2019-2020年上海复旦附中高一上数学期末试卷

合集下载

2019-2020学年上海市中学高一上学期期末数学试题及答案解析

2019-2020学年上海市中学高一上学期期末数学试题及答案解析

2019-2020学年上海市中学高一上学期期末数学试题及答案解析一、单选题1.已知复数113z i =+,23z i =+(i 为虚数单位),在复平面内,12z z -对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】利用复数的减法求出复数12z z -,即可得出复数12z z -对应的点所在的象限.【详解】复数113z i =+,23z i =+,()()1213322z z i i i ∴-=+-+=-+, 因此,复数12z z -在复平面内对应的点在第二象限. 故选B. 【点睛】本题考查复数的几何意义,同时也考查了复数的减法运算,利用复数的四则运算法则将复数表示为一般形式是解题的关键,考查计算能力,属于基础题.2.设点M 、N 均在双曲线22:143x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则122MF MF MN +-的最小值为( ) A .B .4C .D .以上都不对【解析】根据向量的运算,化简得1212222MF MF MN MO MN NO+-=-=,结合双曲线的性质,即可求解. 【详解】由题意,设O 为12,F F 的中点, 根据向量的运算,可得122222MF MFMN MO MN NO+-=-=,又由N 为双曲线22:143x y C -=上的动点,可得NO a ≥,所以122224MF MFMN NO a +-=≥=,即122MF MFMN+-的最小值为4.故选:B. 【点睛】本题主要考查了向量的运算,以及双曲线的标准方程及简单的几何性质的应用,其中解答中利用向量的运算,合理化简,结合双曲线的几何性质求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 3.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y +=【答案】B【解析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得n =,从而可求解.法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22aBF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得32n =. 2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得3n =.2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑二、填空题4.椭圆22154x y +=的焦距等于________【答案】2【解析】根据椭圆方程,求出,a b ,即可求解. 【详解】设椭圆的焦距为2c ,椭圆方程为22154x y +=, 225,4,1a b c ∴==∴=.故答案为:2. 【点睛】本题考查椭圆标准方程及参数的几何意义,属于基础题.5.双曲线221169x y -=的两条渐近线的方程为________.【答案】34yx 【解析】令220169x y -=解得结果【详解】令220169x y -=解得两条渐近线的方程为34yx 【点睛】本题考查双曲线渐近线的方程,考查基本分析求解能力,属基础题.6.若线性方程组的增广矩阵是123c ⎛⎫⎪,其解为1x =⎧⎨,则12c c +=________【答案】6【解析】本题可先根据增广矩阵还原出相应的线性方程组,然后将解11x y =⎧⎨=⎩代入线性方程组即可得到1c 、2c 的值,最终可得出结果. 【详解】解:由题意,可知:此增广矩阵对应的线性方程组为:1223x y c y c +=⎧⎨=⎩, 将解11x y =⎧⎨=⎩代入上面方程组,可得:1251c c =⎧⎨=⎩. 126c c ∴+=.故答案为:6. 【点睛】本题主要考查线性方程组与增广矩阵的对应关系,以及根据线性方程组的解求参数.本题属基础题. 7.已知复数22iz i+=,则z 的虚部为________.【答案】-1【解析】先根据复数的除法中的分母实数化计算出z 的结果,然后根据z 的结果直接确定虚部. 【详解】 因为()22242122242i i i i z i i i i +⋅+-====-⋅-,所以z 虚部为1-.【点睛】(1)复数的除法运算,采用分母实数化的方法,根据“平方差公式”的形式完成分母实数化;(2)复数z a bi =+,则z 的实部为a ,虚部为b ,注意实、虚部都是数值.8.圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于________。

2019-2020学年高一数学上学期期末考试试题(含解析)_18

2019-2020学年高一数学上学期期末考试试题(含解析)_18

2019-2020学年高一数学上学期期末考试试题(含解析)本试题卷分第一部分(选择题)和第二部分(非选择题)两部分.第一部分1至2页,第二部分3至4页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.第一部分(选择题共60分)注意事项1.选择题必须用2B铅笔将答案标号填涂在答题卡对应题目标号的位置上.2.第一部分共12小题,每小题5分,共60分.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的值为()A. B. C. D.【答案】C【解析】sin210°=sin(180°+30°)=﹣sin30°=﹣.故选C.2.已知全集,则正确表示集合和关系的韦恩图是()A. B.C. D.【答案】B【解析】∵集合∴集合∵集合∴故选B3.某司机看见前方处有行人横穿马路,这时司机开始紧急刹车,在刹车过程中,汽车速度v是关于刹车时间t的函数,其图象可能是()A. B. C.D.【答案】A【解析】【分析】紧急刹车速度慢慢减小到零,而速度减小的速率越来越小.【详解】根据题意,司机进行紧急刹车,速度减少到零的过程中,速度减小的速率越来越小.故选:A【点睛】此题考查实际问题的函数表示,关键在于弄清速度关于时间的函数关系,变化过程.4. 函数f(x)=|x-2|-lnx在定义域内零点的个数为( )A. 0B. 1C. 2D. 3【答案】C【解析】分别画出函数y=ln x(x>0)和y=|x-2|(x>0)的图像,可得2个交点,故f(x)在定义域中零点个数为2.5.已知,则()A. B. C. D.【答案】A【解析】【分析】变形处理,分子分母同时除以,即可得解.【详解】故选:A【点睛】此题考查三角函数给值求值,构造齐次式利用同角三角函数的关系化简求值,属于基础题目.6.已知函数的图象的一个对称中心是,则的可能取值为()A. B. C. D.【答案】D【解析】【分析】根据题意解即可求得,结合选项即可得解.【详解】由题:函数的图象的一个对称中心是,必有,,当时,.故选:D【点睛】此题考查根据三角函数的对称中心求参数的值,关键在于熟练掌握三角函数图象和性质,以及对称中心特征的辨析.7.已知函数是定义在上奇函数,且当时,,则的值为()A. 2B. 3C. -2D. -3【答案】D【解析】【分析】根据解析式求出,根据奇偶性可得.【详解】是定义在上的奇函数,当时,,则 .故选:D【点睛】此题考查根据奇偶性求函数值,关键在于熟练掌握奇偶性辨析,准确进行对数化简求值.8.在中,已知,那么一定是()A. 直角三角形B. 正三角形C. 等腰直角三角形D. 等腰三角形【答案】D【解析】【分析】利用正弦定理和余弦定理化简即可得到答案.【详解】,由正弦定理可得,由余弦定理得,化简得a=b,所以三角形为等腰三角形,故选D【点睛】本题考查利用正弦定理和余弦定理判断三角形的形状,属于简单题.9.已知函数的图象关于对称,且在上单调递增,设,,,则的大小关系为 ( )A. B.C. D.【答案】B【解析】分析:首先根据题意知函数图像关于对称,即可知,再结合在上单调递增,得出,即可得出答案.详解:因为函数图像关于对称,所以,又在上单调递增,所以,即,故选B.点睛:这是一道关于函数的对称性和函数的单调性应用的题目,解题的关键是熟练掌握函数的对称性和单调性.10.设,则( )A. B.C. D.【答案】A【解析】【分析】先由诱导公式得到a=cos2019°=–cos39°,再根据39°∈(30°,45°)得到大致范围.【详解】a=cos2019°=cos(360°×5+180°+39°)=–cos39°∵,∴可得:∈(,),=.故选A.【点睛】这个题目考查了三角函数的诱导公式的应用,以及特殊角的三角函数值的应用,题目比较基础.11.如图,当参数时,连续函数的图象分别对应曲线和,则()A. B. C. D.【答案】B【解析】【分析】根据函数单调递增判断,根据对于一切,恒成立得出.【详解】考虑函数,由图可得:当时,恒成立,即对于一切恒成立,所以,由图可得:对于一切,,即,所以,所以.故选:B【点睛】此题考查根据函数图象判断比较参数的大小关系,求参数范围,关键在于准确分析函数图象所反映的性质.12.已知函数有且只有1个零点,则实数a的取值范围为()A. 或B. 或C.D. 或【答案】B【解析】【分析】分类讨论当时,当时,当时,分别讨论函数零点个数,即可得解.【详解】函数,当时,①,,无零点,②,方程要么无解,要么有解,如果有解,根据韦达定理两根之和,两根之积为1,即有两个正根,与矛盾,所以当时,函数不可能有且只有一个零点;当时,,有且仅有一个零点符合题意;当时,,一定有且仅有一个根,所以,必有在无解,下面进行讨论:当时,满足题意,即,当时,,有一个负根-1,不合题意,舍去,当时,根据韦达定理的两根之和一定有负根,不合题意舍去,综上所述:或.故选:B【点睛】此题考查根据分段函数零点个数求解参数的取值范围,关键在于准确进行分类讨论,结合韦达定理与根的分布求解参数范围.第二部分(非选择题共90分)注意事项:1.考生须用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区城内作答,作图题可先用铅笔画线,确认后用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效.2.本部分共10小题,共90分.二、填空题:本大题共4小题;每小题5分,共20分13.下表表示y是x的函数,则该函数的定义域是______________,值域是__________________.【答案】 (1). (2).【解析】【分析】(1)自变量的取值范围构成的集合就是定义域;(2)函数值的取值范围构成的集合就是值域.【详解】(1)由函数可得,函数的定义域为:;(2)由函数可得,函数值只有1,2,3,4,所以值域为:.故答案为:①;②【点睛】此题考查求函数定义域和值域,属于简单题,易错点在于书写形式出错,定义域值域应写成集合或区间的形式.14.电流强度(安)随时间(秒)变化的函数的图象如图所示,则当时,电流强度是_________.【答案】安.【解析】【分析】先由函数的最大值得出的值,再结合图象得出周期,得,最后再将代入解析式可得出答案.【详解】由图象可知,,且该函数的最小正周期,则,,当时,(安),故答案为安.【点睛】本题考查利用三角函数图象求值,求出解析式是关键,利用图象求三角函数的解析式,其步骤如下:①求、:,;②求:利用一些关键点求出最小正周期,再由公式求出;③求:代入关键点求出初相,如果代对称中心点要注意附近的单调性.15.如图,在等腰直角中,,点D,E分别是BC的三等分点,则_______,__________.【答案】 (1). (2).【解析】【分析】(1)根据直角三角形关系,在中即可求得;(2)在中,求出,结合(1),即可求解.【详解】(1)由题:在等腰直角中,,点D,E分别是BC的三等分点,在中,;(2)在中,,.故答案为:(1); (2)【点睛】此题考查根据直角三角形关系求三角函数值,关键在于根据几何关系结合两角差的正切公式求解.16.已知满足,且当时,,则方程的所有实根之和为__________.【答案】6【解析】分析】根据解析式求出当时方程的根,结合对称性即可得到所有实根之和.【详解】满足,所以,即关于直线对称,当时,,当,得,当时,解得:,,根据对称性得:当时,方程也有三个根,满足,所以所有实根之和为6.故答案为:6【点睛】此题考查方程的根的问题,涉及分段函数和函数对称性,根据函数的对称性解决实根之和,便于解题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或推演步骤.17.已知角的终边经过点(1)求的值;(2)求的值.【答案】(1)(2)【解析】【分析】(1)根据角的终边上的点的坐标,求出,,结合二倍角公式即可得解;(2)根据诱导公式化简即可得解.【详解】(1)由题意知,,则(2)【点睛】此题考查根据三角函数定义求三角函数值,根据二倍角公式和诱导公式进行化简求值,关键在于熟练掌握相关公式,准确计算.18.已知集合(1)求;(2)若,求实数m的取值范围.【答案】(1);(2)【解析】【分析】(1)解不等式得到,求出或,即可得解;(2),即,分类讨论当时,当时,求出参数范围.【详解】(1)可化为则,即所以或,故.(2)由(1)知,由可知,,①当时,,②当时,,解得.综上所述,.【点睛】此题考查集合的基本运算,涉及补集运算和交集运算,根据集合运算关系判断包含关系,根据包含关系求参数的取值范围.19.已知函数是幂函数,且在上是减函数.(1)求实数m的值;(2)请画出的草图.(3)若成立,求a的取值范围.【答案】(1)(2)见解析(3)【解析】【分析】(1)根据幂函数的定义得,结合单调性取舍;(2)根据幂函数的单调性作第一象限的图象,再根据奇偶性作y轴左侧图象;(3)根据奇偶性和单调性,等价转化为解.【详解】(1)由函数是幂函数,则,解得或,又因为在上是减函数,故.(2)由(1)知,,则的大致图象如图所示:(3)由(2)知,的图象关于y轴对称,且在上递减,则由,得,即,可得,解得,又的取值范围为.【点睛】此题考查幂函数的概念辨析,作幂函数的图象,根据单调性和奇偶性求解不等式,综合性较强,涉及转化与化归思想.20.小王投资1万元2万元、3万元获得的收益分别是4万元、9万元、16万元为了预测投资资金x(万元)与收益y万元)之间的关系,小王选择了甲模型和乙模型.(1)根据小王选择的甲、乙两个模型,求实数a,b,c,p,q,r的值(2)若小王投资4万元,获得收益是25.2万元,请问选择哪个模型较好?【答案】(1);(2)甲模型更好.【解析】【分析】(1)根据待定系数法列方程组,,求解即可;(2)两种模型分别求出当时的函数值,比较哪个模型更接近25.2,即可得到更好的模型.【详解】(1)若选择甲模型,由题意得:,解得:,若选择乙模型,由题意得:解得:所以实数a,b,c,p,q,r的值为;(2)由(1)可得:甲模型为,乙模型为:,若选择甲模型,当时,,若选择乙模型,当时,,25.2与25更加接近,所以选择甲模型更好.【点睛】此题考查函数模型的选择,根据已知数据求解函数模型并选择更好的模型,关键在于准确计算,正确辨析.21.已知函数,且的最大值为2,其图象相邻对称轴的距离为2,并过点(1)求的值;(2)计算的值;【答案】(1)(2)100【解析】【分析】(1)根据最大值为2求出,根据相邻对称轴距离求出最小正周期得,结合过点,求得;(2)根据函数周期为4,只需求出,即可求解的值.【详解】(1)由题可知,因为的最大值为2,则有,又因为图象相邻对称轴的距离为2,所以,即所以,又的图象过点,则,即则有,又因为,则.(2)由(1)知其周期为,所以,故.【点睛】此题考查根据函数图象特征求函数解析式,根据函数的周期性求函数值以及函数值之和,关键在于熟练掌握三角函数的基本性质.22.已知.(1)当时,解不等式;(2)若关于的方程的解集中恰好有一个元素,求实数的值;(3)设,若对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.【答案】(1)(2)或,(3)【解析】【分析】(1)根据对数单调性化简不等式,再解分式不等式得结果;(2)先化简对数方程,再根据分类讨论方程根的情况,最后求得结果;(3)先确定函数单调性,确定最值取法,再化简不等式,根据二次函数单调性确定最值,解得结果.【详解】(1)当时,不等式解集为(2)①当时,仅有一解,满足题意;②当时,则,若时,解为,满足题意;若时,解为此时即有两个满足原方程的的根,所以不满足题意;综上,或,(3)因为在上单调递减,所以函数在区间上的最大值与最小值的差为,因此即对任意恒成立,因为,所以在上单调递增,所以因此【点睛】本题考查对数不等式、对数方程、含参数方程以及一元二次不等式恒成立,考查综合分析求解能力,属较难题.2019-2020学年高一数学上学期期末考试试题(含解析)本试题卷分第一部分(选择题)和第二部分(非选择题)两部分.第一部分1至2页,第二部分3至4页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.第一部分(选择题共60分)注意事项1.选择题必须用2B铅笔将答案标号填涂在答题卡对应题目标号的位置上.2.第一部分共12小题,每小题5分,共60分.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的值为()A. B. C. D.【答案】C【解析】sin210°=sin(180°+30°)=﹣sin30°=﹣.故选C.2.已知全集,则正确表示集合和关系的韦恩图是()A. B.C. D.【答案】B【解析】∵集合∴集合∵集合∴故选B3.某司机看见前方处有行人横穿马路,这时司机开始紧急刹车,在刹车过程中,汽车速度v是关于刹车时间t的函数,其图象可能是()A. B. C.D.【答案】A【解析】【分析】紧急刹车速度慢慢减小到零,而速度减小的速率越来越小.【详解】根据题意,司机进行紧急刹车,速度减少到零的过程中,速度减小的速率越来越小.故选:A【点睛】此题考查实际问题的函数表示,关键在于弄清速度关于时间的函数关系,变化过程.4. 函数f(x)=|x-2|-lnx在定义域内零点的个数为( )A. 0B. 1C. 2D. 3【答案】C【解析】分别画出函数y=ln x(x>0)和y=|x-2|(x>0)的图像,可得2个交点,故f(x)在定义域中零点个数为2.5.已知,则()A. B. C. D.【答案】A【解析】【分析】变形处理,分子分母同时除以,即可得解.【详解】故选:A【点睛】此题考查三角函数给值求值,构造齐次式利用同角三角函数的关系化简求值,属于基础题目.6.已知函数的图象的一个对称中心是,则的可能取值为()A. B. C. D.【答案】D【解析】【分析】根据题意解即可求得,结合选项即可得解.【详解】由题:函数的图象的一个对称中心是,必有,,当时,.故选:D【点睛】此题考查根据三角函数的对称中心求参数的值,关键在于熟练掌握三角函数图象和性质,以及对称中心特征的辨析.7.已知函数是定义在上奇函数,且当时,,则的值为()A. 2B. 3C. -2D. -3【答案】D【解析】【分析】根据解析式求出,根据奇偶性可得.【详解】是定义在上的奇函数,当时,,则 .故选:D【点睛】此题考查根据奇偶性求函数值,关键在于熟练掌握奇偶性辨析,准确进行对数化简求值.8.在中,已知,那么一定是()A. 直角三角形B. 正三角形C. 等腰直角三角形D. 等腰三角形【答案】D【解析】【分析】利用正弦定理和余弦定理化简即可得到答案.【详解】,由正弦定理可得,由余弦定理得,化简得a=b,所以三角形为等腰三角形,故选D【点睛】本题考查利用正弦定理和余弦定理判断三角形的形状,属于简单题.9.已知函数的图象关于对称,且在上单调递增,设,,,则的大小关系为 ( )A. B.C. D.【答案】B【解析】分析:首先根据题意知函数图像关于对称,即可知,再结合在上单调递增,得出,即可得出答案.详解:因为函数图像关于对称,所以,又在上单调递增,所以,即,故选B.点睛:这是一道关于函数的对称性和函数的单调性应用的题目,解题的关键是熟练掌握函数的对称性和单调性.10.设,则( )A. B.C. D.【答案】A【解析】【分析】先由诱导公式得到a=cos2019°=–cos39°,再根据39°∈(30°,45°)得到大致范围.【详解】a=cos2019°=cos(360°×5+180°+39°)=–cos39°∵,∴可得:∈(,),=.故选A.【点睛】这个题目考查了三角函数的诱导公式的应用,以及特殊角的三角函数值的应用,题目比较基础.11.如图,当参数时,连续函数的图象分别对应曲线和,则()A. B. C. D.【答案】B【解析】【分析】根据函数单调递增判断,根据对于一切,恒成立得出.【详解】考虑函数,由图可得:当时,恒成立,即对于一切恒成立,所以,由图可得:对于一切,,即,所以,所以.故选:B【点睛】此题考查根据函数图象判断比较参数的大小关系,求参数范围,关键在于准确分析函数图象所反映的性质.12.已知函数有且只有1个零点,则实数a的取值范围为()A. 或B. 或C.D. 或【答案】B【解析】【分析】分类讨论当时,当时,当时,分别讨论函数零点个数,即可得解.【详解】函数,当时,①,,无零点,②,方程要么无解,要么有解,如果有解,根据韦达定理两根之和,两根之积为1,即有两个正根,与矛盾,所以当时,函数不可能有且只有一个零点;当时,,有且仅有一个零点符合题意;当时,,一定有且仅有一个根,所以,必有在无解,下面进行讨论:当时,满足题意,即,当时,,有一个负根-1,不合题意,舍去,当时,根据韦达定理的两根之和一定有负根,不合题意舍去,综上所述:或.故选:B【点睛】此题考查根据分段函数零点个数求解参数的取值范围,关键在于准确进行分类讨论,结合韦达定理与根的分布求解参数范围.第二部分(非选择题共90分)注意事项:1.考生须用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区城内作答,作图题可先用铅笔画线,确认后用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效.2.本部分共10小题,共90分.二、填空题:本大题共4小题;每小题5分,共20分13.下表表示y是x的函数,则该函数的定义域是______________,值域是__________________.【答案】 (1). (2).【解析】【分析】(1)自变量的取值范围构成的集合就是定义域;(2)函数值的取值范围构成的集合就是值域.【详解】(1)由函数可得,函数的定义域为:;(2)由函数可得,函数值只有1,2,3,4,所以值域为:.故答案为:①;②【点睛】此题考查求函数定义域和值域,属于简单题,易错点在于书写形式出错,定义域值域应写成集合或区间的形式.14.电流强度(安)随时间(秒)变化的函数的图象如图所示,则当时,电流强度是_________.【答案】安.【解析】【分析】先由函数的最大值得出的值,再结合图象得出周期,得,最后再将代入解析式可得出答案.【详解】由图象可知,,且该函数的最小正周期,则,,当时,(安),故答案为安.【点睛】本题考查利用三角函数图象求值,求出解析式是关键,利用图象求三角函数的解析式,其步骤如下:①求、:,;②求:利用一些关键点求出最小正周期,再由公式求出;③求:代入关键点求出初相,如果代对称中心点要注意附近的单调性.15.如图,在等腰直角中,,点D,E分别是BC的三等分点,则_______,__________.【答案】 (1). (2).【解析】【分析】(1)根据直角三角形关系,在中即可求得;(2)在中,求出,结合(1),即可求解.【详解】(1)由题:在等腰直角中,,点D,E分别是BC的三等分点,在中,;(2)在中,,.故答案为:(1); (2)【点睛】此题考查根据直角三角形关系求三角函数值,关键在于根据几何关系结合两角差的正切公式求解.16.已知满足,且当时,,则方程的所有实根之和为__________.【答案】6【解析】分析】根据解析式求出当时方程的根,结合对称性即可得到所有实根之和.【详解】满足,所以,即关于直线对称,当时,,当,得,当时,解得:,,根据对称性得:当时,方程也有三个根,满足,所以所有实根之和为6.故答案为:6【点睛】此题考查方程的根的问题,涉及分段函数和函数对称性,根据函数的对称性解决实根之和,便于解题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或推演步骤.17.已知角的终边经过点(1)求的值;(2)求的值.【答案】(1)(2)【解析】【分析】(1)根据角的终边上的点的坐标,求出,,结合二倍角公式即可得解;(2)根据诱导公式化简即可得解.【详解】(1)由题意知,,则(2)【点睛】此题考查根据三角函数定义求三角函数值,根据二倍角公式和诱导公式进行化简求值,关键在于熟练掌握相关公式,准确计算.18.已知集合(1)求;(2)若,求实数m的取值范围.【答案】(1);(2)【解析】【分析】(1)解不等式得到,求出或,即可得解;(2),即,分类讨论当时,当时,求出参数范围.【详解】(1)可化为则,即所以或,故.(2)由(1)知,由可知,,①当时,,②当时,,解得.综上所述,.【点睛】此题考查集合的基本运算,涉及补集运算和交集运算,根据集合运算关系判断包含关系,根据包含关系求参数的取值范围.19.已知函数是幂函数,且在上是减函数.(1)求实数m的值;(2)请画出的草图.(3)若成立,求a的取值范围.【答案】(1)(2)见解析(3)【解析】【分析】(1)根据幂函数的定义得,结合单调性取舍;(2)根据幂函数的单调性作第一象限的图象,再根据奇偶性作y轴左侧图象;(3)根据奇偶性和单调性,等价转化为解.【详解】(1)由函数是幂函数,则,解得或,又因为在上是减函数,故.(2)由(1)知,,则的大致图象如图所示:(3)由(2)知,的图象关于y轴对称,且在上递减,则由,得,即,可得,解得,又的取值范围为.【点睛】此题考查幂函数的概念辨析,作幂函数的图象,根据单调性和奇偶性求解不等式,综合性较强,涉及转化与化归思想.20.小王投资1万元2万元、3万元获得的收益分别是4万元、9万元、16万元为了预测投资资金x(万元)与收益y万元)之间的关系,小王选择了甲模型和乙模型.(1)根据小王选择的甲、乙两个模型,求实数a,b,c,p,q,r的值(2)若小王投资4万元,获得收益是25.2万元,请问选择哪个模型较好?【答案】(1);(2)甲模型更好.【解析】【分析】(1)根据待定系数法列方程组,,求解即可;(2)两种模型分别求出当时的函数值,比较哪个模型更接近25.2,即可得到更好的模型.【详解】(1)若选择甲模型,由题意得:,解得:,若选择乙模型,由题意得:解得:所以实数a,b,c,p,q,r的值为;(2)由(1)可得:甲模型为,乙模型为:,若选择甲模型,当时,,若选择乙模型,当时,,25.2与25更加接近,所以选择甲模型更好.【点睛】此题考查函数模型的选择,根据已知数据求解函数模型并选择更好的模型,关键在于准确计算,正确辨析.21.已知函数,且的最大值为2,其图象相邻对称轴的距离为2,并过点(1)求的值;(2)计算的值;【答案】(1)(2)100【解析】【分析】(1)根据最大值为2求出,根据相邻对称轴距离求出最小正周期得,结合过点,求得;(2)根据函数周期为4,只需求出,即可求解的值.【详解】(1)由题可知,因为的最大值为2,则有,又因为图象相邻对称轴的距离为2,所以,即所以,又的图象过点,则,即则有,又因为,则.(2)由(1)知其周期为,所以,故.【点睛】此题考查根据函数图象特征求函数解析式,根据函数的周期性求函数值以及函数值之和,关键在于熟练掌握三角函数的基本性质.22.已知.(1)当时,解不等式;(2)若关于的方程的解集中恰好有一个元素,求实数的值;(3)设,若对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.【答案】(1)(2)或,(3)【解析】【分析】(1)根据对数单调性化简不等式,再解分式不等式得结果;(2)先化简对数方程,再根据分类讨论方程根的情况,最后求得结果;(3)先确定函数单调性,确定最值取法,再化简不等式,根据二次函数单调性确定最值,解得结果.【详解】(1)当时,不等式解集为(2)①当时,仅有一解,满足题意;②当时,则,若时,解为,满足题意;若时,解为此时即有两个满足原方程的的根,所以不满足题意;综上,或,(3)因为在上单调递减,所以函数在区间上的最大值与最小值的差为,因此即对任意恒成立,因为,所以在上单调递增,所以因此【点睛】本题考查对数不等式、对数方程、含参数方程以及一元二次不等式恒成立,考查综合分析求解能力,属较难题.。

