典型相似三角形证明题
经典相似三角形练习题(附参考答案)
经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s 的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t 的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ 与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°°,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.BC==22、,可得BC=∵BC=EC=;∴,∴8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.面积的面积的则有:(×3×6,即面积的因此有①,或t=(t=t=都符合题意,同时出发后,经过秒或9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.P=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.CE=.AE=∴sin∠AEF=,∴AF=AE•sin∠AEF=∴.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.∴QM=PM=AB=12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.∴CM=MD=∴PC=BC=AD=∴.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s 的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t 的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.(AB=∴tan∠ADP=tan∠C==∴=,∴t=∴tan∠APD=tan∠C==,∴=∴t=∴t=t=时,△PAD∴PD=∵CE=t QE=t∴QH=BE=8﹣t t∴PH=t﹣t=t∴PQ=,,,>∴t=t=14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?时,有:;时,有:∴经过15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ 与△ABC相似.=,即=,解得对应时,有=,即=16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解:∵AC=∴CD==.要使这两个直角三角形相似,有两种情况:时,有=,∴AB==3时,有=,∴AB=.317.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.a①若△CDM∽△MAN,则=∴AN=②若△CDM∽△NAM,则AN=18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?或)当,∴x=;)当,∴x=.所以,经过秒或19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.∴=,∴=,∴=,∴=,∴=,∴AP=.AP=时,由BP=,∴=,、20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.∴∴中有21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.所以所以;=,即=,;=,即=,t=时,以点22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?∴,23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.∴∴,∴.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)∴,即与①类似得:∴∴,与①类似得:,∴,∴MN=r(25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.AE∥BD,所以△ECA∽△DCB,则有∴∴26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.∵∴∴解得:.∴,,即.∴同理可得:,∴=是定值.)可知,即,同理可得:∴,由等比性质得:∴,所以人影顶端在地面上移动的速度为27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.===∴∴28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.BC=∴==,==,∴BD=CD=;=BE•CD=∴BE==30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.)设=k,。
完整版)相似三角形题型归纳
完整版)相似三角形题型归纳1、在平行四边形ABCD中,点E为对角线AC上的一点,且AE∶EC=1∶3.将BE延长至与CD的延长线交于点G,与AD交于点F。
证明BF∶FG=1∶2.2、在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC的中点,E为AC上的一点。
点G在BE上,连接DG并延长至交AE于点F,且∠FGE=45°。
证明:(1)BD·BC=BG·BE;(2)AG⊥BE;(3)若E为AC的中点,则EF∶FD=1∶2.3、在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上的一点,连接BO交AD于点F,OE⊥OB交BC边于点E。
证明:(1)△ABF∽△COE;(2)当O为AC的中点时,求△ABC的面积;(3)当O为AC边中点时,求△ABC的面积。
4、在平行四边形ABCD和平行四边形ACED中,点R为DE的中点,BR分别交AC、CD于点P、Q。
写出各对相似三角形(相似比为1除外),并求出BP∶PQ∶QR的值。
5、在△ABC中,AD平分∠BAC,EM为AD的中垂线,交BC延长线于点E。
证明DE=BE·CE。
6、过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和E。
证明AE∶ED=2AF∶FB。
7、在Rt△ABC中,CD为斜边AB上的高,点M在CD 上,DH⊥BM且与AC的延长线交于点E。
证明:(1)△AED∽△CBM;(2)DE=DM。
8、在△ABC中,BD、CE分别是两边上的高,过D作DG⊥BC于点G,分别交CE及BA的延长线于点F、H。
证明:(1)DG=BG·CG;(2)BG·CG=GF·GH。
9、在平行四边形ABCD中,点P为对角线AC上的一点。
过P的直线与AD、BC、CD的延长线、AB的延长线分别相交于点E、F、G、H。
证明:AG∶GB=CP∶PD。
1、求证:如图,已知平行四边形ABCD中,点P在AC上,点Q在BC上,且AP=CQ。
相似三角形判定典型题
相似三角形典型题1、如图,△ADC ∽△ACB ,求证:AC 2=AD ·AB2、证明射影定理3、△ABC 中,AB=AC ,∠A=36°,求证:21-5AB BC(21-5也叫黄金比)4、梯形ABCD ,AD ∥BC ,∠A=90°,AB=7,AD=2,BC=3,在线段AB 上是否存在点P 使以P 、A 、D 为顶点的三角形与以P 、B 、C 为顶点的三角形相似?若存在,求出AP 的长。
5、△ABC中,CE、BD是高,二者交于点O(1)求证:△ADE∽△ABC.(2)图中共有几对相似三角形?请找出来。
6、△ABC中,AE、BD是高,△CDE面积是2,△ABC面积是12,DE=3,求AB的长。
7、△ABC中,AC=AB,∠BAC=90°,E、F在直线BC上,且∠EAF=135°(1)找出图中的相似三角形并证明。
(2)求证:BC2=2FC·BE=BE:CF(3)求证:AE2:AF28、△ABC中,AC=AB,AD是中线,P是AD上一点,过C作CF∥AB交BP延长线于F求证:BP2=PE·PF9、△ABC 中,AC=AB ,AD 是中线,P 是AD 延长线上一点,过C 作CF ∥AB 交BP 延长线于F ,BF 交AC 延长线于E . 求证:BP 2=PE ·PF10、△ABC 中,AD 是角平分线,EF 是AD 的中垂线,交BC 延长线于F 求证:(1)FD 2=FC ·FB (2)AB 2:AC 2=BF:CFF11、△ABC 中,∠BAC=90°,AD ⊥BC ,P 为AD 中点,BP 延长线交AC 于F 求证:EF 2=AE ·CE12、△ABC 中,∠BAC=90°,AD ⊥BC ,E 为AC 中点,ED 延长线交AB 延长线于F 求证:AFDFAC AB13.如图,设P 是等边△ABC 的一边BC 上的一点,连结AP ,它的垂直平分线交AB 、AC 于M 、N 两点(1)求证:BP ·PC=BM ·CN(2)PC=2BP ,则=ANAM________(3)若BP:PC=m:n ,则=ANAM________14、△ABC 中,∠A=2∠B.求证:a 2=b (b+c ) 用多种方法B15、如图,在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积。
经典相似三角形练习的题目(附参考答案详解)
实用标准文案相似三角形一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= _________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t 的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD 、AC 把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q 作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB 上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC 交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P 为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.解答:证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:本题考查的是平行线的性质及相似三角形的判定定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.解答:(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.解答:证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.解答:证明:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)点评:考查相似三角形的判定定理,关键是找准对应的角.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.解答:(1)证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,CD的中点,∴BM=CN.又∵AB=AC,∴△ABM≌△ACN.∴AM=AN,即△AMN为等腰三角形.(2)解:(1)中的两个结论仍然成立.(3)证明:在图②中正确画出线段PD,由(1)同理可证△ABM≌△ACN,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.∴△PBD和△AMN都为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.分析:根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.解答:解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= 135°°,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.解答:解:(1)∠ABC=135°,BC=;(2)相似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA 方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t 的值;若不存在,请说明理由解:(1)设经过x秒后,△AMN的面积等于矩形ABCD面积的,则有:(6﹣2x)x=×3×6,即x2﹣3x+2=0,(2分)解方程,得x1=1,x2=2,(3分)经检验,可知x1=1,x2=2符合题意,所以经过1秒或2秒后,△AMN的面积等于矩形ABCD面积的.(4分)(2)假设经过t秒时,以A,M,N为顶点的三角形与△ACD相似,由矩形ABCD,可得∠CDA=∠MAN=90°,因此有或(5分)即①,或②(6分)解①,得t=;解②,得t=(7分)经检验,t=或t=都符合题意,所以动点M,N同时出发后,经过秒或秒时,以A,M,N为顶点的三角形与△ACD相似.(8分)9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.解答:解:(1)任选两个三角形的所有可能情况如下六种情况:①②,①③,①④,②③,②④,③④(2分)其中有两组(①③,②④)是相似的.∴选取到的二个三角形是相似三角形的概率是P=(4分)证明:(2)选择①、③证明.在△AOB与△COD中,∵AB∥CD,∴∠CDB=∠DBA,∠DCA=∠CAB,∴△AOB∽△COD(8分)选择②、④证明.∵四边形ABCD是等腰梯形,∴∠DAB=∠CBA,∴在△DAB与△CBA中有AD=BC,∠DAB=∠CAB,AB=AB,∴△DAB≌△CBA,(6分)∴∠ADO=∠BCO.又∠DOA=∠COB,∴△DOA∽△COB(8分).点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.解答:解:(1)AD=DE,AE=CE.∵CE⊥BD,∠BDC=60°,∴在Rt△CED中,∠ECD=30°.∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.(2)图中有三角形相似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;(3)作AF⊥BD的延长线于F,设AD=DE=x,在Rt△CED中,可得CE=,故AE=.∠ECD=30°.在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.点评:本题主要考查了直角三角形的性质,相似三角形的判定及三角形面积的求法等,范围较广.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.