2015学而思杯数学解析(6年级)

合集下载

2015年第五届“学而思杯”六年级

2015年第五届“学而思杯”六年级

2015年第五届“学而思杯”六年级2015年第五届“学而思杯”六年级2015年第五届“学而思杯”六年级杯赛命题人:邹家意总分:150分时间:90分钟一、填空题.(每题10分,共80分)1. 2641473971________1524285660.【难度】★★【考点】计算:分数裂项【答案】7 【解析】11171939111111152428566032533843778415-4435384778154 21313114114-5383748741511213411314-3351577448841117原式 2. 若干个体积为13cm的小正方体木块平堆在地面上,其俯视图如(1),侧视图如(2),那么这堆木块的表面积最多等于________2cm.【难度】★★【考点】几何:三视图求表面积【答案】46 【解析】要让表面积最大,则应该让小正方体块数最多,符合该条件的三视图如下(其中(3)是主视图):(2)(1)易得:这堆木块的表面积最多等于275724246cm. 3. 甲、乙两只桶装有酒,甲桶有酒800斤,酒精占比17.92%;乙桶有酒1200斤,酒精占比59.37%;那么,两桶互相交换________斤才能使两桶酒的酒精占比相等.【难度】★★【考点】应用:浓度问题【答案】480 【解析】对于此类问题,不管两者浓度是多少,都可直接应用以下公式得出结果:甲溶液重量乙溶液重量交换量甲溶液重量乙溶液重量那么本题结果为80012004808001200斤.【思考】以上结论该如何证明? 4. 将长为15厘米的木棒截成长度为整数厘米的三段,使它们构成一个三角形的三边,则不同的截法有________种.【难度】★★【考点】计数:枚举结合几何【答案】7 【解析】设木棒被截成长度为厘米,厘米,厘米abc的三段(,,abc为非零自然数,且15abc,且abc),要构成三角形,必须满足abc,则,,abc只有下列7种可能:1,7,72,6,73,5,73,6,64,4,74,5,65,5,5、、、、、、,故有7中不同截法. 5. 123457xxxxx有________组不同的自然数解.【难度】★★★【考点】计数:隔板法【答案】330 【解析】(3)(2)(1)由于未知数12345、、、、xxxxx都有可能取0,所以先“借”1给每个未知数,则本题等同于“将127512()个相同的苹果分到5个不同的盘中,共有多少种方法”,显然,共有51412111330CC种方法,即:该方程有330组不同的自然数解. 6. 下图中,、、、EFGH为正方形ABCD四条边上的点,三角形GBM的面积比三角形CNE的面积多22934cm,且2345CDDEDFAGBH.已知那么正方形ABCD 的面积等于________2cm.【难度】★★★【考点】几何:风筝模型【答案】28 【解析】用S表示正方形ABCD的面积,加辅助线如下:由左图可得:3131428GBESSS,111152220HBESSS,所以31581220GBEHBESSGMHMSS,所以1515131921517542136GBMGBHSSSS;由右图可得:12BFCSS,111123212EFCSSS,所以126112BFCEFCSSBNENSS,ONMEHGFDCBAABCDFGHEMNOONMEHGFDCBA易得:这堆木块的表面积最多等于275724246cm. 3. 甲、乙两只桶装有酒,甲桶有酒800斤,酒精占比17.92%;乙桶有酒1200斤,酒精占比59.37%;那么,两桶互相交换________斤才能使两桶酒的酒精占比相等.【难度】★★【考点】应用:浓度问题【答案】480 【解析】对于此类问题,不管两者浓度是多少,都可直接应用以下公式得出结果:甲溶液重量乙溶液重量交换量甲溶液重量乙溶液重量那么本题结果为80012004808001200斤.【思考】以上结论该如何证明? 4. 将长为15厘米的木棒截成长度为整数厘米的三段,使它们构成一个三角形的三边,则不同的截法有________种.【难度】★★【考点】计数:枚举结合几何【答案】7 【解析】设木棒被截成长度为厘米,厘米,厘米abc的三段(,,abc为非零自然数,且15abc,且abc),要构成三角形,必须满足abc,则,,abc只有下列7种可能:1,7,72,6,73,5,73,6,64,4,74,5,65,5,5、、、、、、,故有7中不同截法. 5. 123457xxxxx有________组不同的自然数解.【难度】★★★【考点】计数:隔板法【答案】330 【解析】由于未知数12345、、、、xxxxx都有可能取0,所以先“借”1给每个未知数,则本题等同于“将127512()个相同的苹果分到5个不同的盘中,共有多少种方法”,显然,共有51412111330CC种方法,即:该方程有330组不同的自然数解. 6. 下图中,、、、EFGH为正方形ABCD四条边上的点,三角形GBM的面积比三角形CNE的面积多22934cm,且2345CDDEDFAGBH.已知那么正方形ABCD的面积等于________2cm.【难度】★★★【考点】几何:风筝模型【答案】28 【解析】用S表示正方形ABCD的面积,加辅助线如下:由左图可得:3131428GBESSS,111152220HBESSS,所以31581220GBEHBESSGMHMSS,所以1515131921517542136GBMGBHSSSS;由右图可得:12BFCSS,111123212EFCSSS,所以126112BFCEFCSSBNENSS,所以1111111672228CNECBESSSS;所以:29163342929136284347434734GBMCNESSSSSScm,即:正方形ABCD的面积24728Scm.7. 在1至2100的所有自然数中,与210互质的数之和等于________.【难度】★★★【考点】数论:欧拉公式【答案】504000 【解析】由于2102357,根据欧拉公式知:在1至2100的所有自然数中,与210互质的数共有1111210011114802357个,其中每2个数作为1组,和为2100,所以总和等于48022100504000.8. 如图,六边形ABCDEF中,,AEECBCEC,EF平行于AC,90AEFECD,23,26FECECDAEBCSS,20四边形ABCES,则________四边形ABDES.【难度】★★★【考点】几何:蝴蝶模型,鸟头模型【答案】21 【解析】由于AEEC,所以90AEC;FEDCBAFEDCBA又由于90AEFECD,所以180FECECD,所以有:2FECECDSFEECFESECCDCD;由于BCEC,所以90BCE;又由于90AEFECD,所以180FEABCD,所以有:23312FEABCDSFEEASCDBC;由于EF平行于AC,所以6FEAFECSS,所以123BCDFEASS;所以203221四边形四边形ABDEABCEECDBCDSSSS.二、解答题.(每题10分,40分)9. 一次数学竞赛,某校有200多人参加,成绩都是整数,其中118的人不到70分,17的人不到80分,14的人达到90分.那么得分在80分至89分的有多少人?【难度】★★★【考点】应用:分数应用题结合数论【答案】153人【解析】由题知:总人数为18、7、4的公倍数,由于三个数的最小公倍数等于252,所以总人数就是252.那么得分在80分至89分的有11252115374人.10. 已知最简分数,57ab满足2.357ab,求ab的所有可能值之和.【难度】★★★【考点】计算:比较大小与估算【答案】218 【解析】由于2.357ab,所以2.252.3557ab,即2.2535752.3535ab,即:78.757582.25ab,所以7579808182或或或ab,由于5a是最简分数,所以a不是5的倍数,即75798182或或ab:①7579ab 易解得:27136或aabb ②7581ab 易解得:38125或aabb ③7582ab 易解得:16111581或或aaabbb 综上,ab 等于11、15、26、36、40、42或48,即ab的所有可能值之和等于218.11. 两块手表显示时间都采用二十四小时制(即显示范围为0时0分0秒至23时59分59秒),走时一快一慢,快表比标准表每2小时快3分钟,慢表比标准表每7小时慢4分钟.现在把快表指示时间调成9点5分0秒,慢表指示时间调成11点1分0秒,那么两块表第一次指示相同的时刻是多少?【难度】★★★【考点】行程:钟面行程【答案】18点29分0秒【解析】设经过标准表上的x小时后,两块表第一次指示相同,则:96056031160160427xxxx 解得:56x 由于569605605636066292,6624218,所以此时,两块表指示的时刻都是18点29分0秒.12. 在一个圆周上等距离分布着n个点,将所有点连线形成若干个以圆周上的点为顶点的封闭图形,再任意将其中某些点染成红色,使所有的封闭图形中存在以四个红点为顶点的正方形.已知当n取某数时,至少要将400个点染成红色才能保证达成要求,请求出n的取值.【难度】★★★【考点】组合:最值原理【答案】532 【解析】经尝试可得结论:只有当n为4的倍数时,连接圆周上的某四个点才能形成正方形;设4nk,则圆周上可找到k个不同的正方形,且不共顶点.要保证存在以四个红点为顶点的正方形,则考虑最不利情况:只有一个正方形的四个顶点全是红色,其余1k个正方形的三个顶点是红色,则有31400k,解得133k,则1334532n.三、解答题.(每题15分,共30分)13. 任给50个互不相等的非零自然数,每一个数都不大于425.证明:把这50个数两两相减(大减小)所得的所有差中至少有4个相等.【难度】★★★★【考点】组合:极端原理【答案】见解析【解析】设给定的50个非零自然数为1250,,,aaa,满足1250425aaa.令121232495049,,,baabaabaa 从反面来证明,即这50个数两两之差至多有3个相等.那么以上49个差中任取4个差至多有3个相等,那么124911122233316161617425bbb,另一方面,12492132504950150425bbbaaaaaaaaa,矛盾.因此结论成立.14. 是否存在连续若干个自然数,满足其立方之和等于:(1)2014?(2)20152014?若存在,请说明这些自然数满足的条件;若不存在,请说明理由?【难度】★★★★【考点】数论:余数性质【答案】都不存在,理由见解析【解析】设连续n个自然数的立方和为3333123Saaaan,则:333333333333221231231231122Saaaananaananaa 显然,该数除以4不可能余2,所以必然不存在连续若干个自然数满足其立方之和等于2014.再考虑第二问:令212kkA,讨论A除以7的余数如下表所示:70123456171234560(1)70136310270121210除以的余数除以的余数除以的余数除以的余数kkkkA 可知:A除以7只可能余0、1、2;令1kan,2112ananA,则1A除以7只可能余0、1、2;令2ka,2212aaA,则2A除以7只可能余0、1、2;那么:S除以7的余数等于12AA除以7的余数,只可能为0、1、2、5、6,即连续n个自然数的立方和除以7的余数,只可能为0、1、2、5、6;又由于20152014除以7余3,说明与S除以7的余数不同,所以不存在!1234567890ABCDEFGHIJKLMNabcdefghijklmn!@#$%^&am p;&*()_+.一三五七九贰肆陆扒拾,。

