泛函分析第七章 习题解答

合集下载

泛函分析复习及练习思考题 (ch7)

泛函分析复习及练习思考题 (ch7)

(2 )
则内积(2)适合定义中的条件,这样 R n 就也成为一个内积空间. 对同一个线性空间可以引入不同的内积, 使得它作成内积空间.
7
例 3 令 l 2 是一切平方和收敛的实(复)数列
x
(x1 , x 2 , , x n ,), ∑ | x n |2 < +∞
n =1

所成的集合,定义
( x, y ) = ∑ x n η n
x0 称为 x 在 M 中的正交投影。
13
练习思考题 1 分别指出下列赋范线性空间 X 中的通常 意义下的范数为
C [a, b] :
; ; ; ; ; 。
lp :
l¥ :
Lp [a, b] :
L¥ [a, b] :
序列空间 S : 并指出这些空间 (1)是否是完备的线性赋范空间? (2)是否是可分的线性赋范空间?
2
一 线性赋范空间和巴拿赫空间 1.线性赋范空间和巴拿赫空间 定义 1.2 设 X 是实(或复)的线性空间,
2
若对每个 x ∈ X ,有一个确定的实数,记之 为 x ,与之对应,并且满足:
10
20
x ≥ 0 ,并且 x = 0 ⇔ x = 0 ;
α x =| α ||| x || ,其中 α 为任意实(或
10
若 M 中每个元素的范数都是 1,对所有 x, y ∈ M 有
0, ( x, y ) = 1, x≠ y x= y
(1) 则称 M 为标准正交系。 (2) 设 X 为一内积空间, {en } 是 X 的标准 0, i ∈ N , 正交系 , 若对 ∀x ∈ X ,由 ( x, e= i) 得出 x = 0 , 称 {en } 是 X 的完全标准正交 系. (3) 设 X 为一内积空间, {en } 是 X 的标准 正交系,若对 ∀x ∈ X ,称

实变函数与泛函分析基础第三版答案

实变函数与泛函分析基础第三版答案

第七章习题解答1、设(,)X d 为一度量空间,令00(,){|,(,)}U x x x X d x x εε=∈< 00(,){|,(,)}S x x x X d x x εε=∈≤,问0(,)U x ε的闭包是否等于0(,)S x ε。

解答:在一般度量空间中不成立00(,)(,)U x S x εε=,例如:取1R 的度量子空间[0,1][2,3]X =,则X 中的开球(1,1){;(1,)1}U x X d x =∈<的的闭包是[0,1],而(1,1){;(1,)1}[0,1]{2}S x X d x =∈≤=2、设[,]C a b ∞是区间[,]a b 上无限次可微函数全体,定义()()()()01|()()|(,)max 21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑,证明:[,]C a b ∞按(,)d f g 构成度量空间。

证明:(1)显然(,)0d f g ≥且(,)0d f g =⇔()()()()1|()()|,max021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈有()()|()()|0r r f t g t -=,特别当0,[,]r t a b =∀∈时有|()()|0f t g t -=⇒[,]t a b ∀∈有 ()()f t g t =。

(2)由函数()1t f t t=+在[0,)+∞上单调增加,从而对,,[,]f g h C a b ∞∀∈有 ()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max 21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立(,)(,)(,)d f g d f h d h g ≤+。

泛函分析第七章 习题解答

泛函分析第七章 习题解答

第七章 习题解答1.设(X ,d )为一度量空间,令}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U问),(0εx U 的闭包是否等于),(0εx S ?解 不一定。

例如离散空间(X ,d )。

)1,(0x U ={0x },而)1,(0x S =X 。

因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。

2. 设 ],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。

证明 (1)若),(g f d =0,则)()(1)()(max)()()()(t g t ft g t f r r r r bt a -+-≤≤=0,即f=g(2))()(1)()(max 21),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞=∑=d (f ,g )+d (g ,h )因此],[b a C ∞按),(g f d 成度量空间。

3. 设B 是度量空间X 中的闭集,证明必有一列开集ΛΛn o o o 21,包含B ,而且B o n n =⋂∞=1。

证明 令n n n o n nB x d Bo o .2,1},1),({K =<==是开集:设n o x ∈0,则存在B x ∈1,使n x x d 1),(10<。

设,0),(110>-=x x d n δ则易验证n o x U ⊂),(0δ,这就证明了n o 是 开集 显然B o n n ⊃⋂∞=1。

若n n o x ∞=⋂∈1则对每一个n ,有B x n ∈使n x x d 1),(1<,因此)(∞−→−−→−n x x n 。

因B 是闭集,必有B x ∈,所以B o n n =⋂∞=1。

4. 设d (x ,y )为空间X 上的距离,证明),(1),(),(___y x d y x d y x d +=是X 上的距离。

泛函分析习题

泛函分析习题

第七章 度量空间和赋范线性空间复习题:1。

设(,)X d 为一度量空间,令0000(,){|,(,)},(,){|,(,)},U x x x X d x x S x x x X d x x εεεε=∈<=∈≤问0(,)U x ε的闭包是否等于0(,)S x ε?2.设[,]C a b ∞是区间[,]a b 上无限次可微函数的全体,定义()()()()01|()()|(,)max.21|()()|r r r r r a t b r f t g t d f g f t g t ∞≤≤=-=+-∑ 证明[,]C a b ∞按(,)d f g 成度量空间.3。

设B 是度量空间X 中闭集,证明必有一列开集12,,,,n O O O 包含B ,而且1.n n O B ∞==4.设(,)d x y 为空间X 上的距离,证明(,)(,)1(,)d x y d x y d x y =+也是X 上的距离.5。

证明点列{}n f 按题2中距离收敛于[,]f C a b ∞∈的充要条件为n f 的各阶导数在[,]a b 上一致收敛于f的各阶导数.6.设[,]B a b ⊂,证明度量空间[,]C a b 中的集 {|t , (t)=0}fB f ∈当时为[,]C a b 中的闭集,而集 {||()|}(0)A ft B f t a a =∈<>当时,为开集的充要条件是B 为闭集。

7。

设E 及F 是度量空间中两个集,如果(,)0d E F >,证明必有不相交开集O 及G 分别包含E 及F 。

8.设[,]B a b 表示[,]a b 上实有界函数全体,对[,]B a b 中任意两元素,[,]f g B a b ∈,规定距离为(,)sup |()()|.a t bd f g f t g t ≤≤=-证明[,]B a b 不是可分区间.9.设X 是可分距离空间,f 为X 的一个开覆盖,即f 是一族开集,使得对每个x X∈,有f 中开集O ,使x O ∈,证明必可从f 中选出可数个集组成X 的一个覆盖. 10。

泛函分析习题及参考答案

泛函分析习题及参考答案

泛函分析习题及参考答案一、在2R 中定义如下三种距离:21212(,),(,)x x x y y y R ==∈,1(,)d x y =21122(,)max{,}d x y x y x y =−−,31122(,)d x y x y x y =−+−,试证:212d d ≤≤3132d d d ≤≤,2322d d d ≤≤,从而这三种距离诱导出的极限是等价的。

二、设),(y x d 为空间X 上的距离,试证:),(1),(),(~x y d x y d x y d +=也是X 上的距离。

证明:显然,0),(~≥y x d 并且y x y x d y x d =⇔=⇔=0),(0),(~。

再者,),(~),(1),(),(1),(),(~y x d y x d y x d x y d x y d x y d =+=+=;最后,由tt t +−=+1111的单调增加性及),(),(),(y z d z x d y x d +≤,可得 ),(),(1),(),(),(1),(),(),(1),(),(),(1),(),(~y z d z x d y z d y z d z x d z x d y z d z x d y z d z x d y x d y x d y x d +++++=+++≤+= ),(~),(~),(1),(),(1),(y z d z x d y z d y z d z x d z x d +=+++≤。

三、设1p ≥,1()()(,,,)i n n pn x l ξξ=∈ , ,2,1=n ,1(,,,)pi x l ξξ=∈ ,则n →∞时,1()1(,)0ppn n i i i d x x ξξ∞=⎛⎞=−→⎜⎟⎝⎠∑的充要条件为)1(n →∞时,()n i i ξξ→,1,2,i = ;)2(0ε∀>,存在0N >,使得()1pn p ii N ξε∞=+<∑对任何自然数n 成立。

泛函分析习题解答

泛函分析习题解答

因为P, Q, P Q 是投影, 所以KerP = (ranP )⊥ , KerQ = (ranQ)⊥ , KerP Q = (ranP Q)⊥ , ∴ KerP Q ⊃ KerP ∩ KerQ. 其次证明KerP Q ⊂ KerP ∩ KerQ. 对∀x ∈ KerP Q, ∵ P 是投影, ∴ P 是幂等的, ∴ H = KerP + ranP, h = (h − P h) + P h, ∀h ∈ H. ∴ x = (x − P x) + P x, 其中x − P x ∈ KerP. 注 意 到, P Q(x − P x) = P Qx − P QP x = P Qx − P P Qx(∵ P Q 是 投 影⇐⇒ P Q = QP ) = P Qx − P 2 Qx = P Qx − P Qx = 0, ∴ x − P x ∈ KerP Q. ∵ KerP Q 是线性空间, ∴ P x = x − (x − P x) ∈ KerP Q, (∵ x ∈ KerP Q, x − P x ∈ KerP Q), ∴ P Q(P x) = 0, ∴ Q(P x) = QP x = QP (P x) = P Q(P x) = 0, 这表明P x ∈ KerQ. ∴ x = (x − P x) + P x ∈ KerP + KerQ, ∴ KerP Q ⊂ KerP + KerQ. 综上所述:KerP Q = KerP ∩ KerQ.
2
0, ∀h ∈ H,
= 0 =⇒ QP (h) = 0, and < QP h, P h >= 0.
(B)P + Q 是投影=⇒ ranP + ranQ = ran(P + Q), Ker(P + Q) = KerP ∩ KerQ. 证明:I)P + Q 是投影=⇒ ranP + ranQ = ran(P + Q) 1.如果P = 0 or Q = 0 ,显然。 2.如果P = 0 and Q = 0,这时可以证明P + Q = 0.(上面已证) 首先,ran(P + Q) ⊂ ranP + ranQ ,显然。 下证ran(P + Q) ⊃ ranP + ranQ,即∀h, g ∈ H, P h + Qg ∈ ran(P + Q). ∵ P + Q = 0 是投影, ∴ P + Q : H −→ ran(P + Q)是 正 交 投 影 , 而(P + Q)(P h + Qg ) = P (P h + Qg ) + Q(P h + Qg ) = P 2 h + P Qg + QP h + Q2 g = P h + Qg ,(这 是 因 为 由 (A) 知P + Q 是 投 影⇐⇒ ranP ⊥ranQ ⇐⇒ ranP ⊂ (ranQ)⊥ = KerQ(Q 是投影),ranQ ⊂ (ranP )⊥ = KerP (P 是投影), ∵ QP h ∈ ranP ⊂ KerQ,∴ QP h = 0.同理,P Qg = 0.) ∴ P h + Qg ∈ ran(P + Q), ∴ ranP + ranQ ⊂ ran(P + Q). 2