解答:解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ 是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.(2)∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;(3)当点M中BC的中点时,四边形APMQ是菱形,∵点M是BC的中点,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.解答:证明:∵正方形ABCD,M为CD中点,∴CM=MD=AD.∵BP=3PC,∴PC=BC=AD=CM.∴.∵∠PCM=∠ADM=90°,∴△MCP∽△ADM.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q 作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.解答:解:(1)过D作DH∥AB交BC于H点,∵AD∥BH,DH∥AB,∴四边形ABHD是平行四边形.∴DH=AB=8;BH=AD=2.∴CH=8﹣2=6.∵CD=10,∴DH2+CH2=CD2∴∠DHC=90°.∠B=∠DHC=90°.∴梯形ABCD是直角梯形.∴S ABCD=(AD+BC)AB=×(2+8)×8=40.(2)①∵BP=CQ=t ,∴AP=8﹣t,DQ=10﹣t,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD周长平分.②第一种情况:0<t≤8若△PAD∽△QEC则∠ADP=∠C ∴tan∠ADP=tan∠C==∴=,∴t=若△PAD∽△CEQ则∠APD=∠C ∴tan∠APD=tan∠C==,∴=∴t=第二种情况:8<t≤10,P、A、D三点不能组成三角形;第三种情况:10<t≤12△ADP为钝角三角形与Rt△CQE不相似;∴t=或t=时,△PAD与△CQE相似.③第一种情况:当0≤t≤8时.过Q点作QE⊥BC,QH⊥AB,垂足为E、H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8(不合题意舍去)∴t=第二种情况:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒成立.第三种情况:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒成立.综上所述,t=或8≤t<10或10<t≤12时,以DQ为腰的等腰△DPQ成立.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC 相似?解答:解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD.15.如图,在△ABC 中,AB=10cm ,BC=20cm ,点P 从点A 开始沿AB 边向B 点以2cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,问经过几秒钟,△PBQ 与△ABC 相似. 解答: 设经过秒后t 秒后,△PBQ 与△ABC 相似,则有AP=2t ,BQ=4t ,BP=10﹣2t , 当△PBQ ∽△ABC 时,有BP :AB=BQ :BC , 即(10﹣2t ):10=4t :20,解得t=2.5(s )(6分)当△QBP ∽△ABC 时,有BQ :AB=BP :BC , 即4t :10=(10﹣2t ):20,解得t=1.所以,经过2.5s 或1s 时,△PBQ 与△ABC 相似(10分).解法二:设ts 后,△PBQ 与△ABC 相似,则有,AP=2t ,BQ=4t ,BP=10﹣2t分两种情况:(1)当BP 与AB 对应时,有=,即=,解得t=2.5s (2)当BP 与BC 对应时,有=,即=,解得t=1s所以经过1s 或2.5s 时,以P 、B 、Q 三点为顶点的三角形与△ABC 相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB 的长为多少时,这两个直角三角形相似. 解答: 解:∵AC=,AD=2,∴CD==.要使这两个直角三角形相似,有两种情况:1) 当Rt △ABC ∽Rt △ACD 时, 2) 有=,∴AB==3;3) 当Rt △ACB ∽Rt △CDA 时, 4) 有=,∴AB==3.故当AB 的长为3或3时,这两个直角三角形相似.17.已知,如图,在边长为a 的正方形ABCD 中,M 是AD 的中点,能否在边AB 上找一点N (不含A 、B ),使得△CDM 与△MAN 相似?若能,请给出证明,若不能,请说明理由.解答: 证明:分两种情况讨论:①若△CDM ∽△MAN ,则=.∵边长为a ,M 是AD 的中点, ∴AN=a .②若△CDM ∽△NAM ,则.∵边长为a,M 是AD的中点,∴AN=a,即N点与B重合,不合题意.所以,能在边AB上找一点N(不含A、B),使得△CDM与△MAN相似.当AN=a时,N点的位置满足条件.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?解答:解:设经过x秒后,两三角形相似,则CQ=(8﹣2x)cm,CP=xcm,(1分)∵∠C=∠C=90°,∴当或时,两三角形相似.(3分)(1)当时,,∴x=;(4分)(2)当时,,∴x=.(5分)所以,经过秒或秒后,两三角形相似.(6分)点评:本题综合考查了路程问题,相似三角形的性质及一元一次方程的解法.19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.解答:解:(1)若点A,P,D分别与点B,C,P对应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.(2)若点A,P,D分别与点B,P,C对应,即△APD∽△BPC.∴=,∴=,∴AP=.检验:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.因此,点P的位置有三处,即在线段AB距离点A的1、、6处.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC 交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.解答:证明:(1)∵△ABC是等腰直角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BEM=∠NEC,(4分)而∠MBE=∠ECN=45°,∴△BEM∽△CNE.(6分)(2)与(1)同理△BEM∽△CNE,∴.(8分)又∵BE=EC,∴,(10分)则△ECN与△MEN中有,又∠ECN=∠MEN=45°,∴△ECN∽△MEN.(12分)21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P 为顶点的三角形与△ABC相似.解答:解:以点Q、A、P为顶点的三角形与△ABC相似,所以△ABC∽△PAQ或△ABC∽△QAP,①当△ABC∽△PAQ 时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;③当△AQP∽△BAC时,=,即=,所以t=;④当△AQP∽△BCA时,=,即=,所以t=30(舍去).故当t=6或t=时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?解答:解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.解答:解:(1)皮尺,标杆;(2)测量示意图如图所示;(3)如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.(7分)24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)解答:解:(1)由题意可知:∠BAC=∠EDF=90°,∠BCA=∠EFD.∴△ABC ∽△DEF.∴,即,(2分)∴DE=1200(cm).所以,学校旗杆的高度是12m.(3分)(2)解法一:与①类似得:,即,∴GN=208.(4分)在Rt△NGH中,根据勾股定理得:NH2=1562+2082=2602,∴NH=260.(5分)设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.(6分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN,∴(7分),又ON=OK+KN=OK+(GN﹣GK)=r+8,∴,解得:r=12.∴景灯灯罩的半径是12cm.(8分)解法二:与①类似得:,即,∴GN=208.(4分)设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.(5分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN.∴,即,(6分)∴MN=r,又∵ON=OK+KN=OK+(GN﹣GK)=r+8.(7分)在Rt△OMN中,根据勾股定理得:r2+(r)2=(r+8)2即r2﹣9r﹣36=0,解得:r1=12,r2=﹣3(不合题意,舍去),∴景灯灯罩的半径是12cm.(8分)25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.解答:解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗口底边离地面的高为4m.点评:此题基本上难度不大,利用相似比即可求出窗口底边离地面的高.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.解答:解:(1)由已知:AB∥OP,∴△ABC∽△OPC.∵,∵OP=l,AB=h,OA=a,∴,∴解得:.(2)∵AB∥OP,∴△ABC∽△OPC,∴,即,即.∴.同理可得:,∴=是定值.(3)根据题意设李华由A到A',身高为A'B',A'C'代表其影长(如图).由(1)可知,即,∴,同理可得:,∴,由等比性质得:,当李华从A走到A'的时候,他的影子也从C移到C',因此速度与路程成正比∴,所以人影顶端在地面上移动的速度为.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.解:设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.证明如下:显然,S1=,S2=,S3=∴S2+S3==S1;(3)当所作的三个三角形相似时,S1=S2+S3.证明如下:∵所作三个三角形相似∴∴=1 ∴S1=S2+S3;(4)分别以直角三角形ABC三边为一边向外作相似图形,其面积分别用S1、S2、S3表示,则S1=S2+S3.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.解答:解:∵△ABC ∽△ADE,∴AE:AC=AD:AB.∵AE:AC=(AB+BD):AB,∴AE:9=(15+5):15.∴AE=12.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.解答:解:(1)Rt△ABC中,根据勾股定理得:BC==5,∵Rt△ABC∽Rt△BDC,∴==,==,∴BD=,CD=;(2)在Rt△BDC中,S△BDC=BE•CD=BD•BC,∴BE===3.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.解:(1)设=k,那么x=2k,y=3k,z=5k,由于3x+4z﹣2y=40,∴6k+20k﹣6k=40,∴k=2,∴x=4,y=6,z=10.(2)设一个三角形周长为Ccm,则另一个三角形周长为(C+560)cm,则,∴C=240,C+560=800,即它们的周长分别为240cm,800cm。
(相似三角形)证明题
1、如图,△ABC中,三条内角平分线交于D,过D作AD垂线,分别交AB、AC于M、N,请写出图中相似的三角形,并说明其中两对相似的正确性。
2、如图,AD为△ABC的高,DE⊥AB,DF⊥AC,垂足分别为E、F,试判断∠ADF与∠AEF的大小,并说明明理由,…3、如图,在△ABC中,点D、E分别在BC、AB上,且∠CAD=∠ADE=∠B,AC:BC=1:2,设△EBD、△ADC、△ABC的周长分别为m1 、m2、m3,求的值,*4、如图,已知△ABC中,D为BC中点,AD=AC,DE⊥BC,DE与AB交于E,EC与AD相交于点F,(1)△ABC与△FCD相似吗请说明理由;(2)若S =5,BD=10,求DE的长。
:5、AD是△ABC的高,E是BC的中点,EF⊥BC交AC于F,若BD=15,DC=27,AC=45.求AF的长。
\6、已知:如图,在△PAB中,∠APB=120O,M、N是AB上两点,且△PMN是等边三角形。
求证: BM·PA=PN·BP7、已知:如图,D是△ABC的边AC上一点,且CD=2AD,AE⊥BC于E, 若BC=13, △BDC的面积是39, 求AE的长。
?????*8、已知:如图,在△ABC中,AB=15,AC=12,AD是∠BAC的外角平分线且AD交BC的延长线于点D,DE ∥AB交AC的延长线于点E。
《9、已知: 如图,四边形ABCD中,CB⊥BA于B,DA⊥BA于A,BC=2AD,DE⊥CD交AB于E,连结CE,求证:DE2=AE?CE】10、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)ΔABE与ΔADF相似吗请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长./11、如图:三角形ABC是一快锐角三角形余料,边BC=120mm,高AD =80mm,要把它加工成正方形零件,是正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少ANP12、已知:如图:FGHI 为矩形,AD ⊥BC 于D ,95GH FG ,BC =36cm,AD =12cm 。
相似三角形性质与判定专项练习30题(有答案)
相似三角形性质与判定专项练习30题(有答案)1.在三角形ABC中,点D在边BC上,且∠BAC=∠DAG,∠XXX∠BAD。
证明:=。
当GC⊥BC时,证明:∠BAC=90°。
2.在三角形ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足。
证明:AC^2=AF•AD。
联结EF,证明:AE•DB=AD•EF。
3.在三角形ABC中,PC平分∠ACB,PB=PC。
证明:△APC∽△ACB。
若AP=2,PC=6,求AC的长。
4.在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠XXX∠C。
证明:△ABF∽△EAD。
若AB=4,∠BAE=30°,求AE的长。
5.在三角形ABC中,∠ABC=2∠C,BD平分∠ABC。
证明:AB•BC=AC•CD。
6.在直角三角形ABC中,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S。
说明AF•BE=2S的理由。
7.在等边三角形ABC中,边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P。