2015年学而思杯6年级真题解析

2015年学而思杯6年级真题解析
5.
【难度】 ★★★ 【考点】计数:隔板法 【答案】 330 【解析】 由于未知数 x1、x2、x3、x4、x5 都有可能取 0,所以先 “借 ”1 给每个未知数,则本题等同
(7 5 12) 于 “将 12 个相同的苹果分到 5 个不同的盘中,共有多少种方法 ”,显然,共有
51 4 C12 1 C11 330 种方法,即:该方程有 330 组不同的自然数解.
1 1 数就是 252.那么得分在 80 分至 89 分的有 252 1 153 人. 7 4
6.
【难度】 ★★★ 【考点】几何:风筝模型 【答案】 28 【解析】用 S 表示正方形 ABCD 的面积,加辅助线如下:
A G M B H
F O N
D
A G
F O N M
Dห้องสมุดไป่ตู้
E
E
C
B
H
C
由左图可得: SGBE
3 1 3 1 1 1 1 1 S S , SHBE S S , 4 2 8 5 2 2 20
即:正方形 ABCD 的面积 S 4 7 28cm2 .
7.
【难度】 ★★★ 【考点】数论:欧拉公式 【答案】 504000 【解析】 由于 210 2 3 5 7 ,根据欧拉公式知:在 1 至 2100 的所有自然数中,与 210 互质的
1 1 1 1 数共有 2100 1 1 1 1 480 个,其中每 2 个数作为 1 组,和为 2 3 5 7
2.
【难度】 ★★ 【考点】几何:三视图求表面积 【答案】 46 【解析】要让表面积最大,则应该让小正方体块数最多,符合该条件的三视图如下(其 中( 3)是主视图) :

小学思维数学讲义:简单乘法原理-带答案解析

小学思维数学讲义:简单乘法原理-带答案解析

简单乘法原理1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.教学目标知识要点【例 1】 邮递员投递邮件由A 村去B 村的道路有3条,由B 村去C 村的道路有2条,那么邮递员从A 村经B 村去C 村,共有多少种不同的走法?【考点】简单乘法原理 【难度】1星 【题型】解答 【解析】 把可能出现的情况全部考虑进去.第一步 第二步A 村村C 村中A 村村 C 村北南C 村村A 村由分析知邮递员由A 村去B 村是第一步,再由B 村去C 村为第二步,完成第一步有3种方法,而每种方法的第二步又有2种方法.根据乘法原理,从A 村经B 村去C 村,共有3×2=6种方法.【答案】6【巩固】 如下图所示,从A 地去B 地有5种走法,从B 地去C 地有3种走法,那么李明从A 地经B 地去C地有多少种不同的走法?【考点】简单乘法原理 【难度】1星 【题型】解答 【解析】 从A 地经B 地去C 地分为两步,由A 地去B 地是第一步,再由B 地去C 地为第二步,完成第一步有5种方法,而每种方法的第二步又有3种方法.根据乘法原理,从A 地经B 地去C 地,共有5×3=15种方法.【答案】15【例 2】 如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过.问:他最多有几种不同走法?【考点】简单乘法原理 【难度】1星 【题型】解答 【解析】 从家到中间结点一共有2种走法,从中间结点到学校一共有3种走法,根据乘法原理,一共有3×2=6种走法.【答案】6【巩固】 在下图中,一只甲虫要从A 点沿着线段爬到B 点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?例题精讲CBA【考点】简单乘法原理【难度】1星【题型】解答【解析】甲虫要从A点沿着线段爬到B点,需要经过两步,第一步是从A点到C点,一共有3种走法;第二步是从C点到B点,一共也有3种走法,根据乘法原理一共有3×3=9种走法.【答案】9【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?D C BA【考点】简单乘法原理【难度】2星【题型】解答【解析】从A点沿着线段爬到B点需要分成三步进行,第一步,从A点到C点,一共有3种走法;第二步,从C点到D点,有1种走法;第三步,从D点到B点,一共也有3种走法.根据乘法原理,一共有3×1×3=9种走法.【答案】9【巩固】在右图中,一只蚂蚁要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只蚂蚁最多有几种不同走法?BDCA【考点】简单乘法原理【难度】2星【题型】解答【解析】解这道题时千万不要受铺垫题目的影响,第一步,A点到C点的走法是3种;第二步,从C点到D点,有1种走法;但第三步,从D点到B点的走法并不是3种,由D出去有2条路选择,到下一岔路口又有2条路选择,所总共有2×2=4(种)走法,根据乘法原理,这只蚂蚁最多有31412⨯⨯=(种)不同走法.【答案】12【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?D C BA【考点】简单乘法原理【难度】2星【题型】解答【解析】从A点沿着线段爬到B点需要分成三步进行,第一步,从A点到C点,一共有3种走法;第二步,从C点到D点,一共也有3种走法;第三步,从D点到B点,一共也有3种走法.根据乘法原理,一共有33327⨯⨯=种走法.【答案】27【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?BCA【考点】简单乘法原理【难度】3星【题型】解答【解析】解这道题时千万不要受铺垫题目的影响,A点到C点的走法不是3种,而是4种,C点到B点的走法也是4种,根据乘法原理,这只甲虫最多有4416⨯=种走法.【答案】16【例3】如果将四面颜色不同的小旗子挂在一根绳子上,组成一个信号,那么这四面小旗子可组成种不同的信号。