《泛函分析》习题解答(不完全版)

《泛函分析》习题解答(不完全版)

第一章 练习题1. 记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下:(,)|()()|,,([,])baf g f x g x dx f g C a b ρ=-∀∈⎰,(1)([,])C a b 按ρ是否完备?(2)(([,]),)C a b ρ的完备化空间是什么? 答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2,n =,定义,01,():1,1 2.n n x x f x x ⎧≤<=⎨≤≤⎩则{()}([0,2])n f x C ⊂在本题所定义的距离的意义下是Cauchy 列, 因为111(,)|()()|110,(,).11n m n m n m f f f x f x dxx dx x dxm n n m ρ=-≤+=+→→∞++⎰⎰⎰另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有0,[0,1)()()1,[1,2].n x f x g x x ∈⎧→=⎨∈⎩因此, 根据Lebesgue 有界收敛定理, 可以得到11100(,)|()()|1|0|0.1n n nnf g f x g x dxx dx x dx n ρ=-=-==→+⎰⎰⎰但()([0,2])g x C ∉.(2) ([,])C a b 的完备化空间是1([,])L a b . 因为(i) 在距离ρ的意义下, ([,])C a b 是1([,])L a b 的稠密子集. 事实上, 任意取定一个1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得[,](,)|()()|a b f g f x g x dx ρε=-<⎰.事实上, 首先根据积分的绝对连续性, 存在0δ>, 使得当[,]E a b ⊂, 只要mE δ<, 就有|()|3Ef x dx ε<⎰.因为()f x (Lebesque)可积, 故几乎处处有限, 即10N N mE ∞==,其中{[,]||()|}N E x a b f x N =∈>. 由此可以得到 lim ()0N N m E →∞=(因为{}N E 是渐缩集列并且[,]a b 的测度有限),故存在某个自然数N , 使得N mE δ<且|()|3NE f x dx ε<⎰,因此有|()|f x N ≤,[,]\N x a b E ∈.引入一个新函数定义为(),[,]\():0,,NN f x x a b E f x E ∈⎧=⎨⎩显然对于[,]x a b ∈恒有|()|f x N ≤. 由Lusin 定理, 存在连续函数()(,)g x C ∈-∞+∞和闭集[,]F a b ⊂, 使得([,]\)min{,/3}m a b F N δε<且|()|g x N ≤, 进而()()g x f x ≡,x F ∈.则()g x 限制在[,]a b 即为所求, 因为:[,](,)|()()|a b f g f x g x dx ρ=-⎰([,]\)|()()|a b F Ff xg x dx ⋃=-⎰[,]\|()()||()()|a b FFf xg x dx f x f x dx ≤-+-⎰⎰[,]\\(|()|)|()()||()()|NNa b FF E F E f x N dxf x f x dx f x f x dx⋂≤++-+-⎰⎰⎰[,]\|()|([,]\)a b Ff x dx Nm a b F ≤+⎰\|()|0NNF E F E f x dx dx ⋂++⎰⎰333εεεε<++=.(ii) 1(([,]),)L a b ρ是完备的空间.2. 设(,)X ρ是距离空间,A 是X 的子集,对任意的x X ∈,记(,)inf (,)y Ax A x y ρρ∈=,则(1)(,)x A ρ是x 的连续函数.(2) 若{}n x 是X 中的点列, 使(,)0n x A ρ→,{}n x 是否为Cauchy 列? 为什么? 证:(1) 任意取定12,x x X ∈, 对于任意的y X ∈根据三角不等式, 有1122(,)(,)(,)x y x x x y ρρρ≤+, 2211(,)(,)(,)x y x x x y ρρρ≤+.对两端关于y A ∈取下确界, 可以得到1122inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+, 2211inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+. 即1122(,)(,)(,)x A x x x A ρρρ≤+, 2211(,)(,)(,)x A x x x A ρρρ≤+.由此可得1212|(,)(,)|(,)x A x A x x ρρρ-≤.由此容易证明()f x (,)x A ρ=是X 上的连续函数, 实际上, (,)x A ρ还满足Lipschitz 常数等于1的Lipschitz 条件.(2) 答: 未必是Cauchy 列. 例如取X =R , 其中的距离是Euclid 距离. 对于{1,1}A =-, 对于1,2,n =, 定义点列为1(1).n n x n=-+对于点列{}n x ,不难验证,1(,)0n x A nρ=→; 但显然{}n x 不是Cauchy 列. 这里的原因就在于(,)x A ρ不是点到点之间的距离, 而是点到集合的距离, 当这个集合A 含有不止一个点时, (,)x A ρ不再具有点点之间距离的性质. 3. E 是nR 中的Lebesgue 可测集合, 试证()L E ∞按距离(,)esssup |()()|x Ef g f x g x ρ∈=-是不可分空间.证法一:记为方便起见, 设[,]E a b =. 定义[,]1,[,],()()0,(,].a x a f x x x b λλλχλ∈⎧==⎨∈⎩显然()f x λ有界,可测, 因此必属于([,])L a b ∞. 记{()|(,]}A f x a b λλ=∈.则([,])A L a b ∞⊂.既然对于不同的12,[,]a b λλ∈, 1f λ与2f λ不同的部分是正测度集, 容易看出A 的势是ℵ.进而有(不妨设12λλ<)1212121212[,][,]\0[,][,]\0[,][,][,][,]\0(,][,][,]\0(,)infsup |()()|inf sup |()()|inf sup |()()|infsup () 1.E a b x a b EmE E a b x a b E mE a a E a b x a b E mE E a b x a b E mE f f f x f x f x f x x x x λλλλλλλλλλρχχχ⊂∈=⊂∈=⊂∈=⊂∈==-=-=-==我们用反证法证明所需的结论.设([,])L a b ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g ,因此至少有一个i g 属于两个不同的1(,1/3)S f λ和2(,1/3)S f λ.而由三角不等式, 我们有12121(,)(,)(,)112.333i i f f f g g f λλλλρρρ=≤+≤+=这是一个矛盾. 因此([,])L a b ∞不可能是可分的.证法二:既然E 是正测度集,存在0R >使得((0,))0m S R E ⋂>. 不难验证, 存在一列正数1{}i i R ∞=满足:120i R R R R <<<<<<;且1([(0,)\(0,)])0i i m E S R S R +⋂>.对于每一个12(,,,,)i λλλλ=,其中0i λ=或1, 定义1(),[(0,)\(0,)]i i i f x x E S R S R λλ+=∈⋂,1,2,i =. 显然()f x λ有界,可测, 因此必属于()L E ∞. 记{()|{0,1}}A f x λλ=∈N ,其中{0,1}N 表示具有上述性质的λ的全体. 则()A L E ∞⊂.既然对于不同的,λμ∈{0,1}N , (不妨设1(,,,)i λλλ=, 1(,,,)i μμμ=且对于某个i ,0i λ=1i μ=)f λ与f μ不同的部分至少是正测度集1[(0,)\(0,)]i i E S R S R +⋂, 容易看出A 的势与{0,1}N 的势都是连续统的势ℵ.进而有11\0((0,)\(0,))\0((0,)\(0,))\01(,)inf sup |()()|infsup|()()|inf sup|| 1.i i i i F E x E F mF F E x E S R S R FmF i i F E x E S R S R F mF f f f x f x f x f x λμλμλμρλμ++⊂∈=⊂∈⋂=⊂∈⋂=≥=-≥-=-= 我们用反证法证明所需的结论.设()L E ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g , 因此至少有一个j g 属于两个不同的(,1/3)S f λ和(,1/3)S f μ.而由三角不等式, 我们有1(,)(,)(,)11.33j j f f f g g f λμλμρρρ=≤+≤+这是一个矛盾. 因此()L E ∞不可能是可分的. 补充题.证明[,]L a b ∞是不可分空间. 证:记{}[,]()a t K x a t b χ=<<,其中[,]1,,():0,.a t a x t x t x b χ≤≤⎧=⎨<≤⎩显然[,]K L a b ∞⊂, 且只要12,[,]t t a b ∈,12t t ≠, 则有12[,][,],a t a t K χχ∈, 且因为(不妨设12t t <)12(,]t t 的测度为正, 故1212[,][,][,][,][,]||||sup |()()|a t a t a t a t L a b ess x x χχχχ∞-=-1212(,](,]sup |()|1t t x t t x χ∈==.因此, 由(,)a b 是不可数集, 而K 的基数与(,)a b 的基数相同, 故也是不可数集,且K 中任何两个不同元的距离均为1.如果[,]L a b ∞是可分的, 因此有一个可数的稠密子集合{()|1,2,}k A f x k ==, 且11(,)3k k S f K ∞=⊇.但这是荒谬的, 因为上式左端只有可数多个开球, 右端有不可数多个元, 所以至少有K 中的两个不同的12[,][,],a t a t χχ属于同一个开球01(,)3k S f , 由此得到矛盾:121002[,][,][,][,][,][,][,]1||||||||||||112.333a t a t L ab a t k k a t L a b L a b f f χχχχ∞∞∞=-≤-+-<+= 此矛盾表明[,]L a b ∞不可能是可分的.4. 设([,])k C a b 是闭区间[,]a b 上具有k 阶连续导数的函数全体, 定义:()()[,](,)max |()()|,,([,])ki i k x a b i f g f x g x f g C a b ρ∈==-∈∑试证:(1)([,])kC a b 是完备的距离空间; (2)若定义||||(,0)f f ρ=,则(([,]),||||)kC a b ⋅是Banach 空间.证:(1) 这里只证明该距离是完备的. 设1{()}n n f x ∞=是([,])k C a b (0k =时, 0([,])C a b 就理解为[,]C a b )中该距离意义下的Cauchy 列. 因此当,m n →∞时,有()()[,]0(,)max |()()|0ki i m n m n x a b i f f f x f x ρ∈==-→∑.由此容易知道对于每一个0,1,,i k =, ()1{()}i n n f x ∞=是0([,])C a b 中的Cauchy 列. 根据0([,])C a b 的完备性,知()1{()}i n n f x ∞=收敛到0([,])C a b 中的某个元, 记其为()i f x , 则0()([,])i f x C a b ∈, 且()()()i i n f x f x −−→−−→,,0,1,,n i n →∞=,其中“−−→−−→”表示是一致收敛. 如果我们记0()()f x f x =,利用数学分析中函数序列一致收敛的分析性质, 可以得到12()()(),()(),,()().k kf x f x f x f x fx f x '''=== (*)例如, 因为1()()n f x f x −−→−−→', 故 1()()xxn aaf t dt f t dt −−→−−→'⎰⎰, 即1()()()xn n af x f a f t dt −−→−−→-⎰, 又0()()n f x f x −−→−−→及0()()nf a f a −−→−−→, 故 001()()()xaf x f a f t dt -=⎰.求导即可得到01()()f x f x '=, 即 1()()f x f x '=.归纳地可得(*).