若AE=CF,证明:AF=BE,并求∠APB的度数。
若AE=2,试求AP•AF的值。
若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长。
8.在钝角三角形ABC中,AD,BE是边BC上的高。
证明。
9.在三角形ABC中,AB=AC,DE∥BC,点F在边AC 上,DF与BE相交于点G,且∠XXX∠ABE。
证明:(1)△DEF∽△BDE;(2)DG•DF=DB•EF。
10.在等边三角形ABC、△DEF中,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2.问E在何处时CH的长度最大?11.在AB和CD交于点O的图形中,当∠A=∠C时,证明:OA•OB=OC•OD。
12.在等边三角形△AEC中,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外)。
相似三角形经典题75题
相似三角形:填空:1. 如果一个三角形的三边长为5、12、13,与其相似的三角形的最长的边为39,那么较大的三角形的周长为,面积为.2. 如图,在△ABC中,DE∥BC,AD=2,AE=3,BD=4,则AC= .3. 五边形ABCDE∽五边形A′B′C′D′E′,∠A=120°,∠B′=130°,∠C=105°,∠D′=85°,则∠E=.4. 如图,在△ABC中,D、E分别是AC、AB边上的点,∠AED=∠C,AB=6,AD=4,AC=5,则AE= .5. 如图,△ABC三个顶点的坐标分别为A(2,2),B(4,0),C(6,4)以原点为位似中心,将△ABC缩小,位似比为1:2,则线段AC中点P变换后对应点的坐标为.6. 从美学角度来说,人的上身长与下身长之比为黄金比时,可以给人一种协调的美感.某女老师上身长约61.80cm,下身长约93.00cm,她要穿约cm的高跟鞋才能达到黄金比的美感效果(精确到0.01cm).7. 如图,△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点D为AC的黄金分割点(AD>CD),AC=6,则CD= .8.如图,已知P是线段AB的黄金分割点,且PA>PB,若S1表示PA为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,则S1S2.(填“>”“=”或“<”)9.如图,△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()10.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()对11.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB,CD上滑动,当CM= 时,△AED与以M,N,C为顶点的三角形相似.12.如图,C是AB的黄金分割点,BG=AB,以CA为边的正方形的面积为S1,以BC、BG为边的矩形的面积为S2,则S1S2(填“>”“<”“=”).13.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC 于点N,则MN等于()14.在△ABC中,∠ACB=90°,CD⊥AB于点D,则下列说法正确的有(填序号).①AC•BC=AB•CD;②AC2=AD•DB;③BC2=BD•BA;④CD2=AD•DB.15.如图,在▱ABCD中,E、F分别是AB、AD的中点,EF交AC于点G,则的值是.16.如图,在梯形ABCD中,AD∥BC,AC,BD交于点O,S△AOD:S△COB=1:9,则S△DOC:S△BOC= .17.如图,在△ABC中,BC=a.若D1,E1分别是AB,AC的中点,则D1E1=;若D2,E2分别是D1B,E1C的中点,则D2E2=…若D n E n分别是D n﹣1B,E n﹣1C的中点,则D n E n的长是多少(n>1,且n为整数,结果用含a,n的代数式表示)?18.如图,将△ABC绕顶点A顺时针旋转60°后,得到△AB′C′,且C′为BC的中点,则C′D:DB′=()19.如图,在正方形网格中,点A、B、C、D都是格点,点E是线段AC上任意一点.如果AD=1,那么当AE= 时,以点A、D、E为顶点的三角形与△ABC相似.20.如图,在直角三角形ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为()21.如图,▱ABCD中,E、F分别为AD、BC上的点,且DE=2AE,BF=2FC,连接BE、AF交于点H,连接DF、CE交于点G,则= .22.如图,△ABC是边长为1的等边三角形,取BC边中点E,作ED∥AB交AC 于点D,EF∥AC交AB于点F,得到四边形EDAF,它的面积记做S1,取BE边中点E1,作E1D1∥FB交EF于点D1,E1F1∥EF交AB于点F1,得到四边形E1D1FF1,它的面积记做S2.照此规律作下去,则S2013= .解答:1.已知:如图所示,D是AC上一点,BE∥AC,AE分别交BD,BC于点F,G,∠1=∠2.则证明BF2=FG•EF.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE 相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG•DF=DB•EF.4.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.5.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B,且DM 交AC于F,ME交BC于G.写出图中的所有相似三角形,并选择一对加以证明.6.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从B出发沿BC 以2cm/s的速度向C移动,点Q从C出发,以1cm/s的速度向A移动,若P、Q分别从B、C同时出发,设运动时间为ts,当为何值时,△CPQ与△CBA相似?7.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.8.如图,在梯形ABCD中,AD∥BC,P是AB上一点,PE∥BC交CD于点E.若AD=2,BC=,则点P在何处时,PE把梯形ABCD分成两个相似的小梯形?9.如图,已知线段AB,P1是AB的黄金分割点(AP1>BP1),点O是AB的中点,P2是P1关于点O的对称点.求证:P1B是P2B和P1P2的比例中项.10.如图,已知DE∥BC,EF∥AB,设S△ABC=S,S△ABC=S1,S△ECF=S2,请验证.11.如图,在Rt△ABC中,∠B=90°,AB=1,BC=,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E.(1)求AE的长度;(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C在AB 两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想∠EAG 的大小,并说明理由.12.如图,在平面直角坐标系中,直线交x轴于点A,交y轴于点B.试在y轴上找一点P,使△AOP与△AOB相似,你能找出几个这样的点(点P与点B不重合)?分别求出对应AP的长度.13.如图,已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,点P在AC上(与点A,C不重合),点Q在BC上.(1)△CPQ的边PQ上的高为时,求△CPQ的周长;(2)当△CPQ的周长与四边形PABQ的周长相等时,求CP的长.14.阅读下面的短文,并解答下列问题:我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.如图,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比(a:b).设S甲、S乙分别表示这两个正方体的表面积,则==()2又设V甲、V乙分别表示这两个正方体的体积,则==()3(1)下列几何体中,一定属于相似体的是(A)A.两个球体B.两个锥体C.两个圆柱体D.两个长方体(2)请归纳出相似体的三条主要性质:①相似体的一切对应线段(或弧)长的比等于;②相似体表面积的比等于;③相似体体积比等于.(3)假定在完全正常发育的条件下,不同时期的同一人的人体是相似体,一个小朋友上幼儿园时身高为1.1米,体重为18千克,到了初三时,身高为1.65米,问他的体重是多少?(不考虑不同时期人体平均密度的变化)15.△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC 的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?16.定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.(2)一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连接各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连接它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为S N.①若△DEF的面积为10000,当n为何值时,2<S n<3?(请用计算器进行探索,要求至少写出三次的尝试估算过程)②当n>1时,请写出一个反映S n﹣1,S n,S n+1之间关系的等式.(不必证明)17.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.18.为了加强视力保护意识,欢欢想在书房里挂一张测试距离为5m的视力表,但两面墙的距离只有3m.在一次课题学习课上,欢欢向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙两位同学设计方案新颖,构思巧妙.(1)甲生的方案:如图①,根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.如果大视力表中“E”的高是3.5cm,那么小视力表中相应“E”的高是多少?(2)乙生的方案:使用平面镜来解决房间小的问题.如图②,若使墙面镜子能呈现完整的视力表,由平面镜成像原理,作出了光路图,其中视力表AB的上、下边沿A,B发出的光线经平面镜MM′的上下边沿反射后射人人眼C处.如果视力表的全长为0.8m,请计算出镜长至少为多少米.19.在直角边分别为5cm和12cm的直角三角形中作菱形,使菱形的一个内角恰好是三角形的一个角,其余顶点都在三角形的边上,求所作菱形的边长.20.如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC 的黄金分割线.请你说明理由.(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD各边黄金分割点.21.如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.(1)若BK=KC,求的值;(2)连接BE,若BE平分∠ABC,则当AE=AD时,猜想线段AB、BC、CD 三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=AD(n>2),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.22.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于(结果保留根号).23.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.24.在左图的方格纸中有一个Rt△ABC(A、B、C三点均为格点),∠C=90°(1)请你画出将Rt△ABC绕点C顺时针旋转90°后所得到的Rt△A′B′C′,其中A、B的对应点分别是A′、B′(不必写画法);(2)设(1)中AB的延长线与A′B′相交于D点,方格纸中每一个小正方形的边长为1,试求BD的长(精确到0.1).25.如图,已知:在Rt△ABC中,∠ACB=90°,sinB=,D是BC上一点,DE⊥AB,垂足为E,CD=DE,AC+CD=9.求BC的长.26.如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(1)中y与x之间的函数关系式还成立?试说明理由.27.如图,在平行四边形ABCD中,过点B作BE⊥CD于E,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=5,AD=3,∠BAE=30°,求BF的长.28.如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,CF 与AB交于点G,若CF=15cm,求GF之长.29.如图,AF⊥CE,垂足为点O,AO=CO=2,EO=FO=1.(1)求证:点F为BC的中点;(2)求四边形BEOF的面积.30.E、F为平行四边形ABCD的对角线DB上三等分点,连AE并延长交DC 于P,连PF并延长交AB于Q,如图①(1)在备用图中,画出满足上述条件的图形,记为图②,试用刻度尺在图①、②中量得AQ、BQ的长度,估计AQ、BQ间的关系,并填入下表:(长度单位:cm);(2)上述(1)中的猜测AQ、BQ间的关系成立吗?为什么?(3)若将平行四边形ABCD改为梯形(AB∥CD)其他条件不变,此时(1)中猜测AQ、BQ间的关系是否成立?(不必说明理由)31.如图,在平面直角坐标系中,点A在x轴负半轴上,点B的坐标是(0,2),过点B作BC⊥AB交x轴于点C,过点C作CD⊥BC交y轴于点D,过点D作DE⊥CD交x轴于点E,过点E作EF⊥DE交y轴于点F,若EA=3AC.(1)求证:△CBA∽△EDC;(2)请写出点A,点C的坐标(解答过程可不写);(3)求出线段EF的长.32.Ⅰ.如图①,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证:;Ⅱ.如图②,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连结AG,AF,分别交DE于M,N两点.(1)如图②,若AB=AC=1,直接写出MN的长;(2)如图③,探究DM,MN,EN之间的关系,并说明理由.33.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么(1)设△POQ的面积为y,求y关于t的函数解析式;(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;(3)当t为何值时,△POQ与△AOB相似.34.已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C 作CE垂直于BD或BD的延长线,垂足为E,如图.(1)若BD是AC的中线,求的值;(2)若BD是∠ABC的角平分线,求的值;(3)结合(1)、(2),试推断的取值范围(直接写出结论,不必证明),并探究的值能小于吗?若能,求出满足条件的D点的位置;若不能,说明理由.35.已知抛物线y=ax2+bx﹣1经过点A(﹣1,0)、B(m,0)(m>0),且与y轴交于点C.