2015春第十三届学而思杯五升六答案版

2015春第十三届学而思杯五升六答案版
绝密★启用前
2015·第十三届学而思综合素质测评·数学·五升六
考试时间:90 分钟 一、 填空题(每题 5 分,共 80 分) (1)计算: 401 ÷ 31 + 402 ÷ 31 + 403 ÷ 31 + 404 ÷ 31 + 405 ÷ 31= ______ . 【答案】65 【对应讲次】五年级春季第一讲 【难度系数】★ 【分析】考点:除法运算 原式=(403 × 5) ÷ 31 = 65 ( 2 ) 用 {a} 表 示 a 的 小 数 部 分 , 例 如 : {1.99} = 0.99 ; 记 f ( x ) = 考试科目:数学 总 分:120 分
第 3 页 共 9 页 2015·第十三届学而思综合素质测评·数学·五升六
(11)如图,马从点 A 按“马走日”到 B,至少走_______步,如此步数有_______种走法. B
A 【答案】4 ,8 【对应讲次】五年级寒假第六讲 【难度系数】★★★ 【分析】考点:有序枚举/乘法原理 易知最少需要 4 步。 “• ” 法一: (乘法原理)如图,第一步只能从 A 走到 处,有两种走法,第四步只能
(升/百千米) 15 12 10 5 0 奇瑞QQ 奔驰E级 奥迪TT
【答案】1150 【对应讲次】预初衔接 【难度系数】★ 【分析】考点:统计初步 奇瑞 QQ: 30 ÷ 5 × 100=600 (千米) ;奔驰 E 级: 30 ÷ 12 × 100=250 (千米) ;奥迪 TT: 30 ÷ 10 × 100=300 (千米) ,共计 600+250+300=1150 (千米). (8)甲、乙两地相距 90 千米,快、慢两车都从甲开往乙,快车出发时,慢车已开出 30 千 米;当快车到达乙地时,慢车距乙地还有 30 千米,那么快车追上慢车时距乙地______千米. 【答案】45

小学思维数学讲义:最值中的数字谜(一)-带详解

小学思维数学讲义:最值中的数字谜(一)-带详解

小学思维数学讲义:最值中的数字谜(一)-带详解最值中的数字谜(一)1. 掌握最值中的数字谜的技巧2. 能够综合运用数论相关知识解决数字谜问题数字谜中的最值问题常用分析方法1. 数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;2. 竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.3. 数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.4. 除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.5. 数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。

【例1】有四个不同的数字,用它们组成最大的四位数和最小的四位数,这两个四位数之和是11469,那么其中最小的四位数是多少?【考点】加减法的进位与借位【难度】3星【题型】填空【解析】设这四个数字是a b c d >>>,如果0d ≠,用它们组成的最大数与最小数的和式是11469a b c dd c b a +,由个位知9a d +=,由于百位最多向千位进1,所以此时千位的和最多为10,与题意不符.所以0d =,最大数与最小数的和式为0011469a b c c b a +,由此可得9a =,百位没有向千位进位,所以11a c +=,2c =;64b c =-=.所以最小的四位数cdba 是2049.【答案】2049【例2】将一个四位数的数字顺序颠倒过来,得到一个新的四位数,如果新数比原数大7902,那么所有符合这样条件的四位数中原数最大的是.7902D C B AA B C D -例题精讲知识点拨教学目标【考点】加减法的进位与借位【难度】4星【题型】填空【解析】用A 、B 、C 、D 分别表示原数的千位、百位、十位、个位数字,按题意列减法算式如上式.从首位来看A 只能是1或2,D 是8或9;从末位来看,102A D +-=,得8D A =+,所以只能是1A =,9D =.被减数的十位数B ,要被个位借去1,就有1B C -=.B 最大能取9,此时C 为8,因此,符合条件的原数中,最大的是1989.【答案】1989【例 3】在下面的算式中,A 、B 、C 、D 、E 、F 、G 分别代表1~9中的数字,不同的字母代表不同的数字,恰使得加法算式成立.则三位数EFG 的最大可能值是.2006A B C DE F G +【考点】加减法的进位与借位【难度】4星【题型】填空【解析】可以看出,1A =,6D G +=或16.若6D G +=,则D 、G 分别为2和4,此时10C F +=,只能是C 、F 分别为3或7,此时9B E +=,B 、E 只能分别取()1,8、()2,7、()3,6、()4,5,但此时1、2、3、4均已取过,不能再取,所以D G +不能为6,16D G +=.这时D 、G 分别为9和7;且9C F +=,9B E +=,所以它们可以取()3,6、()4,5两组.要使EFG 最大,百位、十位、个位都要尽可能大,因此EFG 的最大可能值为659.事实上134********+=,所以EFG 最大为659.【答案】659【巩固】如图,相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么四位数“奥林匹克”最大是奥林匹克+奥数网2008【考点】加减法的进位与借位【难度】4星【题型】填空【关键词】学而思杯,6年级,1试,第2题【解析】显然“2≤奥”,所以“1=奥或2”,如果“2=奥”,则四位数与三位数的和超过2200,显然不符合条件,所以“1=奥”,所以“9≤林”,如果“9=林”那么“200819001008+=--=匹克数网”,“0=匹=数”,不符合条件,所以“林”最大只能是8,所以“20081800100108+=--=匹克数网”,为了保证不同的汉字代表不同的数字,“匹克”最大是76,所以“奥林匹克”最大是1876。

分数及整数裂项计算

分数及整数裂项计算

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++分数裂项计算教学目标知识点拨1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

2015学而思杯数学解析(5年级)_30

2015学而思杯数学解析(5年级)_30
【考点】浓度问题 【难度】☆☆ 【答案】20 【分析】 40% 60 30% 60 20 ,或用十字交叉算出饮料和水的质量比为 3:1 也可以
7. 2 4 6 8 10 12 14 16 18 20 的计算结果末尾有__________个连续的 0. 【考点】质数与合数 【难度】☆☆ 【答案】2 【分析】末尾的 0 由质因数 2 和 5 的个数共同决定,质因数 5 只有 2 个,质因数 2 有不止 2 个
1
2
3
45
【考点】必胜策略 【难度】☆ 【答案】1 【分析】甲不得不走 1,此时 3、4 双杀,乙挡不住了
3. 俗话说:卢沟桥的狮子,数不清.俊俊去卢沟桥数狮子,发现一共有 300 只狮子.其中大狮子与 小狮子的数量之比是 2 :1 ,那么,小狮子有__________只.
【考点】比例应用题 【难度】☆ 【答案】100 【分析】 300 (2 1) 1 100
种.
14. 如图,直角三角形 ABC 中,ABC 90 ,AC 14 .四边形 BCDE 和四边形 ABFG 都是正方形.连 结 AD,与 BC 相交于点 H.如果 GH 与 AC 平行,那么,阴影四边形 BEDH 的面积是__________.
G
A
H
F
B
C
E
D
【考点】等积变形、勾股定理
8. 一个容积是 100 立方厘米的水杯(即这个水杯装满水时,水的体积是 100 立方厘米),内有一部分
水,盛盛向杯中放入了一个小正方体,水溢出了 20 立方厘米;盛盛又向杯中放入了一个相同的小
正方体,水又溢出了 30 立方厘米(如图).那么,原来水杯中装有__________立方厘米的水.
溢出20cm3