因此0()()f x f x =([,])kC a b ∈且()[,](,)max |()()|ki i n n x a b i f f f x f x ρ∈==-∑()()[,]max |()()|0ki i n x a b i f x f x ∈==-→∑.即([,])kC a b 是完备的距离空间. (2)证略.7. 证明有限维线性赋范空间是完备的.证:记该有限维(实)线性赋范空间为E , 是n 维的,范数记为||||x ,需要证明(,||||)E ⋅是完备的. 记E 中的一组基为:12,,,n v v v .因此对于任意的x E ∈, 存在唯一一组实数12,,,n x x x , 使得1122n n x x x x =+++v v v ,反之亦然.(i) 我们断言存在一个与x 无关的常数0K >, 使得||||||i x K x ≤, 1,2,,i n =. (*)首先定义一个映射:nf →为: 对于任意的12(,,,)n x x x n∈,121122(,,,):||||||||n n n f x x x x x x x ==+++v v v .则对于任意的,x y E ∈(1122n n y y y y =+++v v v )有1122||||(,,,)n n x y f x y x y x y -=---111||||||||||||n n n x y x y ≤-⋅++-⋅v v2222111()()||||||||n n n x y x y ≤-++-⋅++v v .由此容易知道f 是n R 上的连续函数. 记1B ∂是n R 中的单位球面, 即21121{(,,,)|1}nn k k B x x x x =∂==∑. 则对于任意的11(,,)n x x B ∈∂, 有1(,,)0n f x x >.(事实上, 若有1(,,)0n f x x =则111(,,)||||0n n n f x x x x =++=v v ,因此110n n x x ++=v v , 但12,,,n v v v 线性无关, 故必有120n x x x ====, 此与11(,,)n x x B ∈∂相矛盾. )注意到1B ∂是n R 中的有界闭集(紧子集), 连续函数f 必可在其上达到正的最小值1/0K >.现在我们可以证明式(*). 事实上, 对于任意的x E ∈,存在唯一的一组实数12,,,n x x x , 使得1122n n x x x x =+++v v v , 不失一般性, 可设0x ≠因此,12,,,n x x x 不全为零, 注意到111222111,,,n nnn kkk k k k x x x y B xxx ===⎛⎫ ⎪ ⎪=∈∂ ⎪ ⎪⎝⎭∑∑∑,故111222211111222111()1,,,,nn nnnkkkk k k n nnn kkk k k k x x x f y xxxx x x f K xxx ======+++=⎛⎫ ⎪⎪=≥ ⎪ ⎪⎝⎭∑∑∑∑∑∑v v v或2112211||||nn n kk x x x x xK==+++≥∑v v v .由此容易得出(*)式.(ii) 设()1{}k k x ∞=是E 中的基本列, 这里()()()()1122k k k k n n x x x x =+++v v v ,即()()||||0k l x x -→, 当,k l →∞.利用(*)式便可以得到对于每一个1,2,,i n =, 成立()()()()||||||0k l k l i i x x K x x -≤-→, 当,k l →∞.即()1{}k i k x ∞=是1中的基本列, 因此收敛. 设()(0)k i i x x →, (k →∞,1,2,,i n =).记(0)()(0)(0)1122k n n xx x x =+++v v v , 显然(0)x E ∈. 根据E 中收敛的等价性(即按范数收敛意味着每个分量收敛或即按坐标收敛), 容易得到()(0)||||0k x x -→, 当k →∞.因此(,||||)E ⋅是完备的.9. 设X 为线性赋范空间, 0X 是X 的线性闭子空间. 在X 中定义等价关系为0xy x y X ⇔-∈. 对任意的x X ∈, 以[]x 记x 的等价类, 令0/{[]|}X X x x X =∈.称0/X X 为商空间, 在0/X X 上定义线性运算如下: (i) [][][]x y x y +=+, ,x y X ∈, (ii) [][]x x λλ=, ,x X λ∈∈C .并定义0||[]||inf ||||y X x x y ∈=+.试证: 0/X X 按0||[]||x 也是一个线性赋范空间.证:(一) 0/X X 按照所定义的线性运算是线性空间 (证明略).(二) 0||[]||x 是0/X X 中的范数. 按照定义, 对于每一个 0[]/x X X ∈显然0||[]||inf ||||y X x x y ∈=+是一个确定的数, 因此00||||:/X X ⋅→R 是映射.(i) (非负性) 对于x X ∈, 显然0||[]||inf ||||0y X x x y ∈=+≥.(正定性) 当0[]=[0]=x X 时, 有00||[]||||[0]||inf ||||0y X x y ∈===.反之, 如果我们假设0000||[]||inf ||||0y X x x y ∈=+=, 需要证明 00[]=[0]=x X , 也只需证明00x X ∈. 事实上, 根据下确界的定义, 对每一个自然数1,2,k =, 存在0k y X ∈, 使得00000111||||||[]||inf ||||k y X x y x x y k k k∈+<+=++=, 由此得到一个序列0{}k y X ⊂且||||0k y x ⋅−−−→-.因为0X 是闭子空间因此00x X -∈故00x X ∈, 即00[]=[0]=x X . (ii) (正齐性) 对于,x X λ∈∈C , 如果0λ=, 则000x x X λ==∈, 故0[][0]0[][]x X x x λλ====. 如果0λ≠, 则当y 取遍0X 中的所有元时,yλ也取遍0X 中的所有元, 反之亦然, 因此 00||[]||inf ||||inf ||||||y X y X yx x y x λλλλ∈∈=+=⋅+||inf ||||||inf ||||yy X X yyx x λλλλλ∈∈=+=+||inf ||||||||[]||z X x z x λλ∈=+=⋅,(iii) (三角不等式) 设,x y X ∈. 设0,u v X ∈, 当,u v 取遍0X 中的所有元时, u v +也取遍0X 中的所有元, 反之亦然, 进而, ,u v 的取法是相互独立的, 因此0||[]||inf ||||u X x y x y u ∈+=++,inf ||||u v X x y u v ∈=+++()0,inf ||||||||u v X x u y v ∈≤+++inf ||||inf ||||u X v X x u y v ∈∈=+++00||[]||||||x y =+.也可用下面的证明方法: 对于任意的0ε>, 由下确界的定义, 存在0,u v X εε∈使得0||||||[]||x u x εε+<+, 0||||||[]||y v y εε+<+,因此可以得到0||[]||inf ||||||||u X x y x y u x y u v εε∈+=++≤+++||||||||x u y v εε≤+++ 00||[]||||[]||2x y ε<++.因为0ε>的任意性, 可得0||[]||x y +00||[]||||[]||x y ≤+.10. 设X 为线性赋范空间,1nn x∞=∑收敛, 即1kk nn S x==∑按X 中的范数收敛, 则11nn n n xx ∞∞==≤∑∑.证:记1kk n n S x ==∑.对于有限项之和, 利用三角不等式, 成立111||||kk k nn n n n n S xx x ∞====≤≤∑∑∑. (*)又因为1kk nn S x==∑在范数意义下收敛, 其极限自然可以记为1nn x∞=∑, 即1k n n S x ∞=→∑,再一次利用三角不等式, 可以得到当k →∞时11||||0k nk n n n S xS x ∞∞==-≤-→∑∑,即1||||k nn S x∞=→∑, 因此在(*)式中令k →∞, 可得11nn n n xx ∞∞==≤∑∑.11. 设{0}X ≠为线性赋范空间, 试证X 是Banach 空间当且仅当{|||||1}x X x ∈=是完备的.证:记{|||||1}T x X x =∈=.(必要性) 设X 是Banach 空间, {}n x T ⊂是T 中的Cauchy 列, 即||||1n x =且||||0m n x x -→(当,m n →∞).因为X 是Banach 空间, 故{}n x 收敛, 即存在0x X ∈, 使得||||0n x x ⋅−−→, 由三角不等式容易得到:||||||||||||x y x y -≤-,因此00||||||||||||0n n x x x x -≤-→,知0||||||||n x x →, 故0||||1x =因此0x T ∈, 即T 完备.(充分性) 设T 是完备的, 并设{}n x X ⊂是X 中的Cauchy 列, 即||||0m n x x -→当,m n →∞. 由||||||||||||0m n m n x x x x -≤-→,知{||||}n x 是1中的Cauchy 数列, 因此收敛, 即存在某个数A ∈使得||||n x A →.如果0A =, 显然{}n x 收敛于X 中的零元, 故不妨设0A >. 由此知当n 充分大时, 总有||||0n x >, 不失一般性, 可设对所有的n , 都有||||0n x >. 考虑新的点列:||||nn n x y x =, 显然n y T ∈. 进而 ||||||||||||m n m n m n x xy y x x -=- ||||||||||||||||m m m n m n n n x x x xx x x x ≤-+- 111||||||||||||||||m m n m n n x x x x x x =-+-, 由此易知{}n y T ⊂是T 中的Cauchy 列. 因为T 作为距离空间是完备的, 故{}n y 收敛, 即存在0y T ∈, 使得||||0n y y ⋅−−→. 最后我们断言: ||||0n x Ay ⋅−−→.事实上,0||||||||||||||||n n n n n x Ay x Ay x x x -=- 0||||||||n n n Ay x y x =-00||||||||n n n Ay x y y y x ⎛⎫≤-+-⎪⎝⎭00||||1||||n n n A x y y y x ⎛⎫=-+- ⎪⎝⎭0→.综上可得X 是Banach 空间.15.试证定理4中(f)式定义的(,)x y 的确满足内积分的定义.证明: 即要证明: 对于赋范线性空间(,||||)X ⋅, 如果范数满足平行四边形法则:2222||||||||2(||||||||)x y x y x y ++-=+(*)则由221(,):[||||||||]4x y x y x y =+--R (K =R 时) (f ’)或221(,):[||||||||4x y x y x y =+--C22||||||||]i x iy i x iy ++-- (K =C 时) (f)所定义的确实是内积. (i) 对于x X ∈,221(,)[||||||||4x x x x x x =+--C22||||||||]i x ix i x ix ++--2||||0x =≥,因为|1||1|i i +=-, 并且根据范数的性质2(,)00(,)||||0x x x x x x =⇔==⇔=C C .同理可证(,)0x x ≥R 且(,)00x x x =⇔=R . (ii)首先考虑K =R 时的情形, 对于,,x y z X ∈, 可将(,)(,)x z y z +R R 表示为如下形式: (,)(,)x z y z +R R221[||||||||4x z x z =+--22||||||||]y z y z ++-- ()()22221||||||||||||||||4x z y z x z y z ⎡⎤=+++--+-⎣⎦ 22142222x y x yx y x yz z ⎛⎫+-+-=++++-⎪ ⎪⎝⎭ 22142222x y x y x y x y z z ⎛⎫+-+---++--⎪ ⎪⎝⎭, 再由平行四边形法则222222x y x yx y x yz z +-+-++++-22222x y x y z ⎛⎫+-=++ ⎪ ⎪⎝⎭; 222222x y x yx y x yz z +-+--++--22222x y x y z ⎛⎫+-=-+ ⎪ ⎪⎝⎭. 因此(,)(,)x z y z +R R 221222x y x yz z⎛⎫++=+-- ⎪ ⎪⎝⎭2,2x y z +⎛⎫= ⎪⎝⎭R.进而, 令0y =可以得到(,)x z R 2,2x z ⎛⎫= ⎪⎝⎭R,这里利用了(0,)0z =R . 因为x 是任意的, 故可将x 换为x y +, 即可得到(,)x y z +R 2,2x y z +⎛⎫= ⎪⎝⎭R. 对照上述二式, 即有(,)(,)x z y z +R R =(,)x y z +R .