利用基本不等式求最值的常见方法
用基本不等式求最值六种方法
用基本不等式求最值六种方法基本不等式是求解数学问题中常用的工具,可以通过基本不等式来求解最值问题。
下面将介绍六种使用基本不等式求解最值问题的方法。
方法一:两边平方法若要求一个式子的最大值或最小值,在不改变问题的本质情况下,可以通过平方的方式将问题转化为一个更容易处理的形式。
例如,我们要求a+b 的最小值,可以通过平方的方式将其转化为一个更易处理的问题,即(a+b)^2=a^2+b^2+2ab,然后应用基本不等式,得到(a+b)^2≥ 2ab。
由此可见,通过两边平方后,可使用基本不等式求得 a+b 的最小值。
方法二:四平方法四平方法指的是对式子的四个项分别平方,将一些复杂的问题转化为四个简单展开的项的和,然后再应用基本不等式进行推导。
例如,我们要求 a^2 + b^2 的最小值,可以采用四平方法将其转化为 a^2/2 + a^2/2 + b^2/2 + b^2/2 的和,即 (a^2/2 + b^2/2) + (a^2/2 + b^2/2),然后应用基本不等式,得到(a^2/2 + b^2/2) + (a^2/2 + b^2/2) ≥2√[(a^2/2)(b^2/2)] = ab。
方法三:绝对值法绝对值法是将问题中的绝对值项用不等式进行替代,然后使用基本不等式进行求解。
例如,我们要求,x-2,的最小值,可以将其转化为不等式形式,即x-2≥0或x-2≤0。
然后根据这两个不等式分别求解x的取值范围,得到最小值。
方法四:极值法极值法是将要求最值的式子看作一个函数,通过求函数的极值点来确定最值。
例如,我们要求 f(x) = x^2 的最小值,可以求函数的极值点。
对于二次函数 f(x) = ax^2 + bx + c,其极值点的横坐标是 -b/2a,通过求解方程 -b/2a = 0,可以得到 x = 0。
因此,f(x) = x^2 的最小值是 f(0) = 0。
方法五:辅助不等式法辅助不等式法是引入一个辅助不等式,通过该不等式来推导求解最值问题。
基本不等式求最值的八种思维方法
ʏ尹丹青利用基本不等式求最值是高考的常考点,下面介绍基本不等式求最值的八种思维方法㊂方法一: 定和 与 拼凑定和 求积的最值例1 已知x >0,y >0,且x +y =7,则(1+x )(2+y )的最大值为㊂解:由x +y =7,可拼凑(x +1)+(y +2)=10,利用基本不等式求最值㊂易得(x +1)+(y +2)=10,所以(1+x )(2+y )ɤ(1+x )+(2+y )22=25,当且仅当1+x =2+y ,即x =4,y =3时等号成立㊂故(1+x )㊃(2+y )的最大值为25㊂解后反思:利用基本不等式求最值时,必须同时满足: 一正 二定 三相等㊂方法二: 定积 与 拼凑定积 求和的最值例2 若a >-3,则a 2+6a +13a +3的最小值为㊂解:对a 2+6a +13a +3变形拼凑积为定值,利用基本不等式求最值㊂因为a >-3,所以a +3>0,4a +3>0㊂由基本不等式得a 2+6a +13a +3=(a +3)2+4a +3=(a +3)+4a +3ȡ2(a +3)㊃4a +3=4,当且仅当a +3=4a +3即a =-1时等号成立㊂故a 2+6a +13a +3的最小值为4㊂解后反思:观察积与和哪个是定值,根据 和定积动,积定和动 来求解㊂方法三: 和积化归 构建不等式求最值例3 已知x >0,y >0,且x +y +x y =3,若不等式x +y ȡm 2-m 恒成立,则实数m 的取值范围为㊂解:由基本不等式得(x +y )m i n =2,构建m 2-m ɤ(x +y )m i n ,再解不等式即可㊂由3-(x +y )=x y ɤ(x +y )24,当且仅当x =y =1时等号成立,解得x +y ȡ2或x +y ɤ-6(舍去),则(x +y )m i n =2㊂因为不等式x +y ȡm 2-m 恒成立,所以m 2-m ɤ(x +y )m i n ,即m 2-m ɤ2,解得-1ɤm ɤ2㊂解后反思:根据和与积的关系式,结合基本不等式可以求出积或和的最值,这就是 和积化归法㊂方法四: 化1 与 拼凑化1 求最值例4 已知a ,b 均为正数,且1a +1+2b -2=12,则2a +b 的最小值为㊂解:确定b >2,由题设变换得2a +b =2[2(a +1)+(b -2)]1a +1+2b -2,展开凑积为定值,利用基本不等式求最值㊂当b ɪ(0,2)时,2b -2<-1,而1a +1<1,则1a +1+2b -2<0,不符合题意,故b >2㊂2a +b =2(a +1)+(b -2)=2[2(a +1)+(b -2)]1a +1+2b -2=8㊃a +1b -2+2㊃b -2a +1+8ȡ216㊃a +1b -2㊃b -2a +1+8=16,当且仅当8㊃a +1b -2=2㊃b -2a +1,即a =3,b =10时等号成立㊂故2a +b 的最小值为16㊂解后反思: 化1 或 拼凑化1 求最值的关键是基本不等式的灵活应用㊂方法五:不等式链21a +1bɤa b ɤa +b2ɤa 2+b 22(a ,b ɪR *)的合理应用例5 已知a >0,b >0,若a +b =4,51知识结构与拓展高一数学 2023年7 8月Copyright ©博看网. All Rights Reserved.则( )㊂A .a 2+b 2有最小值4B .a b 有最大值2C .1a +1b 有最大值1D .1a +b 有最小值24解:已知a >0,b >0,则21a +1b ɤa b ɤa +b 2ɤa 2+b22,当且仅当a =b 时取等号㊂a 2+b 2ȡ(a +b )22=8,A 错误㊂由4=a +b ȡ2a b ,可得a b ɤ4,B 错误㊂1a +1b ȡ4a +b =1,C 错误㊂1a +b ȡ12a +b 2=122=24,当且仅当a =b =2时取等号,D 正确㊂应选D ㊂解后反思:不等式链21a +1bɤa b ɤa +b 2ɤa 2+b 22(a ,b ɪR *)分别为调和平均数㊁几何平均数㊁代数平均数㊁平方平均数㊂方法六:复杂分式构造法凑定值例6 已知a >b ,不等式a x 2+2x +b ȡ0对于一切实数x 恒成立,且∃x 0ɪR ,使得a x 20+2x 0+b =0成立,则a 2+b2a -b的最小值为㊂解:由不等式恒成立和∃x 0ɪR 使得方程成立可得a b =1,将a 2+b2a -b化成a -b +2a -b 求最值㊂因为不等式a x 2+2x +b ȡ0对于一切实数x 恒成立,所以a >0,4-4a b ɤ0㊂因为∃x 0ɪR ,使得a x 20+2x 0+b =0成立,所以4-4a b ȡ0㊂据上可得,4-4a b =0,所以a >0,b >0,a b =1㊂故a 2+b 2a -b =(a -b )2+2a ba -b=a -b +2a -b ȡ22,当且仅当a -b =2a -b 时取等号㊂故所求的最小值为22㊂解后反思:复杂分式构造法凑定值,其目的是构造和式的积为定值,再利用基本不等式求最值㊂方法七:反解代入消元法凑积为定值例7 设b >0,a b +b =1,则a 2b 的最小值为㊂解:已知等式转化为b =1a +1,再通过常数分离得到a b 2=(a +1)+1a +1-2求最值㊂已知b >0,a b +b =1,所以b =1a +1,a +1>0,所以a 2b =a 2a +1=(a +1-1)2a +1=a +1+1a +1-2ȡ2(a +1)㊃1a +1-2=0,当且仅当a +1=1a +1,即a =0时等号成立㊂故a 2b 的最小值为0㊂解后反思:借助反解代入消元,重新构造积为定值,这是求解最值的通法㊂方法八:两次使用基本不等式求最值例8 已知x ,y 都为正实数,则4(x y +1)x +x 2y的最小值为㊂解:4(x y +1)x +x 2y=4y +4x +x 2y ㊂因为x ,y 都为正实数,所以4y +x 2yȡ24x 2=4x ,当且仅当4y 2=x 2,即2y =x 时等号成立㊂所以4y +4x +x 2yȡ4x +4x ȡ216=8,当且仅当4x =4x,即x =1时等号成立㊂综上所述,当x =1,y =12时,4(x y +1)x +x 2y取得最小值为8㊂解后反思:两次使用不等式求最值,既要注意多次取等号时成立的条件,也要注意两次使用不等式后能 约分凑出定值㊂作者单位:江苏省丹阳高级中学(责任编辑 郭正华)61 知识结构与拓展 高一数学 2023年7 8月Copyright ©博看网. All Rights Reserved.。