复旦附中高一上期末(2020.1)

复旦附中高一上期末(2020.1)

综上所述, n [0, 4) ,则 m n 的取值范围是 [0, 4) .
三、解答题 17.(1) f(x) 4x 2 2x 1 4 , 2x 3 或 2x 1(舍)
方程的解为 x log2 3 .
(2)令 t
2x
[1 2
, 2] ,则
t2
2at
1
0

2a
t2
1 t
t
1 t
,因为
t
1 t
f1(4 a) ≤ f(x) | 2x a2 | 在 x [0, ) 上恒成立,求实数 a 的取值范围.
参考答案
一、填空题
1. (,5)
2. y x 1, (x ≥ 2)
3.
a2 2a
4.3
5. (1, )
6.1
7. (3, 0)
8. (1, 2]
9.2
10.[1 , 2] 2
11. (6, 41 5 ) 10
元(总成本=固定成本+生产成本).销售收入 Q(x) (万元)满足
Q(x)
0.5x2
224,
(x
22x, 16)
(0

x
≤16)
,假定该产品产销平衡(即生产的产品都能卖掉),根据
上述统计规律,请完成下列问题: (1)求利润函数 y f(x) 的解析式(利润=销售收入 总成本);
(2)工厂生产多少百台产品时,可使利润最多?
在 [1 ,1] 2
上递减,
[1, 2] 上递增,所以 2a [2, 5], a [1, 5]
2
4
18.(1)
f
(x)
为奇函数,
1 ax x 1
0
的解集关于原点对称,所以

2019-2020学年上海市高一(上)期末数学试卷 (2)

2019-2020学年上海市高一(上)期末数学试卷 (2)

