扭矩的测量

合集下载

扭矩的测量方法和原理

扭矩的测量方法和原理

扭矩的测量方法和原理扭矩是物体受到外力作用时发生转动的力矩,是描述物体转动能力的物理量。

在工程和科学领域中,扭矩的测量是非常重要的,因为准确测量扭矩可以用于设计、制造和维护各种设备。

测量扭矩的方法和原理有多种,下面将详细介绍其中几种常用的方法。

1.力臂法:力臂法是最常用的一种测量扭矩的方法。

它基于杠杆原理,通过施加一定的力在一个确定的力臂上来测量扭矩。

具体步骤如下:a.将扭矩传感器插入被测物体上,确定感应轴与被测物体的旋转中心相切。

b.施加一定大小的力在感应轴上,记录所需的力臂长度。

c.扭矩的大小可以通过施加的力乘以力臂长度来计算。

2.应变计法:应变计法是一种基于材料的变形特性来测量扭矩的方法。

它利用了材料在受力时会发生应变的原理,通过测量这种应变来计算扭矩大小。

具体步骤如下:a.将应变计固定在被测物体上,以使其能测量所需位置的应变。

b.当扭矩施加在被测物体上时,应变计会产生相应的应变。

c.测量应变计输出的电压或电阻值,利用应变计的灵敏度和校准数据来计算扭矩大小。

3.电磁法:电磁法是一种利用电磁感应原理来测量扭矩的方法。

它通过感应电流的变化来计算扭矩大小。

具体步骤如下:a.在被测物体上安装扭矩传感器,传感器的结构中包含一个用于感应磁场变化的线圈。

b.当扭矩施加在被测物体上时,传感器中的线圈会感应到磁场的变化。

c.感应电流的大小与扭矩成正比,通过测量感应电流的大小来计算扭矩。

4.平衡法:平衡法是一种通过平衡两个力矩来测量扭矩的方法。

它基于力矩平衡原理,通过调整一个质量和距离的平衡来测量未知扭矩的大小。

具体步骤如下:a.将被测物体与一个已知扭矩的校准装置相连,使其达到力矩平衡。

b.在校准装置上调整质量和距离,直到力矩平衡,并记录所需的质量和距离值。

c.将被测物体与校准装置断开,使用相同的质量和距离值来平衡新的未知扭矩,通过分析平衡状态来计算未知扭矩的大小。

总结起来,扭矩的测量方法包括力臂法、应变计法、电磁法和平衡法等。

扭矩测试的几种方法对比及概念介绍

扭矩测试的几种方法对比及概念介绍

紧固件扭矩测试方法(拆车)
残余扭矩值是再继续拧紧螺栓/螺母时旋紧一个小角度测得的最小扭矩值。

起动扭矩不能作为残余扭矩。

动态扭矩:当紧固件再被固定的过程中测量得到的最大峰值。

扭力扳手和动力工具都可以施加动态扭矩,动态扭矩不能在紧固件被紧固完之后测量。

动态扭矩加载时进行在线测量得到的扭矩值。

静态扭矩:在一个紧固件被固定好之后,将其在拧紧方向上继续旋转的瞬时所需要的扭矩。

加载后对扭矩进行测量。

检测扭矩:与静态扭矩相同
动态与静态两种扭矩的监控与使用何种工具无任何关系,但是在确认扭矩时却非常有用。

动态扭矩和静态扭矩的测量结果可能并不相同。

静态扭矩会随着时间的推移而衰减,被紧固件为非金属时尤为明显;而且影响静态扭矩的因素较多,与
预紧力之间的线性关系不明显。

动态扭矩不存在随时间推移而衰减的问题;与静态扭矩相比,动态扭矩与预紧力之间的线性关系更明显;通过动力工具可以直接控制动态扭矩。

扭矩的测量方法和原理

扭矩的测量方法和原理

扭矩的测量方法和原理扭矩是物体绕轴旋转时受到的力矩,它是描述旋转力大小和作用位置的物理量。

在工程和科学研究中,测量扭矩是非常重要的。

本文将介绍扭矩的测量方法和原理。

常见的扭矩测量方法有静态法、动态法和电信号法。

静态法主要是通过杠杆原理,将扭矩传感器固定在被测物体上,然后根据测得的传感器输出信号计算出扭矩值。

动态法则是测量物体在旋转过程中的扭转角度和加速度,通过牛顿第二定律推导出扭矩值。

电信号法则是利用电极或电阻应变片等装置,将扭矩转化为电信号,再通过电路进行测量。

下面从静态法和电信号法两个方面详细介绍扭矩的测量原理。

一、静态法静态法是一种利用杠杆原理进行扭矩测量的方法。

其原理可由下式表示:M=F×l式中,M是扭矩,单位是牛顿米(N·m);F是施加在杠杆上的力,单位是牛顿(N);l是施力点到旋转中心的距离,单位是米(m)。

在实际测量中,需要将扭矩传感器固定在被测物体上,使其与旋转轴平行。

当物体受到扭矩时,扭矩传感器会产生相应的变形,进而输出电信号。

通过测量传感器的输出信号,可以计算出施加在物体上的扭矩大小。

静态法的优点是测量精度高,并且适用于不同形状和材料的物体。

然而,静态法只适用于低速旋转的物体,因为在高速旋转时,由于离心力的影响,无法准确测量扭矩值。

二、电信号法电信号法是一种常用的扭矩测量方法。

其原理是利用电阻应变片的变形来测量扭矩。

当物体受到扭矩作用时,电阻应变片会产生相应的应变,从而引起电阻值的变化。

通过测量电阻值的变化,可以间接得到扭矩变化的大小。

电信号法的基本原理如下:1.将电阻应变片安装在固定的位置上,使其与旋转轴垂直。

2.当物体受到扭矩作用时,电阻应变片的传感网格发生形变,导致电阻值的变化。

3.将电阻值变化转化为电信号输出。

4.通过测量电信号的强度,可以得到扭矩的大小。

电信号法的优点是测量范围广,可适用于高速旋转的物体。

此外,电信号法具有快速响应、准确可靠等特点。

扭矩的测量方法和原理

扭矩的测量方法和原理

扭矩的测量方法和原理本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March扭矩的测量方法和原理目前测量扭矩值主要采用非电量电测法,将应变片直接粘贴在传动轴的表面上,组成测量电桥,见图1。

