511螺旋桨_基础知识

合集下载

螺旋桨

螺旋桨

1.2 螺旋桨的工作原理1.2 螺旋桨的工作原理上次课给大家介绍了船艇水阻力的三种主要成分的形成原因及影响其大小的主要因素。

(那么这三种阻力是哪三种?选其中一种提问其成因)。

我们知道,船艇在水中运动要受到阻力的影响。

那么船艇为什么能在水中运动?它是靠什么推动的呢?它又是怎样推动的呢?这就是我们这次课要给大家介绍的内容。

我们把推动船艇运动的装臵称为推进器。

推进器的种类很多,我们常见的有明轮推进器、喷水推进器、平旋推进器和螺旋桨等。

目前应用最广泛的推进器是螺旋桨,它的特点是:推进效率高,结构简单,工作可靠。

下面我们就来看一看一、螺旋桨的结构、配置和螺旋桨水流(一)螺旋桨的结构螺旋桨由桨毂、桨叶和整流罩等组成,并通过桨毂与尾轴相连。

一般螺旋桨有3~5个桨叶,有的则多达6个。

下面给大家介绍几个有关螺旋桨的几何名词。

(结合幻灯片)螺距——螺旋桨绕轴旋转一圈,沿轴向前进的几何距离。

(P)螺旋桨按旋转方向可分为左旋螺旋桨和右旋螺旋桨两种,从艇尾向前看,进车时顺时针旋转的称右旋螺旋桨;反时针旋转的称左旋螺旋桨。

我们怎样判断一个静止的螺旋桨是左旋还是右旋呢?将螺旋桨平放,从侧面看,桨叶向右上方倾斜的为右旋螺旋桨;桨叶向左上方倾斜的为左旋螺旋桨。

(二)螺旋桨的配置螺旋桨的配臵一般有单螺旋桨、双螺旋桨、三螺旋桨和四螺旋桨等。

地方商船一般采用单螺旋桨,且多数为右旋螺旋桨;公边船艇一般采用双螺旋桨或四螺旋桨配臵,且多采用外旋式(即右舷安装右旋螺旋桨,左舷安装左旋螺旋桨;若右舷安装左旋螺旋桨,左舷安装右旋螺旋桨,则称为内旋式)。

三螺旋桨船相对较少。

(三)螺旋桨工作时的水流排出流、吸入流、顶流、伴流这四种水流只有排出流和吸入流与螺旋桨直接相关。

而顶流和伴流则与船艇是否对水移动有关,只有船艇对水移动时才产生顶流和伴流,且随艇速增加而增大。

二、螺旋桨的推力和阻力(一)水翼原理水翼从形状上可分为机翼形水翼和弓形水翼。

船艇上的舵就属于机翼形水翼,螺旋桨桨叶则是弓形水翼。

航模螺旋桨基础知识1

航模螺旋桨基础知识1

航模螺旋桨基础知识1 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、工作原理二、可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

三、空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

四、从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

五、从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:六、T=Ctρn2D4七、P=Cpρn3D5八、η=J·Ct/Cp九、式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。

关于螺旋桨的一些知识

关于螺旋桨的一些知识

关于螺旋桨的一些知识.txt为什么我们在讲故事的时候总要加上从前?开了一夏的花,终落得粉身碎骨,却还笑着说意义。

关于螺旋桨的一些知识(转)螺旋桨 3d3v$\,f5W$h F3o一、工作原理:@,H"X3D,J7h"P!E;C可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

+h)q4g'a {1Q9|8D空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

4A2_9?6^9A8P:| k从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

&A4V7P8l;j3^7G/U9^2`/Y从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:/L4p&M0[9l+X#p:w2P8]-dT=Ctρn2D4.J0].a%t)h;S(D,j0G*]P=Cpρn3D5 #I(l"z4},R1g0fη=J·Ct/Cp #w9A7D'j2L式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