2019-2020 学年上海市高一(上)期末数学试卷题号 得分一 二 三 总分第 I 卷(选择题)一、选择题(本大题共 4 小题,共 20.0 分) 1. 下列选项中,表示的是同一函数的是( )A. B. D. ( ) = , ( ) = − 1)2( ) = 2, ( ) = ( 2 √2≥ 0C. = {, = | |( ) = √, ( ) = √ ( ) < 0√2. 设非零实数 ,则“ ≥ 2”是“ ≥ 3”成立的( )2A. C.B. D. 充分不必要条件 充要条件必要不充分条件 既不充分也不必要条件3. 函数的图象可能是( )B.D.C. 4. 若函数 的定义域是[−1,4],则 = − 1)的定义域是( )B. C. D.[−3,7]A. 5]2[−1,4] [−5,5][0, 第 II 卷(非选择题)二、填空题(本大题共 12 小题,共 36.0 分) 5. 函数= √的定义域是________.6. 集合 = {1,2,3}, = ∈ ,则用列举法表示 为________. 2B 7. 若 , ∈,且= 0,则的最小值为___________.x −8. 已知函数 =__________. = 2lg(的图象经过点(2,2 2),则 = + > 0且 ≠ 1)的图象恒过定点 2),则 +9. 若+),则log的值为__________√210. 若幂函数=________________.√11. 已知集合 = |围是__________. 1 = 0, ∈ ,若集合 是有限集,则实数 的取值范2A a 12. 函数=,< 2) 的反函数是______ .2 13. 若奇函数______ . 在(∞, 0)内是减函数,且= 0,则不等式 ⋅> 0的解集为√ √ ≥ 0< 014. 设函数 = {,若 = 2,则实数 =______. ++ > 0,若函数 = ≤ 0 15. 已知函数= { + 有且只有一个零点,则实2 2 +数 的取值范围是________. a 16. 若曲线 = |21|与直线 = 有两个公共点,则 的取值范围是____.b 三、解答题(本大题共 5 小题,共 38.0 分) 17. 已知集合 =1 ⩽ 2⩽ 32},集合 = < 2 或 > 2}.2(1)求 ∩ ; (2)若 = { | ≤1},且 ⊆ ,求实数 的取值范围.a 1+ 1, ≤ 0;(2)若 > 0,解关于 的不等式18. 已知 =+ 2(1)当 = 2时,解不等式≥ 0.x19.某厂生产某种产品的年固定成本为250万元,每生产万件,需另投入的成本为x单位:万元),当年产量小于80万件时,=1+;当年产量不小于231000−1450.假设每万件该产品的售价为50万元,且该厂80万件时,=+当年生产的该产品能全部销售完.(1)写出年利润万元)关于年产量万件)的函数关系式;(2)年产量为多少万件时,该厂在该产品的生产中所获利润最大?最大利润是多少?20.已知函数=是定义在上的奇函数,当>0时,=2−,其中∈R(1)求函数=(2)若函数=(3)当=0时,若的解析式;在区间(0,+∞)不单调,求出实数的取值范围;a∈(−1,1),不等式−+−2>0成立,求实2数的取值范围.k21.若函数=log−有零点,求实数a的取值范围.32答案和解析1.【答案】D【解析】【分析】本题主要考查同一函数的判断,结合条件分别判断两个函数的定义域和对应法则是否相同是解决本题的关键,属于基础题.分别判断两个函数的定义域和对应法则是否相同即可.【解答】解:的定义域是R,的定义域为[0,+∞),两个函数的定义域不相同,不是同一函数;B.两个函数的对应法则不相同,不是同一函数;+1≥0−1>0≥−1 >1C.由{,得{,即>1,由⩾0得>1或≤−1,两个函数的定义域不相同,不是同一函数;D.由已知有故选D.=,两个函数的定义域和对应法则相同,是同一函数.2.【答案】B【解析】只有当同号时,“2+2≥”才是“+≥3”成立的充要条件.而由+≥3可知同号,故+≥2.23.【答案】C【解析】【分析】本题考查函数的性质与函数图象的识别,属于中档题.根据函数值的符号即可选择出正确选项.【解答】解:当>0时,+1>1,+1|>0,故>0,即可排除A,B两项;当−2<<−1时,>0,即可排除D选项.4.【答案】A【解析】∵函数的定义域是[−1,4],∴函数=−1)的定义域满足−1≤−1≤4,∴0≤≤5,2∴=−1)的定义域是[0,5].25.【答案】(−∞,1)∪(1,4]【解析】【分析】本题主要考查定义域问题,分母和偶次下的取值问题.【解答】4−≥0解:由题意得{,−1≠0解得≤4且≠1.故答案为(−∞,1)∪(1,4].6.【答案】{3,6,11}【解析】【分析】本题考查了集合内的元素的特征,要满足:确定性,无序性,互异性,属于基础题.集合内的元素要满足:确定性,无序性,互异性.【解答】解:={1,2,3},=2+∈.∴={3,6,11}故答案为{3,6,11}.7.【答案】18【解析】【分析】本题考查利用基本不等式求最值,注意等号成立的条件,属于中档题.由题意,可得2+8=1,利用基本不等式即可求出+的最小值.∵ , ∈ ,且 = 0,− ∴ =,8= 1, = (∴ 2 ∴) · (28) =10 ≥ 2√ · 10 = 18,= 当且仅当 所以,即 = = 12时等号成立,的最小值为 18,故答案为 18. 8.【答案】3【解析】 【分析】本题考查指数函数的性质,关键是掌握该种题型的求解方法,是基础题. 由题知 恒过定点(2,1),∴= 2, = 1,= 3.【解答】解:由指数函数 = 的图象过定点(0,1),所以,函数 即 = 2,1= > 0且 ≠ 1)的图象恒过定点(2,1 = 3.,= 2,故故答案为:3. 9.【答案】4【解析】 【分析】 由= 2lg( −),先求出 的值,然后再求的值.本题考查对数的运算性质,解题时要认真审题,仔细解答,注意公式的灵活运用. 【解答】 解:∵ = 2lg( − ),∴ = ( − )2, > 0, > 0, − > 0,∴ ( ) − 5( ) 4 = 0, 解得 = 1(舍去)或 = 4,∴ l og= log 4 = 4 ∴−= 0,2 2 2 .√2√2故答案为4.10.【答案】27【解析】【分析】本题考查了求函数的解析式与计算函数值的应用问题,是基础题目.用待定系数法求出幂函数=的解析式,再计算的值.【解答】解:设幂函数==,∈,且图象过点(2,22),√∴2=2√2,3解得=,23 2;∴∴=3.=9=272故答案为27.11.【答案】≥−1【解析】当=0时,=−1,满足;当≠0时,由=4+得,≥−1.综上,实数的取值范围是≥−1.12.【答案】=−√>4)【解析】【分析】本题考查反函数的定义的应用,考查计算能力.直接利用反函数的定义求解即可.【解答】解:函数=2,<−2),则>4.可得=−,√所以函数的反函数为:=−√>4).故答案为:=−√>4).13.【答案】(−2,0) ∪ (0,2)【解析】解:奇函数 在(−∞, 0)内是减函数,则 且在(0, +∞)内是减函数. == 0,> 0> 0 =< 0< 0 =不等式 ⋅ > 0 > 0等价为 或 ,< 0,即有或 < 2 > −2 即有0 < < 2或−2 < < 0. 则解集为(−2,0) ∪ (0,2). 故答案为:(−2,0) ∪ (0,2) 奇函数 在(−∞, 0)内是减函数,则在(0, +∞)内是减函数.且 == 0,> 0< 0不等式 ⋅> 0等价为 或 ,运用单调性去掉 ,f> 0 =< 0 =解出它们,再求并集即可.本题考查函数的奇偶性和单调性的运用:解不等式,注意讨论 的范围,属于中档题.x 14.【答案】±1【解析】解:由分段函数可知 ∴由= 2得= 2 − 1 = 1.若 < 0,则√ = 1,解得 = −1.= 1,+若 ≥ 0,则√ = 1,解得 = 1, ∴ = ±1, 故答案为:±1.根据分段函数的表达式,解方程即可. 本题主要考查分段函数的应用,注意 自变量的取值范围.【解析】【分析】本题考查了函数的性质,图象的运用,利用函数的交点问题解决函数零点问题,属于中档题.化简构造得出= +>0与=≤02有且只有一个交点,利用函数的图象的交点求解即可.2+【解答】解+>0,若=≤0:∵函数=2+有且只有一个零点,2++>0与=≤0∴=2有且只有一个交点,2+根据图形得出:>1,∴<−1故答案为<−1.16.【答案】(0,1)【解析】【分析】画出图像可得解.【解答】解:曲线=−1|与直线=如图所示.由图像可得,的取值范围是(0,1).b故答案为(0,1).17.【答案】解:(1)∵=∴∩=(2,5];−1≤≤5},=<−2或>2},(2)∵⊆,且=≤−1},∴−1≥5,解得≥6,∴实数的取值范围为[6,+∞).a【解析】本题考查了描述法的定义,交集的定义及运算,子集的定义,考查了计算能力,属于基础题.(1)可以求出=−1≤≤5},然后进行交集的运算即可;(2)根据⊆即可得出−1≥5,解出的范围即可.a18.【答案】解:12= 2时,不等式化为− − 2) ≤ 0,∴ 1 ≤ ≤ 2,21 2≤≤ 2};∴不等式的解集为 (2)由题意得 =−− ),1 11};当0 << 1时, < ,不等式解集为≤ 或 ≥ 1 当 = 1时, = ,不等式解集为 ; R 1 1 }.≥ 或 ≤当 > 1时, > ,不等式解集为【解析】本题考查不等式的解法,考查分类讨论的数学思想,属于中档题.= 2时,不等式化为− 1− 2) ≤ 0,即可解不等式≤ 0,2(2)若 > 0,分类讨论解关于 的不等式≥ 0.x 19.【答案】【解答】解:(1)①当0 < < 80时,根据年利润=销售收入−成本, ∴=− 1−− 250 = − 1+2− 250;2 33 ②当 ≥ 80时,根据年利润=销售收入−成本, ∴=−− 10000 + 1450 − 250 = 1200 −+ 10000).− 1 + − 250(0 < < 80)2 综合①②可得,= { 3 ; 1200 − + 10000≥ 80) − 250(0 < < 80) − 1 + 2 (2)由(1)可知,= { 3 , 1200 − + 10000≥ 80)①当0 < < 80时,= − 2 +1− 250 = − 13− 60)2 + 950,3∴当 = 60时, ②当 ≥ 80时,取得最大值 = 950万元; = 1200 −+ 10000) ≤ 1200 −⋅ 10000 = 1200 − 200 = 1000, = 1000万元.当且仅当 = 10000,即 = 100时, 综合①②,由于950 < 1000,取得最大值∴当产量为 100 万件时,该厂在这一商品中所获利润最大,最大利润为1000 万元.【解析】【试题解析】本题主要考查函数模型的选择与应用,属于一般题目. (1)分两种情况进行研究,当0 < < 80时,投入成本为= 13+万元),根据 2 年利润=销售收入−成本,列出函数关系式,当 ≥ 80时,投入成本为 =+1450,根据年利润=销售收入−成本,列出函数关系式,最后写成分段函数的形式,从而得到答案;(2)根据年利润的解析式,分段研究函数的最值,当0 << 80时,利用二次函数求最值,当 ≥ 80时,利用基本不等式求最值,最后比较两个最值,即可得到答案.20.【答案】解:(1)由 是定义在 上的奇函数,所以R= 0,又 > 0时, =2 −,所以 < 0时, > 0, 所以==2 − ,− ≥ 02 所以函数的解析式为 = ; −< 02 (2)当 > 0时,=−,2 ①若 ≤ 0,由 = ⩽ 0知,在(0, +∞)上递增,不合题意;2> 0, = ∈ (0, +∞),2所以 在(0, +∞)上先减再增,符合函数在(0, +∞)上不单调,综上,实数 的取值范围为 > 0; a 2,≥ 0(3)当 = 0时, =,2, < 0可得函数 是定义域 上的单调递增,R又 是定义域 上的奇函数,R由 ∈ (−1,1), ∈ (−1,1),∈ (−1,1),2 − 2− + 2 − −> 0成立, 2)成立,可得 ∴> −>−2 2⇒ < −=− 3) − 92,2 8 16 ∵ ∈ (−1,1),∴ (−) ∈ [− 9 , 7),2 16【解析】本题主要考查了函数的解析式、不等式存在性问题,涉及函数的奇偶性、单调 性,属于中档题. (1)由函数的奇偶性先求导求得 < 0的解析式,总结可得(2)结合二次函数的单调性,分类讨论即可求得 的取值范围;= 0,在由 < 0转化为> 0,根据奇函数=在 上的解析式;R a = 0时,结合函数的单调性、奇偶性得到 不等式存在性问题即可求解. 21.【答案】解:因为 ∈ (−1,1), < − ,进而根据2 2 −有零点,= log 3所以log 3 2 −= 0有解,所以2 −= 1有解.当 = 0时, = −1; 当 ≠ 0时,若2 −− 1 = 0有解,1 则 = 1 +≥ 0,解得 ≥ − 且 ≠ 0.41 综上,实数 的取值范围是[ − ,+∞).a 4【解析】函数 = log 32 − 有零点,即 2 −= 1有解,讨论 = 0和 ≠ 0两种情况求解即可.本题主要考查函数模型的选择与应用,属于一般题目. (1)分两种情况进行研究,当0 < < 80时,投入成本为= 13+万元),根据 2 年利润=销售收入−成本,列出函数关系式,当 ≥ 80时,投入成本为 =+10000 −1450,根据年利润=销售收入−成本,列出函数关系式,最后写成分段函数的形式,从而得到答案;(2)根据年利润的解析式,分段研究函数的最值,当0 << 80时,利用二次函数求最值,当 ≥ 80时,利用基本不等式求最值,最后比较两个最值,即可得到答案.20.【答案】解:(1)由 是定义在 上的奇函数,所以R= 0,又 > 0时, =2 −,所以 < 0时, > 0, 所以==2 − ,− ≥ 02 所以函数的解析式为 = ; −< 02 (2)当 > 0时,=−,2 ①若 ≤ 0,由 = ⩽ 0知,在(0, +∞)上递增,不合题意;2> 0, = ∈ (0, +∞),2所以 在(0, +∞)上先减再增,符合函数在(0, +∞)上不单调,综上,实数 的取值范围为 > 0; a 2,≥ 0(3)当 = 0时, =,2, < 0可得函数 是定义域 上的单调递增,R又 是定义域 上的奇函数,R由 ∈ (−1,1), ∈ (−1,1),∈ (−1,1),2 − 2− + 2 − −> 0成立, 2)成立,可得 ∴> −>−2 2⇒ < −=− 3) − 92,2 8 16 ∵ ∈ (−1,1),∴ (−) ∈ [− 9 , 7),2 16【解析】本题主要考查了函数的解析式、不等式存在性问题,涉及函数的奇偶性、单调 性,属于中档题. (1)由函数的奇偶性先求导求得 < 0的解析式,总结可得(2)结合二次函数的单调性,分类讨论即可求得 的取值范围;= 0,在由 < 0转化为> 0,根据奇函数=在 上的解析式;R a = 0时,结合函数的单调性、奇偶性得到 不等式存在性问题即可求解. 21.【答案】解:因为 ∈ (−1,1), < − ,进而根据2 2 −有零点,= log 3所以log 3 2 −= 0有解,所以2 −= 1有解.当 = 0时, = −1; 当 ≠ 0时,若2 −− 1 = 0有解,1 则 = 1 +≥ 0,解得 ≥ − 且 ≠ 0.41 综上,实数 的取值范围是[ − ,+∞).a 4【解析】函数 = log 32 − 有零点,即 2 −= 1有解,讨论 = 0和 ≠ 0两种情况求解即可.。

复旦附中高一上期末解析(2020.1)

复旦附中高一上期末解析(2020.1)