2015学而思杯数学解析(学前)

2015学而思杯数学解析(学前)

2015学而思杯数学解析(学前)启用前★绝密2015年第五届全国学而思综合能力测评(学而思杯)数学试卷(学前组)考试时间:40分钟满分:200分姓名:____________ 准考证号:____________ 电话号码:____________考生须知:请将所有的答案写在试卷对应位置上第一部分:基础过关(每题10分,共50分)1. 计算,把答案写在横线上.14+=_______ 52-= _______ _______37+= 8-_______6= 85+=_______ 127-=_______ 144+=______ 17-_______9= 能力考查:计算能力难度:☆试题答案:(第一行)5、3、4、2;(第二行)13、5、18、8 答案详解:考察20以内的基础计算以及加减转换,需要孩子多练习,并且理解加减法之间的转换关系;一年级会逐步进阶到100以内的计算,并开始学习巧算方法。

2. 观察下面的时钟,是_______时_______分.能力考查:常识积累难度:☆试题答案:8时30分答案详解:考查对钟表的认识,要去小朋友会区分时针和分针,时针短,分针长;并认识整点和半点:时针指向几,就是几点,如果时针指向两数之间,就读小数,分针指向12是整点,分针指向6是半点;本题时针指向8和9之间,因此是8点多,分针指向6,因此是8点半,读作为8时30分;一年级会系统学习钟表,并开始认识几时几分。

3.找不同.小朋友,仔细观察下图,共有4处不同,请你在右图..中圈出来.能力考查:观察能力难度:☆☆试题答案:如上图。

答案详解:考查小朋友有序的观察能力及认真审题的能力。

按照一定的顺序进行观察,从上到下、从左到右逐一对比观察,良好的观察能力是衔接小学图形学习的必备能力。

4.小朋友,从你的角度观察,圈出离你最近的那朵花.能力考查:常识积累难度:☆试题答案:如上图。

答案详解:考查小朋友生活感知能力,凭近大远小的生活常识判断远近。

2015年10月学而思杯六年级数学试卷.pdf

2015年10月学而思杯六年级数学试卷.pdf

6. 君君有 50 克浓度为 20% 的糖水,如果他希望能配出浓度为 10% 的糖水,那么,他还需 要再向糖水中加入__________克水.
7. 如下图, 由 9 个棱长为 1 的正方体搭成如图所示的图形, 那么它的表面积是__________.
8. 将两个自然数 A、B 分别分解质因数: A 2 3 x , B 22 3 y ,其中 x, y 是互不相 同的质数,如果 A, B 420 ,那么 x y __________.
(2)在所有四位数中,最大的“本位数”是__________,最小的“本位数”是__________. (4 分)
(3)在所有三位数中,“本位数”一共有多少个?(4 分)
(4) 在所有大于 0 小于 100 的“本位数”中, 随机抽取 1 个, 抽到偶数的概率是多少? (4 分)
6
启用前★绝密
2015 年北京市六年级综合能力测评(学而思杯)
数学试卷
考试时间:90 分钟 满分:150 分
考生须知:请将填空题答案填涂在答题卡 上,解答题答写在答题纸 上 ... ... 第Ⅰ卷(填空题
一、 填空题 A(每题 5 分,共 50 分) 1. 为纪念中国人民抗日战争暨世界反法西斯战争胜利 70 周年, 2015 年 9 月 3 日在天安门广 场举行了盛大的阅兵式.受阅部队中有 10 个英模部队方队,已知每个英模部队方队有 14 排,每排 25 人.那么,受阅的 10 个英模方队共有__________人.
共 90 分)
2. 10 只猴子 3 天能吃 60 根香蕉, 按照这样的速度, 20 只猴子 9 天能吃__________根香蕉.
3. 有一堆苹果(多于 1 个) ,ห้องสมุดไป่ตู้果平均分给 3 个小朋友,会剩下 1 个;如果平均分给 4 个 小朋友,同样会剩下 1 个.那么,这堆苹果至少有__________个.

小学思维数学讲义:中国剩余定理及余数性质拓展-带详解

小学思维数学讲义:中国剩余定理及余数性质拓展-带详解

中国剩余定理及余数性质拓展1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。

”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。

刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。

中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。

(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b 是被5除余b ,被3与7整除的数;同理15c 是被7除余c ,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115a b c ++是被3除余a ,被5除余b ,被7除余c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:知识点拨教学目标今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。

2014学而思杯数学解析(6年级)

2014学而思杯数学解析(6年级)

形的面积)是
平方厘米.( π 3 )
B
O
A
【考点】几何,圆与扇形,勾股定理 【难度】☆☆☆ 【答案】225 【分析】如图所示,所求面积即为大扇形的面积加上小扇形的面积:
B
O
A
根据勾股定理, AB2 102 102 200 ,故大扇形的面积是 200π 90 360
π 102 90 25π ,故总面积是 50π 25π 75π 225 . 360
图a
图b
图c
4. 甲要完成一批零件,原计划 10 天完成.实际上甲每天比原计划多做 16 个,结果 8 天完成.这批
零件共
个.
ቤተ መጻሕፍቲ ባይዱ
【考点】应用题,工程问题
【难度】☆☆
【答案】640
【分析】量率对应求总量,16 1 1 640 个. 8 10
5. 如右图,正六边形 ABCDEF 面积是 2014 平方厘米,在 AB、BC、DE、EF 上分别取中点 G、H、I、
【难度】☆☆
【答案】10 【分析】依题意,语、数、英的诊断日期分别是 2 的倍数、3 的倍数、4 的倍数,可见进行英语诊断时
也一定在进行语文诊断,故只考虑语文和数学即可,可见每[2,3] 6 天一周期. 方法一(周期法):从 1 号开始,每一周期 6 天中只有第 1 天和第 5 天没有任何诊断,30 6 5 ,
语每隔 3 天进行一次,3 月 31 日晚上他们同时在进行诊断,以后则按上述规定进行,从不间断.4
月一共有
天是没有进行过任何科目诊断的.
2014 年 4 月 日一二三四五六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 【考点】组合,周期问题,容斥原理

2016学而思杯数学解析(6年级)

2016学而思杯数学解析(6年级)

4 分,共 8 分):
(1)
5x 3
2
5
3x 2
7
【考点】解方程
【难度】☆☆
【答案】5
【分析】去分母:
5x 3
2
6
5
6
3x 2
7
6
2 (5x 2) 30 3 (3x 7)
去括号: 10x 4 30 9x 21
移项: 10x 9x 30 4 21
合并同类项:
x5
9
(2)大超市和小超市出售同一种商品,大超市的进价比小超市的进价便宜 10%, 大超市按 30%的利润率定价,小超市按 28%的利润率定价,大超市的定价 比小超市的定价便宜 22 元,求小超市的这种商品的进价是多少元?
且 58 = 2´ 29 ,因为 4 个合数要两两互质,所以接下来找的合数不能含有质 因数 2 和 29.可以依次找到符合要求且最大的合数分别为 58 = 2´ 29 , 57 319 , 55 511 , 49 7 7 , 所 以 这 4 个 合 数 之 和 最 大 为 58 57 55 49 219 .
1
队获得的冠军数量占总数的 3 .那么,其他球队一共获得过__________个冠 34
军. 【考点】分数应用题,应用题
【难度】☆☆
【答案】29
【分析】其他球队获得的总冠军数量占总数的1-
1 4
-
4 17
-
3 34
=
29 68
,所以其他球
队共获得过
68´
29 68
=29
个冠军.
4. 如图,将一个棱长为 4cm 的正方体从中间切开,再拼成一个长方体,那么, 表面积比原来增加了__________ cm2 .