用相应的测量系统测量由于扭矩作用所产生的剪应变或剪应力,从而计算出扭矩值。

其优点是可直接测量传动轴的扭转变形,减少了由主电机功率和转速推算的间接影响因素。

图 1 传动轴扭矩测量的布片和组桥图Strain gage distributionand builing bridge by torque measuring on a driving axis由材料力学可知,扭矩的计算公式为M=τW(1)式中M——传动轴承受的扭矩;τ——传动轴承受的剪切力;W——抗扭断面系数(对实心圆轴)。

式中D——传动轴直径。

则M=τD3(3)因扭转作用在与轴体轴线成±45°方向的轴体表面上产生最大主应力σ1和最小主应力σ3,其绝对值均等于最大剪应力τ,即根据虎克定律,剪应力为式中E——传动轴材料的弹性模量;μ——传动轴材料的泊桑比;ε——传动轴的应变。

由式(3)可知,扭矩与应变呈线性关系。

扭矩测量的关键是解决信号的传输问题。

目前常用的扭矩信号传输方式包括有线传输和无线传输两种。

有线传输是使用滑环和电刷等将传动轴上的电信号引出给测量仪器。

冶金测量车所配置的是无线传输,该系统见图2。

传动轴上的机械应变引起贴在轴上的应变片的电阻发生变化,使其电桥失衡,产生与扭矩值成正比的电压。

该电压通过振荡器(运用频率调制的原理)转换成与扭矩值成正比的输出频率,其信号从发送线圈送到接收线圈,经鉴别器把信号解调并转换成电压信号进行记录和显示。

测量电桥、振荡器和发送线圈均安装在被测轴上随轴旋转,避免了旋转轴引线困难和接触滑环的接触电阻的影响。

图 2扭矩测量框图Block draft of the torgue measurement1—应变电桥;2—振荡器;3—发送线圈;4—接收线圈;5—鉴别器;6—计算机;7—传动轴。