复旦附中高一上期末数学试卷2020.01一、填空题1.函数12log (5)y x =-的定义域为 .2.函数2()1(1)f x x x =+-≤的反函数为 . 3.已知2log 3a =,试用a 表示9log 12= . 4.幂函数223()(1)(,)mm f x a x a m --=-∈N 为偶函数,且在(0,)+∞上是减函数,则a m += .5.函数23log ()y x x =-的递增区间为 .6.方程22log (95)log (32)2x x -=-+的解为x = .7.已知关于x 的方程2240x kx k k +++-=有两个实数根,且一根大于2,一根小于2,则实数k 的取值范围为 .8.若函数6,2,()3log ,2,a x x f x x x -+⎧=⎨+>⎩≤(0a >且1a ≠)的值域是[4,)+∞,则实数a 的取值范围 .9.已知1()(33)2x x f x -=-的反函数为1()f x -,当[3,5]x ∈-时,函数1()(1)1F x f x -=-+的最大值为M ,最小值为m ,则M m += .10.对于函数(),y f x x D =∈,若对任意,,a b c D ∈,(),(),()f a f b f c 都可为某一三角形的三边长,则称()f x 为“三角形函数”.已知()1x x e tf x e +=+是三角形函数,则实数t 的取值范围是 .11.若关于x 的方程54(4)|5|x x m x x+--=在(0,)+∞内恰好有三个相异实根,则实数m 的取值范围是 .12.已知函数2131()1log 12x x k x f x xx ⎧-++⎪=⎨-+>⎪⎩≤,2()lg(2)()1xg x a x a x =⋅++∈+R ,若对任意的 {}12,|,2x x x x x ∈∈>-R ,均有12()()f x g x ≤,则实数k 的取值范围是 .二、选择题13.若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件14.下列函数中既是偶函数,又在(0,)+∞上单调递增的是( ) A .1||y x = B .2y x -= C .2|log |y x = D .23y x =15.设函数()f x 的定义域为R ,有下列三个命题:(1)若存在常数M ,使得对任意x ∈R , 有()f x M ≤,则M 是函数()f x 的最大值; (2)若存在0x ∈R , 使得对任意x ∈R , 且0x x ≠, 有0()()f x f x <,则0()f x 是函数()f x 的最大值;(3)若存在0x ∈R , 使得对任意x ∈R , 有0()()f x f x ≤,则0()f x 是函数()f x 的最大值. 这些命题中,真命题的个数是( )A .0个B .1个C .2个D .3个 16.已知函数2()2x f x m x nx =⋅++,记集合{|()0,}A x f x x ==∈R ,集合{|[()]0,}B x f f x x ==∈R ,若A B =,且都不是空集,则m n +的取值范围是( )A .[0,4)B .[1,4)-C .[3,5]-D .[0,7)三、解答题17.已知函数1()421x x f x a +=-⋅+. (1)若1a =,解方程:()4f x =;(2)若()f x 在[1,1]-上存在零点,求实数a 的取值范围.18.已知函数21()log 1axf x x -=-的图像关于原点对称,其中a 为常数. (1)求a 的值; (2)设集合4{|1}7A x x=-≥,2={|()log (1)}B x f x x m +-<,若A B ≠∅I ,求实数m 的 取值范围.19.近年来,雾霾日趋严重,我们的工作.生活受到了严重的影响,如何改善空气质量已成为当今的热点问题.某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产该型号空气净化器x (百台),其总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本).销售收入()Q x (万元)满足20.522,(016)()224,(16)x x x Q x x ⎧-+=⎨>⎩≤≤,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入−总成本); (2)工厂生产多少百台产品时,可使利润最多?20.若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值0()f x D ∈, 则称函数()f x 在D 上封闭.(1)若下列函数的定义域为(0,1)D =,试判断其中哪些在D 上封闭,并说明理由. 1()21f x x =-,2()21x f x =-;(2)若函数5()2x ag x x -=+的定义域为(1,2),是否存在实数a ,使得()g x 在其定义域(1,2)上 封闭?若存在,求出所有a 的值,并给出证明;若不存在,请说明理由.(3)已知函数()f x 在其定义域D 上封闭,且单调递增.若0x D ∈且00(())f f x x =,求证: 00()f x x =.21.已知函数||0()20x x a x f x x +⎧=⎨<⎩≥,其中a ∈R .(1)若1a =-,解不等式1()4f x ≥;(2)设0a >,21()log ()g x f x =,若对任意的1[,2]2t ∈,函数()g x 在区间[,2]t t +上的最大值和最小值的差不超过1,求实数a 的取值范围;(3)已知函数()y f x =存在反函数,其反函数记为1()y f x -=.若关于x 的不等式:12(4)()|2|f a f x x a --+-≤在[0,)x ∈+∞上恒成立,求实数a 的取值范围.参考答案一、填空题1.(,5)-∞ 2.1,(2)y x x =--≥ 3.22a a+ 4.3 5.(1,)+∞ 6.1 7.(3,0)- 8.(1,2] 9.2 10.1[,2]211.415(6,) 12.3(,]4-∞-【第9题解析】易知()f x 为R 上单调递增的奇函数,从而可知1()f x -也是R 上单调递增的奇函数,1()(1)1F x f x -=-+是由1()f x -向右、向上平移1个单位,∴()F x 在[3,5]x ∈-上单调递增,且关于点(1,1)中心对称,∴122M mM m +=⇒+=.【第10题解析】即min max 2()()f x f x >,111()1111x x x x xe t e t tf x e e e +++--===++++, ①当10t ->,即1t >时,()f x 在R 上单调递减,()(1,)f x t ∈,∴21t ⋅≥,解得(1,2]t ∈; ②当10t -=,即1t =时,()1f x =符合题意;③当10t -<,即1t <时,()f x 在R 上单调递增,()(,1)f x t ∈,∴21t ⋅≥,解得1[,1)2t ∈;综上,1[,2]2t ∈.【第11题解析】记92594,,5054()45141259,509,0x x x x x x xf x x x x x x x x x x x x ⎧⎧-+-+-⎪⎪⎪⎪⎛⎫=+--==⎨⎨ ⎪⎝⎭⎪⎪+-<+<<⎪⎪⎩⎩≥≥,函数图象如图所示,研究函数单调性可得,10,3x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递减,125,3x ⎛⎤∈ ⎥ ⎝⎦时,()f x 单调递增,25,x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()f x 单调递减,125,3m f f⎛⎫⎛⎫⎛⎫∈ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时, 原方程在(0,)+∞内恰有三个相异实根,即4156,m ⎛⎫∈ ⎪ ⎪⎝⎭.【第12题解析】121max 2min ()()()()f x g x f x g x ⇒≤≤,而lg(2)x +∈R ,∴0a =,∴2()(2)1x g x x x =>-+,()g x 的值域为11,22⎡⎤-⎢⎥⎣⎦, 当1x >时,()f x 单调递减,1()(1)2f x f <=-,满足满足题设条件;当1x ≤,max 1113()2424f x f k k ⎛⎫==+-⇒- ⎪⎝⎭≤≤;综上,3,4k ⎛⎤∈-∞- ⎥⎝⎦.二、选择题13.A 14.D 15.C 16.A 【第16题解析】 设0x A ∈,则0()0f x =,又A B =,所以0x B ∈,即0[()](0)0f f x f ==,所以0m =,2()f x x nx =+. 由22222[()]()()()()0f f x x nx n x nx x nx x nx n =+++=+++=. 若0n =时,则{0}A B ==,满足题意; 若0n ≠时,由方程()0f x =的根为0和n -. 而0和n -不是方程20x nx n ++=的根,所以方程20x nx n ++=无解,即240n n ∆=-<,解得(0,4)n ∈ 综上所述,[0,4)n ∈,则m n +的取值范围是[0,4).三、解答题17.(1)()42214x x f x =-⋅+=,23x =或21x =-(舍) 方程的解为2log 3x =.(2)令12[,2]2xt =∈,则2210t at -+=,2112t a t t t +==+,因为1t t +在1[,1]2上递减,[1,2]上递增,所以552[2,],[1,]24a a ∈∈18.(1)()f x 为奇函数,101axx ->-的解集关于原点对称,所以1a =-.此时21()log ,(11)1x f x x x x +=><--或,2211()log log ()11x x f x f x x x -+--===---+成立,故1a =-.(2)[3,7)A =22()log (1)log (1)f x x x m +-=+<在[3,7)上有解, 2log (1)[2,3), 2.x m +∈∴>Q解2:2log (1),012m x m x +<<+<,(1,21)m B =-- ,213, 2.m A B m ≠∅∴->>Q I19.(1)由题意得()1210P x x =+,则20.51212,016,()()()21210,16.x x x f x Q x P x x x ⎧-+-=-=⎨->⎩≤≤(2)当16x >时,函数()f x 递减,即有()212101652f x <-⨯=;当016x ≤≤时,函数2()0.5(12)60f x x =--+ 当12x =时,()f x 有最大值6052>综上可知,当工厂生产12百台时,可使利润最大为60万元.20.(1)当(0,1)x ∈时,1()21(1,1)f x x =-∈-,1()f x ∴在D 上不封闭;2()21(0,1)x f x =-∈,2()f x 在D 上封闭. (2)设存在实数a ,使得5()2x ag x x -=+在(1,2)上封闭, 即对一切(1,2)x ∈,5122x ax -<<+恒成立, 20,2524x x x a x +>∴+<-<+Q ,即3442x a x -<<-恒成立,34(1,2)2x a -∈-∴≥Q ;42(2,6)2x a -∈∴≤Q .综上,满足条件的2a =. (3)假设00()f x x ≠,①若00()f x x >,00(),f x x D ∈Q ,()f x 在D 上单调递增, 00(())()f f x f x ∴>,即00()x f x >,矛盾;②若00()f x x <,00(),f x x D ∈Q ,()f x 在D 上单调递增, 00(())()f f x f x ∴<,即00()x f x <,矛盾.所以,假设不成立,00()f x x =.21.(1)1a =-时,|1|,0()2,0x x x f x x -⎧=⎨<⎩≥当0x ≥时,15335()|1|,,[0,][,)44444f x x x x x =-∴∈+∞≥≥或≤U ;当0x <时,1()2,2,[2,0)4x f x x x =-∴∈-≥≥.综上,35[2,][,)44x ∈-+∞U .(2)22110,[,2],()log ()log ()a x t t g x f a x x >∈+∴==+Q 单调递减,max min 2211()()()(2)log ()log ()12g x g x g t g t a a t t -=-+=+-++≤,112()2a a t t +++≤,1222(2)t a t t t t --=++≥ 在1[,2]2t ∈上恒成立, 令32[0,]2m t =-∈,22()(2)(2)(4)68t m m h m t t m m m m -===+---+, 当0m =时,()0h m =,当3(0,]2m ∈时,1()86h m m m =+-,86m m +-Q 在3(0,]2上递减,83165666,()(0,]2365m h m m ∴+-≥+-=∈, 综上,65a ≥.(3)若0a <,则(0)(2)||f f a a =-=;若0a =,则11(1)()22f f -==;若01a <<,则2(0)(log )f f a a ==,1a ∴<时,()f x 没有反函数. 当1a ≥时,,0()2,0x x a x f x x +⎧=⎨<⎩≥ 为增函数,存在反函数,且()f x 的值域为(0,1)[,)a +∞U . 令2()()|2|,[0,)F x f x x a x =+-∈+∞,则222223,2()|2|,2a x a a x F x x a x a a x a a x ⎧-+⎪⎪=++-=⎨⎪-++<⎪⎩≥ , 22min ,()22a a x F x a ==+,所以21(4)2a f a a --+≤,因为()f x 是增函数,所以1()f x -也是增函数,2224()2,680,33224(0,1)[,),(3,4)(,2]1a a a f a a a a a a a a a a ⎧-+=++--+-⎪⎪⎪-∈+∞∈-∞⎨⎪⎪⎪⎩≤≥≥≤≥U U综上,3,2](3,4)a ∈U .。

【精准解析】上海市复旦大学附属中学2019-2020学年高一上学期期末考试数学试题

【精准解析】上海市复旦大学附属中学2019-2020学年高一上学期期末考试数学试题

∴ m2 2m 3 0 ,且 m2 2m 3 为偶数, m N ,且 a 1=1 . 解得 1 m 3 , m 0 ,1,2, 且 a=2 , 只有 m 1时满足 m2 2m 3= 4 为偶数. ∴ m 1.
-2-
am3
故答案为:3. 【点睛】本题考查幂函数的性质,根据幂函数性质求参数值,可根据幂函数性质列不等式和 等式,求解即可,属于基础题.
5.函数 y log3 x2 x 的递增区间为__________.
【答案】 1,
【解析】 【分析】 先求出函数的定义域,然后将复合函数分解为内、外函数,分别讨论内外函数的单调性,进
而根据复合函数单调性“同增异减”的原则,得到函数 y log3 x2 x 的单调递增区间. 【详解】函数 y log3 x2 x 的定义域为(−∞,0)∪(1,+∞)
所以原函数的定义域为: ,5 , 故答案为: ,5 .
【点睛】本题考查对数函数的定义域,利用真数大于 0 列不等式求解即可,属于基础题.
2.函数 f x x2 1x 1 的反函数为__________.
【答案】 y x 1 , x 2
【解析】 【分析】 通过函数的方程,求出 x,利用反函数的定义,求出函数的反函数即可.
a m ____.
【答案】3
【解析】
【分析】
由幂函数 f x a 1 xm2 2m3 a, m N 为偶函数,且在(0,+∞)上是单调递减函数,
可得 m2-2m-3<0,且 m2-2m-3 为偶数,m∈Z,且 a 1=1 .解出即可.
【详解】∵幂函数 f x a 1 xm2 2m3 a, m N 为偶函数,且在 0, 上是减函数,
∵一根大于 2,一根小于 2,

上海市上外附中2019-2020学年度高一数学第一学期期末考试(word无答案)

上海市上外附中2019-2020学年度高一数学第一学期期末考试(word无答案)

2019学年第一学期期末考试高一年级数学试卷 2020.01一、填空题(每题3分,共42分)1. 已知集合{}2,3A =,集合{}3,4,5B =,则A B ⋂=__________.2. 命题“若22am bm <,则a b <”的否命题是__________.3. 已知函数()3,11,1x x f x x x -⎧≥=⎨-<⎩,则()1f f ⎡⎤⎣⎦的值为__________.4. 函数()f x =__________.5. 已知函数()f x =,()g x =()()f x g x ⋅=__________.6. 已知指数函数()f x 的图像经过点()2,8,则它的解析式是()f x =__________.7. 已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()23f x x x b =-+(b 为常数),则()1f -=__________.8. 若函数()22,0,0x x f x x m x ⎧≤=⎨-+>⎩的值域为(],1-∞,则实数m 的取值范围是__________.9. 已知实数0x >,0y >,且111x y+=,则2x y +的最小值是__________. 10. 已知函数()3133xx f x x =+-,若()()2120f a f a -+≤,则实数a 的取值范围是__________.11. 已知函数()9f x x a a x=+-+在区间[]1,9上的最大值是10,则实数a 的取值范围是__________.12. 若函数()21f x x x a =+-有三个不同的零点,则实数a 的取值范围为__________.13. 已知函数()f x 的定义域为R ,且()()1f x f x ⋅-=和()()114f x f x +⋅-=对任意的x R ∈成立,若当[]0,1x ∈时,()f x 的值域为[]1,2,则当[]9,9x ∈-时,函数()f x 的值域为__________.14. 函数()f x x =,()22g x x x =-+,若存在1211,,,0,2n x x x ⎡⎤∈⎢⎥⎣⎦L ,使得()()()()()()()()121121n n n n f x f x f x g x g x g x g x f x --++++=++++L L ,则正整数n 的最大值是__________.二、选择题(每题3分,共12分) 15.“21x>成立”是“2x <成立”的( )条件. (A )充分非必要 (B )必要非充分 (C )充要 (D )既不充分又不必要 16. 关于函数()232f x x =-的下列判断,其中正确的是( ) (A )函数()f x 的图像是中心对称图形 (B )函数()f x 的图像是轴对称图形 (C )当0x >时,函数()f x 是减函数 (D )函数()f x 有最大值17. 小明同学提出了如下两个命题:已知函数()f x 的定义域是D ,12,x x D ∈, ①若当()()120f x f x +=时,都有120x x +=,则函数()f x 是D 上的奇函数; ②若当()()12f x f x <时,都有12x x <,则函数()f x 是D 上的增函数。

2019年复旦附中高一期末

2019年复旦附中高一期末

复旦附中高一期末数学试卷2019.06一. 填空题1. 计算:23lim 31n n n →∞-=+ 2. 2与8的等比中项是3. 函数arctan y x =,(0,1)x ∈的反函数为4. 在等差数列{}n a 中,12a =,3510a a +=,则7a =5. 用列举法表示集合1{|cos(),[0,]}32x x x ππ-=∈= 6. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若面积2222a b c S +-=, 则角C =7. 已知无穷等比数列{}n a 的各项的和为1,则2a 的取值范围为8. 已知函数()2sin()46xf x π=+,若对任意x ∈R 都有12()()()f x f x f x ≤≤(12,x x ∈R )成立,则12||x x -的最小值为9. 若a 、b 是函数2()f x x px q =-+(0p >,0q >)的两个不同的零点,且a 、b 、2- 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +=10. 若函数()sin()f x A x ωϕ=+(0A >,0ω>)在区间[,]62ππ上单调,且 2()()()236f f f πππ==-,则()f x 的最小正周期为 11. 由正整数组成的数列{}n a 、{}n b 分别为递增的等差数列、等比数列,111a b ==,记n n n c a b =+,若存在正整数k (2k ≥)满足1100k c -=,11000k c +=,则k c =12. 已知无穷等比数列{}n a 满足:对任意的*n ∈N ,sin 1n a =,则数列{}n a 公比q 的取值集合为二. 选择题13. 对于函数()2sin cos f x x x =,下列选项中正确的是( )A. ()f x 在(,)42ππ上单调递增 B. ()f x 的图像关于原点对称 C. ()f x 的最小正周期为2π D. ()f x 的最大值为214. 若等差数列{}n a 的前10项之和大于其前21项之和,则16a 的值( )A. 大于0B. 等于0C. 小于0D. 不能确定15. 已知数列{}n a 的通项公式2019(1)120191()20202n n n n a n -⎧-≤≤⎪=⎨≥⎪⎩,前n 项和为n S ,则关于数列 {}n a 、{}n S 的极限,下列判断正确的是( )A. 数列{}n a 的极限不存在,{}n S 的极限存在B. 数列{}n a 的极限存在,{}n S 的极限不存在C. 数列{}n a 、{}n S 的极限均存在,但极限值不相等D. 数列{}n a 、{}n S 的极限均存在,且极限值相等16. 已知数列{}n a 是公差不为零的等差数列,函数()f x 是定义在R 上的单调递增的奇函数,数列{()}n f a 的前n 项和为n S ,对于命题:① 若数列{}n a 为递增数列,则对一切*n ∈N ,0n S >;② 若对一切*n ∈N ,0n S >,则数列{}n a 为递增数列;③ 若存在*m ∈N ,使得0m S =,则存在*k ∈N ,使得0k a =;④ 若存在*k ∈N ,使得0k a =,则存在*m ∈N ,使得0m S =;其中正确命题的个数为( )A. 0B. 1C. 2D. 3三. 解答题17. 已知等比数列{}n a 的前n 项和为n S ,12a =,32216a a =+,且20200S <.(1)求{}n a 的通项公式;(2)是否存在正整数n ,使得2020n S >成立?若存在,求出n 的最小值,若不存在,请说明理由.18.已知函数2()2cos cos 1f x x x x =+-.(1)求函数()y f x =的单调递减区间;(2)在锐角△ABC 中,若角2C B =,求()f A 的值域.19. 已知数列{}n a 满足:12a =,1(1)(1)n n na n a n n +=+++,*n ∈N .(1)求证:数列{}n a n 为等差数列,并求出数列{}n a 的通项公式; (2)记2(1)n n b n a =+(*n ∈N ),用数学归纳法证明:12211(1)n b b b n ++⋅⋅⋅+<-+,*n ∈N .20. 设函数()5sin()f x x ωϕ=+,其中0ω>,(0,)2πϕ∈. (1)设2ω=,若函数()f x 的图像的一条对称轴为直线35x π=,求ϕ的值; (2)若将()f x 的图像向左平移2π个单位,或者向右平移π个单位得到的图像都过坐标原 点,求所有满足条件的ω和ϕ的值;(3)设4ω=,6πϕ=,已知函数()()3F x f x =-在区间[0,6]π上的所有零点依次为123,,,,n x x x x ⋅⋅⋅,且1231n n x x x x x -<<<⋅⋅⋅<<,*n ∈N ,求123212222n n n x x x x x x --+++⋅⋅⋅+++的值.21. 已知无穷数列{}n a 、{}n b 是公差分别为1d 、2d 的等差数列,记[][]n n n c a b =+(*n ∈N ), 其中[]x 表示不超过x 的最大整数,即1[]x x x -<≤.(1)直接写出数列{}n a 、{}n b 的前4项,使得数列{}n c 的前4项为:2,3,4,5;(2)若13n n a +=,13n n b -=,求数列{}n c 的前3n 项的和3n S ; (3)求证:数列{}n c 为等差数列的必要非充分条件是12d d +∈Z .参考答案一. 填空题 1. 23 2. 4± 3. tan y x =,(0,)4x π∈ 4. 8 5. 2{0,}3π 6. arctan2 7. (0,1)(1,2)U 8. 4π9. 9 10. π 11. 262 12. {|41,}q q k k =+∈Z二. 选择题13. B 14. C 15.D 16. C三. 解答题17.(1)12(2)n n a -=-;(2)12.18.(1)2[,]63k k ππππ++,k ∈Z ;(2)(1,2). 19.(1)(1)n a n n =+;(2)略.20.(1)310π;(2)643n ω+=,3πϕ=;(3)3913π. 21.(1){}n a 的前4项为1,2,3,4,{}n b 的前4项为1,1,1,1;(2)23n n -;(3)证明略.。