基本不等式求最值技巧总结
高三复习讲义: 基本不等式求最值总结一、直接法1.求函数2log log (2)x y x x =+的值域2.1,1,,a b x y R >>∈,若3,x y a b a b ==+=11x y +的最大值3.设01,01a x y <<<≤<,且log log 1a a x y ⋅=,求xy 的最大值4.已知0a b >>,求216()a b a b +-的最小值二、凑系数5.当04x <<时,求(82)y x x =-的最大值6.设0,0x y >>,且3212x y +=,求xy 的最大值三、凑项7.已知54x <,求函数14245y x x =-+-的最大值8.设,x y z n N >>∈*,且11n x y y z x z +≥---恒成立,求n 的最大值9.设01,,x a b R +<<∈,求1a b x x+-的最小值四、凑、配、拆 10.已知52x ≥,求24524x x y x -+=-的最小值 11.当0x >时,求22121x x y x x ++=++的最小值12.若对于任意的0x >,231x a x x ≤++恒成立,求a 的取值范围13.已知1x >-,求2158x y x x +=++的最大值 五、基本不等式失效14.求函数2y =15.求4sin (0)sin y x x xπ=+<<的值域 六、1的整体代换16.已知正数,x y 满足4x y +=,求使不等式14m x y+≥,恒成立的实数m 的取值范围 17.已知,x y R +∈,且20x y xy +-=,若222x y m m +>+恒成立的m 的取值范围18.函数22(0,1)x y a a a +=->≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,求12m n+的最小值 19.已知正数,,x y z 满足1x y z ++=,求149x y z ++的最小值七、凑和为定值20.已知正数,a b 满足2223a b +=,求21. 已知,x y R +∈,且2212y x +=,求22.已知30x -<<,求八、构造不等式23.设,x y R +∈,且()1xy x y -+=,求x y +的最小值24. ,x y R +∈,且228x y xy ++=,求2x y +最小值25.已知1,1x y >->-,且(1)(1)4x y ++=,求x y +的最小值九、平方26. 求y =27.设,,a b c R +∈,且1a b c ++=28.设,x y R +∈a 的最小值。
利用基本不等式求最值的技巧
基本不等式应用一:直接应用求最值例1:求下列函数的值域(1)y =3x 2+(2)y =x +解:(1)y =3x 2+≥2)=∴值域为[,+∞)(2)当x >0时,y =x +≥2)=2;当x <0时,y =x +=-(-x -)≤-2)=-2∴值域为(-∞,-2]∪[2,+∞) 二:凑项例2:已知54x <,求函数14245y x x =-+-的最大值。
解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
变式12,33y x x x =+>- 三:凑系数例3.当时,求(82)y x x =-的最大值。
解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。
当,即x =2时取等号当x =2时,(82)y x x =-的最大值为8。
评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。
变式1:设230<<x ,求函数)23(4x x y -=的最大值。
解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫ ⎝⎛∈=3,03x 时等号成立。
变式2:已知x ,y 为正实数,且x 2+=1,求x 的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab ≤。
利用基本不等式求最值的常见方法
利用基本不等式求最值的常见方法利用基本不等式求最值是一种常见的数学方法,适用于解决许多最值问题。
基本不等式是指一个关于两个变量的不等式,例如AM-GM不等式、Cauchy-Schwarz不等式等。
这些不等式通过将变量与其平方、乘积等进行比较,从而得到最值的上限或下限。
其中最常用的基本不等式是AM-GM不等式。
AM-GM不等式指出,对于非负实数$x_1,x_2,...,x_n$,有以下不等式成立:$$\frac{x_1+x_2+...+x_n}{n} \geq \sqrt[n]{x_1x_2...x_n}$$将这个不等式应用于最值问题时,常用的方法如下:1.确定可变参数的范围:首先,确定问题中的可变参数范围,并将其表示为一个或多个变量(通常用$x$表示)。
这些变量可以是任意从一个集合中取值的实数或正整数。
2. 构造一个函数:将问题转化为一个函数问题,其中目标函数和约束条件由可变参数表示。
通常,要求最大化或最小化的数值表示为目标函数(通常用 $f(x)$ 表示),而由可变参数表示的约束条件表示为 $g(x) \leq k$ 或 $g(x) \geq k$ 的形式。
3. 在约束条件下,应用AM-GM不等式:根据问题的约束条件,应用AM-GM不等式。
根据AM-GM不等式,可以将目标函数表示为对应于AM-GM 不等式的形式。
例如,如果AM-GM不等式为 $\frac{a+b}{2} \geq\sqrt{ab}$,则可以通过对目标函数的一部分应用这个不等式,得到$\frac{f(x)}{g(x)} \geq \sqrt[h]{k}$ 的形式。
4.求导并解方程:将目标函数分别对可变参数求导,然后解方程。
这是为了找到使目标函数达到最大或最小值的可变参数的值。
对于一些复杂的问题,可能需要应用一些高等数学技巧,如极值判别法或拉格朗日乘数法等。
5.验证最优解:找到使得目标函数达到最大或最小值的可变参数的值后,将其代入目标函数和约束条件,以验证是否满足最值条件。
基本不等式求最值技巧解析
基本不等式求最值技巧解析技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。
解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数例1. 当时,求(82)y x x =-的最大值。
解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。
当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。
评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。
变式:设230<<x ,求函数)23(4x x y -=的最大值。
解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。
技巧三: 分离例3. 求2710(1)1x x y x x ++=>-+的值域。
解析一:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。
当,即时,421)591y x x ≥+⨯+=+((当且仅当x =1时取“=”号)。
技巧四:换元解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。
22(1)7(1+10544=5t t t t y t t t t-+-++==++)当,即t =时,4259y t t≥⨯+=(当t =2即x =1时取“=”号)。
利用基本不等式求最值的常见方法
即(x+y) 8, max 当且仅当x y 4时,等号成立.
总结与提升:
类型一:配凑定值法;
特征:函数能化成“积”或“和”为定值的形式
类型二:常数代换法;
特征:已知ax by c,求 d + e(a,b, c, d, e为非零常数)形式 xy
类型三:函数单调性法;拆项法 y ax2 bx c
3x 4 y 1 (3x 4 y)( 3 1 )
5
xy
3x
当且仅当
y
12 y x
即x
x 3y 5xy
1,
y
1 2
时,等号成立.
