队列操练中的数学趣题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学阅读材料4
队列操练中的数学趣题
一次团体操排练活动中,某班45名学生面向老师站成一列横队.老师每次让其中任意6名学生向后转(不论原来方向如何),能否经过若干次后全体学生都背向老师站立?如果能够的话请你设计一种方案,如果不能够,请说明理由.
问题似乎与数学无关,却又难以入手.注意到学生站立有两个方向,与具有相反意义的量有关,向后转又可想象为进行一次运算,或者说改变一次正负号.我们能否设法联系有理数知识进行讨论?
让我们再发挥一下想象力:假设每个学生胸前有一块号码布,上写“+1”,背后有一块号码布,上写“-1”,那么一开始全体学生面向老师,胸前45个+1的“乘积”是+1.如果最后全部背向老师,则45个-1的“乘积”是-1.
再来观察每次6名学生向后转进行的是什么“运算”.我们也设想老师不叫“向后转”,而称这6名学生对着老师的数字都“乘以-1”.这样问题就解决了:每次“运算”乘上了6个-1,即乘上了+1,故45个数的乘积不变(数学上称不变量),始终是+1.所以要乘积变为-1是不可能的.
一个难题,被有理数的简单运算别出心裁地解决了.有理数的知识多么有用!可同学们的想象力更重要.
试一试
将一根绳子两端分别涂上红色和白色,再在中间随意涂上若干个白色或红色的圆点.在这些圆点中间剪开,这样所得到的各小段两端都有颜色.试说明两端颜色不同的小段数目必是奇数.