2020复旦附中高一上期末试卷

2020复旦附中高一上期末试卷

复旦附中高一期末数学试卷一. 填空题1. 函数12log (5)y x =-的定义域为2. 函数2()1f x x =+(1x ≤-)的反函数为3. 已知2log 3a =,试用a 表示9log 12=4. 幂函数223()(1)mm f x a x --=-(,a m ∈N )为偶函数,且在(0,)+∞上是减函数,则a m +=5. 函数23log ()y x x =-的递增区间为6. 方程22log (95)log (32)2x x -=-+的解为x =7. 已知关于x 的方程2240x kx k k +++-=有两个实数根,且一根大于2,一根小于2, 则实数k 的取值范围为8. 若函数62()3log 2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[4,)+∞,则实数a 的取值 范围是 9. 已知1()(33)2x x f x -=-的反函数为1()f x -,当[3,5]x ∈-时,函数1()(1)1F x f x -=-+ 的最大值为M ,最小值为m ,则M m += 10. 对于函数()y f x =,x D ∈,若对任意,,a b c D ∈,()f a 、()f b 、()f c 都可为某一三角形的三边长,则称()f x 为“三角形函数”,已知()1x x e t f x e +=+是三角形函数,则实数t 的 取值范围是11. 若关于x 的方程54(4)|5|x x m x x+--=在(0,)+∞内恰有三个实数根,则实数m 的取值 范围是 12. 已知函数2131()1log 12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,2()log(2)1x g x a x x =⋅+++(a ∈R ),若对 任意的12,{|,2}x x x x x ∈∈>-R ,均有12()()f x g x ≤,则实数k 的取值范围是二. 选择题13. 若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件14. 下列函数中既是偶函数,又在(0,)+∞上单调递增的是( ) A. 1||y x = B. 2y x -= C. 2|log |y x = D. 23y x = 15. 设函数()f x 的定义域为R ,有下列三个命题:(1)若存在常数M ,使得对任意x ∈R ,有()f x M ≤,则M 是函数()f x 的最大值;(2)若存在0x ∈R ,使得对任意x ∈R 且0x x ≠,有0()()f x f x <,则0()f x 是函数()f x 的最大值;(3)若存在0x ∈R ,使得对任意x ∈R ,有0()()f x f x ≤,则0()f x 是函数()f x 的最大值; 这些命题中,真命题的个数是( )A. 0个B. 1个C. 2个D. 3个16. 已知函数2()2x f x m x nx =⋅++,记集合{|()0,}A x f x x ==∈R ,集合{|[()]0,}B x f f x x ==∈R ,若A B =,且都不是空集,则m n +的取值范围是( )A. [0,4)B. [1,4)-C. [3,5]-D. [0,7)三. 解答题17. 已知函数1()421x x f x a +=-⋅+.(1)若1a =,解方程:()4f x =;(2)若()f x 在[1,1]-上存在零点,求实数a 的取值范围.18. 已知函数21()log 1ax f x x -=-的图像关于原点对称,其中a 为常数. (1)求a 的值;(2)设集合4{|1}7A x x=≥-,2{|()log (1)}B x f x x m =+-<,若A B ≠∅I ,求实数m 的取值范围.19. 近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,然后改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生成某型号的空气净化器,根据以往的生产销售经验得到下面有关生成销售的统计规律:每生产该型号空气净化器x (百台),其 总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生成成本为10万 元(总成本=固定成本+生产成本),销售收入()Q x (万元)满足:20.522016()22416x x x Q x x ⎧-+≤≤=⎨>⎩,假定该产品销平衡(即生产的产品都能卖掉),根据 上述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入—总成本);(2)工厂生产多少百台产品时,可使利润最多?20. 若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值0()f x D ∈,则称函数()f x 在D 上封闭.(1)若下列函数的定义域为(0,1)D =,试判断其中哪些在D 上封闭,并说明理由, 1()21f x x =-,2()21x f x =-;(2)若函数5()2x a g x x -=+的定义域为(1,2),是否存在实数a ,使得()g x 在其定义域(1,2) 上封闭?若存在,求出所有a 的值,并给出证明,若不存在,请说明理由;(3)已知函数()f x 在其定义域D 上封闭,且单调递增,若0x D ∈且00(())f f x x =,求 证:00()f x x =.21. 已知函数||0()20x x a x f x x +≥⎧=⎨<⎩,其中a ∈R . (1)若1a =-,解不等式1()4f x ≥; (2)设0a >,21()log ()g x f x =,若对任意的1[,2]2t ∈,函数()g x 在区间[,2]t t +上的最大值和最小值的差不超过1,求实数a 的取值范围;(3)已知函数()y f x =存在反函数,其反函数记为1()y f x -=,若关于x 的不等式12(4)()|2|f a f x x a --≤+-在[0,)x ∈+∞上恒成立,求实数a 的取值范围.参考答案一. 填空题1. (,5)-∞2. 2)y x =≥3. 22a a+ 4. 3 5. (1,)+∞ 6. 1 7. (3,0)- 8. (1,2]9. 2 10. 1[,2]2 11. (6,10 12. 3(,]4-∞-二. 选择题13. A 14. D 15. C 16. A三. 解答题17.(1)2log 3x =;(2)5[1,]4a ∈.18.(1)1a =-;(2)2m >. 19.(1)20.51212016()2121016x x x f x x x ⎧-+-≤≤=⎨->⎩;(2)生产12百台,利润最大60万元. 20.(1)1()f x 在D 上不封闭,2()f x 在D 上封闭;(2)2a =;(3)证明略.21.(1)35[2,][,)44x ∈-+∞U ;(2)65a ≥;(3)3,2](3,4)a ∈U .。

2019-2020学年上海市复旦附中高一(上)期末数学试卷(有答案解析)

2019-2020学年上海市复旦附中高一(上)期末数学试卷(有答案解析)

2019-2020学年上海市复旦附中高一(上)期末数学试卷一、选择题(本大题共4小题,共12.0分)1.若命题甲:,命题乙:,则命题甲是命题乙的A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分也非必要条件2.下列函数中既是偶函数,又在上单调递增的是A. B. C. D.3.设函数的定义域为R,有下列三个命题:若存在常数M,使得对任意,有,则M是函数的最大值;若存在,使得对任意,且,有,则是函数的最大值;若存在,使得对任意,有,则是函数的最大值.这些命题中,真命题的个数是A. 0B. 1C. 2D. 34.已知函数,记集合,集合,若,且都不是空集,则的取值范围是A. B. C. D.二、填空题(本大题共12小题,共36.0分)5.函数的定义域为______.6.函数的反函数为______.7.已知,试用a表示______.8.幂函数为偶函数,且在上是减函数,则______.9.函数的递增区间为______.10.方程的解是______.11.已知关于x的方程有两个实数根,且一根大于2,一根小于2,则实数k的取值范围为______.12.若函数且的值域是,则实数a的取值范围是______.13.已知的反函数为,当时,函数的最大值为M,最小值为m,则______.14.对于函数,若对于任意的a,b,,,,为某一三角形的三边长,则称为“可构造三角形函数”,已知函数是“可构造三角形函数”,则实数t 的取值范围是______.15.若关于x的方程在内恰有三个相异实根,则实数m的取值范围为______ .16.已知函数,,若对任意的,,均有,则实数k的取值范围是______.三、解答题(本大题共5小题,共60.0分)17.已知函数.若,解方程:;若在上存在零点,求实数a的取值范围.18.已知函数的图象关于原点对称,其中a为常数.求a的值;设集合,,若,求实数m的取值范围.19.近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题.某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产该型号空气净化器百台,其总成本为万元,其中固定成本为12万元,并且每生产1百台的生产成本为10万元总成本固定成本生产成本销售收入万元满足,假定该产品产销平衡即生产的产品都能卖掉,根据以述统计规律,请完成下列问题:求利润函数的解析式利润销售收入总成本;工厂生产多少百台产品时,可使利润最多?20.若函数满足:对于其定义域D内的任何一个自变量,都有函数值,则称函数在D上封闭.若下列函数的定义域为,试判断其中哪些在D上封闭,并说明理由.,.若函数的定义域为,是否存在实数a,使得在其定义域上封闭?若存在,求出所有a的值,并给出证明:若不存在,请说明理由.已知函数在其定义域D上封闭,且单调递增.若且,求证:.21.已知函数,其中.若,解不等式;设,,若对任意的,函数在区间上的最大值和最小值的差不超过1,求实数a的取值范围;已知函数存在反函数,其反函数记为,若关于x的不等式在上恒成立,求实数a的取值范围.-------- 答案与解析 --------1.答案:A解析:解:若命题甲:,命题乙:,若命题甲:,则,,则命题甲:,能推出命题乙:,成立;若命题乙:,则,所以或,即或;命题乙:,不能推出命题甲:成立,根据充分条件和必要条件的定义分别进行判断.命题甲是命题乙的充分非必要条件;故选:A.根据充分条件和必要条件的定义分别进行判断即可.本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.2.答案:D解析:解:函数为偶函数,当时,,为减函数,不满足条件.B.函数为偶函数,当时,为减函数,不满足条件.C.函数的定义域为,定义域关于原点不对称,为非奇非偶函数,不满足条件.D.函数为偶函数且在区间上为增函数,满足条件故选:D.根据函数奇偶性和单调性的性质分别进行判断即可.本题主要考查函数奇偶性和单调性的判断,结合常见函数的奇偶性和单调性是解决本题的关键.比较基础.3.答案:C解析:解:错.原因:M不一定是函数值,可能“”不能取到.因为函数最大值的定义是存在一个函数值大于其它所有的函数值,则此函数值是函数的最大值所以对故选:C.利用函数最大值的定义是存在一个函数值大于其它所有的函数值,则此函数值是函数的最大值判断出各命题的真假.本题考查函数的最大值的定义并利用最值的定义判断命题的真假.4.答案:A解析:解:设,,,即,故;故,,当时,成立;当时,0,不是的根,故,解得:;综上所述,;故选:A.由可得,从而求得;从而化简,从而讨论求得本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题5.答案:解析:解:由,得.函数的定义域为.故答案为:.由对数式的真数大于0求解x的范围得答案.本题考查函数的定义域及其求法,是基础题.6.答案:解析:解:由,得,,x,y互换得:,函数的反函数为,故答案为:.由原函数求得x,把x,y互换求得原函数的反函数.本题考查函数的反函数的求法,注意反函数的定义域为原函数的值域,是基础题.7.答案:解析:解:,故答案为:.利用换底公式以及对数的运算性质即可求解.本题主要考查了对数的运算性质以及换底公式,是基础题.8.答案:3解析:解:幂函数,在上是减函数,,且,,,又,,1,2,又幂函数为偶函数,,,故答案为:3.先利用幂函数的定义和单调性求出a的值和m的范围,再结合偶函数确定m的值,即可求出结果.本题主要考查了幂函数的性质,是基础题.9.答案:解析:解:函数的定义域为,令,则,为增函数,在上为减函数;在为增函数,函数的单调递增区间为,故答案为:.先求出函数的定义域,然后将复合函数分解为内、外函数,分别讨论内外函数的单调性,进而根据复合函数单调性“同增异减”的原则,得到函数的单调递增区间.本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调性,其中复合函数单调性“同增异减”是解答本题的关键,本题易忽略真数大于零.10.答案:解析:解:,,令,则,解得或.由式子有意义可知,解得,即,..故答案为:.利用对数运算性质解方程.本题考查了对数的运算性质,换元法解题思想,属于基础题.11.答案:解析:解:令,由题意可得,即:,整理:,解得:,所以实数k的取值范围为;故答案为:.设函数,由题意可得,解得k的取值范围.考查方程的根的分布,属于基础题.12.答案:解析:解:由于函数且的值域是,故当时,满足.若,在它的定义域上单调递增,当时,由,,,.若,在它的定义域上单调递减,,不满足的值域是.综上可得,,故答案为:.当时,检验满足当时,分类讨论a的范围,依据函数的单调性,求得a的范围,综合可得结论.本题主要考查分段函数的应用,对数函数的单调性和特殊点,属于中档题.13.答案:2解析:解:由题意可得,即函数在R上为奇函数,当,令,则为奇函数且单调递增所以反函数也是单调递增的奇函数,所以是向上平行移动1个单位也为单调递增,对称中心,由互为反函数的性质可得,故答案为:2由题意可得换元可得为奇函数在上,所以也是奇函数,且值域为,为对称中心为的函数且值域为,考查换元法求函数的定义域,及互为反函数的性质,属于中档题.14.答案:解析:解:由题意可得对于,b,都恒成立,由于,当,,此时,,,都为1,构成一个等边三角形的三边长,满足条件.当,在R上是减函数,,同理,,由,可得,解得.当,在R上是增函数,,同理,,由,可得,解得.综上可得,,故实数t的取值范围是,故答案为:因对任意实数a、b、c,都存在以、、为三边长的三角形,则恒成立,将解析式用分离常数法变形,由均值不等式可得分母的取值范围,整个式子的取值范围由的符号决定,故分为三类讨论,根据函数的单调性求出函数的值域,然后讨论k转化为的最小值与的最大值的不等式,进而求出实数k的取值范围.本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题.15.答案:解析:解:当时,,方程,,即;.当时,,方程,,即;;当时,方程无解;当时,方程有且只有一个解;当时,方程在上有两个解;当时,方程的解为1,;综上所述,实数m的取值范围为故答案为:分类讨论以去掉绝对值号,从而利用基本不等式确定各自方程的根的个数,从而解得.本题考查了绝对值方程的解法与应用,同时考查了基本不等式的应用及转化思想的应用.16.答案:解析:解:对函数,当时,;当时,,在上的最大值;对函数,函数若有最小值,则,即,当时,,易知函数;又对任意的,,均有,,即,,,即实数k的取值范围为.故答案为:.可求得,,根据题意,由此得到,解该不等式即可求得实数k的取值范围.本题考查不等式的恒成立问题,考查函数最值的求解,考查转化思想及计算能力,属于中档题.17.答案:解:当时,.,,或舍,当时,令,则,由,得,.在上单调递减,在上单调递增,当时,;当或时,,,.解析:将代入中,然后根据,求出的值,再解出x即可;令,则由可得,再根据t的范围求出a的范围.本题考查了指数方程的解法和根据函数的零点求参数的范围,考查了整体思想和转化思想,属中档题.18.答案:解:函数的图象关于原点对称,其中a为常数.,,解得.当时,,与条件矛盾,舍去.;集合解不等式得.由知,;,且,解得;由于,所以,解得,.故m的取值范围是.解析:根据的图象关于原点对称,得是奇函数,由恒成立,解得a的值即可.先解分式不等式,求得集合A;由于,所以B有解,解得集合B;再根据集合的关系求得m的取值范围即可.本题考查了奇函数的定义,分式不等式的解法,根据交集运算求参数取值范围,考查了运算求解能力,属于中档题.19.答案:解:由题意得,则,即;当时,函数递减,即有,当时,函数,当时,有最大值,综上可知,当工厂生产12百台时,可使利润最大为60万元.解析:本题考查函数模型在实际问题中的应用,考查函数的最值问题,属于中档题.先求得,再由可得所求;分别求出各段的最值,注意运用一次函数和二次函数的最值求法,即可得到.20.答案:解:在中,对于定义域D内的任意一个自变量,都有函数值,故函数在上不封闭;在中,,在上封闭.的定义域为,对称中心为,当时,函数在上为增函数,只需,解得当时,函数在上为减函数,只需,解得综上,所求a的值等于2.证明:函数在其定义域D上封闭,且单调递增.且,根据单调函数性质,则有唯一的,.解析:根据定义域,求得函数的定义域,利用新定义,即可得到结论;分类讨论,确定函数的单调性,建立不等式组,可求a的值.函数在其定义域D上封闭,且单调递增,根据单调函数性质,则有唯一的,由此能证明.本题以新定义函数为载体,考查新定义,考查学生的计算能力,关键是对新定义的理解,有一定的难度.21.答案:解:当,,当时,,解得或,所以或;当时,,解得,所以;综上所述,不等式的解为.,,,,,由复合函数的单调判断原则,可知在上单调递减,,化简得,在上恒成立,令,则,当时,,当时,,由对勾函数性质可知,在上单调递减,,即,故实数a的取值范围为;函数存在反函数,单调,又在上单调递增,在R上必须单调递增,即,,令,,则,,在上恒成立,当即时,恒成立,,当即时,,解得,综上所述,实数a的取值范围为.解析:把代入函数,分段解不等式即可;,,,,,再由复合函数的单调判断出在上单调递减,从而得到在上恒成立,然后用换元法,令,构造新函数,再求出该函数的最大值即可;由函数存在反函数,可得且;再令,,得其最小值为,然后分类讨论解不等式即可.本题考查函数的综合应用,涉及绝对值函数、指对函数的单调性、函数的恒成立问题,在解题过程中用到换元法、构造法、分类讨论法,考查了学生灵活运用知识的能力和逻辑推理能力,属于难题.。