扭矩测量方法

扭矩测量方法

扭矩测量方法扭矩是描述物体围绕固定轴线旋转的力的物理量,是衡量物体转动状态的重要参数。

在工程领域中,扭矩的测量是非常重要的,它直接关系到机械设备的性能和安全。

因此,掌握正确的扭矩测量方法对于工程技术人员来说至关重要。

一、扭矩传感器。

扭矩传感器是测量扭矩的重要工具,它能够将扭矩转化为电信号输出,通过测量电信号的大小来确定扭矩的大小。

扭矩传感器的选择应根据测量对象的特点和测量要求来确定,常见的扭矩传感器有电阻应变式、电容式、电磁式等多种类型。

二、扭矩测量方法。

1. 静态法。

静态法是最常用的扭矩测量方法之一,它通过固定被测物体的一个端点,然后施加一个力矩,通过测量被测物体的变形或者应变来计算扭矩的大小。

这种方法简单易行,适用于大多数静态扭矩测量。

2. 动态法。

动态法是一种在物体运动状态下进行扭矩测量的方法,它适用于需要测量旋转物体的扭矩。

通过在旋转轴上安装扭矩传感器,可以实时监测旋转过程中的扭矩变化,从而得到准确的扭矩数据。

3. 拉力计法。

拉力计法是一种通过测量拉力计的拉力来计算扭矩的方法,它适用于一些特殊的扭矩测量场合,如螺栓拧紧力矩的测量等。

通过将拉力计安装在扭矩作用点上,可以实现对扭矩的准确测量。

4. 液压法。

液压法是一种通过测量液压系统的压力来计算扭矩的方法,它适用于一些需要大扭矩测量的场合。

通过将液压系统与被测物体连接,可以根据液压系统的压力变化来计算扭矩的大小。

三、注意事项。

在进行扭矩测量时,需要注意以下几点:1. 选择合适的扭矩传感器,确保其测量范围和精度符合测量要求。

2. 在进行扭矩测量前,需要对测量系统进行校准,确保测量结果的准确性。

3. 在进行动态扭矩测量时,需要考虑旋转物体的惯性和动态特性对测量结果的影响。

4. 在进行液压法扭矩测量时,需要注意液压系统的密封和稳定性,以确保测量结果的准确性。

通过以上方法和注意事项,可以实现对扭矩的准确测量,为工程技术人员提供可靠的数据支持,保障机械设备的正常运行和安全性能。

扭矩测量方法范文

扭矩测量方法范文

扭矩测量方法范文扭矩是指物体受到力矩作用时产生的转动效果。

扭矩测量是工程领域中一个重要的参数,可以用于设计和控制机械设备的运行。

下面将介绍几种常见的扭矩测量方法。

1.力臂法力臂法是最常见也是最简单的测量扭矩的方法。

该方法通过应用一个已知力在一个已知力臂上,使其作用在待测物体上,然后通过测量旋转角度和测力板的读数来计算扭矩。

这种方法适用于小扭矩的测量,如手动工具中的扭矩。

2.拉力式扭矩传感器拉力式扭矩传感器是一种常用的扭矩测量装置。

该传感器由一个静态力传感器和一个力臂组成。

力传感器通常是应变片,通过测量应变片上的电信号来计算扭矩。

力臂的长度和结构可以根据需要进行设计和调整,以适应不同的测量需求。

3.电流感应扭矩测量电流感应扭矩测量是一种非接触的测量方法。

该方法通过感应待测物体表面的电流来测量扭矩。

当扭矩产生时,磁场的分布会发生变化,导致感应电流的变化。

通过测量感应电流的变化来计算扭矩。

这种方法适用于高速旋转的设备,如发动机和电机。

4.表面应变法表面应变法通过测量待测物体表面的应变来计算扭矩。

该方法常用于大型设备的扭矩测量。

它通常使用应变片或电阻应变片贴在待测物体表面,通过测量应变片上的应变分布来计算扭矩。

5.光学测量法光学测量法是一种基于光学原理的扭矩测量方法。

该方法使用光学传感器和光栅或编码器来测量转子的旋转角度和速度,然后通过转子的转动惯量和测得的角度和速度来计算扭矩。

这种方法适用于高精度和高速度的扭矩测量。

综上所述,扭矩测量方法根据不同的应用需求和测量精度可以选择不同的方法。

无论采用何种方法,正确的选择和使用扭矩传感器是关键。

另外,由于扭矩测量可能涉及到高速旋转设备和高压环境,操作人员需具备一定的安全意识和操作技能。

扭矩的测量方法

扭矩的测量方法

扭矩的测量方法
扭矩的测量方法主要有以下几种:
1.扭力扳手:通过扭力扳手可以测量扭矩,根据扭力扳手的读数
和所使用的力矩,可以计算出扭矩。

2.扭矩传感器:通过在转动轴上安装扭矩传感器,可以实时测量
扭矩。

传感器将扭矩转换为电信号或数字信号,然后通过仪表或计算机进行读取和处理。

3.扭力计:扭力计是一种专用的测量扭矩的仪器,它通常由一个
固定部分和一个可以转动的部分组成。

通过测量转动部分相对于固定部分的扭角或转角,可以计算出扭矩。

4.扭力天平:扭力天平是一种用于测量扭矩的精密仪器,它可以
测量微小的扭矩。

扭力天平通常由一个可以在转轴上旋转的称重元件和一个固定元件组成。

通过测量旋转过程中产生的离心力或惯性的力,可以计算出扭矩。

总之,测量扭矩的方法有很多种,具体使用哪种方法取决于测量精度、测量范围和设备条件等因素。

盘点电机扭矩的测量方法有哪些

盘点电机扭矩的测量方法有哪些

盘点电机扭矩的测量方法有哪些扭矩是电机试验中一个重要的参数,尤其是在电机效率评测中扭矩更是一个不可或缺的被测量,扭矩测量的准确性直接关系到电机效率的评测的正确性。

目前使用的扭矩测量方法按照测量原理可分为平衡力法、传递法和能量转换法。

一、平衡力法处于匀速工作状态的传动机械构件,其主轴和机体上一定同时存在一对扭矩T 和T,并且二者大小相等、方向相反。

通过测量机体上的T来测量主轴上T 的方法称为平衡力法。

设F 为力臂上的作用力,L 为力臂长度,则T=LF。

通过测量作用力F和力臂L即可得出T和T。

平衡力法的优点是不存在传递扭矩信号的问题,力臂上的作用力F容易测得;缺点是测量范围仅局限为匀速工作状态,无法完成动态扭矩的测量。

二、传递法传递法利用传递扭矩时弹性元件的物理参数会发生某种程度的变化。

利用这种变化与扭矩的对应关系来测量扭矩。

按照不同的物理参数,可将传递法进一步划分为磁弹性式、应变式、振弦式、光电式等,目前传递法在扭矩测量领域应用最为广泛。

图1 传递法分类1.光电式扭矩测量法将开孔数完全相同的两片圆盘形光栅固定在转轴上,并将光电元件和固定光源分别固定在光栅两侧,转轴无扭矩作用时两片光栅的明暗条纹错开,完全遮挡光路,无光线照到光敏元件上不输出电信号;有扭矩作用时两个圆盘形光栅的截面产生相对转角,明暗条纹部分重合,部分光线透过光栅照到光敏元件上,输出电信号。