(**)至于K =C 时的情形, 注意到从形式上看(,)=(,)(,)x y x y i x iy +C R R ,利用上述已经证明了的等式(**)不难得到(,)(,)x z y z +C C =(,)x y z +C .(iii) 首先考虑K =R 时的情形, 对于,x z X ∈和任意实数,s t ∈R , 由已经证明的(**)式有(,)(,)sx z tx z +R R =((),)s t x z +R ,可知函数():(,)f t tx z =R 满足如下的函数方程:()()()f s f t f s t +=+.(***)又():(,)f t tx z =R 关于t 是连续的, 因此必有()(1)(,)f t f t t x z ==R .(事实上, 由(***)式对于任意的正整数n 和m , 利用数学归纳法有()()f ns f s s s =+++()()()()f s f s f s nf s =+++=;进而取1s n =, 有11()(1)f f n n=, 因此 1()()(1)n nf nf f m m m==. 又(***)中取0s t ==可得(0)0f =, 取s t =-可得()()f s f s -=-. 因此对于所有的有理数, 均成立()(1)f s sf =.利用()f s 的连续性, 可知对所有的实数也成立. ) 因此得到(,)()(1)(,)tx z f t f t t x z ===R R .至于K =C 时的情形, 注意到由(f)221(,)[||||||||4ix y ix y ix y =+--C 22||||||||]i ix iy i ix iy ++--221[||||||||4ix y ix y =+--22||||||||]i x y i x y ++-- 22221[||||||||4i ix y i ix y =-++-22||||||||]i x y i x y ++-- 22[||||||||4ii x iy i x iy =--++22||||||||]x y x y ++-- (,)i x y =C .由此也容易得到, 对于t ∈C(,)(,)tx z t x z =C C .(iv) 当K =R 时, 容易知道221(,)[||||||||](,)4x y x y x y y x =+--=R R ;而当K =C 时, 直接计算也可得到221(,)[||||||||4x y x y x y =+--C 22||||||||]i x iy i x iy -++-221[||||||||4y x y x =+--22||||||||]i y ix i y ix --++ (,)y x =C .16.设D 是C 中单位开圆盘, 即{|||1}D z z =∈<C . dA 是D 上的面积测度, 2()a L D 定义为22(){|()|}a L D f f Df z dz =<∞⎰在中解析且|. (见课本第六页例4)在2()a L D 中定义内积为,()()Df g f z g z dA =⎰.试证(1)1()n n nz z ϕπ-=(1,2,n =)构成2()a L D 的正交基.(2) 若2()a f L D ∈的Taylor 展开式是0()kk k f z a z∞==∑, 则21kk a k ∞=<∞+∑;(3) 若2()ag L D ∈的展开式是0()kk k g z b z∞==∑, 则0,1k kk a b f g kπ∞==+∑.证:先给出一个预备性结果: 对于2()a f L D ∈,因为()f z 是解析函数, 因此可以展开为幂级数: 0()kk k f z a z∞==∑.由此可以断言:(),()n f z z ϕ=1.n a nπ- (*)事实上,因为()f z 是解析函数,幂级数kk k a z∞=∑在D 中内闭一致收敛, 即对于D 的任意闭子集F ,kk k a z∞=∑在F 上一致收敛. 对于01ε<<, 以下取闭子集F 为:{|||1}D z D z εε=∈≤-.容易知道D ε是D 中的闭子集.对于每一个1,2,n =, 注意到级数10kn k k a z z π-=∑在D ε中仍旧一致收敛, 以下的积分号和求和号可以交换顺序:(),()()()n n Df z z f z z dA ϕϕ=⎰0lim ()()n D f z z dA εεϕ→=⎰100lim kn k D k na z z dA εεπ∞-→==∑⎰10limk n k D k na z z dA εεπ∞-→==∑⎰10lim(cos sin )(cos(1)sin(1))k n k D k na r k i k n i n dAεεθθπθθ∞+-→==+⋅⋅---∑⎰2110lim(cos sin )(cos(1)sin(1))k n k k na d r k i k n i n rdrπεεθθθπθθ∞-+-→==+⋅⋅---∑⎰⎰1210lim(cos sin )(cos(1)sin(1))k n k k na r rdr k i k n i n d επεθθπθθθ∞-+-→==+⋅⋅---∑⎰⎰12110lim2n n na r dr εεππ---→=⎰210(1)lim 22nn n a nεεππ-→-= 1.n a nπ-=因此(*)式得证.(1) 首先证明{}111()n n n n n z z ϕπ∞∞-==⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭是正交集.事实上, 对于复数(cos sin )z r i θθ=+,根据所给的定义11112(),()(cos sin )(cos sin )m n m n Dm n n m Dz z z z dAmni i r dAϕϕππθθθθππ----+-==+-⎰⎰2(cos(1)sin(1))(cos(1)sin(1))n m Dmnr m i m n i n dAθθπθθ+-=-+-⋅⋅---⎰2120(cos(1)sin(1))(cos(1)sin(1))n m mnd r m i m n i n rdrπθθθπθθ+-=-+-⋅⋅---⎰⎰122(cos(1)(1)sin )(cos(1)sin(1))n m mnrrdr m i m n i n d πθθπθθθ+-=-+-⋅---⎰⎰121,,20,.mm m n mm n ππ⎧==⎪=⎨⎪≠⎩因此{}1()n n z ϕ∞=是正交集. 因为2()a L D 是完备的空间, 故只需再证{}1()n n z ϕ∞=是完备的即可得知其也是正交基. 设有2()a f L D ∈且{}1()()n n f z z ϕ∞=⊥. 因为()f z 是解析函数, 因此可以展开为幂级数:()k k k f z a z ∞==∑.根据(*)式,可以得到,对于每一个1,2,n =,0(),()n f z z ϕ=1.n a nπ-=由此即得10n a -=, (1,2,n =). 所以()0f z ≡. 即{}1()n n z ϕ∞=是完备的, 因此是2()a L D 中的正交基.(2) 既然{}1()n n z ϕ∞=是基,由Parseval 等式可以得到221(),()||||n n f z z f ϕ∞==<∞∑.利用(*)式,上式的左端可以表示为:2122211110(),().1n n n n n n n n f z z a aa nn n ϕπππ∞=∞∞∞--======+∑∑∑∑由此可得所预期的结论. (3) 对于0()kk k f z a z∞==∑和0()kk k g z b z∞==∑, 有10()()1kk k f z a z k πϕ∞+==+∑和10()()1kk k g z b z k πϕ∞+==+∑,利用内积的连续性和(*)式,10,(),()1kk k f g a z g z k πϕ∞+==+∑10(),()1kk k a z g z k πϕ∞+==+∑10(),()1kk k a g z z k πϕ∞+==+∑11kk k a b k k ππ∞=⎛⎫= ⎪++⎝⎭∑0.1k kk a b k π∞==+∑18.设H 是内积空间,{}n e 是H 中的正交集, 求证:1(,)(,)||||||||nnn x e y e x y ∞=≤⋅∑, (,x y H ∀∈).证: 对于任意的正整数k , 由Cauchy 不等式和Bessel 不等式可以得到22111(,)(,)(,)(,)kkkn n n n n n n x e y e x e y e ===≤⋅∑∑∑2211(,)(,)n n n n x e y e ∞∞==≤⋅∑∑||||||||x y ≤⋅,由k 的任意性, 知正项级数1(,)(,)nnn x e y e ∞=∑收敛, 因此级数1(,)(,)nnn x e y e ∞=∑绝对收敛,并且11(,)(,)(,)(,)||||||||nnnnn n x e y e x e y e x y ∞∞==≤≤⋅∑∑.19.试证2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭构成2([0,])L π的正交基, 但不是2([,])L ππ-的正交基. 证:(1) 首先证明{}112()sin n n n t nt ϕπ∞∞==⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭是2([0,])L π中的正交集. 事实上,[]022(),()sin sin 2cos()cos()2m n t t mtntdtm n t m n t dtππϕϕπππ==-+--⎰⎰1()1,,0,.m n m n ππ⎧--==⎪=⎨⎪≠⎩因此{}1()n n t ϕ∞=是2([0,])L π中的正交集. 同理, 也容易证明{}1()n n t ϕ∞=还是2([,])L ππ-中的正交集.(2) 因为2([0,])L π是完备的空间, 故只需再证{}1()n n t ϕ∞=是完备的即可得知其也是正交基.设有2([0,])f L π∈且{}1()()n n f t t ϕ∞=⊥. 将()f t 做奇延拓成为()f t :(),[0,],():(),[,0).f t t f t f t t ππ∈⎧=⎨--∈-⎩则()f t ∈2([,])L ππ-. 注意到对于1,2,n =, 利用{}1()()n n f t t ϕ∞=⊥,,()sin n f f t ntdt ππϕ-=⋅⎰()sin ()sin f t ntdt f t ntdt ππ-=⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰00()sin ()()sin f s n s ds f t ntdt ππ=-⋅-+⋅⎰⎰2()sin 0f t ntdt π=⋅=⎰.设{}{}00()cos n n n t nt ψ∞∞===,对于0,1,2,n =,利用()f t 是奇函数, 可得,()cos 0n f f t ntdt ππψ-=⋅=⎰.因此{}{}()10()()()n n n n f t t t ϕψ∞∞==⊥⋃.进而也容易得到()f t ⊥1cos sin cos sin ,,,,,,2t tnt ntπππππ⎧⎫⎨⎬⎩⎭. 又已经知道与{}{}{}{}1010()()sin )cos n n n n n n t t t nt ϕψ∞∞∞∞====⋃=⋃仅相差一个常数因子的三角函数系1cos sin cos sin ,,,,,,2t tnt ntπππππ⎧⎫⎨⎬⎩⎭是2([,])L ππ-中的正交基, 因此()0f t =, a.e. [,]t ππ∈-,即有()0f t =, a.e. [0,]t π∈.因此{}1()n n t ϕ∞=是2([0,])L π中的正交基.(3) 注意到2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭在2([,])L ππ-中不是完备的, 例如对于恒等于常数1的函数2()1([,])f t L ππ≡∈-是非零元, 但对于1,2,n =,,1sin 0n f ntdt ππϕ-=⋅=⎰.因此, 2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭虽然是2([,])L ππ-的正交集, 但不是正交基.24. 试给出1([,])C a b 中列紧集的判别条件. 证:设子集1([,])A C a b ⊂且0x 是[,]a b 中一个数. 记{()|()}A f x f x A ''=∈及0{()|()}B f x f x A =∈.则A 是1([,])C a b 中的列紧集的充分必要条件是 (i) A '在([,])C a b 中有界; (ii) B 是R 中的有界集;(iii) A '是([,])C a b 中等度连续的集合.[充分性] 设1([,])A C a b ⊂满足条件(i), (ii)和(iii). 