类型三:函数单调性法 (拆项法求函数的最值)
x 例3.已知xx>13, 求f (x) 2 2 的最小值.
x 1
2 3+2 解:f (x) (x1)2 2(x 1) 3 (x 1) 3 2
记t xy(t 0)
则(*)式可化为:t 2 2t 8 0,
可解得:t 4或t -2(舍),
即(xy) 16, min
当且仅当x y 4时,等号成立.
类型四:和积转化法
例4(. 1)已知x 0, y 0, xy x y 8,求xy的最小值;
(2)已知x 0, y 0, xy x y 8,求x y的最大值.
类型四:和积转化法
例4(. 1)已知x 0, y 0, xy x y 8,求xy的最小值; (2)已知x 0, y 0, xy x y 8,求x y的最大值.
解:(1)因为x 0, y 0, 所以xy x y 8 2 xy (8 *)
利用基本不等式求最值的常见方法
利用基本不等式求最值的常见方法基本不等式是数学中常用的一种推断和求解最值的方法之一、基本不等式包括均值不等式、柯西-施瓦茨不等式和几何平均与算术平均不等式等。
这些不等式的推导和使用方法可以帮助我们解决各种数学和实际问题。
下面将介绍一些利用基本不等式求最值的常见方法。
1.均值不等式法:均值不等式是最常用的基本不等式之一、它包括算术平均数与几何平均数的关系、算术平均数与谐波平均数的关系等。
通过运用均值不等式,我们可以将一个问题中的复杂表达式或不等式进行简化,从而方便进行求解或判断最值。
例如,当我们需要求解一组数据的算术平均数时,可以通过均值不等式推导出一个简化的不等式,从而确定平均数的范围。
2.柯西-施瓦茨不等式法:柯西-施瓦茨不等式是一种用于求解内积和范数的不等式。
通过柯西-施瓦茨不等式,我们可以推导出两个向量内积的最值以及两个向量范数的关系等。
在实际问题中,柯西-施瓦茨不等式可以用于求解线性规划问题、最小二乘法问题等。
例如,当我们需要求解两个向量的内积最大值时,可以通过柯西-施瓦茨不等式推导出一个简化的不等式来确定最大值。
3.几何平均与算术平均不等式法:几何平均与算术平均不等式是一种常用的不等式关系。
通过几何平均与算术平均不等式,我们可以推导出一组数的平方和与它们的几何平均的关系,或者一组数的立方和与它们的算术平均的关系等。
在实际问题中,几何平均与算术平均不等式可以用于求解数据的平均值、方差、标准差等。
例如,当我们需要求解一组数据的方差时,可以通过几何平均与算术平均不等式推导出一个简化的不等式,从而确定方差的范围。
4.归纳法:归纳法是一种常用的数学推导方法。
利用归纳法,我们可以通过已知条件和不等式的性质来推导出一组数的最值。
在实际问题中,归纳法可以用于求解复杂的不等式,例如任意n个数的幂和与它们的算术平均的关系等。
例如,当我们需要求解一组数据的幂和与它们的算术平均的关系时,可以通过归纳法证明一个定理,从而确定幂和与平均值的关系。
利用基本不等式求最值的类型及方法
利用基本不等式求最值的类型及方法基本不等式是利用数学推理和不等式性质来求解最值问题的一种方法。
在解决最值问题时,运用基本不等式能够有效地简化计算过程,并找到最优解。
下面将介绍几种常见的类型和方法。
1.求函数最值:假设已知一个函数f(x),要求其在一些区间[a,b]上的最大值或最小值。
可以利用基本不等式结合导数来求解。
首先,对函数f(x)求导得到极值点,即f'(x)=0的解,然后利用基本不等式推论得到最值。
2. 求二次函数最值:对于一个二次函数f(x) = ax² + bx + c(a≠0),可以通过求解二次函数的顶点来确定其最值。
二次函数的最大值或最小值在顶点处取得。
通过计算出二次函数的顶点坐标,可以得到函数的最值。
3.求几何问题最值:在几何问题中,常常需要求解最长距离、最短路径等最值问题。
对于空间几何问题,可以利用三角不等式和柯西-施瓦茨不等式等基本不等式进行推导,找到满足条件的最优解。
4.求代数问题最值:在代数问题中,常常需要求解最大值或最小值。
例如,求解多项式函数的最值、线性规划等问题。
可以利用基本不等式来对多项式进行分解和化简,从而找到最大值或最小值。
5.求概率问题最值:在概率问题中,需要求解满足一定概率条件的最值问题。
例如,已知一些事件发生的概率,求解最大化或最小化概率的问题。
通过利用基本不等式可以对概率进行推导和计算,找到满足条件的最值。
在使用基本不等式求解最值问题时,需要注意以下几个基本方法:1.将问题抽象化:将具体的问题转化为符号运算和数学模型,将需要求解的最值问题用数学语言表达出来。
2.应用基本不等式:根据不同的问题类型,运用相应的基本不等式进行推导和计算。
常用的基本不等式有柯西-施瓦茨不等式、均值不等式、三角不等式等。
3.约束条件转化:将约束条件转化为等式或不等式,以便进行运算。
4.求解极值点:通过对函数求导,找到函数的极值点。
利用基本不等式结合导数求解最值问题。
用基本不等式求最值六种方法
用基本不等式求最值六种方法基本不等式是指形如a≤b不等式。
在数学中,有许多方法可以使用基本不等式来求解最值的问题。
以下是六种常见的方法:方法一:直接使用基本不等式最常见的方法就是直接使用基本不等式求解最值。
这种方法适用于求解一个函数或表达式的最小值或最大值。
首先,找到要求解的函数或表达式,并用a表示自变量,用b表示函数的值或表达式。
然后,使用基本不等式将a和b进行比较,确定a和b之间的关系,从而得出最小值或最大值。
方法二:将问题转化为最值问题有时候,我们可以将原始问题转化为一个最值问题,然后再使用基本不等式求解。
例如,如果要求解一个多项式函数在一些区间上的最小值或最大值,我们可以求解多项式函数的导函数,并使用基本不等式得出导函数的最小值或最大值,从而得到原始问题的最小值或最大值。
方法三:分解求值当需要求解一个复杂的问题时,可以尝试将问题分解为若干个简单的问题,并求解这些简单问题的最值。
然后,使用基本不等式求出这些最值的函数值,再将它们组合起来求解原始问题的最值。
方法四:结合其他数学工具在一些特殊情况下,可以将基本不等式与其他数学工具结合使用,来求解最值问题。
例如,可以将基本不等式与数列极限定理、曲线图像分析等方法结合使用,来求解最值问题。
方法五:利用结论和定理有时候,基本不等式的求解可以直接应用一些已知的结论和定理。
例如,利用切线和切点的性质可以简化问题的求解过程,从而得到最值。
方法六:假设法和反证法假设法和反证法在不少情况下也是求解最值问题的有效方法。
假设法是假设一些变量的取值,然后通过推导和比较得出最值的范围。
反证法是通过假设不存在一些取值,并推导出矛盾,从而得出最值的范围。
以上是使用基本不等式求解最值问题的六种常见方法。
根据具体问题的特点和要求,可以选择合适的方法进行求解。
掌握这些方法将有助于我们更好地理解和应用基本不等式,解决实际问题。
高中数学-基本不等式---求最值的常见技巧
高中数学-基本不等式---求最值的常见技巧【理论解析】一个技巧:222a b ab+≥逆用就是222a bab+≤,2a b+≥(0,0)a b>>逆用就是2()2a bab+≤等.两个变形:(1) 2112a ba b+≤≤≤+(,)a b R+∈,即调和平均数≤几何平均数≤算术平均数≤平方平均数;(当且仅当a b=时取等号)(2)222()22a b a bab++≤≤(,)a b R∈(当且仅当a b=时取等号).三个注意“一正、二定、三相等”的忽视.【解题方法技巧举例】1、添、减项(配常数项)例1 求函数221632y xx=++的最小值.222221620,32163(2)6266x y xxxx+>=++=++-+≥=解:当且仅当22163(2)2xx+=+,即22x=时,等号成立. 所以y的最小值是6.2、配系数(乘、除项)例2 已知0,0x y>>,且满足3212x y+=,求lg lgx y+的最大值.分析lg lg lg()x y xy+=, xy是二项“积”的形式,但不知其“和”的形式x y+是否定值,而已知是3x与2y的和为定值12,故应先配系数,即将xy变形为326x y⋅,再用均值不等式.220,032lg lg lg()lg6132112lg lg 6262lg 6x y x y x y xy x y >>⋅+==⎡⎤⎡⎤+⎛⎫⎛⎫≤=⎢⎥⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦=解: 当且仅当32x y =,即2,3x y ==时,等号成立. 所以lg lg x y +的最大值是lg 6.3、 裂项例3已知1x >-,求函数()()521x x y x ++=+的最小值.