(1)求a、b的值(用含m的式子表示);(2)如图所示,⊙M过A、B、C三点,求阴影部分扇形的面积S(用含m的式子表示);(3)在x轴上方,若抛物线上存在点P,使得以A、B、P为顶点的三角形与△ABC 相似,求m的值.36.如图,点D,E分别在△ABC的边BC,BA上,四边形CDEF是等腰梯形,EF∥CD.EF与AC交于点G,且∠BDE=∠A.(1)试问:AB•FG=CF•CA成立吗?说明理由;(2)若BD=FC,求证:△ABC是等腰三角形.37.如图,在▱ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)试说明:AE⊥BF;(2)判断线段DF与CE的大小关系,并予以说明.38.如图①、②在▱ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD 两侧的延长线(或线段CD)相交于点F、G,AF与BG相交于点E.(1)在图①中,求证:AF⊥BG,DF=CG;(2)在图②中,仍有(1)中的AF⊥BG、DF=CG.若AB=10,AD=6,BG=4,求FG和AF的长.39.已知,如图,AD为Rt△ABC斜边BC上的高,点E为DA延长线上一点,连接BE,过点C作CF⊥BE于点F,交AB、AD于M、N两点.(1)若线段AM、AN的长是关于x的一元二次方程x2﹣2mx+n2﹣mn+m2=0的两个实数根,求证:AM=AN;(2)若AN=,DN=,求DE的长;(3)若在(1)的条件下,S△AMN:S△ABE=9:64,且线段BF与EF的长是关于y的一元二次方程5y2﹣16ky+10k2+5=0的两个实数根,求BC的长.40.把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE 与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=;(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由;(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)41.(Ⅰ)如图1,点P在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交AD,CD于点R,T.求证:PQ•PR=PS•PT;(Ⅱ)如图2,图3,当点P在平行四边形ABCD的对角线BD或DB的延长线上时,PQ•PR=PS•PT是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);(Ⅲ)如图4,ABCD为正方形,A,E,F,G四点在同一条直线上,并且AE=6cm,EF=4cm,试以(Ⅰ)所得结论为依据,求线段FG的长度.42.取一副三角板按图①拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图所示.试问:(1)当α为多少度时,能使得图②中AB∥DC;(2)当旋转至图③位置,此时α又为多少度图③中你能找出哪几对相似三角形,并求其中一对的相似比;(3)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.43.如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a.(1)求证:△ADE∽△BEC;(2)当点E为AB边的中点时(如图2),求证:①AD+BC=CD;②DE,CE 分别平分∠ADC,∠BCD;(3)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由.44.如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当:△ADE是等腰三角形时,求AE的长.45.等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转.(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP;(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.①探究1:△BPE与△CFP还相似吗?(只需写出结论)②探究2:连接EF,△BPE与△PFE是否相似?请说明理由;③设EF=m,△EPF的面积为S,试用m的代数式表示S.46.如图:在平行四边形ABCD中,E是AD上的一点.求证:.47.(1)如图1所示,在等边△ABC中,点D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE∥BC;(2)如图2所示,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形,所作△EDC相似于△ABC,请问仍有AE∥BC?证明你的结论.48.如图,△ABC内接于⊙O,直径CD⊥AB,垂足为E,弦BF交CD于点M,交AC于点N,且BF=AC,连接AD、AM.求证:(1)△ACM≌△BCM;(2)AD•BE=DE•BC;(3)BM2=MN•MF.49.操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.研究:(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明.50.如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB 的中点.(1)求证:△ADE≌△BCF;(2)若AD=4cm,AB=8cm,求CF的长.51.如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm.(1)求证:四边形ABFE是等腰梯形;(2)求AE的长.52.如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q,(1)若AB=6,求线段BP的长;(2)观察图形,是否有三角形与△ACQ全等?并证明你的结论.53.已知点E、F在△ABC的边AB所在的直线上,且AE=BF,FH∥EG∥AC,FH、EG分别交边BC所在的直线于点H、G.(1)如图1,如果点E、F在边AB上,那么EG+FH=AC;(2)如图2,如果点E在边AB上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是;(3)如图3,如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是.对(1)(2)(3)三种情况的结论,请任选一个给予证明.解析:填空:1.解:设较大三角形的其他两边长为a,b.∵由相似三角形的对应边比相等∴解得:a=15,b=36,则较大三角形的周长为90,面积为270.故较大三角形的周长为90,面积为270.∴,∵AD=2,AE=3,BD=4,∴,∴CE=6,∴AC=AE+EC=3+6=9.故答案为:9.∴∠B=∠B′=130°,∠D=∠D′=85°,又∵五边形的内角和为540°,∴∠E=540°﹣∠A﹣∠B﹣∠C﹣∠D=100°,故答案为:100°.∵∠A=∠A,∠AED=∠C,∴△AED∽△ACB.∴,∴,∴AE=.故答案为:.5.解:如图,∵A(2,2),C(6,4),∴点P的坐标为(4,3),∵以原点为位似中心将△ABC缩小位似比为1:2,∴线段AC的中点P变换后的对应点的坐标为(﹣2,﹣)或(2,).故答案为:(﹣2,﹣)或(2,).xcm的高跟鞋才能达到黄金比的美感效果.根据题意,得=≈0.618,解得x≈7.00故答案为:7.00.∴AD=AC═×6=3﹣3,∴CD=AC﹣AD=6﹣(3﹣3)=9﹣3.故答案为9﹣3.8.解:∵P是线段AB的黄金分割点,且PA>PB,∴PA2=PB•AB,又∵S1表示PA为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,∴S1=PA2,S2=PB•AB,∴S1=S2.故答案为:=.9.解:∵∠A=∠A∴①∠ACP=∠B,②∠APC=∠ACB时都相似;∵AC2=AP•AB∴AC:AB=AP:AC∴③相似;④此两个对应边的夹角不是∠A,所以不相似.所以能满足△APC与△ACB相似的条件是①②③.10.解:图中相似三角形共有3对.理由如下:∵四边形ABCD是正方形,∴∠D=∠C=90°,AD=DC=CB,∵DE=CE,FC=BC,∴DE:CF=AD:EC=2:1,∴△ADE∽△ECF,∴AE:EF=AD:EC,∠DAE=∠CEF,∴AE:EF=AD:DE,即AD:AE=DE:EF,∵∠DAE+∠AED=90°,∴∠CEF+∠AED=90°,∴∠AEF=90°,∴∠D=∠AEF,∴△ADE∽△AEF,∴△AEF∽△ADE∽△ECF,即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.11. 解:设CM的长为x.在Rt△MNC中∵MN=1,∴NC= ,①Rt△AED∽Rt△CMN时,则,即,解得x=或x=(不合题意,舍去),②Rt△AED∽Rt△CNM时,则,即,解得x=或(不合题意,舍去),综上所述,当CM=或时,△AED与以M,N,C为顶点的三角形相似.故答案为:或.12.解:由题意得:===1.即:S1=S2.13.解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN==.14.解答:解:∵在△ABC中,∠ACB=90°,CD⊥AB,∴AC•BC=AB•CD,即∴AC•BC=AB•CD,故①正确;∵△ABC中,∠ACB=90°,CD⊥AB于点D,∴BC2=BD•BA,故③正确;∴△ACD∽△CBD,∴,∴AC2=AD•AB,CD2=AD•DB,故②错误,④正确.故答案为:①③④.15.解答:解:连接BD,与AC相交于O,∵点E、F分别是AD、AB的中点,∴EF是△ABD的中位线,∴EF∥DB,且EF=DB,∴△AEF∽△ADB,∴,∴,∴,∴AG=GO,又OA=OC,∴AG:GC=1:3.故答案为:.16.解答:解:根据题意,AD∥BC∴△AOD∽△COB ∵S△AOD:S△COB=1:9∴=则S△AOD:S△DOC=1:3所以S△DOC:S△BOC=3:9=1:3.17.解答:解:在△ABC中、BC=a,若D1、E1分别是AB、AC的中点,根据中位线定理得D1E1==a,∵D2、E2分别是D1B、E1C的中点,∴D2E2=(+a)=a=a,∵D3、E3分别是D2B、E2C的中点,则D3E3=(a+a)=a,…根据以上可得:若Dn、En分别是D n﹣1B、E n﹣1C的中点,则DnEn=a,即D n E n的长是a.18.解答:解:根据旋转的性质可知:AC=AC′,∠AC′B′=∠C=60°,∵旋转角是60°,即∠C′AC=60°,∴△ACC′为等边三角形,∴BC′=CC′=AC,∴∠B=∠C′AB=30°,∴∠BDC′=∠C′AB+∠AC′B′=90°,即B′C′⊥AB,∴BC′=2C′D,∴BC=B′C′=4C′D,∴C′D:DB′=1:3.19.解答:解:根据题意得:AD=1,AB=3,AC==6,∵∠A=∠A,∴若△ADE∽△ABC时,,即:,解得:AE=2,若△ADE∽△ACB时,,即:,解得:AE=,∴当AE=2或时,以点A、D、E为顶点的三角形与△ABC相似.故答案为:2或.20.解答:解:∵在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF,∵EF=x,MO=3,PN=4,∴OE=x﹣3,PF=x﹣4,∴(x﹣3):4=3:(x﹣4),∴(x﹣3)(x﹣4)=12,即x2﹣4x﹣3x+12=12,∴x=0(不符合题意,舍去),x=7.21解答:解:∵DE=2AE,BF=2FC,∴BF=2AE,ED=2CF,即有△AHE∽△FHB,△CFG∽△EGD,则=,同理=∴S△BFH=S△ABF=×××S▱ABCD,S△CFG=S△CFD=×S▱ABCD,故S四边形EHFG=S△BCE﹣S△BFH﹣S△CFG=S▱ABCD﹣S▱ABCD S▱ABCD=S▱ABCD.故答案为:22.解答:解:∵△ABC是边长为1的等边三角形,∴△ABC的高=AB•sinA=1×=,∵DE、EF是△ABC的中位线,∴AF=,∴S1=××=;同理可得,S2=×;…∴S n=×()n﹣1;∴S2013=×()2012=.故答案为:.解答:1.解答:答:BF是FG,EF的比例中项.证明:∵BE∥AC,∴∠1=∠E,∵∠1=∠2,∴∠2=∠E,∴△BFG∽△EFB,∴=,即BF2=FG•EF,2解答:(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠G,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又∵F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)3.解答:证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°.∴∠BDE=∠CED,∵∠EDF=∠ABE,∴△DEF∽△BDE;(2)由△DEF∽△BDE,得.∴DE2=DB•EF,由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴,∴DE2=DG•DF,∴DG•DF=DB•EF.4.解答:(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∴,∵DF=DC,∴,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.5.解答:解:图中的相似三角形有:△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM (3分)以下证明△AMF∽△BGM.∵∠AFM=∠DME+∠E(外角定理),∠DME=∠A=∠B(已知),∴∠AFM=∠DME+∠E=∠A+∠E=∠BMG,∠A=∠B,∴△AMF∽△BGM.(7分)6.解答:解:CP和CB是对应边时,△CPQ∽△CBA,所以,=,即=,解得t=4.8;CP和CA是对应边时,△CPQ∽△CAB,所以,=,即=,解得t=.综上所述,当t=4.8秒或秒时,△CPQ与△CBA相似.7.解答:解:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m,即树高5.5m.8.解答:解:∵PE把梯形ABCD分成两个相似的小梯形,∴梯形ADEP∽梯形PECB,∴,∵AD=2,BC=,∴PE=3,∴相似比为:,∴AP=AB.9.解答:证明:设AB=2,∵P1是AB的黄金分割点(AP1>BP1),∴AP1=×2=﹣1,∴P1B=2﹣(﹣1)=3﹣,∵点O是AB的中点,∴OB=1,∴OP1=1﹣(3﹣)=﹣2,∵P2是P1关于点O的对称点,∴P1P2=2(﹣2)=2﹣4,∴P2B=2﹣4+3﹣=﹣1,∵P1B2=(3﹣)2=14﹣6,P2B•P1P2=(﹣1)(2﹣4)=14﹣6,∴P1B2=P2B•P1P2,∴P1B是P2B和P1P2的比例中项.10.解答:证明:∵DE∥BC,EF∥AB∴四边形DBFE是平行四边形,∴BD=EF,∵相似三角形的面积比等于对应边的平方比,∴,即=1∴.11.解答:解:(1)在Rt△ABC中,由AB=1,BC=,得AC==,∵以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E∴BC=CD,AE=AD,∴AE=AC﹣CD=;(2)∠EAG=36°,理由如下:∵FA=FE=AB=1,AE=,∴=,∴△FAE是黄金三角形,∴∠F=36°,∠AEF=72°,∵AE=AG,∴∠EAG=∠F=36°.12.