根据1([,])C a b 中范数的定义: 对于1([,])f C a b ∈,1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+,容易看出,1([,])([,])C a b C a b k k f f f f −−−−→⇔−−−−→且([,])C a b k f f ''−−−−→因此只需证明A 和A '分别是([,])C a b 中的列紧集即可, 根据Arzela-Ascoli 定理, 这也只需证明A 和A '分别在([,])C a b 中有界且等度连续即可. 事实上, A '在([,])C a b 中有界性和等度连续已由所给条件得到保证(即(i)和(iii)). 还需证明A 在([,])C a b 中的有界性和等度连续性. 记A '在([,])C a b 中的一个界为A M ',B 作为R 中的有界集, 一个界纪为B M .对于任意的[,]x a b ∈, 利用中值定理, 有0000|()||()()||()||()()||()|().A B f x f x f x f x f x x f x M b a M ξ'≤-+'=-+≤-+ 此即表明[,]m a x |()|()A B x a b f x Mb a M '∈≤-+, 所以A 在([,])C a b 中有界,且界为()A B M b a M '-+. 进而对于,[,]x y a b ∈|()()||()()|||.A f x f y f x y M x y ξ''-=-≤-由此易知A 具有等度连续性.[必要性] 设A 是1([,])C a b 中的列紧集, 即对于A 的任何点列1{()}n n f x ∞=, 1{()}n n f x ∞=在1([,])C a b 中的范数(距离)1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+意义下都有收敛的子列1{()}k n k f x ∞=. 因此, 1{()}n n f x ∞=和1{()}n n f x ∞='分别在([,])C a b 中有收敛的子列的1{()}k n k f x ∞=和1{()}k n k f x ∞='. 这表明, 根据Arzela- Ascoli 定理, A 和A '均是([,])C a b 中的列紧集, 因此A 和A '均在([,])C a b 中有界且等度连续, 因此得到(i)和(iii). 由A 的有界性, 可以知道集合0{()|()}B f x f x A =∈对于任意的0x [,]a b ∈都是R 中的有界集, 因此得到(ii). 26. 设(,)X ρ是紧距离空间,映射:f X X →满足1212((),())(,)f x f x x x ρρ<. (12x x ≠)则(1) f 是否有唯一的不动点? (2) f 是否为压缩映射?解答: (1) f 存在唯一的不动点, 证明如下: (存在性) 定义映射:h X →R 为()(,())h x x f x ρ=.由所给条件知此映射是连续的, 而X 是紧空间表明此映射能在X 中取得上下确界. 因此存在y X ∈, 使得()(,())inf ()x Xh y y f y h x ρ∈==.断言()inf ()0x Xh y h x ∈==,则y 是f 的不动点:()y f y =. 若不然, ()0h y >, 则在所给的条件中取()x f y =有(())((),(()))(,())()h f y f y f f y y f y h y ρρ=<=,此与y 达到()h x 的下确界相矛盾.(唯一性) 若还有z X ∈使得()z f z =但z y ≠. 仍由所给的条件, 有0(,)((),())(,)z y f z f y z y ρρρ<=<.这是个矛盾. 故必有z y =.(2) f 可以不是压缩映射. 反例如下:[反例1] 记[0,1]X =, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈,(,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,():1x T x x=+. 显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 则,x y 中至少有一个不为零, 由此容易得到||(,)11(1)(1)x y x y Tx Ty x y x y ρ-=-=++++ ||x y <-(,)x y ρ=.所以T 满足所需的条件, 但T 不是压缩映射, 因为,[0,1],[0,1](,)1supsup 1(,)(1)(1)x y x y x yx yTx Ty x y x y ρρ∈∈≠≠==++.因此不存在常数[0,1)α∈, 使得对于所有的,x y X ∈,(,)(,)Tx Ty x y ραρ≤.[反例2] 记1{0}1,2,X n n ⎧⎫=⋃=⎨⎬⎩⎭, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈, (,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,11,,():10,0,x T x n n x ⎧=⎪=+⎨⎪=⎩显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 如果,\{0}x y X ∈, 则有正整数,m n , m n ≠, 使得11,x y n m==, 且11||(,)11(1)(1)m n Tx Ty n m n m ρ-=-=++++ ||m n nm -<11(,)x y n mρ=-=; 如果,x y 中有一个为零, 例如0x =, 也有11(,)011Tx Ty m m ρ=-=++1m<(,)x y ρ=. 所以T 满足所需的条件, 但T 不是压缩映射, 因为例如对于 11,x y n m==, 当,m n →∞时, 成立11(,)11111(,)(1)(1)Tx Ty mnn m x y n m n mρρ-++==→++-,即不存在[0,1)α∈, 使得(,)(,)Tx Ty x y ραρ≤..补充题. 设二元函数(,)([,][,])g x y C a b a b ∈⨯,A 是([,])C a b 中的一个有界集, 记():(,)()()ba A F x g x y f y dy f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.(i) 证明A 是([,])C a b 中的列紧集;(ii) 问当A 还是([,])C a b 中的闭集时, A 是不是紧集?证:(i) 因为(,)([,][,])g x y C a b a b ∈⨯, 不难得知A ⊆ ([,])C a b . 根据Arzela-Ascoli 定理, 只需再证明A 在([,])C a b 中有界且等度连续即可.(a) A 在([,])C a b 中有界, 即A 作为由连续函数组成的集合是一致有界的. 事实上, 如果记A 的一个界为M , |(,)|g x y 在[,][,]a b a b ⨯上的最大值为K , 则对于任意取定的()F x A ∈, 有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰, 由此得知|()|(,)()baF x g x y f y dy =⎰|(,)()|bag x y f y dy ≤⎰max |(,)|max |()|ba xb a y ba a y bg x y f y dy ≤≤≤≤≤≤≤⎰[,]||||bC a b af Kdy =⎰[,]||||()C a b f K b a ≤- ()KM b a ≤-.因此A 是([,])C a b 中有界集, 且A 的一个界为()KM b a -.(b) A 在([,])C a b 中等度连续. 对于()F x A ∈,有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰. 因为(,)([,][,])g x y C a b a b ∈⨯, 因此在[,][,]a b a b ⨯上一致连续, 故对于任意的0ε>,存在0δ>, 当,[,]x x a b '∈且||x x δ'-<时, 有|(,)(,)|g x y g x y ε'-< ([,]y a b ∀∈),由此可以得到|()()|(,)()(,)()bbaaF x F x g x y f y dy g x y f y dy ''-=-⎰⎰[(,)(,)]()bag x y g x y f y dy '=-⎰|(,)(,)||()|ba g x y g x y f y dy '≤-⎰max |()||(,)(,)|ba y ba f y g x y g x y dy ≤≤'≤-⎰[,]|||||(,)(,)|bC a b af g x y g x y dy '=-⎰()M b a ε≤-. 由此易知A 具有等度连续性.(ii) 当A 还是([,])C a b 中的闭集时, A 未必是紧集! 反例可以构造如下: 考虑([0,1])C 中的集合{|1,2,}k A x k ==,显然A 是([0,1])C 中的有界集, 一个界可以取为1.可以断言A 是([0,1])C 中的闭集, 因为对于任意的,klx x A ∈, 不妨设l k >, 则[0,1][0,1]max ||k lk l C x x x x x ∈-=-1k l k l kl kl kk k k k l l l l ---⎛⎫⎛⎫⎛⎫⎡⎤=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 对于任意固定的k , 当l 趋于无穷大时, 右端项趋向于1, 由此容易知道, 作为([0,1])C 中的子点列, 集合A 不是Cauchy 列, 因此不可能在([0,1])C 中有收敛的子列, 故集合A 没有聚点, 因此是([0,1])C 中的闭集.定义(,)1K x y =,显然(,)([0,1][0,1])K x y C ∈⨯. 对于上述的集合A , 不难计算{}11()|1,2,|1,2,1k A F x x dx k k k ⎧⎫=====⎨⎬+⎩⎭⎰ 显然, A 是([0,1])C 中列紧集,唯一的聚点是零函数,但零函数不在A 中,因此不是闭集. 补充题. 设A 是([,])C a b 中的一个有界集, 记():()()xa B F x f t dt f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.证明B 是([,])C a b 中的列紧集.证:根据Arzela-Ascoli 定理, 需证明B 在([,])C a b 中有界且等度连续即可.(i) B 在([,])C a b 中有界, 即B 作为由函数组成的集合是一致有界的. 事实上, 如果记A 的界为M ,则对于任意取定的()F xB ∈, 有某个()f t A ∈, 使得()()xaF x f t dt =⎰, 由此得知|()|()|()|xxaaF x f t dt f t dt =≤⎰⎰[,]max |()|||||x xC a b a t baaf t dt f dt ≤≤≤=⎰⎰[,]||||()()C a b f b a M b a ≤-≤-.因此B 是([,])C a b 中有界集, 且B 的界为()M b a -.(ii) B 在([,])C a b 中等度连续. 对于()F x B ∈,有某个()f t A ∈, 使得()()xaF x f t dt =⎰.对于,[,]x x a b ∈|()()|()()xxaaF x F x f t dt f t dt -=-⎰⎰()|()|xxxxf t dt f t dt =≤⎰⎰[,]max |()|||||xxC a b a t bxxf t dt f dt ≤≤≤=⎰⎰||M x x ≤-. 由此易知B 具有等度连续性.补充题.证明课本20页定理8:对于距离空间(,)X ρ中的任何集合G , G '与G 均是闭集. 证:(i) 根据闭集的定义, 仅需证明()G G '''⊆.事实上, 设()y G ''∈, 则对于任意的0ε>((,)\{})S y y G ε'⋂≠∅.设((,)\{})x S y y G ε'∈⋂, 根据极限点的定义, 对于min{(,),(,)}0x y x y δρερ=->,有((,)\{})S x x G δ⋂≠∅.又(,)(,)S x S y δε⊆,因此有((,)\{})((,)\{})S y y G S x x G εδ⋂⊇⋂≠∅.注意到0ε>的任意性, 即可得到y G '∈. 因此G '是闭集. (ii) 需证明的是G G '⊆. 因为G G G '=⋃, 又()A B A B '''⋃⊆⋃,(*)故由(i)中已经证明了的结果, 有()G G G G G G G '''''''=⋃⊆⋃⊆⊆,因此G 是闭集.如下证明(*): 设y A B ''∉⋃, 则y A '∉, 且 y B '∉.由前者知存在某个00ε>, 使得0((,)\{})S y y A ε⋂=∅;由后者知存在某个10ε>, 使得1((,)\{})S y y B ε⋂=∅.取001min{,}δεε=, 则00δ>, 且0((,)\{})()S y y A B δ⋂⋃=∅,所以()y A B '∉⋃, 即(*)得证.。