分析 在分子的各因式中分别凑出1x +,借助于裂项解决问题.()()141110,14(1)5519x x x y x x x ++++⎡⎤⎡⎤⎣⎦⎣⎦+>=+=+++≥+=解:当且仅当411x x +=+,即1x =时,取等号.所以min 9y =.4、 取倒数例4 已知102x <<,求函数2(1)(12)x y x x +=-的最小值. 分析 分母是x 与(12)x -的积,可通过配系数,使它们的和为定值;也可通过配系数,使它们的和为(1)x + (这是解本题时真正需要的).于是通过取倒数即可解决问题.解 由102x <<,得10x +>,120x ->.221(12)1312(1)31131211113212x x x x y x x x x x x x --==⋅⋅+++-⎡⎤+⎢⎥++≤=⎢⎥⎢⎥⎣⎦当且仅当31211x xxx -=++,即15x =时,取等号. 故y 的最小值是12.5、 平方例5 已知0,0x y >>且22283y x +=求.分析 条件式中的x 与y 都是平方式,而所求式中的x 是一次式,y 是平方式但带根号.初看似乎无从下手,但若把所求式平方,则解题思路豁然开朗,即可利用均值不等式来解决.222222222((62)32(1)32(1)9333()22y x y x y x =+=⋅+⎡⎤++⎢⎥≤=⎢⎥⎢⎥⎢⎥⎣⎦解:当且仅当222(1)3y x =+,即32x =,2y =时, 等号成立.故的最大值是评注 本题也可将x纳入根号内,即将所求式化为.6、 换元(整体思想)例6求函数y =的最大值.分析t =,进行换元,再使分子常数化,然后运用均值不等式来解决.22,0,2,(0)2100;1014212=.23,2t t x t t y t t t y t y t t t t t x =≥=-=≥+==>=≤=+==-则当时,当时,当且仅当,即所以时7、 逆用条件例7 已知191(0,0)x y x y +=>>,则x y +的最小值是( ) .分析 直接利用均值不等式,只能求xy 的最小值,而无法求x y +的最小值.这时可逆用条件,即由191x y =+,得19()()x y x y x y +=++,然后展开即可解决问题.190,0,1199()()1010169,4,12.16.x y x y y xx y x y x y x yy x x y x yx y >>+=+=++=++≥====+解:由,得当且仅当即时,等号成立故的最小值是 评注 若已知0,0,x y >>1x y += (或其他定值),要求19x y +的最大值,则同样可运用此法. 8、 巧组合 例8 若,,0a b c >且()4a a b c bc +++=-求2a b c ++的最小值 .分析 初看,这是一个三元式的最值问题,无法利用a b +≥来解决.换个思路,可考虑将2a b c ++重新组合,变成()()a b a c +++,而()()a b a c ++等于定值4-,于是就可以利用均值不等式了.,,0,2()()2,,1.2 2.a b c a b c a b a c b c b c a a b c >++=+++≥======-++解:由知当且仅当即时,等号成立故的最小值为9、 消元例9、设,,x y z 为正实数,230x y z -+=,则2y xz 的最小值.分析 本题也是三元式的最值问题.由题意得32x zy +=,则可对2y xz 进行消元,用,x z 表示,即变为二元式,然后可利用均值不等式解决问题.22223,0,,29666=3,443,,=33.x zx z y y x z xz xz xz xz xz xzyx z x y z y xz +>=+++≥====解:由可得当且仅当即时,取“”.故的最小值为【例题解析】 例1 求函数()()yx x x=++49的最值.解: (1)当x >0时,25362133613=⋅+≥++=xx x x y , 当且仅当xx=36即6=x 时取等号.所以当x =6时,y min =25. (2)当x <0时,->->xx0360,, ()()-+-⎛⎝ ⎫⎭⎪≥--⎛⎝ ⎫⎭⎪=x x x x 3623612, 11213)]36()[(13=-≤-+--=∴xx y .当且仅当-=-x x 36,即x =-6时取等号,所以当x =-6时,y max =-=13121.例2已知0,0x y >>,且191x y+=,求x y +的最小值. 解:190,0,1x y x y >>+=,()1991061016y x x y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当9y x x y =时,上式等号成立,又191x y+=,可得4,12x y ==时,()min 16x y += . 例3 当04x <<时,求(82)y x x =-的最大值.解析:此题为两个式子积的形式,但其和不是定值.注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可.211282(82)[2(82)]()8222x x y x x x x +-=-=-≤=当282x x =-,即2x =时取等号 ,所以当2x =时,(82)y x x =-的最大值为8.例4 已知54x <,求函数14245y x x =-+-的最大值. 解析:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =.例5已知x,y为正实数,且2212yx+=,求的最大值.解析:因条件和结论分别是二次和一次,故采用公式222a bab+≤.12,==下面将x=2212222yx++≤4=当且仅当x=2212yx+=,即2x=,2y=时,等号成立.所以的最大值为4.评注:本题注意到适当添加常数配凑后,两项的平方和为常数,故而进行变形利用基本不等式链解决问题.【基本不等式课堂练习】一、选择题1.已知0,0a b >>,则112ab a b++的最小值是( )A .2 B .22 C .4 D .5 2.当0<x <2π时,函数f (x )=x x x 2sin sin 82cos 12++的最小值为( )A.2B.23C.4D.433.设y=x 2+2x+5+2125x x ++,则此函数的最小值为()A .174B .2C .265D .以上均不对 4,若,下列不等式恒成立的是( )A .B .C .D .5,若且,则下列四个数中最大的是 ( )A. B. C.2ab D.a6. 设x>0,则的最大值为 ( )A.3 B.C.D.-1 7,设的最小值是( ) A. 10 B.C.D.8. 若x, y 是正数,且,则xy 有( )A最大值16 B.最小值 C.最小值16 D.最大值9. a,b 是正数,则三个数的大小顺序是( )A. B.C. D.10.下列函数中最小值为4的是( )A B C D11、已知二次函数f(x)=ax 2-(a +2)x +1(a ∈Z),且函数f(x)在(-2,-1)上恰有一个零点,则不等式f(x)>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)12、已知M 是△ABC 内的一点,且AB →·AC →=23,∠BAC =30°,若△MBC ,△MCA 和△MAB 的面积分别为12,x ,y ,则1x +4y 的最小值是( )A .20B .18C .16D .913.设x,y 为正数, 则(x+y)(1x + 4y)的最小值为 ( )A.6 B.9 C.12 D.1514. 已知定义域为R 的偶函数在上是增函数,且,则不等式的解集为( )A .B .C .D .15.若,则的最小值为( )A .8 B .C .2D .417.若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是( ) A. 245 B. 285C.5D.6 18.下列不等式一定成立的是( )A .21lg()lg (0)4xx x +>> B .1sin 2(,)sin x x k k Z xπ+≥≠∈ C .212||()x x x R +≥∈D .211()1x R x >∈+ 19若点(,)A x y 在第一象限且在236x y +=上移动,则3322log log x y + ( )A 、最大值为1B 、最小值为1C 、最大值为2D 、没有最大、小值 20、 已知01x <<,求函数411y x x=+-的最小值.21、已知0,0a b >>,328a b +=,求函数的最大值.。
用基本不等式求最值六种方法