解答:解:∵当x=0时,y=1,当y=0时,x=﹣2,∴OA=2,OB=1,∵∠AOB=∠AOP=90°,∴当OA:OB=OP:OA时,△AOP与△AOB相似,∴2:1=OP:2,解得OP=4,故有2个这样的P点为:(0,﹣4)或(0,4),AP==2.若△AOP≌△AOB,则AP=.解答:解:(1)∵AB=5,BC=3,AC=4,∴BC2+AC2=AB2,∴∠C=90°,设AB边上的高为h,则×3×4=×5h,∴h=,∵PQ∥AB,∴△CQP∽△CBA,∴====,∵AB=5,BC=3,AC=4,∴CQ=,CP=1,PQ=,∴△CPQ的周长CQ+CP+PQ=+1+=3;(2)∵△CPQ的周长与四边形PABQ的周长相等,∴CP+CQ+PQ=BQ+PQ+PA+AB=(AB+BC+AC)=6,∵AB=5,BC=3,AC=4,∴CP+CQ=3﹣CQ+4﹣CP+5,2CQ+2CP=12,CQ+CP=6,∵PQ∥AB,∴△PQC∽△ABC.∴=,即=,解得:CP=.解答:解:(1)A;(2分)(2)①相似比②相似比的平方③相似比的立方;(每空(2分),共6分)(3)由题意知他的体积比为;又因为体重之比等于体积比,若设初三时的体重为xkg,则有=解得x==60.75.答:初三时的体重为60.75kg.(2分)15.解答:解:(1)当点P在AC上时,∵AM=t,∴PM=AM•tan60°=t.∴y=t•t=t2(0≤t≤1).当点P在BC上时,PM=BM•tan30°=(4﹣t).y=t•(4﹣t)=﹣t2+t(1≤t≤3).(2)∵AC=2,∴AB=4.∴BN=AB﹣AM﹣MN=4﹣t﹣1=3﹣t.∴QN=BN•tan30°=(3﹣t).由条件知,若四边形MNQP为矩形,需PM=QN,即t=(3﹣t),∴t=.∴当t=s时,四边形MNQP为矩形.(3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB,∴△PQC∽△ABC.除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=.∵=cos60°=,∴AP=2AM=2t.∴CP=2﹣2t.∵=cos30°=,∴BQ=(3﹣t).又∵BC=2,∴CQ=2.∴,.∴当s或s时,以C,P,Q为顶点的三角形与△ABC相似.解答:解:(1)如图:割线CD就是所求的线段.理由:∵∠B=∠B,∠CDB=∠ACB=90°,∴△BCD∽△ACB.(2)①△DEF经N阶分割所得的小三角形的个数为,∴S n=.当n=5时,S5=≈9.77,当n=6时,S6=≈2.44,当n=7时,S7=≈0.61,∴当n=6时,2<S6<3.②S n2=S n﹣1×S n+1.17.解答:解:设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.证明如下:显然,S1=,S2=,S3=∴S2+S3==S1,即S1=S2+S3.(3)当所作的三个三角形相似时,S1=S2+S3.证明如下:∵所作三个三角形相似∴∴=1∴S1=S2+S3;(4)分别以直角三角形ABC三边为一边向外作相似图形,其面积分别用S1、S2、S3表示,则S1=S2+S3.解答:解:(1)∵FD∥BC∴△ADF∽△ABC.∴=.∴=.∴FD=2.1(cm).答:小视力表中相应“E”的长是2.1cm;(2)解:作CD⊥MM′,垂足为D,并延长交A′B′于E,∵AB∥MM′∥A′B′,∴CE⊥A′B′,∴△CMM′∽△CA′B′,∴=,又∵CD=CE﹣DE=5﹣3=2,CE=5,A′B′=AB=0.8,∴=,∴MM′=0.32(米),∴镜长至少为0.32米.19.解答:解:∵AC=12,BC=5,∴AB=13,如图1所示:设DE=x,∵四边形ADEF是菱形,∴DE∥AB,∴△CDE∽△CAB,∴=,即=,解得x=cm;如图2所示,同上可知△CEF∽△CAB,设EF=x,∴=,解得x=cm;如图3所示,同理△AEF∽△ABC,∴=,即=,解得x=cm.故所作菱形的边长为:cm、cm、cm.。
相似三角形典型例题精选
相似三角形的判定与性质综合运用经典题型考点一:相似三角形的判定与性质:例1、如图,△PCD 是等边三角形,A 、C 、D 、B 在同一直线上,且∠APB=120°. 求证:⑴△PAC ∽△BPD ;⑵ CD 2 =AC ·BD.例2、如图,在等腰△ABC 中, ∠BAC=90°,AB=AC=1,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE=45°(1)求证:△ABD ∽△DCE ;(2)设BD=x ,AE=y ,求y 关于x 函数关系式及自变量x 值X 围,并求出当x 为何值时AE 取得最小值?(3)在AC 上是否存在点E ,使得△ADE 为等腰三角形?若存在,求AE 的长;若不存在,请说明理由?例3、如图所示,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B :1)求证:△ADF ∽△DEC ;2)若AB=4,33 AD ,AE=3,求AF 的长。
A BC DF考点二:射影定理:例4、如图,在Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=4cm,AD=8cm,求AC 、BC 及BD 的长。
例5、如图,已知正方形ABCD ,E 是AB 的中点,F 是AD 上的一点,且AF=14AD ,EG ⊥CF 于点G ,(1)求证:△AEF ∽△BCE ; (2)试说明:EG 2=CG ·FG.例6、已知:如图所示的一X 矩形纸片ABCD (AD>AB ),将纸片折叠一次,使点A 与点C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连结AF 和CE .(1)求证:四边形AFCE 是菱形;(2)若AE=10cm ,△ABF 的面积为24cm 2,求△ABF 的周长;(3)在线段AC 上是否存在一点P ,使得2AE 2=AC ·AP ?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.A B C D EFG考点三:相似之共线线段的比例问题:例7、已知如图,P 为平行四边形ABCD 的对角线AC 上一点,过P 的直线与AD 、BC 、CD 的延长线、AB 的延长线分别相交于点E 、F 、G 、H. 求证:PG PH PF PE例8、如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于点E ,交BA 的延长线于点F .(1)求证:PC 2=PE •PF ;(2)若菱形边长为8,PE=2,EF=6,求FB 的长.例9、如图,CD 是Rt △ABC 斜边上的高,E 为AC 的中点,ED 交CB 的延长线于F . 求证:BD •CF=CD •DF .例10、如图:已知在等边三角形ABC 中,点D 、E 分别是AB 、BC 延长线上的点,且BD=CE ,直线CD 与AE 相交于点F .(1)求证:DC=AE ;(2)求证:AD 2=DC •DF .例11、如图,E 是矩形ABCD 的边BC 上一点,EF ⊥AE ,EF 分别交AC ,CD 于点M ,F ,BG⊥AC,垂足为G,BG交AE于点H.(1)找出与△ABH相似的三角形,并证明;(2)若E是BC中点,BC=2AB,AB=2,求EM的长.例12、如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:(1)AE=CG;(2)AN•DN=•MN.例13、如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC 的延长线交于点E.求证:(1)△AED∽△CBM;(2)AE•CM=AC•CD.例14、如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED 的延长线与CB的延长线交于点F.(1)求证:FD2=FB•FC;(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.例15、如图,四边形ABCD、CDEF、EFGH都是正方形.(1)⊿ACF与⊿ACG相似吗?说说你的理由.(2)求∠1+∠2的度数.考点四:相似三角形的实际应用:例16、如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上.(1)若这个矩形是正方形,那么边长是多少?(2)若这个矩形的长PQ是宽PN的2倍,则边长是多少?例17、已知左,右并排的两棵大树的高分别是AB=8m和CD=12m,两树的根部的距离BD=5m。
相似三角形总结(含答案)
相似三角形总结一、如何证明三角形相似例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。
例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线,求证:△ABC ∽△BCD例3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD ,∠BCE=∠BAD求证:△DBE ∽△ABC例4、矩形ABCD 中,BC=3AB ,E 、F ,是BC 边的三等分点,连结AE 、AF 、AC ,问图中是否存在非全等的相似三角形?请证明你的结论。
二、如何应用相似三角形证明比例式和乘积式例5、△ABC 中,在AC 上截取AD ,在CB 延长线上截取BE ,使AD=BE ,求证:DF ∙AC=BC ∙FE例6:已知:如图,在△ABC 中,∠BAC=900,M 是BC 的中点,DM ⊥BC 于点E ,交BA 的延长线于点D 。
求证:(1)MA 2=MD ∙ME ;(2)MD MEADAE =22 例7:如图△ABC 中,AD 为中线,CF 为任一直线,CF 交AD 于E ,交AB 于F ,求证:AE :ED=2AF :FB 。
三、如何用相似三角形证明两角相等、两线平行和线段相等。
例8:已知:如图E 、F 分别是正方形ABCD 的边AB 和AD 上的点,且31==AD AF AB EB 。
求证:∠AEF=∠FBD例9、在平行四边形ABCD 内,AR 、BR 、CP 、DP 各为四角的平分线, 求证:SQ ∥AB ,RP ∥BC例10、已知A 、C 、E 和B 、F 、D 分别是∠O 的两边上的点,且AB ∥ED ,BC ∥FE ,求证:AF ∥CD例11、直角三角形ABC 中,∠ACB=90°,BCDE 是正方形,AE 交BC 于F ,FG ∥AC 交AB 于G ,求证:FC=FG例12、Rt △ABC 锐角C 的平分线交AB 于E ,交斜边上的高AD 于O ,过O 引BC 的平行线交AB 于F ,求证:AE=BFABCDEFGAB CD E M 12A B C DE FG 1234ABC D AB C D E FK A B CD E FABCDS PRQOAB CD EFA BCDEF O 123ABCDFE相似三角形总结(答案)例1分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。
初中相似三角形经典习题(附答案)
一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:相似三角形的判定;平行线的性质。
分析:根据平行线的性质可知∠AED=∠C,∠A=∠FEC,根据相似三角形的判定定理可知△ADE∽△EFC.解答:证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:本题考查的是平行线的性质及相似三角形的判定定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.考点:相似三角形的判定;三角形中位线定理;梯形。
菁优网版权所有专题:几何综合题。
分析:(1)利用平行线的性质可证明△CDF∽△BGF.(2)根据点F是BC的中点这一条件,可得△CDF≌△BGF,则CD=BG,只要求出BG的长即可解题.解答:(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)点评:本题主要考查了相似三角形的判定定理及性质,全等三角形的判定及线段的等量代换,比较复杂.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.分析:由FD∥AB,FE∥AC,可知∠B=∠FDE,∠C=∠FED,根据三角形相似的判定定理可知:△ABC∽△FDE.解答:证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.点评:本题很简单,考查的是相似三角形的判定定理:(1)如果两个三角形的两个角对应相等,那么这两个三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,则这两个三角形相似.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.解答:证明:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)点评:考查相似三角形的判定定理,关键是找准对应的角.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.考点:相似三角形的判定;全等三角形的判定;等腰三角形的判定;旋转的性质。
(完整word版)相似三角形精选好题-证明题25题