泛函分析课后习题答案

泛函分析课后习题答案

___ ___ ___
1 n
d ( x, y ) 1 d ( x, y )
t 在 [o, ) 上是单增函数, 1 t
___ d ( x, y ) d ( x, z ) d ( y , z ) d ( x, y ) 1 d ( x, y ) 1 d ( x, z ) d ( y , z )
1 n
x1 B ,使 d ( x0 , x1 )
1 1 。设 d ( x0 , x1 ) 0, 则易验证 U ( x0 , ) on ,这就 n n
证明了 on 是 开集 显然 n on B 。若 x on 则对每一个 n,有 xn B 使 d ( x , x1 ) ,因 1 n 1 此 xn x(n ) 。因 B 是闭集,必有 x B ,所以 on B 。证毕 n 1 4 设 d(x,y)为空间 X 上的距离,证明 d ( x, y ) 是 X 上的距离 证明 (1)若 d ( x, y ) 0 则 d ( x, y ) 0 ,必有 x=y (2)因 d ( x, y ) d ( x, z ) d ( y, z ) 而 于是 d ( x, y ) =
___
因此 f o (t ) A 由于 A 是开集,必有 0 ,当 f C[a,b]且 d ( f , f 0 ) 时, f A 定义,n=1,2。 。 。 。 。则 d ( f n , f 0 ) | t n t0 | 0(n ) 因此当 | t n t0 | 时, f n A 。 但是 f n (t n ) a | t t0 | | t n t0 | a ,此与 f n A 的必要条件:对 任意
t B ,有 f n (t ) a 矛盾

泛函分析第七章习题解答

泛函分析第七章习题解答

第七章 习题解答1.设(X ,d )为一度量空间,令}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U问),(0εx U 的闭包是否等于),(0εx S ?解 不一定。

例如离散空间(X ,d )。

)1,(0x U ={0x },而)1,(0x S =X 。

因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。

2. 设 ],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义)()(1)()(max 21),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞=∑证明],[b a C ∞按),(g f d 成度量空间。

证明 (1)若),(g f d =0,则)()(1)()(max)()()()(t g t ft g t f r r r r bt a -+-≤≤=0,即f=g(2))()(1)()(max 21),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞=∑ )()(1)()()()(1)()(max 21)()()()()()()()(0t g t h t g t h t g t f t g t f r r r r r r r r b t a r r -+-+-+-≤≤≤∞=∑ )()(1)()(max 21)()(1)()(max 21)()()()(0)()()()(0t g t h t g t h t g t f t g t f r r r r b t a r r r r r r b t a r r -+-+-+-≤≤≤∞=≤≤∞=∑∑ =d (f ,g )+d (g ,h )因此],[b a C ∞按),(g f d 成度量空间。

3. 设B 是度量空间X 中的闭集,证明必有一列开集 n o o o 21,包含B ,而且B o n n =⋂∞=1。

泛函分析习题及参考答案

泛函分析习题及参考答案
p p
En
∫x
n
− x dt +
p
Fn
∫x
n
− x dt 。此时,
p
1 1 ⎡ ⎤ p p p p p p x x dt ( x dt ) ( x dt ) − ≤ + ⎢ ⎥ , ∫ x n − x dt < (b − a ) ⋅ ε 。 n n ∫ ∫ ∫ ⎢ En ⎥ Fn En En ⎣ ⎦
泛函分析习题及参考答案
一、在 R 中定义如下三种距离: x = ( x1 , x2 ), y = ( y1 , y2 ) ∈ R ,
2
2
d1 ( x, y ) = ( x1 − y1 ) 2 + ( x2 − y2 ) 2 , d 2 ( x, y ) = max{ x1 − y1 , x2 − y2 } ,
i =1
= ∑ ξi( n ) − ξi +
p i =1
K
i = K +1∑∞ξi( n ) − ξi
p
≤∑ξ
i =1
K
(n) i
− ξi
p
∞ p 1 ⎛ ∞ p 1 ⎞ + ⎜ ( ∑ ξi( n ) ) p + ( ∑ ξi ) p ⎟ < 2ε p 。 i = K +1 ⎝ i = K +1 ⎠
1
取 δ = min(δ 1 , δ 2 ) ,则 e ⊂ E , me < δ 时,

e
x n (t ) dt ) p < ε ,对每个自然数 n 成立。
p
即 {x n (t )} 在 [a, b] 上具有等度绝对连续的积分。 充分性证明,对任何 ε > 0 ,令 E n (ε ) = E ( x n − x ≥ ε ) ,则 mE n (ε ) → 0 。由此可知, 对任何 δ > 0 ,存在 N > 0 ,使得 n > N 时, mE n (ε ) < δ 。 令 Fn (ε ) = E ( x n − x < ε ) ,则 ρ ( x n , x ) =

刘炳初泛函分析部分习题解答

刘炳初泛函分析部分习题解答

F1 x inf d x ,y , F2 x inf d x, y ,
y F1
yF2
f x
F1 x , F1 x F2 x
x F F
1 2
由 12 知 F1 x , F2 x 连续,且 F1 F2 . 所以
由于
so , r ,
n n n 1

所以可设 x0 son , rn . 由三角不等式知当 m n N maxN1 , N 2 时,
n 1

d xm , x0 d xm , xn d xn , x0 rn rn 2rn 2 .
d xn , xm .
(1)
由 rn 0 , n 知, 对上述 0, N 2 , 当 n N 2 时有 rn . 而当 m n 时,
som , rm son , rn ,从而 xm son , rn , 有
d xn , xm rn .
证 设 px sup F x ,记 wk : x X : px k ~
F f
~ F f
x X : F x k.
由 F 的 连 续 性 知 x X : F x k 为 X 中 的 闭 集 . 事 实 上 , 设
5
x x X : F x k A 且 xn x0 , n
i 1

1 xi yi 2 i 1 xi y i
设点列 xn x1n , x2 n ,, xk n , , n 1,2, , x0 x10 , x2 0 ,, xk 0 , . 若 xn x0 , n . 下证: xi n xi 0 , n , i 1,2, . 由 xn x0 , d xn , x0 0 , n .