用基本不等式求最值六种方法一.配项例1:设x>2,求函数y=x+92x-的最小值解析:y=x-2+92x-+2≥8 当x-2=92x-时,即x=5时等号成立例2:已知a,b是正数,满足ab=a+b+3,求ab的最小值法1:ab=a+b+3≥当a=b3即ab≥9当a=b=3时等号成立。
法2:已知可化为(a-1)(b-1)=4.又ab=(a-1)+(b-1)+5≥9当a-1=b-1=2时等号成立,即a=b=3二.配系数例3:设0<x<1,求解析:当三.重复使用不等式例4:已知a>b>0,求2a+16()a b b-的最小值解析:2a+16()a b b-=2a b b-+()+16()a b b-≥4(a-b)b+16()a b b-≥当时,等号成立。
四.平方升次例5:当x>0时,求函数的最大值。
解析:y2=x2+4-x2=4+≤4+[x2+)2]=8 当,即时,y取得最大值.五.待定系数法例6:求y=2sinx(sinx+cosx)的最大值。
解析:y=2sin 2x+2sinxcosx=2 sin 2x+2sin (cos )x a x a (a>0) ≤2 sin 2x+222sin cos x a x a+ =a+22(21)sin a a xa+- 若为定值,则221a a +-=0,+1,所以y 时成立。
六. 常值代换例7:已知x>0,y>0,且x+2y=3,求1x +1y 的最小值解析:1x +1y =13(x+2y)(1x +1y )=1+13(2y x +xy )≥1+23当且仅当2yx =xy ,且x+2y=3,即-1),y=32)时,取得最小值为1+23。
利用基本不等式求最值的方法
利用基本不等式求最值的方法有多种,以下列举了其中六种方法:
1.配凑法:通过观察式子中的各项,尝试将其配成基本不等式的形式,从而求出最值。
2.均值不等式:对于一组正数a1, a2, ..., an,其算术平均值大于等于几何平均值,即
(a1+a2+...+an)/n >= sqrt(a1a2...*an)。
利用此不等式,可以将式子变形,从而求出最值。
3.等号成立条件:在使用基本不等式时,需要注意等号成立的条件。
例如,在使用均值不
等式时,只有在a1=a2=...=an时,等号才会成立。
4.换元法:在求解一些复杂的不等式时,可以通过换元法将问题简化。
例如,设a=a1/b1,
b=a2/b2, ...,将原式化简后再使用基本不等式求解。
5.对勾函数性质:对勾函数是一种特殊的函数形式,其性质可以用来求解一些复杂的不等
式。
例如,当x>0时,x+1/x >= 2 (当且仅当x=1时取等号)。
6.三角不等式:对于一些涉及到三角函数的式子,可以使用三角不等式来求解。
例如,
|sin(a)-sin(b)| <= |a-b|。
基本不等式求最值六法
灵 活 运 用 基 本 不 等 式(,0)2a b a b +>求最值,必须注意三要素:一正、二定、三相等。
所谓“一正”是指“正数”,“二定”是指和或积要为定值,“三相等”是指要满足等号成立的条件。
在满足条件的情况下,和是定值积有最大值(22)4S S a b =+≤=a+b 定值,ab (2),积是定值和有最小值(T ab =≥=是定值,a+b 。
有些题目从表明看不能直接使用基本不等式,但是经过一定的变形就可以使用,变形的方法一般有以下几种。
一:化负为正例1若0x <,求49y x x=+的最大值 分析:0x <,必须变负号为正,用x x =-转化 解:4449(9)12y x x x x x x=+=-+≤-=- 当且仅当49x x=,即23x =-时,49y x x =+取最大值-12 二:拆项后使用 例2已知3x >,求43y x x =+-的值域。
分析:将43x x +-变形为4(3)33x x +-+-使用基本不等式 解:因为3x >,所以30x ->。
∴ 4(3)3373y x x =+-+≥=- 当且仅当 433x x =-- ,即5x =时取等号。
所以43y x x =+-的值域是[7,+∞) 三:调整系数法 例3已知302x <<,求函数 (32)y x x =-的最大值 分析:求x 与(32x -)积的最大值,它们的和(32)x x +-不是常数,但2(32)3x x +-=是常数,所以将函数变形为12(32)2x x ⋅⋅-使用基本不等式。
解:∵302x <<,∴320x ->,∴21123292(32)()2228x x y x x +-=⋅⋅-≤= 当且仅当 232x x =- ,即34x =时 y 取最大值98 四:分离常数法例4当1x >-时,求231()1x x f x x -+=+的值域。
高考数学专题--基本不等式求最值的常用方法(解析版)
基本不等式求最值的常用方法一、常数代换法1、直接“1”代换例1. 已知正数x 、y 满足12=+y x ,求yx 11+的最小值. 解析:223221)11)(2(+≥+++=++yxx y y x y x当且仅当yxx y =2 即12-=x ,222-=y 时取“=” 变式. 已知正数x 、y 满足32=+y x ,求yx 11+的最小值. 解析:3221)223(31)221(31)11)(2(31+=+≥+++=++y x x y y x y x当且仅当y x x y =2 即)12(3-=x ,2)22(3-=y 时取“=”2、间接“1”代换例1. 若x 、y 为正实数且082=-+xy y x ,求y x +的最小值.解析:082=-+xy xy y x 即182=+x y ,188********)82)((=⨯+≥+++=++xyy x x y y x当且仅当xyy x 82= 即12=x ,6=y 时取“=”例2.若正数x 、y 满足xy y x 53=+,求y x 43+的最小值.解析:553==+xy xy xy y x 即531=+xy5)123213(51)12349(51)31)(43(51=⨯+≥+++=++x y y x x y y x当且仅当x y y x 123=即1=x ,21=y 时取“=” 例3.已知x 、y 均为正数,且111=+y x ,求1914-+-y yx x 的最小值. 解析:25362139413)11)(94(1914119114=+≥++=++=+=-+-y x x y y x x y xy yx当且仅当y x x y 94= 即35=x ,25=y 时取“=”例4. 已知函数x a y -=1的图像恒过定点A ,若点A 在直线1=+ny mx (0,0>>n m )上,求nm 11+的最小值. 解析:由题意可得A 的坐标为(1,1) 则有1=+n m41222))(11(11=+≥++=++=+nmm n n m n m n m当且仅当n m m n = 即21==n m 时取“=”例5. 已知函数xm y log 1+= (0>m 且1≠m )的图像恒过点M ,若直线1=+bya x (0,0>>b a )经过点M ,则b a +的最小值是多少?解析:由题意得M (1,1) 则111=+ba 41222))(11(=+≥++=++=+b aa b b a b a b a当且仅当baa b = 即2==b a 时取“=”3.部分“1”代换例. 若正数x 、y 满足1=+y x ,求yx y 4+的最小值.解析:844244)(44=+≥++=++=+yx x y y x y x y y x y 当且仅当y x x y 4= 即31=x ,32=y 时取“=”二、双换元法1.有两项分母较长例1. 已知正数x 、y 满足1=+y x ,求1124+++y x 的最小值. 解析:令2+=x m ,1+=y n 则412=+=+++n m y x49)425(41)414(41)14)((411124=+≥+++=++=+++n m m n n m n m y x 当且仅当n m m n =4 即31=y ,32=x 时取“=”变式1. 若0,0>>b a ,且11121=+++b b a ,则b a 2+的最小值为多少? 解析:令b a m +=2, 1+=b n 可得21+-=n m a ,1-=n b ,111=+nm23)232)(11(2323222212-++=-+=-++-=+n m n m n m n n m b a321232122123221+=⨯+≥++=m n n m 当且仅当nmm n 223=即n m 3=,213+-=b b a 时取“=”变式2. 已知0>>y x ,且2≤+y x ,求yx y x -++132的最小值. 