学而思杯六年级真题及详解 数学

学而思杯六年级真题及详解 数学

2014年六年级学而思综合能力测评(学而思杯)解析一、填空题A(本大题共10小题.每个小题5分,共50分)1.下面四个图形中,阴影面积占总面积一半的图形有个.①②③④【考点】计算,分数定义【难度】☆【答案】2【分析】图形①和④.2.杨老师按零售价买了6本相同的练习本,用了24元.如果按批发价购买,每本将便宜2元,这样可以多买..本.【考点】应用题,基础应用题【难度】☆【答案】6【分析】零售6本24元,则每本4元,即批发价为422-=元,可以买24212÷=本,多买6本. 3.用2、0、1、4这四个数字可以组成个没有重复数字的四位数.【考点】计数,乘法原理【难度】☆【答案】18【分析】乘法原理,332118⨯⨯⨯=.4.下面的竖式中,被除数是.16□□□□□□□□□【考点】数字谜,除法数字谜【难度】☆【答案】116【分析】由第三行是10得出除数只能是2或5,又由于第五行尾数是6,那么除数只能是2,第五行是16,则商是58,被除数是116.5. 下图中,大长方形的长是40厘米,长是宽的2倍.那么阴影面积是 平方厘米.(π取3.14)【考点】几何,圆与扇形,图形的分割与剪拼 【难度】☆ 【答案】400【分析】图形中小正方形边长是10厘米,阴影部分正好可以拼成四个小正方形. 41010400⨯⨯=.6. 甲、乙两所小学,甲校的人数是乙校人数的25,甲校的女生人数占全校人数的40%,乙校男生人数占全校人数的60%.如果将甲、乙两校合并,女生人数占总人数的 %. 【考点】应用题,分百应用题 【难度】☆ 【答案】40%【分析】设甲乙两校人数分别为2份和5份,则女生共240%5(160%) 2.8⨯+⨯-=,占2.8(25)40%÷+=.另外,实际上,从甲乙两校女生都占各自的40%即可得出结论.7. 下图中,长方形ABCD 的长为16厘米,宽为10厘米,E 、F 分别是AB 、BC 的中点,那么,三角形DEF 的面积是 平方厘米.E DCBA【考点】几何,三角形面积 【难度】☆☆ 【答案】60【分析】用总面积减去三个白色三角形的面积,11116101658108560222⨯-⨯⨯-⨯⨯-⨯⨯=.8. 某项工程,如果甲单独做,12天完成;如果乙单独做,24天完成;如果要求10天完成任务,并且要求甲、乙两人合作的时间尽可能少,那么甲、乙合作 天. 【考点】应用题,工程问题 【难度】☆☆ 【答案】4【分析】设工总24份,则甲每天做2份,乙每天做1份,尽量不合作的话则尽量让做得多的甲做,即全程只有两种状态:甲做、甲乙合作,则甲10天都在做,共做20份,乙需要做4份,即合作4天.9. 将8个相同的球分给甲、乙、丙、丁、戊五个小朋友,每人得到1个球或2个球,那么共有 种分法.【考点】计数,排列组合 【难度】☆☆ 【答案】10【分析】有2人得到1个球,3人得到2个球,25C 10=.10. 将5个自然数排成一列,从第三个数开始,每个数等于前面两个数的和,那么这5个数中,最多有 个质数.【考点】数论,质数与合数,数论中的最值 【难度】☆☆☆ 【答案】4【分析】注意到2、3、5、8、13中有4个质数,接下来论证不可能有5个质数.由于第三个数加第四个数等于第五个,这三个数不能都是奇数,必有一偶,这个偶数如果是2的话则它前面的数必然不能都是质数,所以这5个数不可能都是质数.二、填空题B (本大题共5小题.每个小题8分,共40分) 11. 两位数ab 比一位数a 少1个约数,那么ab 最大是 . 【考点】数论,数论中的最值 【难度】☆☆ 【答案】97【分析】极端分析,9a =有三个因数,则ab 有两个因数,只能是个质数,97.12.将10个棱长为1厘米的立方体如下图摆放,那么,这个立体图形的表面积是平方厘米.【考点】几何,立体图形三视图【难度】☆☆【答案】36【分析】画出三视图,三个方向的面积都是1236++⨯=.++=,(666)23613.甲乙两车分别从A、B两地同时出发,相向而行.出发时,甲、乙两车的速度之比是5:4,相遇后,甲的速度增加20%,乙的速度增加50%,他们到达目的地后都立即返回,再次相遇的地点距离第一次相遇地点20千米.那么,A、B两地的距离是千米.【考点】行程,比例法解行程,多次相遇【难度】☆☆☆【答案】180【分析】相遇后两人的速度比变为[5(120%)]:[4(150%)]6:61:1⨯+⨯+==,将全程分为9份,则第一次相遇两人共走9份,其中甲走了5份,第二次相遇两人共走18份,其中甲走了9份,即第二次相遇时甲共走5914⨯=千米.+=份,两次相遇地点相距1份,所以全程距离为29018014.有一个三位数abc,满足如下性质:由a、b、c所组成的没有重复数字的三位数中,最大的三位数与最小的三位数之差恰好等于abc.那么,这个三位数abc是.【考点】数论,位值原理【难度】☆☆☆☆【答案】495【分析】如果a、b、c中没有0,设最大三位数M xyz=,99()=,则最小三位数N zyx-=-,M N x z 即99()=-是99的倍数,注意其中x是a、b、c最大的一个,而z是a、b、c中最小的一个,abc x z枚举99的倍数,有49599(94)=⨯-满足条件;如果a、b、c中有一个0,设最大三位数0=,9990N y xM xy=,则最小三位数0-=-,M N x y 即9990=-,注意其中a、b、c中有一个0,另外两个分别为x和y(x y abc x y>),通过枚举x 来算出c,发现没有符合条件的三位数;如果a、b、c中有一个0,则只能组成一个三位数,显然不满足条件.综上,只有一个三位数495满足条件.15. 将一张正方形纸片,按下图方式进行操作:将正方形的四个顶点向内折叠至正方形中心,然后将新得到的图形的四个顶点再次向内折叠至中心.最后将纸片完全展开,原正方形四条边与所有折痕所组成的新图形中,共有 个正方形....第二次向内折:第一次向内折:?展开【考点】计数,几何计数 【难度】☆☆☆☆ 【答案】11【分析】展开后的图形如图所示:计数其中正方形的个数,共有11个.第II 卷(解答题 共60分)三、解答题(本大题共5题. 解答过程请写在答题纸上、试卷作答无效) 16. 计算及解方程(每题4分、共16分):(1)3343 4.41624815⨯+⨯+÷(2)22222222246810121416+++++++ (3)11916122030-+-(4)1291212x x+--= 【考点】计算,分数计算,公式类计算,裂项计算,分数方程 【难度】☆☆ 【答案】30、816、12、5x = 【分析】(1)3341515323 4.4162(4.42)66246304815445⨯+⨯+÷=⨯++=⨯+=+=(2)2222222221246810121416289178166+++++++=⨯⨯⨯⨯=或222222222468101214164163664100144196256816 +++++++=+++++++=(3)1191111111111111111 6122030233445562443362⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-=---++--=++-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭或1191191111111111 6122030122030344556362⎛⎫⎛⎫⎛⎫-+-=+-=-++--=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭或11911052721 6122030606060602 -+-=-+-=(4)12916(1)(29)127355 212x xx x x x+--=⇒+--=⇒=⇒=17.列方程(组)解应用题(6分)小英的玩具个数是小丽的5倍,如果小英把6个玩具送给小丽,那么小丽的玩具个数就是小英的2倍了.请问:小英、小丽原来各有玩具多少个?【考点】应用题,列方程(组)解应用题【难度】☆☆【答案】10、2【分析】标准格式如下解:设小丽原有x个玩具,则小英原有5x个玩具,根据题意,得62(56)x x+=-解得2x=55210x=⨯=答:小英原有10个玩具,小丽原有2个玩具.18.如果一个数能被它前两位数字按序组成的两位数整除,则称这个数为“好数”.例如:120的前两位数字按序组成的两位数是12,120能被12整除,所以120是“好数”.请问:(1)四位数中,最小的“好数”是多少?(4分)(2)若存在连续98个自然数都不是“好数”,那么这98个数中,最小的那个数最小可能是多少?(6分)【考点】数论,数论中的最值【难度】☆☆☆【答案】1000、9901【分析】(1)极端分析,1000能被10整除.(2)注意到0xy、00xy都是好数,所以这连续98个数至少是4位数,由于连续n个自然数中必然有一个数能被n整除,所以这些数的前两位不能是10~98,所以最小的情况只可能是9901~9998.19.请回答下列问题:(1)是否能将1~8排成一个圈,使得相邻两个数字的和都是一位数?如果能,请写出一种,如果不能,请说明理由.(3分)(2)请将1~8从左到右排成一行,使得相邻两个数字的和都是一位数.写出1种即可.(3分)(3)第2问中,将1~8从左到右排成一行,相邻两数字之和都是一位数,那么共有多少种不同的排法?(6分)【考点】组合,计数,构造与论证【难度】☆☆☆【答案】不能、81634527、16【分析】(1)不能,因为8要和两个数相邻,而8只有和1相邻才能得出一位数的和.(2)所有情况如下:81634527 81635427 81453627 8154362772634518 72635418 72453618 7254361881726345 81726354 81724536 8172543663452718 63542718 45362718 54362718(3)81一定在一侧,即81(左右可颠倒,2种情况),剩余的6个格中,7一定在最左或最右,且只能与2相邻,2种情况,剩余的4个格中,6一定在最左或最右,且只能与3相邻,2种情况,最后4和5随意排,2种情况,共222216⨯⨯⨯=种.20.如图,大正方形格板是由64个1平方厘米的小正方形铺成的,A、B、C、D是其中四个格点.AD与BC相交于点E.(1)三角形ACD的面积是多少平方厘米?(4分)(2)在其它格点中标出一点F,使得三角形ABF的面积恰等于2平方厘米,这样的点F共有几个?(4分)(3):CE EB是多少?(4分)(4)三角形ABE的面积是多少平方厘米?(4分)【考点】几何,格点,比例模型【难度】☆☆☆【答案】6、9、4:3、12 7.【分析】(1)直接套公式计算,14362⨯⨯=平方厘米.(2)如图所示,9个点分布在两条与AB平行的直线上.(3)通过数格点利用毕克公式算出593122 ABDS=+-=,或者通过整体减空白来算1119361215112222 ABDS=⨯⨯-⨯⨯-⨯⨯-⨯=.利用风筝模型,9::6:4:32ACD ABDCE EB S S===.(4)14242ABCS=⨯⨯=,3124347ABES=⨯=+.。