扭矩值越大扭转角越大,照到光敏元件上的光线强度越大,输出电信号也就越大,通过测量输出的电信号能够测得外加扭矩的大小。

图2 光电式扭矩测量原理该方法的优点是响应速度快,能实现扭矩的实时监测;其缺点是结构复杂、静标困难、可靠性较差、抗干扰能力差,测量精度受温度变化的影响较大。

该方法不适用于刚启动和低。

电机扭矩测试方法

电机扭矩测试方法

电机扭矩测试方法一、引言电机扭矩是指电机在单位长度上受到的力矩,是评价电机性能和质量的重要指标之一。

为了准确测量电机扭矩,需要采用合适的测试方法。

本文将介绍几种常用的电机扭矩测试方法。

二、静态法静态法是一种常用的电机扭矩测试方法。

该方法通过在电机输出轴上加装一定负载,使电机达到静态平衡状态,然后测量所加负载产生的扭矩。

具体步骤如下:1. 在电机输出轴上安装负载装置,如刹车、负载电阻等。

2. 使电机运转到稳定状态,记录此时的输出轴转速。

3. 通过测力传感器或力矩传感器测量负载装置所产生的扭矩。

4. 记录测得的扭矩值。

静态法适用于测量低速大扭矩的电机,但对于高速电机来说,由于惯性影响,无法准确测量。

三、动态法动态法是一种常用的电机扭矩测试方法,适用于测量高速电机的扭矩。

该方法通过测量电机加速或减速过程中的扭矩变化,来计算电机的扭矩。

具体步骤如下:1. 在电机输出轴上安装一定负载。

2. 通过控制电机的输入电压或电流,使电机加速或减速。

3. 在加速或减速过程中,通过速度传感器测量电机输出轴的转速。

4. 通过测力传感器或力矩传感器测量负载装置所产生的扭矩。

5. 根据扭矩-转速曲线,计算电机在不同转速下的扭矩。

动态法需要考虑电机的惯性和动态特性,能够获得更准确的扭矩数据。

四、功率法功率法是一种常用的电机扭矩测试方法,通过测量电机的输入功率和输出转速,来计算电机的扭矩。

具体步骤如下:1. 测量电机的输入电流和电压,计算电机的输入功率。

2. 通过速度传感器测量电机输出轴的转速。

3. 根据功率公式,计算电机的输出功率。

4. 根据输出功率和转速,计算电机的扭矩。

功率法可以准确测量电机的扭矩,但需要考虑电机的效率和功率损耗。

五、电磁法电磁法是一种常用的电机扭矩测试方法,通过测量电机的电磁参数来计算电机的扭矩。

具体步骤如下:1. 测量电机的电流和电压,计算电机的电磁功率。

2. 根据电磁功率和转速,计算电机的扭矩。

电磁法适用于无法直接测量扭矩的情况,但需要考虑电机的电磁特性和效率。

电机扭矩测试方法

电机扭矩测试方法

电机扭矩测试方法电机扭矩测试是评估电机性能的关键测试之一。

它是指在给定负载条件下,测量电机输出的扭矩大小的过程。

电机扭矩测试的目的是确定电机在不同工作负载下的性能表现,以验证其设计和制造的可靠性和稳定性。

这个测试对于电机制造商和用户来说都非常重要,因为它可以帮助他们了解电机的工作特性和性能参数。

下面将介绍一些常用的电机扭矩测试方法。

1. 直接测量法:直接测量法是最常用的电机扭矩测试方法之一。

它通过安装一个扭矩传感器在电机轴上,测量电机输出的扭矩大小。

这种方法精确可靠,可以直接获取电机输出的实际扭矩值。

2. 间接测量法:间接测量法是另一种常用的电机扭矩测试方法。

它通过测量电机输入电流和转速来间接计算扭矩值。

这种方法不需要额外安装传感器,适用于一些特殊的测试场景。

3. 动态测量法:动态测量法是一种针对电机动态特性的扭矩测试方法。

它通过对电机施加短时冲击负载,测量电机在瞬态过程中的扭矩响应。

这种方法可以帮助了解电机的动态性能和响应速度。

4. 静态测量法:静态测量法是一种针对电机静态特性的扭矩测试方法。

它通过给电机施加稳定的静态负载,测量电机在稳态下的扭矩输出。

这种方法可以帮助了解电机的静态特性和负载能力。

5. 校准方法:校准方法是一种用于验证电机扭矩测试准确性的方法。

它通过使用已知扭矩标准件,对测试系统进行校准和调整,确保测试结果的准确性和可靠性。

总结起来,电机扭矩测试方法包括直接测量法、间接测量法、动态测量法、静态测量法和校准方法。

这些方法可以根据实际需求和测试场景选择合适的方式进行电机扭矩测试。

通过这些测试方法,可以评估电机的性能参数,为电机的设计和应用提供参考依据。

扭矩测量原理

扭矩测量原理

扭矩测量原理
扭矩测量原理是指用于测量机械设备旋转部件所受的扭矩大小的方法和原理。

扭矩是指作用在物体上的力矩,也可以理解为旋转力的大小。

扭矩的大小取决于力的大小和施加力的距离。

要测量扭矩,常用的方法是使用扭矩传感器或扭矩表。

扭矩传感器是一种专门用于测量扭矩的装置,通常由应变片、测力电桥和信号放大器等部件组成。

扭矩测量的原理基于胡克定律,即力与变形之间的关系。

当物体受到力的作用时,会产生扭转变形。

扭矩传感器通过应变片来感应这种变形,并将其转化为电信号进行测量。

应变片是一种能够随物体形变而发生应变的材料,当扭矩作用在物体上时,应变片会发生弯曲变形,从而改变其阻抗值。

通过测量阻抗值的变化,就可以确定物体所受的扭矩大小。

扭矩传感器还常常采用负反馈原理进行校准,即将已知扭矩作用于传感器上,根据传感器输出的电信号进行调整,使得输出信号与已知扭矩一致。