螺旋桨基础理论ppt课件

螺旋桨基础理论ppt课件
进程hp与螺旋桨直径D 的比值称为 进速系数,以J 来表示,即
2 - 16
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
螺旋桨水动力性能
由式(3-36)及式(3-37),可得进速系数J与滑脱比s之间的 关系为
作用在桨叶上的力及力矩
式中:rh为桨毅半径. R 为螺旋桨半径。
式(3 一34 )把螺旋桨的推力、转矩与流场及螺旋桨的 几何特征联系起来。因而比动量理论的结果要精密完整得 多。 当螺旋桨以进速vA和转速n 进行工作时,必须吸收主机所 供给的转矩Q 才能发出推力T ,其所作的有用功率为TVA ,而吸收的功率为2ПnQ ,故螺旋桨的效率为
2 -9
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
作用在桨叶上的力及力矩
根据茹柯夫斯基升力公式,升元体上dr 段产生的升力 将式(3-28)代入式(3-27),并考虑到dD=єdL (є为
此种情况下螺旋桨产生负推力。螺旋桨不遭受旋转阻力时
旋转一周所前进的距离称为无转矩进程或无转矩螺距,并
以P2表示, 对于一定的螺旋桨而言,显然P2> P1> P ,船舶在航行时 ,螺旋桨必须产生向前的推力以克服船之阻力,才能使船
以一定的速度前进,故螺旋桨在实际操作时,其每转一周
前进的距离hp小于实效螺距P1 。实效螺距P1与进程hp之 差(P1-hp)称为实效滑脱,其与实效螺距P1的比值称为 实效2滑- 2脱0 比,以s1来表示,即
叶元体的阻升比),叶元体转矩dQ=rdF , 可得

螺旋桨基础理论.

螺旋桨基础理论.

理想螺旋桨理论(尾流旋 转的影响)
根据动能定理可知,质量为d ,的流体在旋转运动时动能 的改变应等于旋转力dF 。在单位时间内所作的功,即
式中:ut1为桨盘处的周向诱导速度。 将式(3 一14 )代入上式中,并经简化后可得
上式表明,螺旋桨盘面处的周向诱导速度等于盘面后任一 截面处(包括远后方)的周向诱导速度的一半。
(3 一9 )代人式(3 一7 )可得效率的表达式为:
由式(3 一9 )及式(3 一10 )可见,若己知推进器的 载荷系数σ T,便可以确定诱导速度ua(或ua1)及效率 η A.图3 一2 表示与载荷系数σ T之间的关系曲线。σ T愈 小则效率愈高.
理想推进器理论
在推力Ti和速度VA一定的条件下,要取得小的载荷系数必 须增大盘面积 A0 ,对螺旋桨来说需增大直径 D ,从而 提高效率。这一结论具有重要的现实意义。
理想推进器理论
为VA+ua1,而压力降为p1,当水流经过盘面时,压力突 增为p '1(这一压力突变是由于推进器的作用而产生), 而水流速度仍保持连续变化。水流离开盘面以后,速度将 继续增大而压力下降。到推进器的远后方(CC1剖面)处 ,速度将达到最大值VA+ua.而压力回复至p0,图3 一1 ( b )和3 一1 ( c )分别表示流管中水流速度和压力的 分布情况。流管内水流轴向速度的增加使流管截面形成收 缩,而流管内外的压力差由其边界面的曲度来支持。由于 假定推进器在无限深广的流体中运动,故流管以外两端无 限远处的压力和水流速度可视为不变。
理想推进器理论
根据动量定理,作用在流体上的力等于单位时间内流体动 量的增量。而流体的反作用力即为推力,故推进器所产生 的推力
以上各式中,ρ 为流体的密度。 为了寻求盘面处速度增量ua1与无限远后方速度增量ua的 关系,在推进器盘面前和盘面后分别应用伯努利方程.在 盘面远前方和紧靠盘面处有下列关系式:

螺旋桨基础理论分解PPT学习教案

螺旋桨基础理论分解PPT学习教案
第1页/共25页
作用在桨叶上的力 及力矩
➢ 二、作用在机翼上的升力和阻力 简单回顾一下作用在机翼上的升力和阻力,将有助于 桨叶上受力情况的讨论,对于二因次机翼,我们可以 用环量为P 的一根无限长的涡线来代替机翼,这根祸 线称为附着涡。在理想流体中,作用在单位长度机翼 上的只有垂直于来流方向的升力L ,其值
第12页/共25页
作用在桨叶上的力 及力矩
➢ 就可以将叶元体效率ηor表达为另一种简单而有用的 形式
➢ 也就是说,叶元体的理想效率
➢ 将式(3 一30 )沿半径方向从桨毅至叶梢进行积分并 乘以叶数Z 以后,便可得到整个螺旋桨的推力和转矩, 即
第13页/共25页
作用在桨叶上的力及力矩
式中:rh为桨毅半径. R 为螺旋桨半径。
第21页/共25页
螺旋桨水动力性能
➢ 根据因次分析,螺旋桨的推力及转矩可用下列无因次 系数来表示,即
➢ 式中:T 为推力; Q 为转矩; ρ为水的密度; n为螺旋桨转速; D 为螺旋桨直径. 对于螺旋桨的效率场也可用无因次系数KT 、KQ 及J
第22页/共25页
螺旋桨水动力性能
式中:J为进速系数. 对于几何形状一定的螺旋桨而言,推力系数KT、转矩系数 KQ 及效率η0仅与进速系数J (或滑脱比)有关,KT、KQ 、 η0对J 之曲线称为螺旋桨的性征曲线,又因为我们所讨 论的是孤立螺旋桨(即未考虑船体的影响)的性能,所 以称为螺旋桨的敞水性征曲线,如图3 一14 所示.因KQ 数值太小,常增大10 倍(10KQ)与KT使用同一纵坐标。
第23页/共25页
螺旋桨水动力性能
第24页/共25页
第8页/共25页
作用在桨叶上的力及力矩
三、螺旋桨的作用力 由时意上.半面如径的能处分求叶析得元可诱体知导上,速的在度作给用ua及定力u螺,t,旋进则桨而可的求根进出据速整机个VA翼和螺理转旋论速桨求n的出作任 用力。取半径r处dr 段的叶元体进行讨论,其速度多角 形如图3 一10 所示。当水流以合速度VR、攻角αK流向此 叶元体时,便产生了升力dL和阻力dD。将升力dL分解为 沿螺旋桨轴向的分力dLa和旋转方向的分力dLt,阻力dD 相应地分解为dDa和dDt 。因此该叶元体所产生的推力dT 及遭受的旋转阻力dF是:

关于螺旋桨的一些知识

关于螺旋桨的一些知识
空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后 总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉 力和阻止螺旋桨转动的力矩。
从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。
螺旋桨是发动机带动旋转的,螺旋桨的作用是把发动机的功率转变为拉着飞机前进的有效功率。
螺旋桨有效功率与发动机输出功率之比,叫螺旋桨效率。
航空模型入门必读
请版主置顶,我一有时间就慢慢写哈.开始一定有点乱,慢慢整理。
由于本人只对固定翼比较熟悉,只是想用此贴让一批初入模道者尽快成魔。
若有漏洞和错误,请老鸟跟贴补充和更正。
(3)G3的安装
/bbs/viewthread.php?tid=121173&extra=page%3D1%26amp%3Bfilter%3Ddigest
当飞行速度等于零时,切向速度就是合速度,桨叶迎角等于桨叶角。飞机在地面试 车时,飞行速度(V)等于零,桨叶迎角最大,一些剖面由于迎角过大超过失速迎角气动 性能变坏,因而螺旋桨产生的拉力不一定最大。
3.螺旋桨拉力曲线:
根据螺旋桨拉力随飞行速度增大而减小的规律,可绘出螺旋桨可用拉力曲线。
4.螺旋桨拉力随转速、飞行速度变化的综合情况:

航模螺旋桨基础知识

航模螺旋桨基础知识

航模螺旋桨基础知识1(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J =V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。

关于螺旋桨的一些知识

关于螺旋桨的一些知识
螺旋桨是发动机带动旋转的,螺旋桨的作用是把发动机的功率转变为拉着飞机前进的有效功率。
螺旋桨有效功率与发动机输出功率之比,叫螺旋桨效率。
航空模型入门必读
请版主置顶,我一有时间就慢慢写哈.开始一定有点乱,慢慢整理。
由于本人只对固定翼比较熟悉,只是想用此贴让一批初入模道者尽快成魔。
若有漏洞和错误,请老鸟跟贴补充和更正。
缺点:难安装、要收费。(有破解的方法哦 ,见下面软件的安装部分)
(3)Aerofly
优点:象真度高
练习:中高级模友
缺点:要米米,目前我还没发现破解
2、 软件的安装
在这儿有点多,都是精品:
/bbs/forumdisplay.php?fid=16&filter=digest
关于螺旋桨的一些知识(转)
螺旋桨
一、工作原理
可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气 流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。
(3)电池插头
/bbs/viewthread.php?tid=129114&highlight=%B7%D6%C0%E0
(4)遥控器
/bbs/viewthread.php?tid=40945&highlight=%B7%D6%C0%E0
空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后 总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉 力和阻止螺旋桨转动的力矩。

航模螺旋桨基础知识

航模螺旋桨基础知识

一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。

图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。

特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。

航模螺旋桨基础知识

航模螺旋桨基础知识

一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。

图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。

特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。

螺旋桨基础理论分解课件

螺旋桨基础理论分解课件
相似参数
螺旋桨的相似参数包括桨叶角、螺距比、转速、雷诺数等,这些参 数在相似理论中起着重要作用。
相似定理
根据相似理论,可以通过改变螺旋桨的相似参数来研究其性能变化规 律,从而实现对实尺度螺旋桨性能的预测。
螺旋桨的尺度效应及其影响
定义及内涵
螺旋桨的尺度效应是指螺旋桨的性能随其尺寸变化而变化的现象。当螺旋桨的尺寸增大或 减小时,其周围的流场、湍流度、粘性等也会发生变化,从而影响螺旋桨的性能。
01
采用主动流动控制技术,如涡流 发生器、射流控制等,对螺旋桨 叶尖涡进行主动干预,提高螺旋 桨失速性能。
02
通过以上改进措施,可以有效提 高螺旋桨的空化和失速性能,保 证螺旋桨在各种工况下的稳定工作。
05
螺旋桨的相似理论与尺度效应
螺旋桨的相似理论
相似定 义
螺旋桨的相似理论基于流体力学的相似原理,即两个螺旋桨在几何 形状、运动状态、动力特性等方面完全相似,则它们的性能也将相 似。
• 试验设计与执行:在进行螺旋桨模型试验时,需要选择合适的模型尺寸、试验 设备等,并精确控制试验条件,以获得准确的试验数据。
• 数据处理与误差分析:对试验数据进行处理时,需要考虑各种误差来源,如测 量误差、环境干扰等,并采取合适的误差分析方法,以提高数据的可靠性。
• 换算方法与公式:为了实现螺旋桨模型试验数据与实尺度性能的换算,可以采 用相似的换算公式或方法。这些方法通常基于相似理论和尺度效应的研究成果, 通过调整相关参数来实现换算。换算过程中需要注意单位统一和适用范围。
形状优化
通过参数化建模和CFD评 估,可以对螺旋桨的叶型、 弦长、扭角等参数进行优 化,以寻求最佳性能。
控制策略优化
考虑螺旋桨与飞行器的相 互作用,CFD可用于优化 控制策略,如变速、变距等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档