第五届广州学而思小学综合测评(数学参考答案及评分标准)

第五届广州学而思小学综合测评(数学参考答案及评分标准)
【第五届】2015 秋季广州学而思小学综合测评 六年级数学卷(参考答案及评分标准)
一、判断题(对的打√错的打× ,每小题 1 分,5 小题,共 5 分) 1 √ 2 √ 3 × 4 × 5 ×
二、选择题(每小题 1 分,5 小题,共 5 分) 1 B 2 C 3 A 4 C 5 B
三、填空题(每小题 2 分,10 小题,共 20 分) 题号 答案 1 100 2 65 3 31.4 4 150 5 7 6 300 7 5 8 1.29 9 64 10 1350
2 3 4 1 (3) ( ) 3 4 5 60 2 3 4 【解析】原式 60 60 60 3 4 5 40 45 48 133 1 (4) 9999 1111 【解析】原式 (10000 1) 1111
11110000 1111 11108889
1317426183274解析原式3171834262745007001200210099989796959493解析原式100999897969594932510060606040454813399991111解析原式10000111100001111111088891331572540解析原式13313315710五实际应用第14题每题5题每题10分共561方阵本身长度为201020015285全长为2002854852方程法设原来琦琦有2x支铅笔圆珠笔有7圆珠笔减少那么铅笔数不变调整前后笔支数的比
5 , 4
……2 分 ……1 分
所以第二次相遇是在肥罗通过 F 点之后. ……1 分 因 此 两 人 从 第 一 次 相 遇 之 后 到 第 二 次 相 遇 的 路 程 和 为 五 边 形 EDABF 的 周 长 : . 18 54 54 27 45 198 (米) 小伦的路程为 198

最新学而思杯六年级数学试卷与答案资料

最新学而思杯六年级数学试卷与答案资料

绝密★启用前2011年首届全国学而思综合能力测评(学而思杯)数学试卷(六年级B卷)时间:13:30~14:50 满分:150分考生须知:1. 请在答题纸上认真填写考生信息;2. 所有答案请填写在答题纸上,否则成绩无效一.填空题(每题8分,共40分)1.计算:123136___.1234⎛⎫÷+⨯=⎪⎝⎭【分析】原式=1121368.1217⨯⨯=2.如图,一个边长为10厘米的正方形木板斜靠在墙角上(木板厚度不计),AO距离为8厘米,那么点C距离地面的高度是厘米。

BCODA810【分析】6+8=14厘米3.3月11日,日本发生里氏9级大地震。

在3月15日,日本本州岛东海岸附近海域再次发生5级地震。

已知里氏的震级数每升2级,地震释放能量扩大到原来的1000倍,那么3月11日的大地震释放能量是15日东海岸地震的倍.【分析】差了4级,差了1000×1000=1,000,000倍.4. 今天是2011年4月9日,20110409这个九位数是9的倍数,则方框里应填入的数字是。

【分析】容易知道为15. 一列数,我们可以用:1x 、2x …表示,已知:12x =,112n nx x +=-()1,2,3n =,如213222x =-=,则2011____x =。

【分析】由于213222x =-=;324233x =-=;435244x =-=;找规律,可知:1n n x n +=,所以201120122011x =。

二.填空题(每题10分,共50分)1. 在梯形ABCD 中,对角线AC 与BD 相交于O 点,而三角形ABO 的面积为9,三角形BOC 的面积为27,DO 上有一点E ,而三角形ADE 的面积为1.2,则阴影部分三角形AEC 的面积为B【分析】根据题意,由于三角形ADO 的面积为3,则阴影三角形AEO 的面积为1.8,所以有三角形EOC 的面积为3.6,则阴影部分的面积为4.8.2. 有四个人说话,分别如下:A :我们中至少有一个人说的是正确的B :我们中至少有两个人说的是正确的C :我们中至少有一个人说的是错误的D :我们中至少有两个人说的是错误的 请问:说错话的有人.【分析】方法一:若没人说对,则CD 说对,矛盾;若1人说对,则ACD 说对,矛盾;若2人说对,则ABCD 说对,矛盾;若3人说对,则ABC 说对,D 错,成立;若4人说对,则AB 说对,CD 说错,矛盾,因此只能是ABC 说对,D 说错.方法二:因为四个人,所以至少有两人说错或两人说对,因此AB 一定是正确的,剩下的就容易知道D 是错的.3. n 是一个三位数,且组成它的各位数码是从左到右是从大到小的连续数字。