解析:令⎩⎨⎧=-=+n y x m y x 3 可得 ⎪⎩⎪⎨⎧-=+=443n m y m n x 由0>>y x 得443n m m n ->+ 即0>>n m ∴22422443≤+=+=-++=+n m n m n m n m y x得4≤+n m )0(>>n m ∴nm y x y x 12132+=-++ ∴223212))(12(+≥+++=++nmm n n m n m ∴n m n m ++≥+223124≤+n m ∴422322312+≥++≥+n m n m 当且仅当nmm n =2 即n m 2= 即248-=m ,424-=n 时取“=”2.有一项分母较长例. 已知y x 、为正实数,求yx xx y ++216的最小值. 解析:令⎩⎨⎧=+=n y x m x 2 可得⎩⎨⎧-==m n y mx 2∴62162216162216=-≥-+=+-=++nm m n n m m m n y x x x y 当且仅当nmm n 16=即m n 4= 即x y 2=时取“=”三、主元思想法:当要求的元素在条件里出现的时候例1. 已知0>x ,0>y ,y x xy 2+=,若2-≥m xy 恒成立,求实数m 的最大值.解析:xy y x y x xy 22222=⋅≥+= 两边平方得xy xy 8)(2≥,8≥xy2-≥m xy 恒成立 即82≤-m ∴10≤m (本题将xy 作为主元) 当且仅当y x 2=即4=x ,2=y 时取“=”例2. 若正实数y x 、满足xy y x =++62,则xy 的最小值是多少?解析: 62262262+⋅=+⋅≥++=xy y x y x xy 令0>=xy t可得6222+≥t t 解得2-≤t (舍去) 23≥t 18≥∴xy 得xy 的最小值是18 当且仅当x y 2=即3=x ,6=y 时取“=”例3. 已知0>x ,0>y ,822=++xy y x ,求y x 2+的最小值.解析:822=++xy y x 4)2(222y x y x xy +≤⋅=由上面两式得4)2()2(822y x y x xy +≤+-= 令02>=+t y x得482t t ≤- 解得4≥t 即y x 2+的最小值为4当且仅当x y 2=即3=x ,6=y 时取“=”例4.已知y x 、均为正数,且1)(=+-y x xy ,求y x +的范围解析:4)(1)(2y x y x xy +≤++=,令0>=+t y x ,可得412t t ≤+解得222222+≤≤-t 0>t ∴2220+≤+<y x 当且仅当x y =即21+==y x ,时取“=”例5.已知0>x ,0>y ,且12)1)(3(=++y x ,求y x 3+的最小值.解析:1233)1)(3(=+++=++x y xy y x ,即93=++y x xy4)3(31)3(93312y x y x y x xy +⋅≤+-=⋅⋅= ,令03>=+t y x得1292t t ≤- 解得6≥t 即y x 3+的最小值为6当且仅当x y =3即3=x ,1=y 时取“=”四、拼凑法1.项数拼凑例1.求函数222163x x y ++=的最小值. 解析:63816326216)2(322-=⨯≥-+++=x x y当且仅当216)2(322+=+x x 即3634-=x ,时取“=”变式1. 求函数2162++=x x y 在),2(+∞-∈x 上的最小值. 解析:428416224216)2(2-=-⨯≥-+++=x x y当且仅当216)2(2+=+x x 即222-=x ,时取“=”变式2. 已知关于x 的不等式722≥-+ax x 在),(+∞∈a x 上恒成立,求a 的最小值.解析:a a a a x a x 2424222)(2+=+≥+-+-,∴只需724≥+a 即可,23≥a例2. 求函数1216++=x x y (),21(+∞-∈x )的最小值.解析:21242182211216212-=-≥-+++=x x y当且仅当1216212+=+x x 即2124-=x ,时取“=”变式. 已知0>x ,a 为大于x 2的常数,求x xa y --=21的最小值.解析:22221222221aa a x a x a y -=-≥--+-=当且仅当xa x a 2122-=-即22-=a x ,时取“=”2.系数拼凑例1. 当210<<x 时,求)21(21x x y -=的最大值. 解析:1614)212(41)21(241)21(212=-+⋅≤-⋅⋅=-=x x x x x x y当且仅当x x 212-=即41=x ,时取“=”例2. 已知0>a ,0>b ,且3222=+b a ,求212b a +的最大值.解析:224)12(2)1(22)1(41222222222=++⋅≤+⋅=+=+b a b a b a b a 当且仅当2212b a +=即1=a ,1=b 时取“=”五、分子分母不齐次1.低次换元法例1. 求313)(2-+-=x x x x f )3(>x 的最小值.解析:令3-=x t ,则3+=t x则 531231131)3(3)3()(22=+≥++=++=++-+=t t t t t t t t t f当且仅当tt 1=即1=t ,4=x 时取“=”例2.求2122+++=x x x y )2(->x 的值域.解析:令2+=x t ,则2-=t x 0211)2(2)2(2≥-+=+-+-=∴tt t t t y当且仅当tt 1=即1=t ,1-=x 时取“=”2.分子常数法例1. 求函数4342+=x x y 的最大值.解析:4342343432242=≤+=+=x x x x y (将分子化成常数)当且仅当224xx =即22=x 时取“=”例2.若对任意0>x ,a x x x≤++132恒成立,则a 的取值范围是多少?解析:513121311132=+≤++=++x x x x x 51≥∴a当且仅当xx 1=即1=x 时取“=”六、两元消参法例1. 若x ,),0(+∞∈y ,302=++xy y x ,求y x +的最小值. 解析:30)2(2=++=++y x x xy y x 2321232)2(230++-=+-+-=+-=∴x x x x x y 则328323221232-≥-+++=-++=+x x x x y x 当且仅当2322+=+x x 即224-=x 时取“=”例2. 已知41=ab ,a ,)1,0(∈b ,则b a -+-1211的最小值是多少? 解析:41=ab )1,0(∈a )1,0(41∈=∴a b ,),1(4+∞∈a ,则 ),41(+∞∈a)1,41(∈∴a 142281114811411211-+-+-=-+-=-+-a a a a a a a a 214211142)14(211+-+-=-+-+-=a a a a a令)43,0(1∈-=a m )3,0(14∈-=a n 则34=+n m 原式可化为:2)824(312)4)(21(31221++++=+++=++nmm n n m n m n m324482314)8(314+=⨯+≥++=n m m n 当且仅当nmm n 8=即m n 22=,4)22(3-=m ,323-=n 时取“=”例3. 已知正实数b a 、满足042≤+-b a ,则ba ba u ++=32的最小值为多少?解析:由042≤+-b a 得42+≥a b141343333322++-=++-≥+-=+-+=++=aa a a ab a a b a a b a b a b a u 51414213=+-≥ 当且仅当2=a 即时取“=”例4. 若正数x ,y 满足0162=-+xy x ,则y x 2+的最小值是多少?解析:由0162=-+xy x 得 661612xx x x y -=-=32292231323312=≥+=-+=+x x x x x y x 当且仅当xx 3132=即22=x ,122=y 时取“=”例5. 已知0>>b a ,求)(12b a b a -+的最小值.解析:44)()(22a b a b b a b =-+≤- 442441)(122222=≥+=+≥-+∴aa a ab a b a 当且仅当224a a = 即2=a 时取“=”七、三元消参法(“相等”、“不相等”)1.“相等”关系例1. 正数a ,b ,c 满足)(4b a abc +=,求c b a ++的最值.解析:由)(4b a abc +=⇒ab ab b ac 44)(4+=+=842424444=+≥+++=+++=++b b a a a b b a c b a当且仅当a a 4= ,bb 4=即2=a ,2=b ,4=c 时取“=”例2. 