2019-2020学年上海市高一(上)期末数学试卷

2019-2020学年上海市高一(上)期末数学试卷

2019-2020学年上海市高一(上)期末数学试卷第I卷(选择题)一、选择题(本大题共4小题,共12.0分)1.“x2<1”是“x<1”的()条件.A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要2.下列函数中,既是偶函数,又在(−∞,0)上单调递减的是()A. y=1xB. y=e−xC. y=1−x2D. y=x23.设函数f(x)=e x−e−x,g(x)=lg(mx2−x+14),若对任意x1∈(−∞,0],都存在x2∈R,使得f(x1)=g(x2),则实数m的最小值为()A. −13B. −1 C. −12D. 04.设f(x)=x2+bx+c(b,c∈R),且A={x|x=f(x),x∈R},B={x|x=f[f(x)],x∈R},如果A是只有一个元素的集合,则A与B的关系为()A. A=BB. A⫋BC. B⫋AD. A∩B=⌀第II卷(非选择题)二、填空题(本大题共12小题,共36.0分)5.函数y=ln(3−2x)的定义域是______ .6.函数f(x)=x2,(x<−2)的反函数是______ .7.设实数a满足log2a=4.则log a2=______ .8.幂函数f(x)=(m2−m−1)x m2+m−3在(0,+∞)上为减函数,则m=______ .9.函数y=log2[(x−2)2+1]的单调递增区间是________10.方程:log2(22x+1−6)=x+log2(2x+1)的解为______ .11.已知关于x的方程2kx2−2x−5k−2=0的两个实数根一个小于1,另一个大于1,则实数k的取值范围是______.12. 已知a >0且a ≠1,设函数f(x)={x −2,x ⩽32+log a x,x >3的最大值为1,则实数a 的取值范围为____________.13. 设f(x)的反函数为f −1(x),若函数f(x)的图象过点(1,2),且f −1(2x +1)=1,则x =__________.14. 已知函数f(x)=2|x |+x 2在区间[−2,m]上的值域是[1,8],则实数m 的取值范围是__________.15. 若关于x 的方程ln(x −2)+ln(5−x)=ln(m −x)有实根,实数m 的取值范围是______ .16. 函数f(x)=lnx −14x +34x −1.g(x)=−x 2+2bx −4,若对任意的x 1∈(0,2),x 2∈[1,2]不等式f(x 1)≥g(x 2)恒成立,则实数b 的取值范围是 .三、解答题(本大题共5小题,共60.0分)17. 设函数f (x )=4x 2+4x, (1)用定义证明:函数f (x )是R 上的增函数;(2)化简f (t )+f (1−t ),并求值:f (110)+f (210)+f (310)+⋯+f (910);(3)若关于x 的方程k ⋅f (x )=2x 在(−1,0]上有解,求k 的取值范围.18. 设集合A ={x|log 12(x 2−5x +6)=−1},B ={x|a x−2<(1a )2x−7,a >1},求A ∩B .19.某商场经调查得知,一种商品的月销售量Q(单位:吨)与销售价格(单位:万元/吨)的关系可用下图的一条折线表示.(1)写出月销售量Q关于销售价格的函数关系式;(2)如果该商品的进价为5万元/吨,除去进货成本外,商场销售该商品每月的固定成本为10万元,问该商品每吨定价多少万元时,销售该商品的月利润最大?并求月利润的最大值.20.求下列函数的定义域(1).f(x)=log3(x−5)(2)f(x)=√x+2+11−x21.已知函数g(x)=ax2−2ax+1+b,(a≠0,b>1)在区间[2,3]上的最大值为4,最.小值为1,设函数f(x)=g(x)x(1)求a,b的值及函数f(x)的解析式;(2)若不等式f(2x)−2x−k≥0在x∈[−1,1]时恒成立,求实数k的取值范围.答案和解析1.【答案】A【解析】【分析】本题主要考查充分条件与必要条件,基础题.根据充分必要条件的定义,分别证明充分性,必要性,从而得出答案.【解答】解:由x2<1解得−1<x<1⇒x<1,但x<1不能推出−1<x<1,所以“x2<1”是“x<1”成立的充分不必要条件.故选A.2.【答案】D是奇函数;y=e−x,不是偶函数;y=1−x2是偶函数,但是在(−∞,0)【解析】解:y=1x上单调递增,y=x2满足题意.故选:D.判断函数的奇偶性以及函数的单调性即可.本题考查二次函数的性质,函数的奇偶性以及函数的单调性,是基础题.3.【答案】A【解析】解:∵f(x)=e x−e−x在(−∞,0]为增函数,∴f(x)≤f(0)=0,∵∃x2∈R,使f(x1)=g(x2),∴g(x)=lg(mx2−x+1)的值域包含(−∞,0],4),显然成立;当m=0时,g(x)=lg(−x+14)的值域包含(−∞,0],当m≠0时,要使g(x)=lg(mx2−x+14的最大值大于等于1,则mx2−x+14∴{m<04m×14−(−1)24m≥1,解得−13≤m<0,综上,−13≤m≤0,∴实数m的最小值−13故选:A.由题意求出f(x)的值域,再把对任意x1∈R,都存在x2∈R,使f(x1)=g(x2)转化为函数g(x)的值域包含f(x)的值域,进一步转化为关于m的不等式组求解.本题考查函数的值域,体现了数学转化思想方法,正确理解题意是解答该题的关键,是中档题.4.【答案】A【解析】【分析】本题考查集合的相等,但关键难点是二次函数和复合函数的的解的问题,属中高档试题,难度较大,A只有一个元素,所以f(x)=x只有一个实数解,记作x0,则f(x)−x= (x−x0)2,f(x)=(x−x0)2+x,由此得出f[f(x)]=x,化简并提取公因式,可以证明此方程也有且只有一个零点x0,即可证明A=B.【解答】解:∵A只有一个元素,∴f(x)=x只有一个实数解,记作x0,则f(x)−x=x2+(b−1)x+c=(x−x0)2,∴f(x)=(x−x0)2+x,∴f[f(x)]=[(x−x0)2+x−x0]2+[(x−x0)2+x]=(x−x0)4+2(x−x0)3+2(x−x0)2+x,令f[f(x)]=x,即(x−x0)4+2(x−x0)3+2(x−x0)2+x=x(∗),则(x−x0)4+2(x−x0)3+2(x−x0)2=0,即[(x−x0)2+2(x−x0)+2](x−x0)2=0,∵(x−x0)2+2(x−x0)+2=0的判别式△=4−8=−4<0,∴无解,∴方程(∗)也只有一个实数解x0,综上所述A=B,故选A.5.【答案】(−∞,32)【解析】解:由3−2x>0,得x<32.∴原函数的定义域为(−∞,32).故答案为:(−∞,32).直接由对数式的真数大于0求解x的取值范围得答案.本题考查了函数的定义域及其求法,是基础题.6.【答案】y=−√x,(x>4)【解析】【分析】本题考查反函数的定义的应用,考查计算能力.直接利用反函数的定义求解即可.【解答】解:函数f(x)=x2,(x<−2),则y>4.可得x=−√y,所以函数的反函数为:y=−√x,(x>4).故答案为:y=−√x,(x>4).7.【答案】14【解析】解:∵实数a满足log2a=4,∴a=24=16,∴log a2=log162=lg2lg16=lg24lg2=14.故答案为:14.利用对数性质、运算法则、换底公式求解.本题考查对数式求值,是基础题,解题时要认真审题,注意对数性质、运算法则、换底公式的合理运用.8.【答案】−1【解析】解:知m2−m−1=1,则m=2或m=−1.当m=2时,f(x)=x3在(0,+∞)上为增函数,不合题意,舍去;当m=−1时,f(x)=x−3在(0,+∞)上为减函数,满足要求.故答案为−1根据幂函数的定义列出方程求出m的值;将m的值代入f(x)检验函数的单调性.本题考查幂函数的定义:形如y=xα的函数是幂函数;考查幂函数的单调性与α的正负有关.9.【答案】[2,+∞)【解析】【分析】本题主要考查复合函数的单调性.设t=(x−2)2+1,则y=log2t,分别找出函数t和y 的单调区间,利用同增异减即可求出结果.【解答】解:∵函数y=log2[(x−2)2+1],∴函数的定义域为R,设t=(x−2)2+1,则y=log2t,∵t在x∈(−∞,2)上单调递减,在[2,+∞)上单调递增,又∵y=log2t在定义域上单调递增,∴函数y=log2[(x−2)2+1]的单调增区间为[2,+∞).故答案为[2,+∞).10.【答案】{log23}【解析】解:由22x+1−6>0,得2×4x>6,即4x>3,则方程等价为log2(22x+1−6)=x+log2(2x+1)=log22x+log2(2x+1)=log22x(2x+1),即22x+1−6=2x (2x +1),即2(2x )2−6=(2x )2+2x ,即(2x )2−2x −6=0,则(2x +2)(2x −3)=0,则2x −3=0即2x =3,满足4x >3,则x =log 23,即方程的解为x =log 23,故答案为:{log 23}根据对数的运算法则进行化简,指数方程进行求解即可.本题主要考查对数方程的求解,根据对数的运算法则进行转化,结合指数方程,一元二次方程进行转化求解是解决本题的关键.11.【答案】(−∞,−43)∪(0,+∞)【解析】【分析】本题考查二次函数根的分布问题,属于中档题.利用二次函数的性质即可求解.【解答】解:令f(x)=2kx 2−2x −5k −2,因为关于x 的方程2kx 2−2x −5k −2=0的两个实数根一个小于1,另一个大于1, 则函数f(x)有两个不同的零点,且一个小于1,一个大于1.显然k ≠0,且{k <0f(1)=−3k −4>0或{k >0f(1)=−3k −4<0, 解出k <−43或k >0.故答案为(−∞,−43)∪(0,+∞). 12.【答案】[13,1)【解析】【分析】本题主要考查了分段函数,函数的最值,以及对数函数的性质,属于中档题.直接求解即可.【解答】解:∵函数f(x)={x −2,x ⩽32+log a x,x >3的最大值为1, ∴函数f(x)存在最大值,则由对数函数的性质可知0< a <1,且, 即,即a ≥13, 所以13≤a <1,故答案为[13,1). 13.【答案】12【解析】由题意函数f(x)的图象过点(1,2),则其反函数的性质一定过点(2,1),又f −1(2x +1)=1,故2x +1=2,解得x =12. 14.【答案】[0,2]【解析】【分析】本题考查根据函数值域求参数范围,属于基础题.判断f(x)的奇偶性,再根据单调性求解即可.【解答】解:函数f(x)=2|x |+x 2是R 上的偶函数,当−2≤x ≤0时,函数递减,所以f(−2)=8,f(0)=1,所以可得0≤m ≤2.故答案为[0,2].15.【答案】(2,6]【解析】解:由题意,{x −2>05−x >0, 解得,2<x <5;ln(x −2)+ln(5−x)=ln(m −x)可化为(x −2)(5−x)=m −x ;故m =−x 2+8x −10=−(x −4)2+6;∵2<x <5,∴2<−(x −4)2+6≤6;故答案为:(2,6].由题意得{x −2>05−x >0,从而解得2<x <5;从而化ln(x −2)+ln(5−x)=ln(m −x)为(x −2)(5−x)=m −x ;从而求解.本题考查了方程的根与函数图象的关系应用,属于基础题.16.【答案】(−∞,√142]【解析】 【分析】本题考查不等式恒成立问题,利用导数求函数的定值 【解答】由对任意的x 1∈(0,2),x 2∈[1,2]不等式f(x 1)≥g(x 2)恒成立, 可得f min (x 1)⩾g max (x 2),又f(x)=lnx −14x +34x −1,易得f ′(x )=−(x−1)(x−3)4x 2,当0<x <1时,f ′(x )<0,故f (x )在(0,1)上递减, 当1<x <2时,f ′(x )>0,故f (x )在(1,2)上递增, 故f min (x )=f (1)=−12.g(x)=−x 2+2bx −4=−(x −b )2+b 2−4,当b ≤1时,g (x )在[1,2]上递减,故g max (x )=g (1)=2b −5≤−12,得b ≤94,又b ≤1,故b ≤1;当1<b <2时,g max (x )=g (b )=b 2−4≤−12,得−√142<b ≤√142,又1<b <2,故1<b ≤√142; 当b ≥2时,g (x )在[1,2]上递增,故g max (x )=g (2)=4b −8≤−12,得b ≤158,又b ≥2,故无解;综上所述,b 的取值范围是 (−∞,√142].17.【答案】(1)证明:设任意x 1<x 2,则f(x 1)−f(x 2)=4x 12+4x 1−4x 22+4x 2=2(4x 1−4x 2)(2+4x 1)(2+4x 2), ∵x 1<x 2,∴4x 1<4x 2,∴4x 1−4x 2<0,又2+4x 1>0,2+4x 2>0.∴f(x 1)−f(x 2)<0, ∴f(x 1)<f(x 2), ∴f(x)在R 上是增函数; (2)对任意t ,f(t)+f(1−t)=4t 2+4t +41−t 2+41−t =4t 2+4t +42⋅4t +4=2+4t 2+4t =1,∴对于任意t ,f(1)+f(1−t)=1,(110)+f(910)=1,f(210)+f(810)=1,∴f(110)+f(210)+f(310)+⋯+f(910)=4+f(510)=92,(3)根据题意可得4x 2+4x·k =2x ,∴k =2+4x 2x,令t =2x ∈(12,1],则k =t +2t ,且在(12,1]单调递减, ∴ k ∈[3,92).【解析】本题考查函数的奇偶性、单调性的综合应用、方程根的分布问题,考查转化思想、函数思想,考查学生解决问题的能力. (1)根据函数单调性定义进行证明;(2)根据指数幂的运算法则进行化简可得f(1)+f(1−t)=1,即可求出f(110)+f(210)+f(310)+⋯+f(910)的值, 方程k ⋅f(x)=2x 可化为:4x 2+4x ·k =2x ,令t =2x ∈(12,1],则可分离出参数k ,进而转化为函数的值域问题,借助“对勾”函数的单调性可求得函数值域.18.【答案】解:A ={x|log 12(x 2−5x +6)=−1}={x|x 2−5x +6=2}={1,4}, B ={x|a x−2<(1a )2x−7,a >1}={x|a x−2<a 7−2x }={x|x −2<7−2x}={x|x <3},∴A ∩B ={1}.【解析】解对数方程求得A ,解指数不等式求得B ,再根据两个集合的交集的定义求得A ∩B .本题主要考查对数方程、指数不等式的解法,两个集合的交集的定义,属于中档题.19.【答案】解:(1)由函数图象可知:当5⩽x ⩽8时,Q =−52x +25;当8<x ⩽12时,Q =−x +13;所以得到分段函数Q ={−52x +25,5⩽x ⩽8−x +13,8<x ⩽12; 设月利润与商品每吨定价x 的函数为f (x ),则根据题意得f (x )=Q (x −5)−10, 即f (x )={(−52x +25)(x −5)−10,5⩽x ⩽8−(x −9)2+6,8<x ⩽12={−52(x −152)2+458,5⩽x ⩽8−(x −9)2+6,8<x ⩽12,所以当5⩽x ⩽8时,在x =125,f (x )的取值最大,f (125)=458;当8<x ⩽12时,在x =9,f (x )取值最大,f (9)=6. 所以,当x =9时,f (x )取最大值为6.综上:每吨定价为9万元时,销售该商品的月利润最大,最大利润为6万元.【解析】本题考查了分段函数模型的应用,函数的最值,二次函数的性质,属于中档题. (1)看函数图象知,函数是分段函数,所以分别求两段区间的函数.(2)根据题意得到利润函数式为f (x )=Q (x −5)−10,然后把函数Q (x )展开就又得到利润的分段函数,再分别求两个区间的最大值,然后作比较就可以得到整个函数的最大值,即最大利润.20.【答案】(1)解:根据题意得,x −5>0,解得x >5,即定义域为{x|x >5}(2)解:根据题意可得,{x +2≥01−x ≠0,解得x ≥−2且x ≠1,即定义域为{x|x ≥−2且x ≠1}.故答案为{x|x ≥−2且x ≠1}.【解析】(1)本题主要考查了函数的定义域,属于基础题.(2)本题主要考查了函数的定义域,属于基础题.21.【答案】解:(1)由于二次函数g(x)=ax 2−2ax +1+b 的对称轴为x =1,由题意得:当a >0,{g(2)=1+b =1g(3)=3a +b +1=4,解得{a =1b =0(舍去)当a <0,{g(2)=1+b =4g(3)=3a +b +1=1,解得{a =−1b =3>1∴a =−1,b =3 故g(x)=−x 2+2x +4,f(x)=−x +4x +2 (2)法一:不等式f(2x )−2x −k ≥0,即−2x +42x +2−2x ≥k ,∴k ≤−2⋅2x +42x +2设g(x)=−2⋅2x+42x+2,在相同定义域内减函数加减函数为减函数所以g(x)在[−1,1]内是减,故g(x)min=g(1)=0.∴k≤0,即实数k的取值范围为(−∞,0].法二:不等式f(2x)−2x−k≥0,即−2x+42x+2−2x−k≥0,∴−2x⋅(2x)2+(2−k)⋅2x+4≥0,令t=2x∈[12,2],∴化为g(t)=−2⋅t2+(2−k)⋅t+4≥0恒成立,因为g(t)图像开口向下.故只需{g(12)≥0 g(2)≥0。