2015年六年级学而思杯 数学卷详解 (1)

2015年六年级学而思杯 数学卷详解 (1)

7. 有 A、B、C 三种溶液,浓度分别为 28%、32%、36%,小明准备用这三种溶液配出浓 度 33%的溶液,但配的时候不小心把 28%和 36%的瓶子弄反了,则小明实际配出的的 溶液浓度是__________. 【答案】31% 【考点】浓度问题、整体法 【解析】根据题意,假设 x 克 A 溶液、 y 克 B 溶液、 z 克 C 溶液混合,得到浓度为 33% 的溶液,但实际却是 z 克 A 溶液、 y 克 B 溶液、 x 克 C 溶液进行混合. 我们从整体考虑,把两次合起来看,即将( x z )克 A 溶液、 2 y 克 B 溶液、 ( x z )克 C 溶液进行混合: 显然, ( x z )克 28%的溶液和( x z )克 36%的溶液混合,得到的溶液浓 度为 32%,而 32%的溶液不管按什么比例混合,浓度还是 32%. 所以题目相当于( x y z )克 33%的溶液和( x y z )克浓度未知的 D 溶 液混合,得到 32%的溶液. 显然 D 溶液的浓度为 31%.
1 2V2 2 V12 2
4V2 2 V12
2V2 V1 V1 : V2 2 : 1
S1 学学 V1
S2 思思 V2
5. 下面竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,则三位数 学而思 = __________. 【答案】218 【考点】数字谜 【解析】显然“而”= 1 先看个位: “学”+“思”= 10, 再看百位:1 +“思”+ 1(十位的进位)= 10, 所以“思”= 8, “学”= 2. 所以学而思 = 218.
第二届六年级学而思杯
数学卷详解
1. 英文字母中的 A~Z, 正好对应着 1~26 这 26 个数, 例如 A 对应着 1, B 对应着 2, ……, Z 对应着 26. 请在下面方框中填入合适的英文大写字母 使得算式成立. 答: □ 内应该填 ...... __________.

第15届华杯赛决赛试卷及答案与学而思奥数体系的关联

第15届华杯赛决赛试卷及答案与学而思奥数体系的关联

第15届华杯赛决赛小学组试题分析及其在学而思奥数体系中的对应一、题目分布注:1、有些题目属于多个不同模块。

2、学而思奥数体系中,趣味数学模块的题目也归入组合问题。

(一)按模块分布(二)按难度分布由此可见,华杯决赛中中低档的题目占总分值的三分之二左右,若将基础题和中档题全部做对,即可得一等奖,所以基础至关重要!二、考察特点分析1、15届华杯赛决赛题目基础与能力并重,几乎每道题都能找到它的原型,在学而思奥数体系中都有体现;2、与过去的华杯赛决赛和总决赛一样,突出了对数论、组合、最值、几何的考察,解答题中特别重视代数方法的考察;3、解答题比重比较大,特别是有两道15分的需要写详解的题目。

这对教学方向是一个有力的引导,强调了解数学题必须概念清晰、过程清楚、答案明确三个要求并重,强调了逻辑分析与解答的严密性的重要性。

以第三大题第1题那道几何题为例,这次阅卷中如果只有一个得数,只能得5分;如果是用特殊化的方法,将任意六边形特殊化为正六边形来做的,无过程分。

这次考试结束后,又不少学生反映得分应该挺高,但成绩出来后却相去甚远,其原因就在于此。

三、结合学而思十二级新奥数体系的题目分析(以原题顺序为序)(一)填空题1、【题目】在10个盒子中放乒乓球,每个盒子中的球的个数不能少于11,不能是13,也不能是5的倍数,且彼此不同,那么至少需要个乒乓球。

【解析】考虑极端情况:11121416171819212223173+++++++++=【体系说明】组合问题、最值问题。

考察极端思想与数据筛选的能力。

详见四年级(八级下)《最值问题》2、【题目】有五种价格分别为2元、5元、8元、11元、14元的礼品以及五种价格分别为1元、3元、5元、7元、9元的包装盒。

一个礼品配一个包装盒,共有 种不同价格。

【解析】有序枚举,枚举与筛选: 2581114111113691215+,,,,,,,,,,,, 25811143333358111417+,,,,,,,,,,,, 258111455555710131619+,,,,,,,,,,,, 258111477777912151821+,,,,,,,,,,,, 2581114999991114172023+,,,,,,,,,,,,删去重复数字,共19种【体系说明】组合问题,枚举法。