设正实数x ,y ,z 满足04322=-+-z y xy x ,求zxy的最大值.解析:由04322=-+-z y xy x ⇒ 2243y xy x z +-=134213414322=-≤-+=+-=xy y x y xy x xy z xy 当且仅当xy y x 4=,即y x 2=时取“=”例3.设正实数x ,y ,z 满足 032=+-z y x ,求xzy 2的最小值.解析:由032=+-z y x ⇒ 23223zx z x y +=+=3234941223494)232(22=+⨯≥++=+=x z z x xz z x xz y 当且仅当 xzz x 494=,即z x 3=时取“=”例4.设正实数x ,y ,z 满足12=++z y x ,求zy y x y x ++++)(91的最小值. 解析:由 12=++z y x ⇒ y x z 21--=1191)(1)(91)(91-+++=+-+++=++++∴yx y x y x y x y x z y y x y x1119)11(+-++-+=yx yx 令t yx =-+11上式可写成 719219=+≥++t t 当且仅当 t t 1=,即21=+y x 时取“=”2.“不相等”关系例1.正数a 、b 、c 满足a c b ≥+,求ba cc b ++的最小值. 解析:由a c b ≥+ ⇒ c b a +≤ cb cc b b a c c b ++≥++∴2 令⎩⎨⎧=+=y c b x c 2 ⇒ ⎪⎩⎪⎨⎧-==2x y b x c 2122121221222-=-≥-+=+-≥++≥++∴y x x y y x x x y c b c c b b a c c b 当且仅当 y x x y =2,即c b 2)12(-=时取“=”例2.正数x ,y ,z 满足1222=++z y x ,求xyzz S 21+=的最小值. 解析:由题意,xy z y x 21222≥-=+ 即212z xy -≤ 44)1(1)1(1)1(12122=+-≥⋅-=⋅-+≥⋅+=z z z z z z z z xy z S 当且仅当 z z =-1,即21=z 时取“=” 例3.二次函数0)(2≥++=c bx ax x f (b a <)对任意x 恒成立,求ab c b a -++4的最小值. 解析:由题意得:0>a ,042≤-=∆ac b ⇒ a b c 42≥ 11444222-++=-⋅++≥-++ab a b a b a b a b b a a bc b a 令1-=a b t 则1+=t a b 上式33233331)1()1(22+≥++=++=++++=tt t t t t t t 当且仅当 t t 3=,即13+=ab 时取“=”八、不能直接用均值不等式(一负二定三不等)1.为负值时(负)例1.已知10<<x ,求xx y lg 4lg +=的最大值. 解析:10<<x ,0lg <∴x 4)42()lg (4)lg (-=-≤⎥⎦⎤⎢⎣⎡-+--=∴x x y 当且仅当 x x lg 4lg -=-,即1001=x 时取“=”例2.当23<x 时,求函数328-+=x x y 的最大值.解析:23<x ⇒ 032<-x 2523821223))32(8(2)32(328-=+⨯-≤+⎥⎦⎤⎢⎣⎡--+---=-+=x x x x y 当且仅当328232-=-x x ,即21-=x 时取“=”例3.已知45<x ,求函数54124-+-=x x y 的最大值. 解析:45<x ⇒054<-x 354154+-+-=x x y 3)54(1)54(+⎥⎦⎤⎢⎣⎡--+---=x x 1312=+-≤ 当且仅当 54154-=-x x ,即1=x 时取“=”2.取不到等号(不等)例. 求函数4522++=x x y (R x ∈)的最小值.解析:令242≥=+t x ⇒ 422-=t x则tt t t t t y 115422+=+=+-=,2≥t 取不到1 2=∴t 时y 最小 即25212=+≥y九、调几算平2211222b a b a ab b a +≤+≤≤+例1.设a ,0>b ,5=+b a ,求31+++b a 的最大值.解析:223292)31(231==+++≤+++b a b a 即2331≤+++b a 当且仅当 31+=+b a ,即27=a ,23=b 时取“=”例2.已知x 、y 均为正数,且y x a y x +≤+恒成立,求a 的最小值.解析:由y x a y x +≤+ ⇒ y x yx a ++≥ y x y x y x +=+≤+2222 ⇒ y x y x +⋅≤+2可得2≤++y x yx 2≥∴a例3.设实数a ,x ,y 满足⎩⎨⎧-+=+-=+3212222a a y x a y x ,求a 的取值范围. 解析:2222y x y x +≤+ 当且仅当y x =时“=”成立 2322122-+≤-∴a a a 即232414422-+≤+-a a a a 得07822≤+-a a ⇒ 222222+≤≤-a 例4.设实数a ,b ,c 满足122≤≤+c b a ,求c b a ++的最大值.解析:2222b a b a +≤+ 2122222=⋅≤+≤+∴b a b a 1≤c 12+≤++∴c b a 当且仅当b a =时“=”成立十、柯西不等式:①222122212211y y x x y x y x +⋅+≤+②232221232221332211y y y x x x y x y x y x ++⋅++≤++ 例1.设a ,b ,m ,R n ∈,且522=+b a ,5=+nb ma ,求22n m +的最小值. 解析:22225b a n m nb ma +⋅+≤+= 522≥+∴n m例2.设a ,b ,),0(+∞∈c ,且1=++c b a ,求c b a ++的最大值.解析:3111111222=++⋅++≤⋅+⋅+⋅=++c b a c b a c b a例3.已知a ,b ,c 均为正数,若632=++c b a ,求222c b a ++的最小值. 解析:222222321326c b a c b a ++⋅++≤++= 718222≥++∴c b a十一、拆分法求最值例1.已知x ,y ,+∈R z ,求222z y x yz xy U +++=的最大值. 解析:22)(2212212212122222222=++=++≤++++=yz xy yz xy z y y x yz xy z y y x yz xy U 当且仅当y z x 22==时“=”成立变式 .已知x ,y ,+∈R z ,(1)求222zy x zx yz xy U ++++=的最大值 (2)求2222z y x yz xy U +++=的最大值解析:(1))(21)222(21222222222z z y y x x zx yz xy z y x zxyz xy U +++++++=++++= 1)222(21=++++≤xz yz xy zxyz xy 当且仅当z y x ==时“=”成立(2)2554522545122222=++≤++++=yz xy yz xy z y y x yz xy U 当且仅当z y x ==5522时“=”成立例2.已知0>x ,求221xx +的最小值. 解析:23212232122213222=⋅⋅⋅≥++=+xx x x x x x x ,当且仅当1=x 时“=”成立十二、元素整体代换法:一般先分解因式,研究条件与问题关系,整体代换例1.若a ,b ,0>c ,且324)(-=+++bc c b a a ,求c b a ++2的最小值.解析:324))(()()()(-=++=+++=+++c a b a c b a b a a bc c b a a令⎩⎨⎧+=+=c a y b a x ⇒ 324-=xy 232324222-=-=≥+=++xy y x c b a当且仅当c b =时“=”成立例2.若a ,b ,0>c ,且124222=+++bc ac ab a ,求c b a ++的最小值.解析:12)2)(2()2(2)2(4222=++=+++=+++c a b a b a c b a a bc ac ab a令⎩⎨⎧+=+=c a y b a x 22 ⇒ 12=xy , 3212222==≥+=++xy y x c b a 当且仅当c b =时“=”成立例3.已知c b a >>,N n ∈,且ca n cb b a -≥-+-11恒成立,求n 的最大值. 解析:令⎩⎨⎧-=-=c b y b a x ⇒y x c a +=-,由c a n c b b a -≥-+-11 得y x n y x +≥+11,即42))(11(≥++=++≤yx x y y x y x n 当且仅当b c a 2=+时“=”成立十三、不等式证明例1.已知c b a >>,求证ca cb b a ->-+-111. 证明:令m b a =-,nc b =- ⇒c a n m -=+ 12))(11(>++=++n m m n n m n m ,1))(11(>--+-∴c a cb b a ca cb b a ->-+-∴111得证例2.设a ,b ,+∈R c ,求证4)11)((≥++++cb ac b a . 证明:令m a =,n c b =+,)11)(()11)((nm n m c b a c b a ++=++++ 42≥++=n m m n 4)11)((≥++++∴cb ac b a 当且仅当c b a +=时“=”成立例3.已知a ,b ,+∈R c ,求证c b a ac c b b a ++≥++222. 证明:c b a c b a a ac c c b b b a 222222222222++=++≥+++++ 当且仅当c b a ==时“=”成立c b a ac c b b a ++≥++∴222 得证。