相似三角形精选好题解答题学校:___________姓名:___________班级:___________考号:___________一、解答题(本大题共25小题,共200.0分)1.如图,在中,,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿着CA以每秒3cm的速度向A点运动,设运动时间为x秒.为何值时,;是否存在某一时刻,使∽?若存在,求出此时AP的长;若不存在,请说明理由;当时,求的值.2.如图,中,于是BC中点,连接AD与BE交于点F,求证:∽.3.如图,已知四边形ABCD中,的延长线与AD的延长线交于点E.若,求BC的长;若,求AD的长.注意:本题中的计算过程和结果均保留根号4.如图,在中,点D在BC边上,点E在AD边上,.求证:∽;若,求AE的长.5.如图,在四边形ABCD中,,交BC于点F,连接AF.求CF的长;若,求AB的长.6.如图,在锐角三角形ABC中,点分别在边上,于点于点.求证:∽;若,求的值.7.如图,在中,,点D是BC边的中点,.求AD和AB的长;求的值.8.从三角形不是等腰三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.如图1,在中,CD为角平分线,,求证:CD为的完美分割线.在中,是的完美分割线,且为等腰三角形,求的度数.如图中,是的完美分割线,且是以CD为底边的等腰三角形,求完美分割线CD的长.9.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为,测得大楼顶端A的仰角为点在同一水平直线上,已知,求障碍物两点间的距离结果精确到参考数据:10.如图是将一正方体货物沿坡面AB装进汽车货厢的平面示意图已知长方体货厢的高度BC为米,,现把图中的货物继续往前平移,当货物顶点D与C重合时,仍可把货物放平装进货厢,求BD 的长结果保留根号11.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为沿坡面AB向上走到B处测得广告牌顶部C的仰角为,已知山坡AB的坡度:米,米:是指坡面的铅直高度BH与水平宽度AH的比求点B距水平面AE的高度BH;求广告牌CD的高度.测角器的高度忽略不计,结果精确到米参考数据:12.如图,在中,,动点P从点C出发,沿CA方向运动;动点Q同时从点B出发,沿BC方向运动,如果点P的运动速度为点的运动速度为,那么运动几秒时,和相似?13.如图所示,,点P从点B出发,沿BC向点C以的速度移动,点Q从点C出发沿CA向点A以的速度移动,如果P、Q分别从B、C同时出发,过多少时,以C、P、Q为顶点的三角形恰与相似?14.如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为,顶部的仰角为,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15m,求实验楼的垂直高度即CD长精确到参考值:.15.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为,再向主教学楼的方向前进24米,到达点E处三点在同一直线上,又测得主教学楼顶端A的仰角为,已知测角器CD的高度为米,请计算主教学楼AB的高度,结果精确到米16.已知:如图,是等边三角形,点D、E分别在边BC、AC上,.求证:∽;如果,求DC的长.17.如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高结果保留根号18.钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛设N、M为该岛的东西两端点最近距离为15海里即海里,在A点测得岛屿的西端点M在点A的东北方向,航行4海里后到达B点,测得岛屿的东端点N在点B的北偏东方向其中N、M、C在同一条直线上,求钓鱼岛东西两端点MN之间的距离精确到海里参考数据:.19.探究证明:如图1,矩形ABCD中,点M、N分别在边上,,求证:.如图2,矩形ABCD中,点M在边BC上,分别交于点E、点F,试猜想与有什么数量关系?并证明你的猜想.拓展应用:综合、的结论解决以下问题:如图3,四边形ABCD中,,点分别在边上,求的值.20.如图,在某次数学活动课中,小明为了测量校园内旗杆AB的高度,站在教学楼CD上的E处测得旗杆底端B的仰角的度数为,测得旗杆顶端A的仰角的度数为,旗杆底部B处与教学楼底部C处的水平距离BC为9m,求旗杆的高度结果精确到.【参考数据:】21.已知,如图,在四边形ABCD中,,延长AD、BC相交于点求证:∽;.22.如图,在中,点D为BC边的任意一点,以点D为顶点的的两边分别与边交于点E、F,且与互补.如图1,若为BC的中点时,则线段DE与DF有何数量关系?请直接写出结论;如图2,若为BC的中点时,那么中的结论是否还成立?若成立,请给出证明;若不成立,请写出DE与DF的关系并说明理由;如图3,若,且,直接写出______ .23.放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为已知点在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?风筝线均为线段,,最后结果精确到1米.24.禁渔期间,我渔政船在A处发现正北方向B处有一艘可以船只,测得A、B两处距离为200海里,可疑船只正沿南偏东方向航行,我渔政船迅速沿北偏东方向前去拦截,经历4小时刚好在C处将可疑船只拦截求该可疑船只航行的平均速度结果保留根号.25.某市开展一项自行车旅游活动,线路需经A、B、C、D四地,如图,其中A、B、C三地在同一直线上,D地在A地北偏东方向,在C地北偏西方向,C地在A 地北偏东方向且,问沿上述线路从A地到D地的路程大约是多少?最后结果保留整数,参考数据:答案和解析【答案】1。
相似三角形证明专题练习
相似的判定证明题1、如图所示,在⊙O 中,CD 过圆心O ,且CD ⊥AB 于D ,弦CF 交AB 于E .求证:CB 2=CF ·CE .2、如图,已知⊙O 的弦CD 垂直于直径AB ,点E 在CD 上,且EC = EB .(1)求证:△CEB ∽△CBD ;(2)求证:CB 2=CE ·CD(3)若CE = 3,CB=5 ,求DE 的长.3、(绥化)如图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD ,AC 交BD 于点E ,CE=4,CD=6,(1)求证:CD 2=CE •CA (2)求:AE 的长为多少?4.已知:如图19,在Rt △ABC 中,∠ABC =90°,以AB 上的 点O 为圆心,OB 的长为半径的圆与AB 交于点E ,与AC 切于点D . (1)求证:BC =CD ; (2)求证:∠ADE =∠ABD ;(3)设AD =2,AE =1,求⊙O 直径的长.5.已知:如图,AB 是半圆O 的直径,CD ⊥AB 于D 点。
(1)求证:CD 2=AD •BD(2)求证:CB 2=BD •BA6、(黔东南州)如图,⊙O 是△ABC 的外接圆,圆心O 在AB 上,过点B 作⊙O 的切线交AC 的延长线于点D .(1)求证:CB 2=AC •CD(2)若AC=8,BC=6,求△BDC 的面积.7. (四川雅安)如图,在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E .(1)求证:DE 是⊙O 的切线;(2)求证:CD 2=CE •CA8.(2016•呼和浩特)如图,已知AD 是△ABC 的外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA 交△ABC 的外接圆于点F ,连接FB ,FC .(1)求证:∠FBC=∠FCB ;(2)求证:FB 2=FA ·FD(3)若AB 是△ABC 外接圆的直径,FA=2,AD=4,求CD 的长.•ABC DEO。
三角形相似证明基础50题
相似三角形经典证明50题1、已知:如图,DE∥BC,AF∶FB=AG∶GE。
求证:ΔAFG∽ΔAED。
2、已知:如图,ΔABC中,CE⊥AB,BF⊥AC.求证:ΔAEF∽ΔACB.3、如图,∠ADC=∠ACB=900,∠1=∠B,AC=5,AB=6,求AD的长4、已知,如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点,△ADQ与△QCP是否相似?为什么?5、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。
E AA B P D C 6、如图,AD 是Rt △ABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC E F AF AD BEBD于、。
则吗?说说你的理由。
7、如图,在⊿ABC (AB >AC )的边AB 上取一点,在边AC 上取一点E ,使AD=AE ,直线DE和BC 的延长线交于点P ,求证:BP :CP=BD :CE8、已知:如图,在△ABC 中,AB =AC ,AD ⊥AB ,AD 交BC 于点E ,DC ⊥BC ,与AD 交于点D .求证:AC 2=AE ·AD .9、已知:如图,在△ABC 中,∠CAB =90°,AD ⊥BC 于点D ,点E 是AC 边的中点,ED 的延长线与AB 的延长线交于点F .求证:△AFD ∽△DFB .10、已知:如图,矩形ABCD 的对角线AC 、BD 相交于O ,OF ⊥AC 于点O ,交AB 于点E ,交CB 的延长线于点F ,求证:AO 2=OE · OF .B C DA E BC D A F EOB C DAE F11、己知:如图,AB∥CD,AF=FB,CE=EB. 求证:GC2=GF·GD.12、已知:如图,ΔABC中,∠ACB=900,F为AB的中点,EF⊥AB.求证:ΔCDF∽ΔECF.13、已知:如图,DE∥BC,AD2=AF·AB。
经典相似三角形练习的题目(附参考答案详解)
相似三角形一.解答题〔共30小题〕1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F 在BC 上,连DF 与AB 的延长线交于点G .〔1〕求证:△CDF∽△BGF;〔2〕当点F是BC的中点时,过F作EF∥CD交AD于点E,假如AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D 在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.〔1〕求证:①BE=CD;②△AMN是等腰三角形;〔2〕在图①的根底上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出〔1〕中的两个结论是否仍然成立;〔3〕在〔2〕的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.〔1〕填空:∠ABC= _________ °,BC= _________ ;〔2〕判断△ABC与△DEC是否相似,并证明你的结论.8.如图,矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:〔1〕经过多少时间,△AMN的面积等于矩形ABCD面积的?〔2〕是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?假如存在,求t 的值;假如不存在,请说明理由.9.如图,在梯形ABCD中,假如AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.〔1〕列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;〔注意:全等看成相似的特例〕〔2〕请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E ,连接AE .〔1〕写出图中所有相等的线段,并加以证明;〔2〕图中有无相似三角形?假如有,请写出一对;假如没有,请说明理由;〔3〕求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.〔1〕求四边形AQMP的周长;〔2〕写出图中的两对相似三角形〔不需证明〕;〔3〕M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM ∽△MCP.13.如图,梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.〔1〕求梯形ABCD的面积S;〔2〕动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC 于点E.假如P、Q两点同时出发,当其中一点到达目的地时整个运动随之完毕,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?假如存在,请求出t的值;假如不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?假如存在,请求出所有符合条件的t的值;假如不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ 为一腰的等腰三角形?假如存在,请求出所有符合条件的t的值;假如不存在,请说明理由.14.矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.假如P 自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s 的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N 〔不含A、B〕,使得△CDM与△MAN相似?假如能,请给出证明,假如不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q 从B 出发,沿BC 方向以2cm/s 的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.假如Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如下列图,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.〔1〕如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△E;〔2〕如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除〔1〕中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t〔秒〕表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯〔P点〕距地面8米,身高1.6米的小明从距路灯的底部〔O点〕20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度〔这棵树底部可以到达,顶部不易到达〕,他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.〔1〕所需的测量工具是:_________ ;〔2〕请在如下图中画出测量示意图;〔3〕设树高AB的长度为x,请用所测数据〔用小写字母表示〕求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进展了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯〔灯罩视为球体,灯杆为圆柱体其粗细忽略不计〕的高度为200cm,影长为156cm.任务要求:〔1〕请根据甲、乙两组得到的信息计算出学校旗杆的高度;〔2〕如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.〔友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602〕25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区〔如下列图〕,亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.〔1〕假如李华距灯柱OP的水平距离OA=a,求他影子AC的长;〔2〕假如李华在两路灯之间行走,如此他前后的两个影子的长度之和〔DA+AC 〕是否是定值请说明理由;〔3〕假如李华在点A朝着影子〔如图箭头〕的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,如此不难证明S1=S2+S3.〔1〕如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;〔不必证明〕〔2〕如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;〔3〕假如分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与〔2〕一样的关系,所作三角形应满足什么条件证明你的结论;〔4〕类比〔1〕,〔2〕,〔3〕的结论,请你总结出一个更具一般意义的结论.28.:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.:如图Rt△ABC∽Rt△BDC,假如AB=3,AC=4.