2019-2020学年上海市复旦附中高一(上)期末数学试卷

2019-2020学年上海市复旦附中高一(上)期末数学试卷

2019-2020学年上海市复旦附中高一(上)期末数学试卷一.填空题1.(3分)函数12log (5)y x =-的定义域为 .2.(3分)函数21(1)y x x =+-„的反函数为 . 3.(3分)已知2log 3a =,试用a 表示9log 12= . 4.(3分)幂函数223()(1)(,)m m f x a x a m N --=-∈为偶函数,且在(0,)+∞上是减函数,则a m += .5.(3分)函数23log ()y x x =-的递增区间为 . 6.(3分)方程22log (95)log (32)2x x -=-+的解是 .7.(3分)已知关于x 的方程2240x kx k k +++-=有两个实数根,且一根大于2,一根小于2,则实数k 的取值范围为 .8.(3分)若函数6,2()(03log ,2a x x f x a x x -+⎧=>⎨+>⎩„且1)a ≠的值域是[4,)+∞,则实数a 的取值范围是 .9.(3分)已知1()(33)2x x f x -=-的反函数为1()f x -,当[3x ∈-,5]时,函数1()(1)1F x f x -=-+的最大值为M ,最小值为m ,则M m += .10.(3分)对于函数()f x ,若对于任意的a ,b ,c R ∈,f (a ),f (b ),f (c )为某一三角形的三边长,则称()f x 为“可构造三角形函数”,已知函数()1x x e t f x e +=+是“可构造三角形函数”,则实数t 的取值范围是 .11.(3分)若关于x 的方程54(4)|5|x x m x x+--=在(0,)+∞内恰有三个相异实根,则实数m的取值范围为 .12.(3分)已知函数213,1()1,12x x k x f x log x x ⎧-++⎪=⎨-+>⎪⎩„,2()(2)()1x g x aln x a R x =++∈+,若对任意的1x ,2{|x x x R ∈∈,2}x >-,均有12()()f x g x „,则实数k 的取值范围是 . 二.选择题13.(3分)若命题甲:10x -=,命题乙:20lg x lgx -=,则命题甲是命题乙的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .非充分也非必要条件14.(3分)下列函数中既是偶函数,又在(0,)+∞上单调递增的是( ) A .1||y x =B .2y x -=C .2|log |y x =D .23y x =15.(3分)设函数()f x 的定义域为R ,有下列三个命题:①若存在常数M ,使得对任意x R ∈,有()f x M „,则M 是函数()f x 的最大值; ②若存在0x R ∈,使得对任意x R ∈,且0x x ≠,有0()()f x f x <,则0()f x 是函数()f x 的最大值;③若存在0x R ∈,使得对任意x R ∈,有0()()f x f x „,则0()f x 是函数()f x 的最大值. 这些命题中,真命题的个数是( ) A .0B .1C .2D .316.(3分)已知函数2()2x f x m x nx =++g ,记集合{|()0A x f x ==,}x R ∈,集合{|[()]0B x f f x ==,}x R ∈,若A B =,且都不是空集,则m n +的取值范围是( )A .[0,4)B .[1-,4)C .[3-,5]D .[0,7)三.解答题17.已知函数1()421x x f x a +=-+g . (1)若1a =,解方程:()4f x =;(2)若()f x 在[1-,1]上存在零点,求实数a 的取值范围. 18.已知函数21()log 1axf x x -=-的图象关于原点对称,其中a 为常数. (1)求a 的值; (2)设集合4{|1}7A x x=-…,2{|()log (1)}B x f x x m =+-<,若A B ≠∅I ,求实数m 的取值范围.19.近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题.某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产该型号空气净化器x (百台),其总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本).销售收入()Q x (万元)满足20.522(016)()224(16)x x x Q x x ⎧-+=⎨>⎩剟,假定该产品产销平衡(即生产的产品都能卖掉),根据以述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入-总成本); (2)工厂生产多少百台产品时,可使利润最多?20.若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值0()f x D ∈,则称函数()f x 在D 上封闭.(1)若下列函数的定义域为(0,1)D =,试判断其中哪些在D 上封闭,并说明理由.1()21f x x =-,2()21x f x =-. (2)若函数5()2x ag x x -=+的定义域为(1,2),是否存在实数a ,使得()g x 在其定义域(1,2)上封闭?若存在,求出所有a 的值,并给出证明:若不存在,请说明理由.(3)已知函数()f x 在其定义域D 上封闭,且单调递增.若0x D ∈且00(())f f x x =,求证:00()f x x =.21.已知函数||0()20x x a x f x x +⎧=⎨<⎩…,其中a R ∈.(1)若1a =-,解不等式1()4f x …;(2)设0a >,21()log ()g x f x=,若对任意的1[2t ∈,2],函数()g x 在区间[t ,2]t +上的最大值和最小值的差不超过1,求实数a 的取值范围;(3)已知函数()y f x =存在反函数,其反函数记为1()y f x -=,若关于x 的不等式12(4)()|2|f a f x x a --+-„在[0x ∈,)+∞上恒成立,求实数a 的取值范围.2019-2020学年上海市复旦附中高一(上)期末数学试卷参考答案与试题解析一.填空题1.(3分)函数12log (5)y x =-的定义域为 (,5)-∞ .【解答】解:由50x ->,得5x <. ∴函数12log (5)y x =-的定义域为(,5)-∞.故答案为:(,5)-∞.2.(3分)函数21(1)y x x =+-„的反函数为2)y x =… . 【解答】解:由21(1)y x x =+-„,得21x y =-,2)x y ∴=…, x ,y互换得:2)y x =…, ∴函数21(1)y x x =+-„的反函数为2)y x =…,故答案为:2)y x =…. 3.(3分)已知2log 3a =,试用a 表示9log 12=22a a+ . 【解答】解:22292212342129232log log log a log log log a++===, 故答案为:22a a+. 4.(3分)幂函数223()(1)(,)m m f x a x a m N --=-∈为偶函数,且在(0,)+∞上是减函数,则a m +=3 .【解答】解:Q 幂函数223()(1)(,)m m f x a x a m N --=-∈,在(0,)+∞上是减函数,11a ∴-=,且2230m m --<, 2a ∴=,13m -<<,又m N ∈Q ,0m ∴=,1,2, 又Q 幂函数()f x 为偶函数,1m ∴=, 3a m ∴+=,故答案为:3.5.(3分)函数23log ()y x x =-的递增区间为 (1,)+∞ .【解答】解:函数23log ()y x x =-的定义域为(-∞,0)(1⋃,)+∞, 令2t x x =-,则3log y t =, 3log y t =Q 为增函数,2t x x =-在(,0)-∞上为减函数;在(1,)+∞为增函数,∴函数23log ()y x x =-的单调递增区间为(1,)+∞,故答案为:(1,)+∞.6.(3分)方程22log (95)log (32)2x x -=-+的解是 1x = . 【解答】解:222log (95)log (32)2log [4(32)]x x x -=-+=-Q ,954(32)x x ∴-=-, 令3x t =,则2430t t -+=, 解得1t =或3t =.由式子有意义可知950320x x ⎧->⎨->⎩,解得3x >t >3t ∴=. 1x ∴=.故答案为:1x =.7.(3分)已知关于x 的方程2240x kx k k +++-=有两个实数根,且一根大于2,一根小于2,则实数k 的取值范围为 (3,0)- .【解答】解:令22()4f x x kx k k =+++-,由题意可得f (2)0<, 即:222240k k k +++-<,整理:230k k +<,解得:30k -<<, 所以实数k 的取值范围为(3,0)-; 故答案为:(3,0)-.8.(3分)若函数6,2()(03log ,2a x x f x a x x -+⎧=>⎨+>⎩„且1)a ≠的值域是[4,)+∞,则实数a 的取值范围是 (1,2] .【解答】解:由于函数6,2()(03log ,2a x x f x a x x -+⎧=>⎨+>⎩„且1)a ≠的值域是[4,)+∞, 故当2x „时,满足()64f x x =-….①若1a >,()3log a f x x =+在它的定义域上单调递增,当2x >时,由()3log 4a f x x =+…,log 1a x ∴…,log 21a ∴…,12a ∴<„. ②若01a <<,()3log a f x x =+在它的定义域上单调递减, ()3log 3log 23a a f x x =+<+<,不满足()f x 的值域是[4,)+∞.综上可得,12a <„, 故答案为:(1,2].9.(3分)已知1()(33)2x x f x -=-的反函数为1()f x -,当[3x ∈-,5]时,函数1()(1)1F x f x -=-+的最大值为M ,最小值为m ,则M m += 2 .【解答】解:由题意可得1()(33)()2x x f x f x --=-=-,即函数()f x 在R 上为奇函数,当[3x ∈-,5],令1[4t x =-∈-,4],则1(1)()(33)2t t f x f t --==-为奇函数且单调递增所以反函数1()f t -也是单调递增的奇函数,所以1()()F x f t -=是1()y f t -=向上平行移动1个单位也为单调递增,对称中心(0,1), 由互为反函数的性质可得352M m +=-+=, 故答案为:210.(3分)对于函数()f x ,若对于任意的a ,b ,c R ∈,f (a ),f (b ),f (c )为某一三角形的三边长,则称()f x 为“可构造三角形函数”,已知函数()1x x e tf x e +=+是“可构造三角形函数”,则实数t 的取值范围是 1[2,2] .【解答】解:由题意可得f (a )f +(b )f >(c )对于a ∀,b ,c R ∈都恒成立,由于1()111x x xe t tf x e e +-==+++, ①当10t -=,()1f x =,此时,f (a ),f (b ),f (c )都为1,构成一个等边三角形的三边长, 满足条件.②当10t ->,()f x 在R 上是减函数,1f <(a )11t t <+-=, 同理1f <(b )t <,1f <(c )t <,由f (a )f +(b )f >(c ),可得2t …,解得12t <„. ③当10t -<,()f x 在R 上是增函数,t f <(a )1<, 同理t f <(b )1<,t f <(c )1<,由f (a )f +(b )f >(c ),可得21t …,解得112t >….综上可得,122t 剟,故实数t 的取值范围是1[2,2],故答案为:1[2,2]11.(3分)若关于x 的方程54(4)|5|x x m x x+--=在(0,)+∞内恰有三个相异实根,则实数m的取值范围为 .【解答】解:当x 450x x-…,Q 方程54(4)|5|x x m x x+--=,54(4)(5)x x m x x ∴+--=,即9x m x -+=;m ∴„当0x <<时,450x x -<, Q 方程54(4)|5|x x m x x+--=,54(4)(5)x x m x x∴++-=,即19x m x+=; 196x x+Q …;∴当6m <时,方程19x m x+=无解; 当6m =时,方程19x m x+=有且只有一个解; 当610m <<时,方程19x m x+=在(0,1)上有两个解; 当10m =时,方程19x m x+=的解为1,19;综上所述,实数m的取值范围为.故答案为:. 12.(3分)已知函数213,1()1,12x x k x f x log x x ⎧-++⎪=⎨-+>⎪⎩„,2()(2)()1x g x aln x a R x =++∈+,若对任意的1x ,2{|x x x R ∈∈,2}x >-,均有12()()f x g x „,则实数k 的取值范围是 3(,]4-∞- .【解答】解:对函数()f x ,当1x „时,11()()24max f x f k ==+;当1x >时,1()(1)2max f x f ==-,()f x ∴在(2,)-+∞上的最大值11(){,}42max f x max k =+-;对函数()g x ,函数()g x 若有最小值,则0a =,即2()1xg x x =+, 当(2x ∈-,0)(0⋃,)+∞时,1()1g x x x=+,易知函数1()2min g x =-; 又对任意的1x ,2{|x x x R ∈∈,2}x >-,均有12()()f x g x „, ()()(2)max min f x g x x ∴>-„,即111{,}422max k +--„,∴1142k +-„, ∴34k -„,即实数k 的取值范围为3(,]4-∞-.故答案为:3(,]4-∞-.二.选择题13.(3分)若命题甲:10x -=,命题乙:20lg x lgx -=,则命题甲是命题乙的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .非充分也非必要条件【解答】解:若命题甲:10x -=,命题乙:20lg x lgx -=, ①若命题甲:10x -=,则1x =,22110lg x lgx lg lg -=-=, 则命题甲:10x -=,能推出命题乙:20lg x lgx -=,成立;②若命题乙:20lg x lgx -=,则(1)0lgx lgx -=,所以0lgx =或1lgx =,即1x =或10x =; 命题乙:20lg x lgx -=,不能推出命题甲:10x -=成立, 根据充分条件和必要条件的定义分别进行判断. 命题甲是命题乙的充分非必要条件; 故选:A .14.(3分)下列函数中既是偶函数,又在(0,)+∞上单调递增的是( ) A .1||y x =B .2y x -=C .2|log |y x =D .23y x =【解答】解:A .函数为偶函数,当0x >时,1()f x x=,为减函数,不满足条件. B .函数为偶函数,当0x …时,()f x 为减函数,不满足条件. C .函数的定义域为(0,)+∞,定义域关于原点不对称,为非奇非偶函数,不满足条件.D .函数为偶函数且在区间(0,)+∞上为增函数,满足条件故选:D .15.(3分)设函数()f x 的定义域为R ,有下列三个命题:①若存在常数M ,使得对任意x R ∈,有()f x M „,则M 是函数()f x 的最大值; ②若存在0x R ∈,使得对任意x R ∈,且0x x ≠,有0()()f x f x <,则0()f x 是函数()f x 的最大值;③若存在0x R ∈,使得对任意x R ∈,有0()()f x f x „,则0()f x 是函数()f x 的最大值. 这些命题中,真命题的个数是( ) A .0B .1C .2D .3【解答】解:①错.原因:M 不一定是函数值,可能“=”不能取到.因为函数最大值的定义是存在一个函数值大于其它所有的函数值,则此函数值是函数的最大值 所以②③对 故选:C .16.(3分)已知函数2()2x f x m x nx =++g ,记集合{|()0A x f x ==,}x R ∈,集合{|[()]0B x f f x ==,}x R ∈,若A B =,且都不是空集,则m n +的取值范围是( )A .[0,4)B .[1-,4)C .[3-,5]D .[0,7)【解答】解:设1{|()0}{|(())0}x x f x x f f x ∈===, 11()(())0f x f f x ∴==,(0)0f ∴=,即(0)0f m ==, 故0m =; 故2()f x x nx =+,22(())()()0f f x x nx x nx n =+++=, 当0n =时,成立;当0n ≠时,0,n -不是20x nx n ++=的根, 故△240n n =-<, 解得:04n <<; 综上所述,04n m +<…; 故选:A . 三.解答题17.已知函数1()421x x f x a +=-+g . (1)若1a =,解方程:()4f x =;(2)若()f x 在[1-,1]上存在零点,求实数a 的取值范围. 【解答】解:(1)当1a =时,()4221x x f x =-+g .()4f x =Q ,42214x x ∴-+=g , 23x ∴=或21x =-(舍),2log 3x ∴=.(2)当[1x ∈-,1]时,令2x t =,则1[,2]2t ∈, ∴由()0f x =,得2210t at -+=,∴2112t a t t t+==+. Q 1y t t =+在1[,1]2上单调递减,在[1,2]上单调递增, ∴当1x =时,1()2min t t +=;当2x =或12时,15()2max t t +=, ∴52[2,]2a ∈,∴5[1,]4a ∈. 18.已知函数21()log 1ax f x x -=-的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)设集合4{|1}7A x x=-…,2{|()log (1)}B x f x x m =+-<,若A B ≠∅I ,求实数m 的取值范围. 【解答】解:(1)Q 函数21()log 1ax f x x -=-的图象关于原点对称,其中a 为常数. ∴222111()111ax ax x f x log log log x x ax +---==-=----, ∴1111ax x x ax+-=---, 解得1a =±.当1a =时,11111ax x x x --==---,与条件矛盾,舍去. 1a ∴=-; (2)Q 集合4{|1}7A x x=-…解不等式得{|37}A x x =<„. 由(1)知,2221()log (1)log log (1)1x f x x x m x ++-=+-<-; ∴21(1)x log x m>⎧⎨+<⎩,且A B ≠∅I ,解得121m x <<-; 由于A B ≠∅I ,所以213m ->,解得,2m >.故m 的取值范围是(2,)+∞.19.近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题.某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产该型号空气净化器x (百台),其总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本).销售收入()Q x (万元)满足20.522(016)()224(16)x x x Q x x ⎧-+=⎨>⎩剟,假定该产品产销平衡(即生产的产品都能卖掉),根据以述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入-总成本);(2)工厂生产多少百台产品时,可使利润最多?【解答】解:(1)由题意得()1210P x x =+,⋯(1分)则20.5221210,016()()()2241210,16x x x x f x Q x P x x x ⎧-+--=-=⎨-->⎩剟 即为20.51212,016()21210,16x x x f x x x ⎧-+-=⋯⎨->⎩剟(4分) (2)当16x >时,函数()f x 递减,即有()(16)21216052f x f <=-=万元6⋯ 分 当016x 剟时,函数2()0.51212f x x x =-+-20.5(12)60x =--+,当12x =时,()f x 有最大值60万元.9⋯ 分所以当工厂生产12百台时,可使利润最大为60万元.10⋯ 分20.若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值0()f x D ∈,则称函数()f x 在D 上封闭.(1)若下列函数的定义域为(0,1)D =,试判断其中哪些在D 上封闭,并说明理由.1()21f x x =-,2()21x f x =-.(2)若函数5()2x a g x x -=+的定义域为(1,2),是否存在实数a ,使得()g x 在其定义域(1,2)上封闭?若存在,求出所有a 的值,并给出证明:若不存在,请说明理由.(3)已知函数()f x 在其定义域D 上封闭,且单调递增.若0x D ∈且00(())f f x x =,求证:00()f x x =.【解答】解:(1)在1()21f x x =-中,对于定义域D 内的任意一个自变量0x ,都有函数值10()(1f x ∈-,11)D ∉,故函数1()21f x x =-在1D 上不封闭;在2()21x f x =-中,21(0,1)x -∈,在1D 上封闭.(2)5()2x a g x x -=+的定义域为(1,2),对称中心为(2,5)-, 当100a +>时,函数5()2x a g x x -=+在2D 上为增函数, 只需(1)1(2)210f f a ⎧⎪⎨⎪>-⎩…„,解得2a =当100a +<时,函数5()2x a g x x -=+在2D 上为减函数, 只需(1)2(2)110f f a ⎧⎪⎨⎪<-⎩„…,解得a ∈∅ 综上,所求a 的值等于2.证明:(3)Q 函数()f x 在其定义域D 上封闭,且单调递增.0x D ∈且00(())f f x x =,∴根据单调函数性质0()f x D ∈,则有唯一的0x D ∈,00()f x x ∴=.21.已知函数||0()20x x a x f x x +⎧=⎨<⎩…,其中a R ∈. (1)若1a =-,解不等式1()4f x …; (2)设0a >,21()log ()g x f x=,若对任意的1[2t ∈,2],函数()g x 在区间[t ,2]t +上的最大值和最小值的差不超过1,求实数a 的取值范围;(3)已知函数()y f x =存在反函数,其反函数记为1()y f x -=,若关于x 的不等式12(4)()|2|f a f x x a --+-„在[0x ∈,)+∞上恒成立,求实数a 的取值范围.【解答】解:(1)当1a =-,|1|,0()2,0x x x f x x -⎧=⎨<⎩…, 当0x …时,1()|1|4f x x =-…,解得54x …或34x „,所以304x 剟或54x …;当0x <时,1()24x f x =…,解得2x -…,所以20x -<„; 综上所述,不等式的解为35[2,][,)44x ∈-+∞U . (2)0a >Q ,1[2t ∈,2],[x t ∈,2]t +,()f x x a ∴=+,2211()log ()()g x f log a x x==+, 由复合函数的单调判断原则,可知()g x 在[x t ∈,2]t +上单调递减,2211()()()(2)()()12max min g x g x g t g t log a log a t t ∴-=-+=+-++„, 化简得,2(2)t a t t -+…在1[2t ∈,2]上恒成立, 令32[0,]2m t =-∈,则22()(2)(2)(4)68t m m h m t t m m m m -===+---+, 当0m =时,()0h m =, 当3(0,]2m ∈时,1()86h m m m=+-, 由对勾函数性质可知,86m m +-在3(0,]2上单调递减,∴8316566236m m +-+-=…,即60()5h m <„, 故实数a 的取值范围为65a …; (3)Q 函数()y f x =存在反函数,()y f x ∴=单调,又()f x Q 在(,0)-∞上单调递增,()y f x ∴=在R 上必须单调递增,0021a ∴+=…即1a …,12,(),01x a x a f x log x x --⎧∴=⎨<<⎩…, 令2()()|2|F x f x x a =+-,[0x ∈,)+∞, 则222223,2()|2|,2a x a a x F x x a x a ax a a x ⎧-+⎪⎪=++-=⎨⎪-++<⎪⎩…, ∴22()()22min a a F x F a ==+, 12(4)()|2|f a f x x a --+-Q „在[0x ∈,)+∞上恒成立,∴当041a <-<即34a <<时,22(4)2a log a a -+„恒成立,34a ∴<<,当4a a -…即2a „时,242a a a a --+„32a 剟,综上所述,实数a 的取值范围为3,2](3,4)a ∈U .。

