生物信息学课程论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物信息学的发展和前景
摘要:生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿。本文对生物信息学的产生背景及其研究现状等方面进行了综述,并展望生物信息学的发展前景。生物信息学的发展在国内、外基本上都处在起步阶段。因此,这是我国生物学赶超世界先进水平的一个百年一遇的极好机会。
关键字:生物信息学、产生、发展、前景
生物信息学的发展和前景
随着生物科学技术的迅猛发展,生物信息数据资源的增长呈现爆炸之势,同时计算机运算能力的提高和国际互联网络的发展使得对大规模数据的贮存、处理和传输成为可能,为了快捷方便地对已知生物学信息进行科学的组织、有效的管理和进一步分析利用,一门由生命科学和信息科学等多学科相结合特别是由分子生物学与计算机信息处理技术紧密结合而形成的交叉学科——生物信息学(Bioinformatics))应运而生,并大大推动了相关研究的开展,被誉为“解读生命天书的慧眼”。
生物信息学的产生
生物信息学是80年代未随着人类基因组计划(Human genome project)的启动而兴起的一门新的交叉学科。它通过对生物学实验数据的获取、加工、存储、检索与分析,进而达到揭示数据所蕴含的生物学意义的目的。由于当前生物信息学发展的主要推动力来自分子生物学,生物信息学的研究主要集中于核苷酸和氨基酸序列的存储、分类、检索和分析等方面,所以目前生物信息学可以狭义地定义为:将计算机科学和数学应用于生物大分子信息的获取、加工、存储、分类、检索与分析,以达到理解这些生物大分子信息的生物学意义的交叉学科。事实上,它是一门理论概念与实践应用并重的学科。
生物信息学的产生发展仅有10年左右的时间---bioinformatics这一名词在1991年左右才在文献中出现,还只是出现在电子出版物的文本中。事实上,生物信息学的存在已有30多年,只不过最初常被称为基因组信息学。美国人类基因组计划中给基因组信息学的定义:它是一个学科领域,包含着基因组信息的获取、处理、存储、分配、分析和解释的所有方面。
自1990年美国启动人类基因组计划以来,人与模式生物基因组的测序工作进展极为迅速。迄今已完成了约40多种生物的全基因组测序工作,人基因组约
3x109碱基对的测序工作也接近完成。至2000年6月26日,被誉为生命“阿波罗计划”的人类基因组计划终于完成了工作草图,预示着完成人类基因组计划已经指日可待。截止目前为止,仅登录在美国GenBank数据库中的DNA序列总量已超过70亿碱基对。此外,迄今为止,已有一万多种蛋白质的空间结构以不同的分辨率被测定。基于cDNA序列测序所建立起来的EST数据库其纪录已达数百万条。在这些数据基础上派生、整理出来的数据库已达500余个。这一切构成了一个生物学数据的海洋。这种科学数据的急速和海量积累,在人类的科学研究历史中是空前的。
数据并不等于信息和知识,但却是信息和知识的源泉,关键在于如何从中挖掘它们。与正在以指数方式增长的生物学数据相比,人类相关知识的增长(粗略地用每年发表的生物、医学论文数来代表)却十分缓慢。一方面是巨量的数据;另一方面是我们在医学、药物、农业和环保等方面对新知识的渴求,这些新知识将帮助人们改善其生存环境和提高生活质量。这就构成了一个极大的矛盾。这个矛盾就催生了一门新兴的交叉科学,这就是生物信息学。
生物信息学的研究现状
数据库是生物信息学的主要内容,至今世界各国纷纷建立了生物信息数据库,其数量呈爆炸性增长,几乎涉及了生命科学的各个研究领域。目前主要有美国国立生物技术信息中心(NCBI)的GenBank();欧洲生物信息学研究所(EBI)的(EMBL)(http://www.emblheidelberg.de)数据库;日本国立遗传学研究所(NIG)的DNA数据库(DDBJ)(http://www.nig.ac.jp)瑞士生物信息学研究所(SIB)的SWISSPROT (http://www.expasy.ch/sprottop.html);美国Brookhaven国家实验室(BNL)的PDB(/pdb/);NCBI开发的ENTERZ系统综合了上述各大数据库的信息和MEDLINE的文献信息。目前我国在生物信息数据库领域的主要任务是:实验室数据信息化管理、数据库标准化、数据库共享与集成;建立基因信息的评估与检测系统;构建我国自已特殊需要的二级、三级数据库和专业数据库,并与国际常用数据库有效连接和及时更新。近年来,生物信息学家已经取得了多项研究成果,确定了数千个基因的功能,其中包括搜索碱基对序列匹配的有效方法,统计学工具,利用新的计算机工具组装整个基因组等,但生物信息学的发展面临新的挑战,迫切需要新的研究手段和研究方法。
生物信息学的发展前景
《第三次技术革命》里有这样描述:“一场与工业革命和以计算机为基础的革命有相同影响力的变化正在开始。下一个伟大时代将是基因组革命时代,它现在处于初期阶段。”基因组学的发展已经进入后基因组研究阶段,致力于蛋白质功能研究的蛋白质组学和功能蛋白质组学正在蓬勃发展,在生物信息学发展的带动下,我们必定能够揭示各种生命现象的奥秘,并带动多个学科的跨越式发展。生物信息学的发展将对分子生物学、药物设计、工作流管理和医疗成像等领域产生巨大的影响,极有可能引发新的产业革命。此外,生物信息学所倡导的全球范围的资源共享也将对整个自然科学乃至人类社会的发展产生深远的影响。有理由相信,今日生物学数据的巨大积累将导致重大生物学规律的发现,生物信息学的发展在国内、外基本上都处在起步阶段,因此,这是我国生物学赶超世界先进水平的一个百年一遇的极好机会。
生物学是生物信息学的核心和灵魂,数学与计算机技术则是它的基本工具。这一点必须着重指出。预测生物信息学的未来主要就是要预测他对生物学的发展将带来什么样的根本性的突破。这种预测是十分困难的,甚至几乎不可能。但机不可失,时不再来,鉴于生物信息学在我国生物信息学和经济发展中的重要意义和其发展的紧迫性,因此,由国家出面组织全国的力量,搞个类似"两弹一星"那样的,但是,规模要小的多,花钱也少的多的生物信息学发展计划,不是不可以考虑的。要充分发挥中央与地方,生物学科研究人员等方方面面的积极性。生物信息学研究投资少,见效快,可充分发挥我国智力资源丰富的长处,是特别适合我国国情的一项研究领域。要在大学里建立生物信息学专业,设立硕士点和博士点,培养专门人才。可以组织一大批数学、物理、化学和计算机科技工作者,在自愿的基础上,学习有关的生物学知识,开展多方面的生物信息学研究。
经过十几年或更长的时间的努力,逐渐使我国成为生物信息学研究强国,是完全有可能的。信息学的商业价值十分显著。国外很多大学,研究机构,软件公司甚至政府机构纷纷成立各种生物信息机构,建立自立的生物信息集成系统,研制这方面的软件,重金招聘人才,期望从中获取更多的生物信息和数据加以研究和利用,缩短药物开发周期,抢注基因专利,获取更大利润。我国如不加大资金投入力度,将来可能会花更多的钱去购买别人的软件,使用专利基因或购买新的药物。所幸,我国也开始重视这一学科:南、北方人类基因组中心的相继建成,北大生物城的破土动工等,标志着我国对生物信息学的重视。我们有理由相信,我国的生物信息学在21世纪会有巨大的飞跃。