泛函分析部分课后习题答案

泛函分析部分课后习题答案
n
T : R n E ,对于 1 , 2 n R n , 。
下证 T 为同构映射。 显 然 T 为 单 射 , 容 易 证 T 也 为 满 射 。 事 实 上 , 对 于 x E , 令
n
ci x, ei R, i 1, 2, n ,必有 T c1 , c2 cn ci ei x 。
f x 为
n
Cauchy 列 , 则 f n x , f n1 x 0 n , 由
f ni x f ni1 x f n , f n 1 0 n 知 f ni x 也为 Cauchy 列。由 Cauchy
由于时间和能力有限,只完成了部分习题,仅供参考,有错误的请指出,大家共同进步!——陈建军
习题 1 1、解: C a,b 按 是非完备的。
n1
令函数列 Pn x
i 0
b

xi ,显然 Pn C a,b ,且有 2i
b
Pn , Pn1 Pn1 Pn dx
T x1 , x2 , xn 0, x1 , x2 , xn 1 , S x1 , x2 , xn 0, x2 , xn 。易证 T,S 为线性算
子。取点 1,0, 0 R n ,显然有 TS 1, 0, 0 T 0,0, 0 0, 0, 0 ,
n k 1
fi x f ek ,显然 f X 且 fi i 1 为 X 的基。令 T : X X ,使得
f f e1 , f e2 , f en ,易证 T 为双射。命题得证。

泛函分析答案(完整版)

泛函分析答案(完整版)

1.}{ .1的极限是唯一的中的收敛列证明距离空间n x X *.** 0*)**,( )( 0*)*,(*),(*)**,(0)( *** x x x x n x x x x x x n x x x x n n n n ==∞→→+≤≤∞→→→,即所以,则,设ρρρρ第七章距离空间、赋范线性空间2.* }{* }{ .2x x X x x X n n 的任一子列收敛于收敛于中的序列试证距离空间⇔∈.* 0*),( 0*),(}{}{)( *x x x x x x x x n x x kkk n n n n n n →→→∞→→,所以,故的任一子列,依条件,是,设ρρ.*}{.*}{*),( }{}{*),(0*}{*}{000x x x x x x x x x x N n N x x x x n n n n n n n n k k k收敛于此与假设矛盾,故不收敛于显然使的一个子列,于是可选取,使,都存在,使对任意的自然数则必存在,不收敛于,如果的任一子列收敛于反之,设ερερε≥≥>>3),(),(|),(),(| )ii (),(|),(),(| )i ( .3w z y x w y z x y x z y z x X w z y x ρρρρρρρ+≤−≤−:中的任意四个点,证明是距离空间、、、设),(|),(),(|)2()1()2( ),(),(),( ),(),(),()1( ),(),(),( ),(),(),( )i (y x z y z x y x z x z y z x x y z y y x z y z x z y y x z x ρρρρρρρρρρρρρρρ≤−≤−+≤≤−+≤即得:、结合得再由得由),(),(|),(),(|)4()3()4( ),(),(),(),( ),(),(),(),()3( ),(),(),(),( ),(),(),(),(),(),( )ii (w z y x w y z x w z y x z x w y w z z x x y w y w z y x w y z x z w w y y x z y y x z x ρρρρρρρρρρρρρρρρρρρρρρ+≤−+≤−++≤+≤−++≤+≤即得:、结合得再由得由4距离吗?是定义在实数集合上的2)(),( .4y x y x −=ρ.,24120),(),(),(),(.)(),(2上式就不成立时,,,比如取满足、、不能对所有的因为的距离不是定义在实数集合上>===+≤⋅⋅−=z y x y z z x y x z y x y x y x ρρρρρ.),( }{}{ .5收敛中的基本列,证明是距离空间、设n n n n n y x X y x ρα=.Cauchy }{),(),( |),(),(|||),( 0),( ),( 0),(数列,故收敛是即知再由依条件:n m n m n m m n n m n m n m n y y x x y x y x m n y y m n x x αρρρρααρρ+≤−=−∞→→∞→→5的闭包是闭集。

泛函分析课后习题答案

泛函分析课后习题答案

有某自然数 n,使 U ( x, ) Ox 。
1 ) 中必有 2n 1 1 1 某 U ( xk , ) ,且 U ( xk , ) Ox 。 。事实上,若 y U ( xk , ) ,则 2n 2n 2n 1 1 1 1 d ( y , x ) d ( y , xk ) + d ( x k , x ) + = 所以 y U ( xk , ) Ox 。 2n 2n n 2n 1 这样我们就证明了对任意 x X ,存在 k,n 使 x U ( xk , ) 且 2n 1 1 存在 U ( xk , ) O 任取覆盖 U ( xk , ) 的 O,记为 Ok ,n 是 2n 2n
8
设 B[a,b]表示[a,b]上实有界函数全体,对 B[a,b]中任意 两元素 f,g B[a,b],规定距离为 d ( f , g ) = sup | f (t ) − g (t ) | 。
a t b
证明 B[a,b]不是可分空间 证明
0
对任意 t0 [a,b],定义 ft (t ) = 1, t [a, t0 )2, t [to , b)}
5,证明点列{ f n }按习题 2 中距离收敛与 f C [a, b] 的充要条件为 f n 的 各阶导数在 [a,b]上一致收敛于 f 的各阶导数 证明 若{ f n }按习题 2 中距离收敛与 f C [a, b] ,即
f n (t ) − f ( r ) (t ) 1 ——>0 d ( f , f n ) r max (r ) a t b 1 + f n (t ) − f ( r ) (t ) r =0 2

f ( r ) (t ) − g ( r ) (t ) h ( r ) (t ) − g ( r ) (t ) 1 max + r a t b 1 + f ( r ) (t ) − g ( r ) (t ) 1 + h ( r ) (t ) − g ( r ) (t ) r =0 2

实变函数与泛函分析基础第三版第七章答案

实变函数与泛函分析基础第三版第七章答案

习题解答1、设(,)X d 为一度量空间,令00(,){|,(,)}U x x x X d x x εε=∈< 00(,){|,(,)}S x x x X d x x εε=∈≤,问0(,)U x ε的闭包是否等于0(,)S x ε。

解答:在一般度量空间中不成立00(,)(,)U x S x εε=,例如:取1R 的度量子空间[0,1][2,3]X =,则X 中的开球(1,1){;(1,)1}U x X d x =∈<的的闭包是[0,1],而(1,1){;(1,)1}[0,1]{2}S x X d x =∈≤=2、设[,]C a b ∞是区间[,]a b 上无限次可微函数全体,定义()()()()01|()()|(,)max 21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑,证明:[,]C a b ∞按(,)d f g 构成度量空间。

证明:(1)显然(,)0d f g ≥且(,)0d f g =⇔()()()()1|()()|,max021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈有()()|()()|0r r f t g t -=,特别当0,[,]r t a b =∀∈时有|()()|0f t g t -=⇒[,]t a b ∀∈有 ()()f t g t =。

(2)由函数()1t f t t=+在[0,)+∞上单调增加,从而对,,[,]f g h C a b ∞∀∈有 ()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max 21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立(,)(,)(,)d f g d f h d h g ≤+。

泛函分析答案

泛函分析答案

泛函分析答案(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--泛函分析答案:1、 所有元素均为0的n ×n 矩阵2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。

子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。

3、 设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。

4、 设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。

5、 设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件:(1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x)(3) 三角不等式:d(x,y)≤d(x,z)+d(y,z) for every x,y,z ∈E n 维欧几里德空间常用距离定义: 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }Td 2(x,y)=(21||ni i i x y =-∑)1/2d 1(x,y)=1||ni i i x y =-∑d p (x,y) = (1||np i i i x y =-∑ )1/p d ∞(x,y)=1max ||i i i nx y ≤≤-6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)?0(n?∞),这时记作0lim nn xx -->∞=,或简单地记作x n ?x 07、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数(3)||x+y||≤||x||+||y||,for every x,y ∈E8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。

《泛函分析》课后习题答案(张恭庆)

《泛函分析》课后习题答案(张恭庆)

2 a
n
fn
2 b
ba
.
1.4.6 设 X 1, X 2 是两个线性赋范空间,定义
X
X1 X2
x1, x2 | x1
X1, x2
X2 称
为 X1 与 X2 的 Decard笛卡尔空间. 规定线性运算如下:
x1, x2
y1, y2
x1
y1, x2
y2
5
,
K, x1, y1
X1, x2, y2
X 2 ,并赋以范数
n 1
x1
,
1
x
n 2
x2 2
2
n N.
1.4.7 设 X 是 B 空间,求证: X 是 B 空间,必须且仅须

6
xn
X,
xn
n1
mp
xn
n1 mp
收敛.
xn
xn


m
m
显然.
设 xn 是基本列, 由1.2.2 只要 xn 存在一
串收敛子列.
事实上, 对 k 是基本列,
, 取k
1 2k
,
因为
xn
所以 N k, 使得
但因为 F 2 紧, 存在它们的子序列 ynkj 收敛,设
y nk j
x2
F 2 , 即有
d
xnkj , ynkj
d
1
j
nkj
d
x1, x2 .
1.3.5 设 M 是 C a, b 中的有界集,求证集合
x
M
Fx
f t dt | f M
a
是列紧集.
证: 设 E
Fx
x f t dt | f

