐标t=0:0.0001:5*pi/6;x=(125+130*[(6*t)/(5*pi)-1/(2*pi)*si n( 12*t/5)] ).*cos(t)-20*si n(t);y=(125+130*[(6*t)/(5*pi)-1/(2*pi)*s in (12*t/5)] ).*si n( t)+20*cos(t);t= 5*pi/6:0.0001:pi;x=(125+130).*cos(t)- 20*s in (t); y=(125+130).*s in( t)+ 20*cos(t); hold on plot(x,y); t=pi:0.0001:14*pi/9;x=(125+65*[1+cos(9*(t-pi)/5)] ).*cos(t)- 20*s in (t);y=(125+65*[1+cos(9*(t-pi)/5)] ).*si n( t)+ 20*cos(t);hold on plot(x,y);t= 14*pi/9:0.0001:2*pi;x=(125).*cos(t)- 20*s in (t);y=(125).*si n( t)+ 20*cos(t);hold onplot(x,y);哈尔滨工业大学课程设计说明书(论文) %基圆t=0:0.001:2*pi;x=127*cos(t);y=127*s in (t);hold onplot(x,y);%偏心圆t=0:0.001:2*pi;x=20*cos(t);y=20*s in (t);hold onplot(x,y);grid onhold off七•确定滚子半径1.绘制曲率半径图%凸轮理论轮廓半径,t表示转角,p表示曲率半径, %dxi 表示dx/d © , dy表示dy/d © ,i=1,2,3,4 h=130; % 升程t0=pi*5/6; % 升程角t01=pi*5/9; % 回程角ts=pi/6; %远休止角ts仁pi*4/9; %近休止角e=20; %偏距s0=125;%升程阶段t=li nspace(0,pi*5/6,1000);s=h*(t/t0-s in (2*pi*t/t0)/(2*pi));dx1 =(h/t0-h*cos(2*pi*t/t0)).*cos(t)-(s0+s).*si n( t)- e*cos(t);dy1=(h/t0-h*cos(2*pi*t/t0)).*si n( t)+(s0+s).*cos(t)- e*si n( t); p=sqrt(dx1.A2+dy1.A2); hold onplot(t,p);%远休止阶段t=li nspace(pi*5/6,pi,1000);s=h;dx2 =- si n( t).*(s + s0) - e*cos(t);dy2 =cos(t).*(s + s0) - e*si n( t);p=sqrt(dx2.A2+dy2.A2);hold onplot(t,p);%回程阶段t=li nspace(pi,pi*14/9,1000);s=0.5*h*(1+cos(pi*(t-(t0+ts))/t01));dx3 =-0.5*h*pi/(2*t01)*si n( (pi/t01)*(t-(t0+ts))).*cos(t)- si n( t).*(s + s0) - e*cos(t); dy3 =-0.5*h*pi/(2*t01)*s in ((pi/t01)*(t-(t0+ts))).*si n( t)+ cos(t).*(s + s0) - e*si n(t); p=sqrt(dx3.A2+dy3.A2);hold onplot(t,p);%近休止阶段t=li nspace(pi*14/9,pi*2,1000);s=0;dx4 =-si n( t).*(s + s0) - e*cos(t);dy4 =cos(t).*(s + s0) - e*si n( t);p=sqrt(dx4.A2+dy4.A2);hold onplot(t,p);hold offtitle('曲率半径p ','FontSize',20);grid on八.绘制实际轮廓线%凸轮理论轮廓半径,t表示转角,p表示曲率半径, %dxi 表示dx/d © , dy表示dy/d© ,i=,2,3,4 h=130; % 升程tO二pi*5/6; % 升程角tO仁pi*5/9; %回程角ts=pi/6; %远休止角ts1=pi*4/9; %近休止角e=20; %偏距s0=125;rr=1O; %滚子半径%升程阶段t=li nspace(0,pi*5/6,1000); s=h*(t/tO-s in (2*pi*t/t0)/(2*pi));x仁(s0+s).*cos(t)-e*si n( t);y仁(s0+s).*si n( t)+e*cos(t);dx1 =(h/t0-h*cos(2*pi*t/t0)).*cos(t)-(s0+s).*si n( t)- e*cos(t);dy1=(h/t0-h*cos(2*pi*t/t0)).*si n( t)+(s0+s).*cos(t)- e*si n(t);X1=x1-rr*dy1./(sqrt(dx1.A2+dy1.A2));Y1=y1+rr*dx1./(sqrt(dx1.A2+dy1.A2));hold onplot(x1,y1);plot(X1,Y1);%远休止阶段t=li nspace(pi*5/6,pi,1000);s=h;x2=(s+s0).*cos(t)-e*si n( t); y2=(s+s0)*si n( t)+e*cos(t);dx2 =- si n( t).*(s + s0) - e*cos(t);dy2 =cos(t).*(s + s0) - e*si n( t);X2=x2-rr*dy2./(sqrt(dx2.A2+dy2.A2));Y2=y2+rr*dx2./(sqrt(dx2.A2+dy2.A2));hold onplot(x2,y2);plot(X2,Y2);%回程阶段t=li nspace(pi,pi*14/9,1000);s=0.5*h*(1+cos(pi*(t-(t0+ts))/t01));x3=(s+s0).*cos(t)-e*si n( t);y3=(s+s0).*si n( t)+e*cos(t);dx3 =-0.5*h*pi/(2*t01)*si n( (pi/t01)*(t-(t0+ts))).*cos(t)- si n( t).*(s + s0) - e*cos(t); dy3 =-0.5*h*pi/(2*t01)*s in ((pi/t01)*(t-(t0+ts))).*si n( t)+ cos(t).*(s + s0) - e*si n(t);X3=x3-rr*dy3./(sqrt(dx3.A2+dy3.A2));Y3=y3+rr*dx3./(sqrt(dx3.A2+dy3.A2));hold onplot(x3,y3);plot(X3,Y3);%近休止阶段t=li nspace(pi*14/9,pi*2,1000);s=0;x4=(s+s0).*cos(t)-e*si n( t);y4=(s+s0).*si n( t)+e*cos(t);dx4 =- si n( t).*(s + s0) - e*cos(t);dy4 =cos(t).*(s + s0) - e*si n( t);X4=x4-rr*dy4./(sqrt(dx4.A2+dy4.A2));Y4=y4+rr*dx4./(sqrt(dx4.A2+dy4.A2));hold onplot(x4,y4);plot(X4,Y4);hold offgrid ontitle('凸轮实际轮廓线','FontSize',20);。

相关文档
最新文档