复旦附中高一期末(2019.01)

复旦附中高一期末(2019.01)

复旦附中高一期末数学试卷2019.01一. 填空题1. 3()x f x a -=(0a >且1a ≠)的图像经过一个定点,这个定点的坐标是2.函数y 的定义域是3. 研究人员发现某种物质的温度y (单位:摄氏度)随时间x (单位:分钟)的变化规律 是:1222x x y -=⋅+(0)x ≥. 经过 分钟,该物质温度为5摄氏度4. 函数(3)4,1()log ,1a a x a x f x x x --<⎧=⎨≥⎩是定义在R 上的单调递增函数,则实数a 的取值范围 是5. 函数122()(4174)f x x x -=-+的单调递增区间是6. 函数0.52|log |1x y x =-的零点个数为 个7. 若函数22()lg[(1)(1)1]f x a x a x =-+++的定义域为R ,则实数a 的取值范围是 8. 已知函数22,0()log ,01x x f x x x ⎧≤⎪=⎨<<⎪⎩的反函数是1()f x -,则11()2f -= 9. 当|lg ||lg |a b =()a b <时,则2a b +的取值范围是10. 函数1()42x f x =-的图像关于点 成中心对称 11. 设2{|}M y y x -==,1{|(1)(1)(||1)(2),12}1N y y x m x x m ==+-+--≤≤-, 若N M ⊆,则实数m 的取值范围是 12. 已知函数2()41f x ax x =++,若对任意x ∈R ,(())0f f x ≥恒成立,实数a 的取值 范围是二. 选择题13. 下列四组函数中,不是互为反函数的是( )A. 3y x -=和13y x -=B. 23y x =和32y x =(0)x ≥C. 2x y =(0)x >和2log y x =(1)x >D. lg(1)y x =-(1)x >和101x y =+ 14. “1a >”是“函数()(1)x f x a a =-⋅是单调递增”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要15. 下列四个函数中,图像如图所示的只能是( )A. lg y x x =+B. lg y x x =-+C. lg y x x =-D. lg y x x =--16. 已知n m <,函数122|1|log (1),1()23,x x x n f x n x m ----≤≤⎧⎪=⎨-<≤⎪⎩的值域 是[1,1]-有下列结论:① 当0n =时,(0,2]m ∈; ② 当12n =时,1(,2]2m ∈; ③ 当1[0,)2n ∈时,[1,2]m ∈; ④ 当1[0,)2n ∈时,(,2]m n ∈. 其中,正确的命题为( )A. ①②B. ①③C. ②③D. ③④三. 解答题17. 已知幂函数223()m m f x x -++=()m ∈Z 是奇函数,且(1)(2)f f <.(1)求m 的值,并确定()f x 的解析式;(2)求12221log ()log [2()],[,2]2y f x f x x =+∈的值域.18. 已知函数2()log ()f x x a =+,a 为常数,()g x 是定义在[1,1]-上的奇函数.(1)当2a =时,满足|()|1f x >的x 取值范围;(2)当01x ≤≤时,()()g x f x =,求()g x 的反函数1()g x -.19. 如图所示,为一台冷轧机的示意图,冷轧机由若干对轧辊组成,带钢从一端输入,经过各对轧辊逐步减薄后输出.(轧钢过程中,钢带宽度不变,且不考虑损耗)一对对轧辊的减薄率=输入该对的钢带厚度-输出该对的钢带厚度输入该对的钢带厚度(1)输入钢带的厚度为20mm ,输出钢带的厚度为2mm ,若每对轧辊的减薄率不超过 20%,问冷轧机至少需要安装几对轧辊?(2)已知一台冷轧机共有4对减薄率为20%的轧辊,所有轧辊周长均为1600mm ,若第k 对轧辊有缺陷,每滚动一周在带钢上压出一个疵点,在冷轧机输出的刚带上,疵点的间距为 k L ,易知41600L mm =,为了便于检修,请计算1L 、2L 、3L .20. 已知函数2()a f x x x=+(其中a 为常数). (1)判断函数(2)x y f =的奇偶性;(2)若不等式1(2)242x x x f <++在[0,1]x ∈时有解,求实数a 的取值范围; (3)设1()1x g x x -=+,是否存在正数a ,使得对区间1[0,]2上的任意三个实数m 、n 、p , 都存在以[()]f g m 、[()]f g n 、[()]f g p 为边长的三角形?若存在,试求出这样的a 的取值 范围;若不存在,请说明理由3k →→21. 函数()y f x =定义域为有理数集,当0x ≠时,()1f x >,且对任意有理数x 、y , 有()()2()()f x y f x y f x f y ++-=.(1)证明:(0)1f =;(2)比较1()2f -、1()2f 、(1)f 的大小,并说明理由; (3)对任意的,x y +∈Q ,x y <,判断()f x 、()f y 的大小关系,并说明理由.参考答案一. 填空题1. (3,1)2. (,6]-∞3. 14. (1,3)5. 1(,)4-∞ 6. 2 7. 53a >或1a ≤- 8. 1- 9. (3,)+∞ 10. (2,0) 11. (1,0){1}- 12. [3,)+∞二. 选择题13. B 14. A 15. C 16. C三. 解答题17.(1)0m =,3()f x x =;(2)5[,11]4-.18.(1)3(2,)(0,)2--+∞;(2)121[0,1]()12[1,0)x x x g x x --⎧-∈=⎨-∈-⎩.19.(1)11;(2)13125L =,22500L =,32000L =.20.(1)1a =,偶函数;1a =-,奇函数;1a ≠±,非奇非偶函数;(2)(3,3)-;(3)5155(,(,)315153--.21.(1)略;(2)11(1)()()22f f f >=-;(3)()()f x f y <.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


1
二、选择题
13. 若命题甲: x −1 = 0 ,命题乙: lg2 x − lg x = 0 ,则命题甲是命题乙的( )
A、充分非必要条件
B、必要非充分条件
C、充要条件
D、既非充分也非必要条件
14、下列函数中既是偶函数,又在(0,+∞)上单调递增的是( )
A、y= 1 |x|
B、 y = x−2
f
( 1 ) ,若对任意的 t ∈[1 , 2] ,函数 g(x) 在区间[t,t + 2] 上
售经验得到下面有关生产销售的统计规律:每生产该型号空气净化器 x (百台 ,其总成本为
P(x) (万元 ,其中固定成本为 12 万元,并且每生产 1 百台的生产成本为 10 万元 总成本 固定
成本
生产成本
销售收入 Q(x)
万元
满足
Q(
x)
=
−0.5x2 224, ( x
+ >
22x, 16)
(0

x ≤ 16)
(3)已知函数 f (x)在其定义域 D 上封闭,且单调递增。若 x0 ∈ D 且 f ( f (x0 )) = x0 , 求证: f (x0 ) = x0 .
21.已知函数
f
(x)
=
|
x+a 2x
|
x x
≥ <
0 0
,其中
a

R
.
(1)若 a = −1,解不等式 f (x) ≥ 1 ; 4
(2)设 a > 0 , g(x) = log2

8.若函数
f
(x)
=
−x + 6, x ≤ 2,
3
+
loga
x,
x
>
2,

a
>
0
且a ≠1
)的值域是 [4, +∞)
,则实数 a 的
取值范围是

9.已知 f (x) = 1 (3x − 3−x ) 的反函数为 f −1(x) ,当 x ∈[−3, 5] 时,函数 2
F (x) = f −1(x −1) +1 的最大值为 M ,最小值为 m ,则 M + m =
2019 学年复旦附中高一年级第一学期期末试卷
2020.1
一、填空题
1.函数 y = log 1 (5 − x) 的定义域为

2
2.函数 f (x) = x2 +1 (x ≤ −1) 的反函数为

3.已知 log2 3 = a ,试用 a 表示 log9 12 =

4.幂函数 f (x) = (a −1)xm2 −2m−3(a, m ∈ ℕ) 为偶函数,且在 (0, +∞) 上是减函数,则
2
18.已知函数
f
(x)
=
log 2
1− ax x −1
的图像关于原点对称,其中
a 为常数.
(1)求 a 的值;
(2)设集合
A={x
|
4 7−
x
≥ 1},B={x
|
f
(x) +
log2 (x −1)
<
m} ,若
A∩
B

φ
,求实数 m
的取值范围.
19.近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,如何改善空气质量已成为当 今的热点问题.某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销
,假定该产
品产销平衡 即生产的产品都能卖掉 ,根据上述统计规律,请完成下列问题:
求利润函数 y = f (x) 的解析式 利润 销售收入 总成本 ;
工厂生产多少百台产品时,可使利润最多?
3
20.若函数 f (x) 满足:对于其定义域 D 内的任何一个自变量 x0 ,都有函数值 f (x0 ) ∈ D ,则 称函数 f (x)在 D 上封闭.
C、 y =| log2 x |
2
D、 y = x3
15、设函数 f (x) 的定义域为 R ,有下列三个命题:
(1)若存在常数 M ,使得对任意 x ∈ R , 有 f (x) ≤ M ,则 M 是函数 f (x) 的最大值;
(2)若存在 x0 ∈ R , 使得对任意 x ∈ R , 且 x ≠ x0 , 有 f (x) < f (x0 ) ,则 f (x0 ) 是函数 f (x) 的最大值;
(3f (x) ≤ f (x0 ) ,则 f (x0 ) 是函数 f (x) 的最
大值。
这些命题中,真命题的个数是( )
A、0 个
B、1 个 C、2 个
D、3 个。
16、已知函数 f (x) = m ⋅ 2x + x2 + nx ,记集合 A = {x | f (x) = 0, x ∈ R},集合
x
x
m 的取值范围是

12.已知函数
f
(x)
=
− −
x2 + x +
1 2
+
log
1 3
k x
x ≤1
x
>1,
g(x)
=
a
⋅ lg(x
+
2)
+
x
x 2+
1
(a

R)
,若对
任意的 x1, x2 ∈{x | x ∈ R, x > −2} ,均有 f (x1) ≤ g(x2 ) ,则实数 k 的取值范围是
(1)若下列函数的定义域为 D = (0,1),试判断其中哪些在 D 上封闭,并说明理由。 f1(x) = 2x − 1, f2 (x) = 2x −1;
(2)若函数
g(x)
=
5x − a x+2
的定义域为
(1, 2)
,是否存在实数
a
,使得
g(
x)
在其定义域
(1,2) 上封闭?若存在,求出所有 a 的值,并给出证明;若不存在,请说明理由.
a+m=

5.函数 y = log3 (x2 − x) 的递增区间为

6.方程 log2 (9x − 5) = log2 (3x − 2) + 2 的解为 x =

7.已知关于 x 的方程 x2 + kx + k 2 + k − 4 = 0 有两个实数根,且一根大于 2,一根小于 2,
则实数 k 的取值范围为

10.对于函数 y = f (x), x ∈ D ,若对任意 a,b, c ∈ D , f (a), f (b), f (c) 都可为某一
三角形的三边长,则称
f
(x)
为“三角形函数”.已知
f
(x)
=
ex ex
+t +1
是三角形函数,则实
数 t 的取值范围是

11.若关于 x 的方程 (4x + 5)− | 5x − 4 |= m 在 (0, +∞) 内恰好有三个实数根,则实数
B = {x | f [ f (x)] = 0, x ∈ R},若 A = B ,且都不是空集,则 m + n 的取值范围是
(
)
A、 [0, 4)
B、 [−1, 4) C、[−3, 5]
D、[0, 7)
三、解答题
17.已知函数 f (x) = 4x − a ⋅ 2x+1 +1. (1) 若 a = 1,解方程: f (x) = 4 ; (2) 若 f (x) 在[−1,1] 上存在零点,求实数 a 的取值范围.
相关文档
最新文档