〔1〕求BD、CD的长;〔2〕过B作BE⊥DC于E,求BE的长.30.〔1〕,且3x+4z﹣2y=40,求x,y,z的值;〔2〕:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.一.解答题〔共30小题〕1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.解答:证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:此题考查的是平行线的性质与相似三角形的判定定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.〔1〕求证:△CDF∽△BGF;〔2〕当点F是BC的中点时,过F作EF∥CD交AD于点E,假如AB=6cm,EF=4cm,求CD的长.解答:〔1〕证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,〔2分〕∴△CDF∽△BGF.〔3分〕〔2〕解:由〔1〕△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,〔6分〕∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.〔8分〕3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.解答:证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.4.如图,E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.解答:证明:∵矩形ABCD中,AB∥CD,∠D=90°,〔2分〕∴∠BAF=∠AED.〔4分〕∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.〔5分〕∴△ABF∽△EAD.〔6分〕点评:考查相似三角形的判定定理,关键是找准对应的角.5.:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D 在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.〔1〕求证:①BE=CD;②△AMN是等腰三角形;〔2〕在图①的根底上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出〔1〕中的两个结论是否仍然成立;〔3〕在〔2〕的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.解答:〔1〕证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,CD的中点,∴BM=.又∵AB=AC,∴△ABM≌△A.∴AM=AN,即△AMN为等腰三角形.〔2〕解:〔1〕中的两个结论仍然成立.〔3〕证明:在图②中正确画出线段PD,由〔1〕同理可证△ABM≌△A,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.∴△PBD和△AMN都为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.分析:根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.解答:解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.〔3分〕如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.〔6分〕∴△AEF∽△BEC.〔7分〕7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.〔1〕填空:∠ABC= 135°°,BC=;〔2〕判断△ABC与△DEC是否相似,并证明你的结论.解答:解:〔1〕∠ABC=135°,BC=;〔2〕相似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.8.如图,矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:〔1〕经过多少时间,△AMN的面积等于矩形ABCD面积的?〔2〕是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?假如存在,求t 的值;假如不存在,请说明理由解:〔1〕设经过x秒后,△AMN的面积等于矩形ABCD面积的,如此有:〔6﹣2x〕x=×3×6,即x2﹣3x+2=0,〔2分〕解方程,得x1=1,x2=2,〔3分〕经检验,可知x1=1,x2=2符合题意,所以经过1秒或2秒后,△AMN的面积等于矩形ABCD面积的.〔4分〕〔2〕假设经过t秒时,以A,M,N为顶点的三角形与△ACD相似,由矩形ABCD,可得∠CDA=∠MAN=90°,因此有或〔5分〕即①,或②〔6分〕解①,得t=;解②,得t=〔7分〕经检验,t=或t=都符合题意,所以动点M,N同时出发后,经过秒或秒时,以A,M,N为顶点的三角形与△ACD相似.〔8分〕9.如图,在梯形ABCD中,假如AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.〔1〕列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;〔注意:全等看成相似的特例〕〔2〕请你任选一组相似三角形,并给出证明.解答:解:〔1〕任选两个三角形的所有可能情况如下六种情况:①②,①③,①④,②③,②④,③④〔2分〕其中有两组〔①③,②④〕是相似的.∴选取到的二个三角形是相似三角形的概率是P=〔4分〕证明:〔2〕选择①、③证明.在△AOB与△COD中,∵AB∥CD,∴∠CDB=∠DBA,∠DCA=∠CAB,∴△AOB∽△COD〔8分〕选择②、④证明.∵四边形ABCD是等腰梯形,∴∠DAB=∠CBA,∴在△DAB与△CBA中有AD=BC,∠DAB=∠CAB,AB=AB,∴△DAB≌△CBA,〔6分〕∴∠ADO=∠BCO.又∠DOA=∠COB,∴△DOA∽△COB〔8分〕.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性一样,其中事件A出现m种结果,那么事件A的概率P〔A〕=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE ⊥BD于E,连接AE.〔1〕写出图中所有相等的线段,并加以证明;〔2〕图中有无相似三角形?假如有,请写出一对;假如没有,请说明理由;〔3〕求△BEC与△BEA的面积之比.解答:解:〔1〕AD=DE,AE=CE.∵CE⊥BD,∠BDC=60°,∴在Rt△CED中,∠ECD=30°.∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.〔2〕图中有三角形相似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;〔3〕作AF⊥BD的延长线于F,设AD=DE=x,在Rt△CED中,可得CE=,故AE=.∠ECD=30°.在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.点评:此题主要考查了直角三角形的性质,相似三角形的判定与三角形面积的求法等,X围较广.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.〔1〕求四边形AQMP的周长;〔2〕写出图中的两对相似三角形〔不需证明〕;〔3〕M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.解答:解:〔1〕∵AB∥MP,QM∥AC,∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.〔2〕∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;〔3〕当点M中BC的中点时,四边形APMQ是菱形,∵点M是BC的中点,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由〔1〕知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.12.:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM ∽△MCP.解答:证明:∵正方形ABCD,M为CD中点,∴CM=MD=AD.∵BP=3PC,∴PC=BC=AD=CM.∴.∵∠PCM=∠ADM=90°,∴△MCP∽△ADM.13.如图,梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.〔1〕求梯形ABCD的面积S;〔2〕动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC 于点E.假如P、Q两点同时出发,当其中一点到达目的地时整个运动随之完毕,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?假如存在,请求出t的值;假如不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?假如存在,请求出所有符合条件的t的值;假如不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ 为一腰的等腰三角形?假如存在,请求出所有符合条件的t的值;假如不存在,请说明理由.解答:解:〔1〕过D作DH∥AB交BC于H点,∵AD∥BH,DH∥AB,∴四边形ABHD是平行四边形.∴DH=AB=8;BH=AD=2.∴CH=8﹣2=6.∵CD=10,∴DH2+CH2=CD2∴∠DHC=90°.∠B=∠DHC=90°.∴梯形ABCD是直角梯形.∴S ABCD=〔AD+BC〕AB=×〔2+8〕×8=40.〔2〕①∵BP=CQ=t,∴AP=8﹣t,DQ=10﹣t,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD周长平分.②第一种情况:0<t≤8假如△PAD∽△QEC如此∠ADP=∠C∴tan∠ADP=tan∠C==∴=,∴t=假如△PAD∽△CEQ如此∠APD=∠C ∴tan∠APD=tan∠C==,∴=∴t=第二种情况:8<t≤10,P、A、D三点不能组成三角形;第三种情况:10<t≤12△ADP为钝角三角形与Rt△CQE不相似;∴t=或t=时,△PAD与△CQE相似.③第一种情况:当0≤t≤8时.过Q点作QE⊥BC,QH⊥AB,垂足为E、H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8〔不合题意舍去〕∴t=第二种情况:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒成立.第三种情况:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒成立.综上所述,t=或8≤t<10或10<t≤12时,以DQ为腰的等腰△DPQ成立.14.矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.假如P 自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?解答:解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,〔1〕当∠1=∠2时,有:,即;〔2〕当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD.15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s 的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.解答:设经过秒后t秒后,△PBQ与△ABC相似,如此有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即〔10﹣2t〕:10=4t:20,解得t=2.5〔s〕〔6分〕当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=〔10﹣2t〕:20,解得t=1.所以,经过2.5s或1s时,△PBQ与△ABC相似〔10分〕.解法二:设ts后,△PBQ与△ABC相似,如此有,AP=2t,BQ=4t,BP=10﹣2t 分两种情况:〔1〕当BP与AB对应时,有=,即=〔2〕当BP与BC对应时,有=,即=,解得t=1s所以经过1s或2.5s时,以P、B、Q三点为顶点的三角形与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解答:解:∵AC=,AD=2,∴CD==.要使这两个直角三角形相似,有两种情况:1)当Rt△ABC∽Rt△ACD时,2)有=,∴AB==3;3)当Rt△ACB∽Rt△CDA时,4)有=,∴AB==3.故当AB的长为3或3时,这两个直角三角形相似.17.,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N 〔不含A、B〕,使得△CDM与△MAN相似?假如能,请给出证明,假如不能,请说明理由.解答:证明:分两种情况讨论:①假如△CDM∽△MAN,如此=.∵边长为a,M是AD的中点,∴AN=a.②假如△CDM∽△NAM,如此.∵边长为a,M是AD的中点,∴AN=a,即N点与B重合,不合题意.所以,能在边AB上找一点N〔不含A、B〕,使得△CDM与△MAN相似.当AN=a 时,N点的位置满足条件.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s 的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.假如Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?解答:解:设经过x秒后,两三角形相似,如此CQ=〔8﹣2x〕cm,CP=xcm,〔1分〕∵∠C=∠C=90°,∴当或时,两三角形相似.〔3分〕〔1〕当时,,∴x=;〔4分〕〔2〕当时,,∴x=.〔5分〕所以,经过秒或秒后,两三角形相似.〔6分〕点评:此题综合考查了路程问题,相似三角形的性质与一元一次方程的解法.19.如下列图,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.解答:解:〔1〕假如点A,P,D分别与点B,C,P对应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.〔2〕假如点A,P,D分别与点B,P,C对应,即△APD∽△BPC.∴=,∴=,∴AP=.