高一集合知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一集合知识点总结
高一集合知识点总结【1】
一、集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性如:世界上最高的山
(2) 元素的互异性如:集合中的任意两个元素都是不同的
(3) 元素的无序性: 集合中的元素之间是没有顺序的。如:{a,b,c} 和{a,c,b}是表示同一个集合
3.集合的表示方法:列举法与描述法。
注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集N*或N+ 整数集Z 有理数集Q 实数集R
1) 列举法:将集合中的元素一一列举出来{a,b,c……}
2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR| x-32} ,{x| x-32}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集含有有限个元素的集合
(2) 无限集含有无限个元素的集合
(3) 空集不含任何元素的集合例:{x|x2=-5}
二、集合间的基本关系
属于:;包含于:;
属于与包含于的区别:
属于是元素与集合之间的关系,例如:元素a属于集合A{a,b}
包含于是集合与集合之间的关系。例如:集合A{a}包含于集合B {a,c}
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作
A B或
B A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:①任何一个集合是它本身的子集。AA
②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)
③如果AB, BC ,那么AC
④如果AB 同时BA 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集,空集是任何非空集合的真
子集。
有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算
高一集合知识点总结【2】
一.知识归纳:
1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则ab)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
2)集合的表示方法:常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*
2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对xA都有xB,则A B(或A B);
2)真子集:A B且存在x0B但x0 A;记为A B(或,且)3)交集:AB={x| xA且xB}
4)并集:AB={x| xA或xB}
5)补集:CUA={x| x A但xU}
注意:①? A,若A?,则? A ;
②若,,则;
③若且,则A=B(等集)
3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。
4.有关子集的几个等价关系
①AB=A A B;②AB=B A B;③A B C uA C uB;
④ACuB = 空集CuA B;⑤CuAB=I A B。
5.交、并集运算的性质
①AA=A,A? = ?,AB=BA;②AA=A,A? =A,AB=BA;
③Cu (AB)= CuACuB,Cu (AB)= CuACuB;
6.有限子集的个数:设集合A的元素个数是n,则A有2n 个子集,2n-1个非空子集,2n-2个非空真子集。
二.例题讲解:
【例1】已知集合M={x|x=m+ ,mZ},N={x|x= ,nZ},P={x|x= ,pZ},则M,N,P满足关系
A) M=N P B) M N=P C) M N P D) N P M
分析一:从判断元素的共性与区别入手。
解答一:对于集合M:{x|x= ,mZ};对于集合N:{x|x= ,nZ} 对于集合P:{x|x= ,pZ},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以M N=P,故选B。
分析二:简单列举集合中的元素。
解答二:M={,,},N={,, , ,},P={,, ,},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。
= N,N,M N,又= M,M N,
= P,N P 又N,P N,故P=N,所以选B。
点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。
变式:设集合,,则( B )
A.M=N B.M N C.N M D.
解:
当时,2k+1是奇数,k+2是整数,选B
【例2】定义集合A*B={x|xA且x B},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为
A)1 B)2 C)3 D)4
分析:确定集合A*B子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,,an}有子集2n个来求解。解答:∵A*B={x|xA且x B},A*B={1,7},有两个元素,故