这样可以提高测量的准确性和稳定性。

除了扭矩传感器,还有一些其他测量扭矩的装置和方法,如光纤传感器、电容传感器等。

这些装置利用了不同的物理原理进行扭矩测量,但测量的基本原理都是一致的。

综上所述,扭矩测量原理是基于物体变形与力之间的关系。

通过测量应变片的变化,转化为电信号进行测量,可以准确地测
量物体所受的扭矩大小。

使用合适的校准方法和装置,可以提高测量的准确性和稳定性。

扭矩测量方法

扭矩测量方法

扭矩测量方法扭矩是描述物体旋转状态的物理量,通常用于描述物体受到的扭转力。

在工程领域中,扭矩的测量是非常重要的,因为它直接影响到机械设备的运行和性能。

本文将介绍几种常见的扭矩测量方法,帮助读者更好地理解和应用扭矩测量技术。

一、动态扭矩测量方法。

动态扭矩测量方法是通过监测物体在旋转过程中所受到的力来计算扭矩的方法。

这种方法通常使用力传感器或扭矩传感器来实现。

当物体受到扭转力时,传感器会产生相应的电信号,通过测量这些信号的大小和变化,可以计算出物体所受的扭矩大小。

动态扭矩测量方法适用于需要实时监测扭矩变化的场合,如汽车发动机的扭矩输出检测等。

二、静态扭矩测量方法。

静态扭矩测量方法是通过施加一定的力矩到物体上,然后测量物体的变形或位移来计算扭矩的方法。

常见的静态扭矩测量方法包括梁式扭矩传感器、应变片传感器等。

这些传感器可以测量物体在扭转过程中产生的应变或位移,通过这些数据可以计算出物体所受的扭矩大小。

静态扭矩测量方法适用于需要高精度测量扭矩的场合,如实验室科研领域的扭矩测量等。

三、电磁式扭矩测量方法。

电磁式扭矩测量方法是通过在物体上安装一对电磁传感器,利用电磁感应原理来测量扭矩的方法。

当物体受到扭转力时,传感器会产生相应的电磁信号,通过测量这些信号的大小和变化,可以计算出物体所受的扭矩大小。

电磁式扭矩测量方法适用于需要在恶劣环境下进行扭矩测量的场合,如海洋工程、航空航天等领域。

四、光学式扭矩测量方法。

光学式扭矩测量方法是通过在物体表面安装一对光学传感器,利用光学原理来测量扭矩的方法。

当物体受到扭转力时,传感器会产生相应的光学信号,通过测量这些信号的大小和变化,可以计算出物体所受的扭矩大小。

光学式扭矩测量方法适用于需要在高温、高压等特殊环境下进行扭矩测量的场合,如石油钻探、核能工程等领域。

五、综合应用。

除了上述介绍的几种常见扭矩测量方法外,还有一些其他特殊的扭矩测量方法,如声学式扭矩测量、磁致伸缩式扭矩测量等。

扭矩测量方法

扭矩测量方法

扭矩测量方法扭矩是描述物体旋转状态的物理量,通常用于描述机械设备的旋转力。

在工程领域,准确测量和控制扭矩是非常重要的,因为它直接影响到机械设备的性能和安全。

因此,本文将介绍几种常见的扭矩测量方法,帮助读者更好地了解和掌握这一重要的技术。

1. 力臂法。

力臂法是一种最基本的扭矩测量方法,它利用一个已知长度的力臂和一个已知的力来测量扭矩。

具体操作时,将力臂与被测物体连接,然后施加一个已知大小的力,通过测量力臂的长度和施加力的大小,可以计算出扭矩的大小。

这种方法简单易行,适用于一些简单的扭矩测量场合。

2. 弹簧测力计法。

弹簧测力计法是一种利用弹簧的变形来测量扭矩的方法。

具体操作时,将弹簧测力计固定在被测物体上,当被测物体受到扭矩作用时,弹簧会产生变形,通过测量变形量,可以计算出扭矩的大小。

这种方法精度较高,适用于一些对扭矩测量精度要求较高的场合。

3. 电子测力计法。

电子测力计法是一种利用应变片和传感器来测量扭矩的方法。

具体操作时,将应变片和传感器安装在被测物体上,当被测物体受到扭矩作用时,应变片会产生应变,传感器可以将应变转化为电信号,通过测量电信号的大小,可以计算出扭矩的大小。

这种方法精度非常高,适用于对扭矩测量精度要求极高的场合。

4. 光电编码器法。

光电编码器法是一种利用光电编码器来测量扭矩的方法。

具体操作时,将光电编码器安装在被测物体上,当被测物体受到扭矩作用时,光电编码器可以测量出被测物体的旋转角度,通过测量旋转角度的变化,可以计算出扭矩的大小。

这种方法适用于对扭矩测量精度和实时性要求较高的场合。

总结。

以上介绍了几种常见的扭矩测量方法,每种方法都有其适用的场合和特点。

在实际工程应用中,需要根据具体的测量要求和条件选择合适的扭矩测量方法,以确保测量结果的准确性和可靠性。

希望本文对读者有所帮助,谢谢阅读!。

扭矩的测量

扭矩的测量

在运转中,轴之间功率的传递是在一定转速下 通过轴上所受的扭矩来传递的(有些情况下轴 是处于静止状态下受扭的)。
一般是将传递的扭矩和转速同时测量,此两参 数的乘积即为该轴传递的功率。
在运转中,轴之间功率的传递是在一定转速下通过轴上 所受的扭矩来传递的(有些情况下轴是处于静止状态下 受扭的)。
常用国产DSTP-5型扭矩传感器的技术数据为:
感测齿轮 0.9mm
齿数:60;模数:
额定扭矩时的扭转角 额定扭矩Tmax 50m
允许超载
≤Tmax×20%
冲击超载
≤Tmax×50%
测速范围
0~6000r/min