检验:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.因此,点P的位置有三处,即在线段AB距离点A的1、、6处.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.〔1〕如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△E;〔2〕如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除〔1〕中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.解答:证明:〔1〕∵△ABC是等腰直角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BEM=∠NEC,〔4分〕而∠MBE=∠E=45°,∴△BEM∽△E.〔6分〕〔2〕与〔1〕同理△BEM∽△E,∴.〔8分〕又∵BE=EC,∴,〔10分〕如此△E与△MEN中有,又∠E=∠MEN=45°,∴△E∽△MEN.〔12分〕21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t〔秒〕表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.解答:解:以点Q、A、P为顶点的三角形与△ABC相似,所以△ABC∽△PAQ或△ABC∽△QAP,①当△ABC∽△PAQ时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;③当△AQP∽△BAC时,=,即=,所以t=;④当△AQP∽△BCA时,=,即=,所以t=30〔舍去〕.故当t=6或t=时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯〔P点〕距地面8米,身高1.6米的小明从距路灯的底部〔O点〕20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?解答:解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度〔这棵树底部可以到达,顶部不易到达〕,他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.〔1〕所需的测量工具是:;〔2〕请在如下图中画出测量示意图;〔3〕设树高AB的长度为x,请用所测数据〔用小写字母表示〕求出x.解答:解:〔1〕皮尺,标杆;〔2〕测量示意图如下列图;〔3〕如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.〔7分〕24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进展了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯〔灯罩视为球体,灯杆为圆柱体,其粗细忽略不计〕的高度为200cm,影长为156cm.任务要求:〔1〕请根据甲、乙两组得到的信息计算出学校旗杆的高度;〔2〕如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.〔友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602〕解答:解:〔1〕由题意可知:∠BAC=∠EDF=90°,∠BCA=∠EFD.∴△ABC∽△DEF.∴,即,〔2分〕∴DE=1200〔cm〕.所以,学校旗杆的高度是12m.〔3分〕〔2〕解法一:与①类似得:,即,∴GN=208.〔4分〕在Rt△NGH中,根据勾股定理得:NH2=1562+2082=2602,∴NH=260.〔5分〕设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.〔6分〕如此∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN,∴〔7分〕,又ON=OK+KN=OK+〔GN﹣GK〕=r+8,∴,解得:r=12.∴景灯灯罩的半径是12cm.〔8分〕解法二:与①类似得:,即,∴GN=208.〔4分〕设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.〔5分〕如此∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN.∴,即,〔6分〕∴MN=r,又∵ON=OK+KN=OK+〔GN﹣GK〕=r+8.〔7分〕在Rt△OMN中,根据勾股定理得:r2+〔r〕2=〔r+8〕2即r2﹣9r﹣36=0,解得:r1=12,r2=﹣3〔不合题意,舍去〕,∴景灯灯罩的半径是12cm.〔8分〕25.〔2007•某某〕阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区〔如下列图〕,亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.解答:解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗口底边离地面的高为4m.点评:此题根本上难度不大,利用相似比即可求出窗口底边离地面的高.26.如图,李华晚上在路灯下散步.李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.〔1〕假如李华距灯柱OP的水平距离OA=a,求他影子AC的长;〔2〕假如李华在两路灯之间行走,如此他前后的两个影子的长度之和〔DA+AC〕是否是定值请说明理由;〔3〕假如李华在点A朝着影子〔如图箭头〕的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.解答:解:〔1〕由:AB∥OP,∴△ABC∽△OPC.∵,∵OP=l,AB=h,OA=a,∴,∴解得:.〔2〕∵AB∥OP,∴△ABC∽△OPC,∴,即,即.∴.同理可得:,∴=是定值.〔3〕根据题意设李华由A到A',身高为A'B',A'C'代表其影长〔如图〕.由〔1〕可知,即,∴,同理可得:,∴,由等比性质得:,当李华从A走到A'的时候,他的影子也从C移到C',因此速度与路程成正比∴,所以人影顶端在地面上移动的速度为.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,如此不难证明S1=S2+S3.〔1〕如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;〔不必证明〕〔2〕如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;〔3〕假如分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与〔2〕一样的关系,所作三角形应满足什么条件证明你的结论;〔4〕类比〔1〕,〔2〕,〔3〕的结论,请你总结出一个更具一般意义的结论.解:设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,如此c2=a2+b2〔1〕S1=S2+S3;〔2〕S1=S2+S3.证明如下:显然,S1=,S2=,S3=∴S2+S3==S1;〔3〕当所作的三个三角形相似时,S1=S2+S3.证明如下:∵所作三个三角形相似∴∴=1 ∴S1=S2+S3;〔4〕分别以直角三角形ABC三边为一边向外作相似图形,其面积分别用S1、S2、S3表示,如此S1=S2+S3.28.:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.解答:解:∵△ABC∽△ADE,∴AE:AC=AD:AB.∵AE:AC=〔AB+BD〕:AB,∴AE:9=〔15+5〕:15.∴AE=12.29.:如图Rt△ABC∽Rt△BDC,假如AB=3,AC=4.〔1〕求BD、CD的长;〔2〕过B作BE⊥DC于E,求BE的长.解答:解:〔1〕Rt△ABC中,根据勾股定理得:BC==5,∵Rt△ABC∽Rt△BDC,∴==,==,∴BD=,CD=;〔2〕在Rt△BDC中,S△BDC=BE•CD=BD•BC,∴BE===3.30.〔1〕,且3x+4z﹣2y=40,求x,y,z的值;〔2〕:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.解:〔1〕设=k,那么x=2k,y=3k,z=5k,由于3x+4z﹣2y=40,∴6k+20k﹣6k=40,∴k=2,∴x=4,y=6,z=10.〔2〕设一个三角形周长为Ccm,如此另一个三角形周长为〔C+560〕cm,如此,∴C=240,C+560=800,即它们的周长分别为240cm,800cm。
相似三角形证明题
相似三角形证明题1.如图:⊿ABC 中,D 是AB 上一点,AD =AC ,BC 边上的中线AE 交CD 于F ,求证:DF CF AC AB ::=2.四边形ABCD 中,AC 为AB 、AD 的比例中项,且AC 平分∠DAB ,求证:22CD BC DE BE =3.如图,已知菱形ABCD 中,在AD 上任取一点E ,连结CE 并延长与BA 的延长线交于点F ,过E 作EG ∥FB 交FD 于G ,求证:GF =AECA BB4.在Rt ⊿ABC 中,∠ACB =Rt ∠,AD 平分∠CAB ,CE ⊥AB 于E ,交AD 于F ,过F 作FG ∥AB 交CB 于G ,求证:CD =GB5.矩形ABCD 中,a AB =,b BC =,M 是BC 的中点,DE ⊥AM ,E 是垂足,求证:2242b a ab DE +=C6.如图,过平行四边形ABCD 的顶点A 的直线交BD 于P ,交CD 于Q ,并交BC 的延长线于R ,求证:22PB PD PR PQ 7.已知,如图,在平行四边形ABCD 中,E 为AC 三分之一处,即AE =31AC ,DE 的延长线交AB 于F ,求证:AF =FB8.如图所示,在平行四边形ABCD 中,过点B 作BE ⊥CD ,垂足为E ,连结AE ,F 为AE 上一点,且∠BFE =∠C(1)求证:△ABF ∽△EAD ;(2)若AB =4,∠BAE =30°,求AE 的长;(3)在(1)(2)的条件下,若AD =3,求BF 长.(计算结果含根号).R9.如图,P 在线段MN 上,如果PM 2=PM ·PN ,,那么,P 是线段MN 的一个黄金分割点。
现有一等腰ΔABC (如图),AB=AC ,∠ABC=2∠A ,BD 是角平分线。
(1)求证:D 是AC 的黄金分割点。
(2)若AC=1,求AD 的长。
选择题;1.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A 、B 、C 内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A 、B 、C 内的三个数依次是()(A )0,-2,1(B )0,1,-2(C )1,0,-2(D )-2,0,12.如图是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是(A )25(B )66(C )91(D )1203.如图:在一块长为a ,宽为b 的长方形的草地上,修两条宽度为h 的小路,则下列结论中成立的是:()A.修路后,留下草地的面积是:bhah ab --B.))((2h b h a h ha hb ab --=+--C.))((2h b h a h ha hb ab --=---D.))((2h b h a h ha hb ab -+=---(1)(2)(3)a bh h。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9、如图, Rt△ AB′ C是′由 Rt△ ABC 绕点 A 顺时针旋转得到的,连接 CC′交斜边于点 E,CC′的延长线交 BB′于点 F. ( 1)证明: △ACE ∽△ FBE; ( 2)设∠ ABC=α ,∠ CAC′=β,试探索 α、β满足什么关系时, △ ACE 与 △ FBE 是全 等三角形,并说明理由.
相似三角形证明题
1、已知: Δ ABE中, D 在 AB 上, C在 AE 延长线上, CD与 BE相交于 P, AD· AB=AE· AC 求证: ΔPBD∽ ΔPCE
2、已知:在 Δ ABC中,∠ ACB=900, D 是 BC上一点 CE⊥ AD于 E,CF⊥ AB 于点 F 连结 EF
求证:∠ AEF=∠ B
A
E
F
B
C
B
P
E A
F
C P
8、如图①,将菱形纸片 AB ( E) CD( F)沿对角线 BD ( EF )剪开,得到 △ ABD 和 △ECF,固定 △ ABD ,并把 △ ABD 与 △ ECF 叠放在一起. ( 1)操作:如图②,将 △ ECF 的顶点 F 固定在 △ ABD 的 BD 边上的中点处, △ ECF 绕点 F 在 BD 边上方左右旋转,设旋转时 FC 交 BA 于点 H ( H 点不与 B 点重合),
4、如图,在 Rt△ ABC 中, CD 是斜边 AC 的延长线交于点 E。求证:
(1)△ AED ∽△ CBM ; ( 2) AE CM AC CD
AB 上的高,点
M 在 CD 上, DH ⊥ BM 且与
E C
F
MH
A
D
B
第 3 题图
5、已知,如图,在 Rt△ ABC 中,∠ ACB = 900, AD 平分∠ CAB 交 BC 于点 D ,过 点 C 作 CE⊥ AD ,垂足为 E, CE 的延长线交 AB 于点 F,过点 E 作 EG∥ BC 交 AB
于点 G, AE AD 16 , AB 4 5 ,求 EG 的长。
C
D E
A
FG B
第 4 题图
3、在 Rt⊿ ABC 中,∠ ACB = Rt ∠, AD 平分∠ CAB ,CE⊥AB 于 E,交 AD 于 F,过 F 作 FG∥ AB 交 CB 于 G,求证: CD = GB
B
6、 如图,△ ABC 是等边三角形, CE 是外角平分线,点 长与 CE 交于点 E.
( 1)求证:△ ABD ∽△ CED. ( 2)若 AB=6, AD = 2CD ,求 BE 的长.
D 在 AC 上,连结 BD 并延 A
G
E D
F
C
A
E D
B
F
C
7、等腰△ ABC , AB=AC= 8,∠ BAC=120°, P 为 BC 的中点,小慧拿着含 30°角的 透明三角板,使 30°角的顶点落在点 P,三角板绕 P 点旋转. ( 1)如图 a,当三角板的两边分别交 AB 、AC 于点 E、F 时.求证: △ BPE~△ CFP; ( 2)操作: 将三角板绕点 P 旋转到图 b 情形时, 三角板的两边分别交 BA 的延长线、 边 AC 于点 E、 F.
FE 交 DA 于点 G(G 点不与 D 点重合). 求证: BH?GD=BF 2 ( 2)操作:如图③, △ECF 的顶点 F 在 △ABD 的 BD 边上滑动( F 点不与 B 、D 点 重合),且 CF 始终经过点 A ,过点 A 作 AG ∥ CE,交 FE 于点 G,连接 DG . 探究: FD+DG=DB 请予证明.
10、如图,点 P 是菱形 ABCD 的对角线 BD 上一点,连接 CP 并延长,交 AD 于 E, 交 BA 的延长线于 F.
( 1)求证:∠ DCP= ∠ DAP ; ( 2)若 AB=2 , DP:PB=1 : 2,且 PA⊥ BF,求对角