2015年年测六年级数学试卷解析

2015年年测六年级数学试卷解析
然后考虑最值:我们很希望 A = 9 , B = 8 ,这将造成十位必然向百位进位,可若只进 1 位, 则 G = J = 4 ,不符要求,故知必然进 2 位(显然不可能进 3 位),此时 G = 3 ,百位向千位进 1 位,故 D = 5 .故知个位没有向十位进位,所以 C、F、H 是 2、1、0,为了 C 最大,取 C = 2 .E 和 I 是 6、7.一个可行的例子是 2982 + 5061+ 310 + 75 = 8428 .可见所求最大值是 2982.
5. 甲、乙两人都从 A 地出发去 B 地,甲先走了 2 小时,乙才出发.乙走了 6 个小时之后,与甲同时 到达 B 地.已知甲每小时比乙少走 4 千米,那么 A、B 两地相距__________千米.
【考点】行程,方程解行程 【难度】☆☆ 【答案】96
【分析】方法一(算术):甲每小时比乙少走 4 千米,故乙走了 6 个小时比甲多走 4 6 24 千米,这 24 千米恰好是甲一开始走 2 小时的路程,故甲速为 24 2 12 千米每时,全长为12 (2 6) 96 千 米. 方法二(代数):设甲的速度是 x 千米每时,则乙的速度是 x 4 千米每时.有方程 8x 6(x 4) , 解得 x 12 ,全长 8 12 96 千米.
二、填空题(共 5 道小题,每题 8 分,共 40 分)
6. 计算: 1 ¸ 0.5 + 1 = __________.
4
2
【考点】计算,分数、小数混合计算
【难度】☆☆
【答案】1
【分析】原式 1 2 1 1 1 1. 4 222
7. 已知十位数 3□1415□926 是 99 的倍数,那么两个方框内的数字之和是__________. 【考点】数论,整除特征 【难度】☆☆ 【答案】5 【分析】设此数为 3A1415B926 ,按 99 的整除特征, 3A 14 15 B9 26 是 99 的倍数,即 BA
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19. (本题共 12 分,第 1 小题 5 分,第 2 小题 7 分)
5
每一个日期都可以记作一个八位数,例如 2015 年 4 月 6 日记作 20150406.如果这样的八
位数能被 9 整除,那么这个八位数所对应的日期就叫做“幸运日”,例如:20150406 就是
一个幸运日;同时它也是 2015 年 4 月的第一个幸运日.
3
四. 填空题Ⅳ(每题 7 分,共 28 分) 13. 希望小学六年级一班,每位同学至少选一门兴趣课,22 位同学选机器人,9 位同学选单片 机,15 位同学选无线电,16 位同学选信息学.每位选择单片机的同学都选择且只能选择 机器人或无线电中的一种,每位选择无线电的同学都选择且只能选择机器人或信息学中的 一种.那么,这个班最少有__________名同学.
BCP A
(3)如图,1 27.5 , 2 95 ,3 38.5 ,那么4 __________.
C
E4 F
2
1
A
D
【解析】19
3 B
7
(4)如图,在三角形纸片 ABC 中,A 65 ,B 75 ,将纸片的一角折叠,使点 C 落在三角形 ABC 内.如果1 20 ,那么2 __________.
3
9. 某班有学生 48 名,女生占全班的 .之后又转来若干名女生,这时女生恰好占全班人数
8
2
的 .那么,转来了__________名女生.
5
3
2
【解析】设转来x 名女生, 48 x 48 x
8
5
解得x 2
10. 如图所示,圆的半径是 10 厘米.圆内部的弧都过此圆的圆心,且此圆的圆周恰好被弧六 等分.那么,阴影部分的周长是__________厘米.(圆周率取 3)
【解析】5 个连续自然数之和必为 5 的倍数, 6 个连续自然数之和必为 3 的倍数,且是奇数, 7 个连续自然数之和必为 7 的倍数,
所以这样的数必是 3 5 7 105 的倍数,且为奇数 2015 105 1920
所以共有 10 个 16. 如图,正十二边形与正方形的四个交点,恰好是正方形四条边的中点,阴影部分的面积是
(1)
(2)
(3)
(4)
【解析】每幅图差 3 个点,第四个图共 10 个点
2. 三个互不相同的质数的和是 10,那么,这三个质数的乘积是__________. 【解析】这三个质数分别为 2、3、5
则 2 3 5 30
3. 从 1,2,3,…,11 这 11 个数取出 1 个数,使得剩余 10 个数的平均数比原来 11 个数的
三角形的内角和是不变的,即在任意三角形 ABC 中, A B C 180 .利用三
角形内角和是 180 度这一性质,可以推出一个非常重要的结论:三角形的一个外角等于和
它不相邻的两个内角的和.如下面右图所示:A B ACD .
A
A
B
C
B
C
D
根据以上内容,解答下面的题目:
(1) 已知在三角形 ABC 中,C 80 , A B 20 ,那么B 的度数是( ).
【解析】22 9 15 16 2 31
14. A、B 两地相距 346 千米,某车早上 7 点出发,以每小时 60 千米的速度从 A 地出发开往 B 地.在中途 C 地修车用了 18 分钟,修车后以每小时 80 千米的速度行驶,结果在中午 12 点到达 B 地.那么,C、B 两地相距__________千米.
100 99 98 1 5050
1
二. 填空题Ⅱ(每题 5 分,共 20 分)
5. 请计算:当a 2b 5 ,c 3 时,代数式 5c 2b 3a 3c 12b 2a 的结果
是__________.
【解析】原式 5c 2b 3a 3c 12b 2a 2c 10b 5a 6 25 =31
【解析】设从A 到C 共用了x 小时,
60x 5 0.3 x 80 346
解得x 1.5 S 346 1.5 60 256
BC
15. 在小于 2015 的自然数中,可以表示成 5 个连续自然数的和,又可以表示成 6 个连续自然 数的和,还可以表示成连续 7 个自然数的和,这样的数共有__________个.
【解析】延长 BC、AG 相交于 I 易
EM : EC 1 : 3 EN:EB 1 : 5
AED
NM
H
G
P
B
F
C

6
1
S = S
30 ENM
ABCD
S
11 =(1
1
1 )202= 310
NHFPM
2 8 12 30
3
21. (本题共 18 分,第 1 小题 3 分,第 2 小题 4 分,第 3 小题 5 分,第 4 小题 6 分)
5
8. 如图,有一个棱长是 10 厘米的正方体木块,从它的上面、前面和左面的中心分别凿穿一 个边长为 4 厘米的正方形孔.穿孔后,木块剩余部分的体积是__________立方厘米.
【解析】103 4 4 10 3 4 4 4 2 648
2
三. 填空题Ⅲ(每题 6 分,共 24 分)
(1)
2x y 9
y
1 2
x
4
2
1
【解析】
2x
y
9 ,解得 x
2 ,y
5.
2y x 8
1
(2)某班有 45 名同学,其中有 5 名男生和女生的 参加了数学竞赛,剩下的男女生人数
3
恰好相等.这个班有多少名男生?
2
【解析】设有x 名男生,x 5 45 x ,解得x 21
3
答:这个班有 21 名男生.
6. 有一批零件,甲单独做需要 12 小时,乙每小时比甲少做 2 个零件.如果两人一起做,7 小
时可以完成.那么,这批零件一共有பைடு நூலகம்_________个.
【解析】 2
1
12
71
112
84
7. 填入合适的数字,使下面的乘法竖式成立.那么,乘积的最大值是__________.
【解析】5356
×
2
0
1
5,那么,正十二边形的面积是__________.
【解析】80
4
第二部分 解答题
五.
考生须知:请将第二部分试题解题过程及答案书写在答.题.纸.上 解答题(本大题共 5 题,共 62 分)
17. 计算(每题 4 分、共 8 分):
1 (1) 2.015 128 20.15 76 201 1.12
(1) △GCF 的面积是多少? 【解析】202 1 1 1 50
222 (2) △CPF 的面积是多少?
【解析】连结 EF、EG
S :S =2:1 EGF GCF
S :S =2:1 EPF PCF
S :S =12:1 ABCD PCF 100
S= 3 PCF
(3)五边形 HFPMN 的面积是多少?
平均数小 0.5,那么取出的数是__________.
66 x
【解析】设取出的数为x ,则 6
0.5
10
解得x 11
4. 1002 982 962 22 12 32 52 992 __________.
【解析】原式 1002 992 + 982 972 + 22 12
(1)2015 年 4 月的第二个“幸运日”是哪一天?
【解析】20150415
(2)在整个 2015 年中,一共有多少个这样的“幸运日”?
【解析】
2015011089, 27
2015021078, 26
2015031067........依次枚举即可,2015 年共 39 个幸运日 25
20. (本题共 16 分,第 1 小题 4 分,第 2 小题 5 分,第 3 小题 7 分) 如下图所示,正方形 ABCD 的边长是 20,E、F、G 分别是 AD、BC、CD 的中点,连接 AF、AG、 FG、BE、EC,这些线段相交于 H、N、M、P 点.请问:
所以 5 4 2 40
12. 已知:如果a b ,那么 a b a b ;如果a b ,那么 a b b a ;如果a b ,
43 45 35 那么 a b 0 .根据以上信息,计算: __________.
54 56 46 43 545 3 【解析】原式 0 54 656 4
启用前★绝密
2015 年第九届北京学而思综合能力测评解析
数学试卷(六年级)
考试时间:90 分钟
满分:150 分
第一部分 填空题 考生须知:请将第一部分所有的答案用 2B 铅笔填涂在答.题.卡.上
一. 填空题Ⅰ(每题 4 分,共 16 分) 1. 观察下列点阵,根据规律,第 4 个图一共有__________点.
A. 60
B. 30
C. 20
D. 40
【解析】D.
(2)如图,P 是三角形 ABC 内一点.比较BPC 与 A 的大小并简单说明理由.
A
P
B
C
【解析】连接AP ,并延长交BC 于 D ,
BPD BAP ABP
CPD CAP ACP
又 BCP BPD CPD
BPC A ABP ACP
A
【解析】 60
C' 1 D
2
B
EC
8
2
【解析】原式 2.015 128 760 112 2015
11 1 1 1 (2)
3 6 10 15 21
【解析】原式
2 16
1 12
1 20
1 30
1 42
2 21
1 3
1 3
1 4
1 6
相关文档
最新文档