DSTP 型系列扭矩传感器的测量范围由0.5m到 3000m之间,分为12级。

T
32L
GD4
式中,L为扭力轴长度;D为扭力轴直径;T为 外加扭矩;G为轴材料的剪切弹性模量,一般 钢G=(8.16~8.29)×1010Pa。
由上式可见,只要轴的受力在材料的弹性极限 以内,受扭后的扭转角与外加扭矩T是成正比 的。所以,扭转角的大小可以直接反映扭矩的 大小。
若能采用某种传感器将此扭转角转换成其它物 理量并加以测量和显示,就是一套完整的扭矩 测量仪。
扭力轴2上安装了两个外齿轮3、4,两个内 齿轮5、6与永久磁铁9、10安装在圆筒13上。
圆筒可由固定在壳体1上的附加电动机14通 过传动带15带动旋转。使用时,将扭力轴串 接在传递扭矩的系统中,作为传动轴的一部 分随轴一起转动,转速高时,附加电动机14 不开动。这时外齿轮3、4随轴转动,而内齿 轮5、6不动,使内、外齿轮轮齿之间的相对 角位置发生变化,这时外齿轮3、4随轴转动, 而面齿轮5、6不动,使内、外齿轮轮齿之间 的相对象位置发生变化,时而两齿顶相对, 时而齿顶与齿间相对。由此引起磁路气隙部 分发生周期性变化,这样,两个线圈就感应 出同频率近似正弦的电压信号。当扭力轴受 扭以后,它的两端就发生相对扭转变形,产 生一个扭转角,从而引起两个外齿轮3、4之 间的相对位置错移,使由两个检测线圈7、8 输出的正弦信号之间形成一个相位差。同前 所述,为了测量扭矩值,只要将两个信号输 往相位差计,测出相应的相位差值即可。

物理实验技术中的扭矩测量与分析方法

物理实验技术中的扭矩测量与分析方法

物理实验技术中的扭矩测量与分析方法扭矩是物体受到力矩作用时所产生的旋转力,是物体旋转运动的力量衡量标准。

在物理实验中,扭矩测量与分析是十分重要的一项工作。

本文将介绍几种常见的扭矩测量方法,并探讨扭矩分析的方法与应用。

一、扭矩测量方法1. 杠杆原理法杠杆原理法是最常见也是最简单的扭矩测量方法之一。

它通过测量杠杆上的力矩和力臂长度,计算出所施加的扭矩大小。

这种方法的基本原理是利用杠杆平衡条件,即左右两端力矩的大小相等。

通常,通过在杠杆上设置测力传感器来测量作用力的大小,再通过力臂长度来计算出扭矩。

2.应变片法应变片是一种具有高灵敏度的传感器,可以用于测量扭矩。

应变片法是基于应变片的变形来测量扭矩的。

应变片的粘贴在试件上,在试件扭转时产生应变,通过测量应变片的应变量可以计算出扭矩大小。

这种方法适用于对小范围扭转力矩的精确测量。

然而,应变片的选取和安装相对复杂,需要一定的专业知识和技能。

3.电容式法电容式扭矩传感器是一种常用的高精度测量方法。

它利用电容器的电容量与电容器之间的距离和介电常数成正比的原理,测量扭矩的大小。

电容式扭矩传感器通常由金属圆盘和电容元件组成。

当扭矩传感器受到旋转力矩作用时,金属圆盘发生变形,从而改变了电容元件之间的距离,通过测量电容变化即可得到扭矩大小。

二、扭矩分析方法1.频谱分析法频谱分析法是一种常用的扭矩分析方法。

它通过测量扭矩信号的频谱特征来分析扭矩信号中的频率成分和幅值变化。

通过频谱分析,可以确定扭矩信号的主要频率成分和其它频率成分的大小和变化规律,从而对扭矩信号的特征有更深入的认识。

频谱分析法可用于故障诊断和性能优化等方面。

2.统计分析法统计分析法是通过对扭矩信号进行统计学分析来获得更多有用信息的方法。

通过对扭矩信号样本的统计分析,可以得到均值、标准差、峰值等统计量,并利用这些统计量进行分析和判断。

例如,可以通过统计分析法判断扭矩信号的稳定性和周期性,进而优化系统设计和操作。

概述扭矩测量原理

概述扭矩测量原理

概述扭矩测量原理
1扭矩测量的原理
扭矩是指物体在摩擦或弹性力学效应下产生的旋转力量,也就是力作用点离物体中心的距离乘上力值之积。

扭矩测量,是指测量扭矩大小的技术,其常用手段主要是扭矩传感器,它能够检测和量化被测物体在旋转时产生的大小,并将检测结果再经由数字显示器而得到显示结果。

扭矩测量是由物理学家哥伦布发明的,他发现了两个物体间的弹性关系,发明了以弹性钢丝作为转动测量装置的原理,这可以在给定的扭矩下精确的衡量被测物体。

这一原理由此传播出来,台,在科学研究和工业生产中均受到了广泛的应用。

2扭矩传感器的电路原理
扭矩测量的实际操作原理是,通过使用扭矩传感器来量化扭矩,该传感器最终会把扭矩转换成电信号,再由电路将这些电信号转换为数字信号,将转换后的数字信号放入数字显示器,显示出对应的受力结果。

传感器的芯片由两个夹具构成,通过橡胶分别连接两个夹具的内侧,当夹具受到扭矩的作用时,橡胶会因为受力而紧缩变形。

把夹具内触点连接电路,当触点变形时,会触发电路并产生一定大小的电平
变化。

由此,扭矩传感器就可以检测到扭矩的变化,并对其进行量化。

通过上述原理可以看出,扭矩测量技术是根据物理学原理发展而出,通过压力传感器及电路技术转变成能够解读出数值的技术,在很多工业和科学研究中都发挥了重要的作用。

扭矩测试的几种方法对比及概念介绍

扭矩测试的几种方法对比及概念介绍

扭矩测试的几种方法对比及概念介绍扭矩测试是评估物体承受外力时的性能和稳定性的重要手段之一、在工程实践中,扭矩测试可以用于评估机械系统的耐久性、齿轮传动的性能、螺栓连接的可靠性等方面。