(完整版)实变函数与泛函分析基础第三版第七章答案

(完整版)实变函数与泛函分析基础第三版第七章答案

习题解答1、设为一度量空间,令 ,(,)X d 00(,){|,(,)}U x x x X d x x εε=∈<00(,){|,(,)}S x x x X d x x εε=∈≤问的闭包是否等于。

0(,)U x ε0(,)S x ε解答:在一般度量空间中不成立,例如:取的度量子空间,则中00(,)(,)U x S x εε=1R [0,1][2,3]X = X 的开球的的闭包是,而(1,1){;(1,)1}U x X d x =∈<[0,1](1,1){;(1,)1}[0,1]{2}S x X d x =∈≤= 2、设是区间上无限次可微函数全体,定义,证[,]C a b ∞[,]a b ()()()()01|()()|(,)max21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑明:按构成度量空间。

[,]C a b ∞(,)d f g 证明:(1)显然且有(,)0d f g ≥(,)0d f g =⇔()()()()1|()()|,max 021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈,特别当时有有。

()()|()()|0r r f t g t -=0,[,]r t a b =∀∈|()()|0f t g t -=⇒[,]t a b ∀∈ ()()f t g t =(2)由函数在上单调增加,从而对有()1t f t t=+[0,)+∞,,[,]f g h C a b ∞∀∈()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max 21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 习题解答1.设(X ,d )为一度量空间,令}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U问),(0εx U 的闭包是否等于),(0εx S ?解 不一定。

例如离散空间(X ,d )。

)1,(0x U ={0x },而)1,(0x S =X 。

因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。

2. 设 ],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。

证明 (1)若),(g f d =0,则)()(1)()(max)()()()(t g t f t g t f r r r r bt a -+-≤≤=0,即f=g(2))()(1)()(max 21),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞=∑ =d (f ,g )+d (g ,h )因此],[b a C ∞按),(g f d 成度量空间。

3. 设B 是度量空间X 中的闭集,证明必有一列开集ΛΛn o o o 21,包含B ,而且B o n n =⋂∞=1。

证明 令n n n o n nB x d Bo o .2,1},1),({K =<==是开集:设n o x ∈0,则存在B x ∈1,使n x x d 1),(10<。

设,0),(110>-=x x d n δ则易验证n o x U ⊂),(0δ,这就证明了n o 是 开集 显然B o n n ⊃⋂∞=1。

若n n o x ∞=⋂∈1则对每一个n ,有B x n ∈使n x x d 1),(1<,因此)(∞−→−−→−n x x n 。

因B 是闭集,必有B x ∈,所以B o n n =⋂∞=1。

4. 设d (x ,y )为空间X 上的距离,证明),(1),(),(___y x d y x d y x d +=是X 上的距离。

证明 (1)若0),(___=y x d 则0),(=y x d ,必有x=y (2)因),(),(),(z y d z x d y x d +≤而tt+1在),[∞o 上是单增函数,于是),(),(1),(),(),(),(1),(),(______z y d z x d z y d z x d y x d y x d y x d y x d +++=≤+==),(),(1),(),(),(1),(z y d z x d z y d z y d z x d z x d +++++),(1),(),(1),(z y d z y d z x d z x d +++≤=),(),(_____z y d z x d +。

5. 证明点列{n f }按习题2中距离收敛与],[b a C f ∞∈的充要条件为n f 的各阶导数在 [a ,b]上一致收敛于f 的各阶导数。

证明 若{n f }按习题2中距离收敛与],[b a C f ∞∈,即 )()(1)()(max 21),()()()()(0t f t f t f t f f f d r r n r r n b t a r r n -+-≤≤≤∞=∑——>0 )(∞−→−n 因此对每个r ,)()(1)()(max21)()()()(0t ft f t f t f r r n r r n bt a r r -+-≤≤∞=∑——>0 )(∞−→−n ,这样 bt a ≤≤max )()()()(t f t f r r n -——>0 )(∞−→−n ,即)()(t f r n 在 [a ,b] 上一致收敛于)()(t f r 。

反之,若的n f (t )各阶导数在[a ,b]上一致收敛于f (t ),则任意o >ε,存在0r ,使2211ε<∑∞+=o r r r;存在r N ,使当r N n >时,max )()()()(t f t f r r n - 00,2,1,0,2r r r Λ=<ε,取N=max{ N N N K 1},当n>N 时,)()(1)()(max 21),()()()()(0t f t f t f t f f f d r r n r r n b t a r r n -+-≤≤≤∞=∑ 即),(n f f d ——>0 )(∞−→−n 。

6. 设],[b a B ⊂,证明度量空间],[b a C 中的集{f|当t ∈B 时f (t )=0}为],[b a C 中的闭集,而集A={f|当t ∈B 时,|f (t )|〈a }(a >0)为开集的充要条件是B 为闭集。

证明 记E={f|当t ∈B 时f (t )=0}。

设E f n ∈}{,}{n f 按],[b a C 中度量收敛于f ,即在[a ,b]上)(t f n 一致收敛于f (t )。

设B t ∈,则0)(lim )(==∞>-t f t f n n ,所以f ∈E ,这就证明了E 为闭集充分性。

当B 是闭集时,设f ∈A 。

因f 在B 上连续而B 是有界闭集,必有B t ∈0,使)(max )(0t f t f Bt ∈=。

设 0)(0>=-δt f a 。

我们证明必有A f U ⊂),(δ。

设),(δf U g ∈,则若B t ∈,必有δ<-)()(t g t f ,于是a t f t f t g t f t g =+<+-≤)(||)(|)()(|)(|0δ,所以A g ∈,这样就证明了A 是开集必要性。

设A 是开集,要证明B 是闭集,只要证明对任意.....2,1,=∈n B t n 若0t t n >-)(∞−→−n ,必有B t ∈0。

倘若B t ___0∈,则定义||)(0t t a t f o --=。

于是对任意B t ∈,a t t a t f o <--=||)(0因此A t f o ∈)(由于A 是开集,必有0>δ,当∈f C[a ,b]且δ<),(0f f d 时,A f ∈。

定义,n=1,2。

则)(0||),(00∞>->--=n t t f f d n n因此当δ<-||0t t n 时,A f n ∈。

但是a t t t t a t f n n n =-+--=||||)(00,此与A f n ∈的必要条件:对 任意B t ∈,有a t f n <)(矛盾 因此必有B t ∈0。

7. 设E 及F 是度量空间中的两个集,如果o F E d >),(,证明必有不相交开集O 及G 分别包含E 及F 。

证明 设o F E d >=δ),(。

令 }2),(|{},2),(|{δδ====F x d x G E x d x o则,,G F O E ⊂⊂且Φ≠⋂G O ,事实上,若Φ≠⋂G O ,则有Φ≠⋂∈G O z ,所以存在E 中的点x 使2),(δ〈zx d ,F 中点y 使2),(δ〈zy d ,于是δ〈),(),(),(zy d z x d y x d +≤,此与≥),(y x d ),(F E d δ=矛盾。

8. 设 B[a ,b]表示[a ,b]上实有界函数全体,对B[a ,b]中任意两元素f ,g ∈ B[a ,b],规定距离为|)()(|sup ),(t g t f g f d bt a -=≤≤。

证明B[a ,b]不是可分空间。

证明 对任意∈0t [a ,b],定义{)},[,2),[,1)(00b t t t a t t f o t ∈∈= 则)(0t f t ∈B[a ,b],且若21t t ≠,1),(21=t t f f d 。

倘若B[a ,b]是不可分的,则有可数稠密子集{}n g n ∞=1,对任意∈0t [a ,b],)21,(0t f U 必有某n g ,即21),(0<t n f gd 。

由于[a ,b]上的点的全体是不可数集。

这样必有某n g ,21,tt ,使n g ∈)21,(1t fU ,n g ∈)21,(2t fU ,于是12121),(),(),(2121=+<+≤t n n t t t f g d g f d f f d 此与1),(21=t t f f d 矛盾,因此B[a ,b]不是可分空间。

9. 设X 是可分距离空间,ϑ为X 的一个开覆盖,即ϑ是一族开集,使得对每个X x ∈,有ϑ中的开集O ,使得O x ∈,证明必可从ϑ中选出可数个集组成X 的一个开覆盖。

证明 若X x ∈,必有ϑ∈x O ,使x O x ∈,因x O 是开集,必有某自然数n ,使x O nx U ⊂)1,(。

设{}n x n ∞=1是X 的可数稠密子集,于是在)21,(n x U 中必有某)21,(nx U k ,且x k O n x U ⊂)21,(。

事实上,若)21,(nx U y k ∈,则nn n x x d x y d x y d k k 12121),(),(),(=+<+≤所以)21,(n x U y k ∈x O ⊂。

这样我们就证明了对任意X x ∈,存在k ,n 使)21,(n x U x k ∈且存在O nx U k ⊂)21,(任取覆盖)21,(n x U k 的O ,记为n k O ,是X 的可数覆盖。

10. X 为距离空间,A 为X 中子集,令,.),,(inf )(X x y x d x f Ay ∈=∈证明)(x f 是X 上连续函数。

证明 若,.0X x ∈对任意0>ε,存在A y ∈0,使200)(2),(inf ),(εε+=+<∈x f y x d y x d Ay o 。

取02>=εδ。

则当δ<),(0x x d 时,ε+<+≤≤=)(),(),(),(),(inf )(0000x f y x d x x d y x d y x d x f o因此ε<-)()(0x f x f 。

由于x 与0x 对称性,还可得ε<-)()(0x f x f 。

于是ε<-|)()(|0x f x f 。

这就证明了)(x f 是X 上连续函数。

11. 设 X 为距离空间,21,F F 是X 中不相交的闭集,证明存在开集21,G G 使得221121,,F G F G G G ⊃⊃Θ=⋂。

证明 若1F x ∈,则由于2F x ∉,2F 为闭集,必有0>x ε,使Θ=⋂2),(F x U x ε,令)2,(11xF x x UG ε∈=Y ,类似)2,(22yF x y UG ε∈=Y ,其中Θ=⋂1),(F y U y ε,显然21,G G 是开集,且2211,F G F G ⊃⊃。

相关文档
最新文档