求基本不等式最值的方法
求基本不等式最值的方法基本不等式最值的求解方法是数学中的重要内容,它在解决实际问题和数学推导中具有广泛的应用。
下面将介绍几种常见的方法来求解基本不等式的最值。
1. 利用二次函数性质:对于一元二次函数 f(x) = ax^2 + bx + c,其中 a、b、c 分别是实数,当 a>0 时,函数开口向上,最小值为 f(-b/2a);当 a<0 时,函数开口向下,最大值为 f(-b/2a)。
2. 利用数轴和符号的方法:以不等式的变量为基准,将不等式化简为一维数轴上的问题。
首先找到不等式的解集,并根据不等式中的符号(大于号或小于号)确定最值的类型(最大值或最小值)。
然后,根据最值的要求,找到数轴上对应的点,即最值点。
3. 利用 AM-GM 不等式:AM-GM 平均值不等式是一种用于估计数值大小的方法。
对于非负实数 a1, a2, ..., an,其几何平均值 GM = (a1 * a2 * ... * an)^(1/n),算术平均值 AM = (a1 + a2 + ... + an)/n,不等式表达式为GM ≤ AM。
通过利用 AM-GM不等式,将给定的不等式进行转换和化简,可以求解不等式的最值。
4. 利用导数和极值:对于连续函数 f(x) 在某个区间内,如果 f'(x) 存在且连续,可以通过求解 f'(x) = 0 的根来找到函数 f(x) 的极值点。
然后根据极值的类型(极大值或极小值)来确定最值。
以上是一些常见的方法来求解基本不等式的最值。
根据具体的不等式形式和要求的最值类型,我们可以选择合适的方法进行求解。
在实践中,掌握这些方法并灵活运用它们,将能够有效地解决各种不等式最值的问题。
高中数学解题方法系列:用基本不等式求最值的4种策略
高中数学解题方法系列:用基本不等式求最值的 4 种策略基本不等式 a + b ≥ 2( a > 0, b > 0 当且仅当a = b 时等号成立)是高中必 修五《不等式》一章的重要内容之一,也是高考常考的重要知识点。
从本质上看, 基本不等式反映了两个正数和与积之间的不等关系,所以在求取积的最值、和的最值当中,基本不等式将会焕发出强大的生命力,它将会是解决最值问题的强有力工具。
本文将结合几个实例谈谈运用基本不等式求最值的三大策略。
一、基本不等式的基础知识[1]基本不等式: 如果a > 0, b > 0 ,则 a + b ≥ 2,当且仅当a = b 时等号成立。
在基本不等式的应用中,我们需要注意以下三点:“一正”: a 、b 是正数,这是利用基本不等式求最值的前提条件。
“二定”:当两正数的和a + b 是定值时,积ab 有最大值;当两正数的积ab 是定值时,和a + b 有最小值。
“三相等”: a = b 是a +b = 2的充要条件,所以多次使用基本不等式时,要注 意等号成立的条件是否一致。
二、利用基本不等式求最值的四大策略策略一利用配凑法,构造可用基本不等式求最值的结构通过简单的配凑(凑系数或凑项)后,使原本与基本不等式结构不一致的式子,变为结构一致,再利用均值不等式求解最值。
题型一 配凑系数例 1 设0 < x < 3 ,求函数 y = 4x (3 - 2x ) 的最大值。
2分析:因为4x + (3 - 2x ) = 3 + 2x 不是个定值,所以本题无法直接运用基本不等式ab ab ab⎪ ⎭求解。
但凑系数将 4 x 拆为2 ⋅ 2x 后可得到和2x + (3 - 2x) = 3 为定值,从而可利用基本不等式求其最大值。
解:因为0 <x <32,所以 3 - 2x > 0⎛2x + 3 - 2x ⎫2 9故y = 4x(3 - 2x) = 2 ⋅ 2x(3 - 2x) ≤ 2⎝ 2 ⎪=2当且仅当2x = 3 - 2x, 即x =3∈⎛0,3 ⎫时等号成立.所以原式的最大值为9.2⎪4 ⎝ 2 ⎭题型二配凑项1 配凑常数项例2 已知x <5,求函数y = 4x - 2 +414x -5的最大值。
用基本不等式求最值的常见类型及解题方法
用基本不等式求最值的类型及方法均值不等式是《不等式》一章重要内容之一,是求函数最值的一个重要工具,也是高考常考的一个重要知识点。
要求能熟练地运用均值不等式求解一些函数的最值问题。
一、几个重要的均值不等式 ①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112+2a b +≤≤≤222b a +。
二、函数()(0)b f x ax a b x =+>、图象及性质(1)函数()0)(>+=b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x bax x f 、性质:①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,]b a -∞-,[,)b a +∞;单调递减区间:(0,]b a,[,0)b a -. 三、用均值不等式求最值的常见类型类型Ⅰ:求几个正数和的最小值。
例1、 已知54x <,求函数14245y x x =-+-的最大值。
练习(1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈类型Ⅱ:求几个正数积的最大值。
例2、当时,求(82)y x x =-的最大值。
不等式专题:基本不等式求最值的6种常用方法(解析版)
基本不等式求最值的6种常用方法知识梳理:一、基本不等式常用的结论1、如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a b =时取等号“=”)推论:ab ≤a 2+b 22(a ,b ∈R ) 2、如果a >0,b >0,则a +b ≥2ab ,(当且仅当a =b 时取等号“=”).推论:ab ≤⎝ ⎛⎭⎪⎫a +b 22(a >0,b >0);a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 223、a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0)二、利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 三、利用基本不等式求最值的方法1、直接法:条件和问题间存在基本不等式的关系2、配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。
3、代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法; 类型2:分母为多项式时方法1:观察法 适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系; 方法2:待定系数法,适用于所有的形式,如分母为3a +4b 与a +3b ,分子为a +2b ,设a +2b =λ(3a +4b )+μ(a +3b )=(3λ+μ)a +(4λ+3μ)b∴ ⎩⎪⎨⎪⎧3λ+μ=1,4λ+3μ=2.解得:⎩⎨⎧λ=15,μ=25.4、消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。
5、构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。