1.动态方法:动态扭矩测试是通过实时监测和记录试验物体在扭转过程中的变化,利用物体在不同扭矩下的动态响应,来评估其性能。

这种方法可以实时获得物体的强度、刚度和耐久性等参数,但需要相对复杂的设备和较高的技术要求。

2.静态方法:静态扭矩测试是在试验物体受到稳定扭矩的情况下进行的。

通过测量试验物体在静态扭矩下的变形和应力,来评估其力学性能。

这种方法简单易行,不需要复杂的设备,但无法获得物体在动态负载下的性能信息。

3.间歇测试法:间歇扭矩测试是在不同时间点施加不同的扭矩,记录试验物体的响应,来评估其在不同扭矩下的变形和疲劳性能。

这种方法适用于长期承受变化频率较低的扭矩负载的物体,如机械传动系统。

4.等速测试法:等速扭矩测试是将试验物体连接到扭矩装置上,在固定转速下施加恒定的扭矩,通过测量物体的旋转角度和时间,来评估其力学性能。

这种方法适用于评估物体在稳态工作条件下的反应和传动性能。

总的来说,不同的扭矩测试方法适用于不同的应用场景和评估目标。

动态方法适用于需要实时监测和控制扭矩的场合,如反馈控制系统。

静态方法简单易行,适用于较为简单的实验和基础研究。

间歇测试法适用于长期承受变化频率较低的扭矩负载的物体。

等速测试法适用于评估物体在稳态工作条件下的性能。

无论采用哪种扭矩测试方法,在进行测试之前,需要明确评估的目标和要求,选择合适的方法和设备,并正确操作和解读测试结果。

此外,在进行扭矩测试时,还需考虑相关因素的影响,如摩擦、磨损和温度等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T W
3 为轴表面相互垂直的两个方向上的主应力。 式中, 1 、
当应变片按图3.18a所示方向(与轴线成45°角,且相互垂
直)贴在轴上组成半桥电路时,应变片R1方向上的应变为 沿应变片R2方向的应变为

因,故。若将应变片R1、R2接成图3.18a所示的半桥,则不 但能使测量灵敏度比贴一片45°角方向的应变片高一倍, 而且还能消除由于扭力轴安装不善所产生的附加弯矩和轴 向力的影响。但这种贴片和接桥方式不能消除附加横向剪 切力的影响。如果在扭力轴上粘贴四片应片并将它们接成 半桥或全桥(见图3.18b),就能消除附加横向剪切力的影 响。
3.3.1 力臂型扭矩测量装置
此方法是把被测量装置(例如电机、液压
泵、液压马达)的壳体用轴承支架支起, 在壳体上固定有力臂。 当被测量装置的传动轴输出扭矩由作用在 力臂上的承反力F(或砝码重力)产生的 力矩所平衡。 在静平衡的情况下(此时力臂处于水平位 置),力F和力臂L所形成的力矩就是被测 力矩。因为力臂L长度是固定的,因此只 要测量出力F就可以确定被测装置的输入 或输出扭矩。 力F可用测力计或测力传感器测量,也可 用标准平衡砝码来确定。此测量法的测量 误差主要来自轴承的摩擦务矩和力臂不平 衡所产生的附加力矩。
扭力轴2上安装了两个外齿轮3、4,两个内
齿轮5、6与永久磁铁9、10安装在圆筒13上。 圆筒可由固定在壳体1上的附加电动机14通 过传动带15带动旋转。使用时,将扭力轴串 接在传递扭矩的系统中,作为传动轴的一部 分随轴一起转动,转速高时,附加电动机14 不开动。这时外齿轮3、4随轴转动,而内齿 轮5、6不动,使内、外齿轮轮齿之间的相对 角位置发生变化,这时外齿轮3、4随轴转动, 而面齿轮5、6不动,使内、外齿轮轮齿之间 的相对象位置发生变化,时而两齿顶相对, 时而齿顶与齿间相对。由此引起磁路气隙部 分发生周期性变化,这样,两个线圈就感应 出同频率近似正弦的电压信号。当扭力轴受 扭以后,它的两端就发生相对扭转变形,产 生一个扭转角,从而引起两个外齿轮3、4之 间的相对位置错移,使由两个检测线圈7、8 输出的正弦信号之间形成一个相位差。同前 所述,为了测量扭矩值,只要将两个信号输 往相位差计,测出相应的相位差值即可。
通过应变片的变形来测量扭力轴扭转应变时,若轴不受
扭,则电桥平衡,输出信号为零;当轴受扭后,应变片 阻值变化,破坏电桥的平衡,输出大小与所受扭矩成比 例的电信号。由于输出信号很微弱,一般都要通过应变 仪来测量。半桥电路可以消除因扭力轴安装不善所产生 的附加弯矩和轴向力的影响,全桥电路除可消除以上影 响外,还可消除附加横向剪切力的影响。 集流环是应变式扭矩传感器的重要组成部分,它的作用 是将应变片的引线或由应变片组成的电桥经结点从旋转 着扭力轴上引出,然后接到相应的电路上去。集流环的 优劣直接影响测量精度,低质量的集流环所产生的电噪 声甚至可以淹没扭矩信号,使测量无法进行。为保证引 出信号的精度,集流环必须保持极为良好的接触,接触 电阻应该恒定。而在实际中要保持接触电阻恒定是较困 难的,特别是对于高速转动的轴更为困难,所以这种传 感器只适宜于中、低转速的场合。
感测齿轮
齿数:60;模数:
0.9mm 额定扭矩时的扭转角 额定扭矩Tmax 50m 允许超载 ≤Tmax×20% 冲击超载 ≤Tmax×50% 测速范围 0~6000r/min

DSTP 型系列扭矩传感器的测量范围由0.5m到 3000m之间,分为12级。
这种传感器若用于静态标定或用于测量静的扭
矩时,扭力轴是不旋转的。为了获得内、外齿 轮之间的相对运动,可开动附加电动机14通过 传动带15带动内齿轮5、6转动,其转向应与扭 力轴受扭方向相反,同样可以根据两个输出信 号的相位差来测量扭矩。另外,在测量低转速 轴的扭矩时,由于输出信号的幅值低会带来较 大的测量误差。为了解决低转速下的测扭问题, 也希望增加内、外齿轮之间的相对速度。此时 也可开动附加电动机14。应注意的是,此时若 同时测量转速信号,则测出的转速值为扭力轴 转速与附加电动机14的转速之和。
3.3 扭矩的测量
扭矩是机械量中的一个重要参数。轴上的扭矩
是指作用在轴上的力与其作用线到轴中心的距 离的矢量积的总和。单位为 N m 。 在运转中,轴之间功率的传递是在一定转速下 通过轴上所受的扭矩来传递的(有些情况下轴 是处于静止状态下受扭的)。 一般是将传递的扭矩和转速同时测量,此两参 数的乘积即为该轴传递的功率。
3.3.3 数字相位差式扭矩仪

数字相位差式扭动仪由磁电式扭传感器和数字相位差计 (二次仪表)两部分组成。在扭力轴两端安装有两个轮 齿分别对称的测速齿轮,因齿轮外侧分别安装有一个磁 电式转速传感器。扭力轴在动力源带动下旋转,在两个 转速传感器中,分别得到近似正弦的电压信号 S1、S2。 当扭力轴不受扭时,由于两齿轮处在理想的对称安装位 置上,故此两信号是同相位的。扭力轴受扭后,将产生 一个扭转角,引起两齿轮间相对位置错移,因而使两端 输出信号S1和S2之间形成一个相位差。此相位差与扭转 角成比例,而又与扭力轴所受扭矩T成比例。这样,传 感器就把扭矩转换成两信号的相位差。因此,采用一台 位差计做二次仪表并将测量结果值以扭矩单位表示,即 可组成一套完整的扭矩测量仪。
32 L T GD 4
式中,L为扭力轴长度;D为扭力轴直径;T为
外加扭矩;G为轴材料的剪切弹性模量,一般 钢G=(8.16~8.29)×1010Pa。 由上式可见,只要轴的受力在材料的弹性极限 以内,受扭后的扭转角与外加扭矩T是成正比 的。所以,扭转角的大小可以直接反映扭矩的 大小。 若能采用某种传感器将此扭转角转换成其它物 理量并加以测量和显示,就是一套完整的扭矩 测量仪。


反作用力矩测量法 此方法是把被测量装置(它们可以 是动力源也可以是负载)的壳体用 轴承支架支起,在壳体上固定有力 臂。通过测量已知长度的力臂端部 上的力来获得被测装置的反力矩。 通过测量扭力轴变形扭转角来测量 扭矩的方 扭力轴的设计原理如图3.15所示。 当扭力轴的一端受扭后,相对于另 一端就会产生一个扭转角由材料力 学可知
相位差式扭矩传感器可由两个输出信号之间的相位差
确定扭矩,同时可以由任意一个输出信号的频率确定 轴的转速。因此,这种扭矩仪的二仪表实际上是数字 相位差计和频率计的组合,可以用数字同时显示扭矩 和转速。例如,国产PYI型扭矩转速测量仪,它设有两 个显示窗口,分别显示扭矩和转速。同时还设有打印 输出接口,可将测量结果以8421编码串行输出至打印 设备。此外,该仪器还具有输出扭矩和转速度模拟量 的功能,可与光电记录波器配套使用,对瞬态变化的 扭动和转速波形进行记录,绘制动态曲线。 常用国产DSTP-5型扭矩传感器的技术数据为:
由材料力学知识可知,纯据矩的轴的横截面上的最大剪
切应力与轴上扭矩的关系为
max
式中,T为轴上扭矩;W为轴截面的抗扭截面系数。
不能用应变片直接
下,轴表面的主应力方向与轴线成45°角,且主应力在 数值上等于剪切应力,即
1 3 max
式中,L为扭力轴长度;D为扭力轴直径;T为
外加扭矩;G为轴材料的剪切弹性模量,一般 钢G=(8.16~8.29)×1010Pa。 由上式可见,只要轴的受力在材料的弹性极限 以内,受扭后的扭转角与外加扭矩T是成正比 的。所以,扭转角的大小可以直接反映扭矩的 大小。若能采用某种传感器将此扭转角转换成 其它物理量并加以测量和显示,就是一套完整 的扭矩测量仪。
在运转中,轴之间功率的传递是在一定转速下通过轴上





所受的扭矩来传递的(有些情况下轴是处于静止状态下 受扭的)。 一般是将传递的扭矩和转速同时测量,此两参数的乘积 即为该轴传递的功率。 扭矩测量仪表按其工作原理可分为两大类。 一类是根据牛顿第三定律作用力与反作用力相等的原理 设计的; 另一类是利用扭务轴受扭要产生一定扭转角或应变的原 理设计的,并可通过直接测量扭转角或应变的大小来确 定扭矩的大小。 一般前一类多用于测量静态和稳态(恒转速)时的扭矩, 后一类适用于转速变化时扭矩的精确测量。
3.3.2 应变式扭矩传感器
扭矩传感器一般是串接在扭矩传递系
统中,并作为扭矩传递系统中一个环 节来测量它所传递的扭矩的。 它通常是以圆轴作为机械转换元件 (弹性元件),将它所传递的扭矩转 换成中间机械量,然后再利用机-电 转换元件(敏感元件)将中间机械量 转换成电量。 传感器中的机械转换元件(圆轴)一 般称为扭力轴,应变式扭矩传感器就 是由粘贴有应变片的扭力轴和装在它 上面的集流环等部件组成的。
相关文档
最新文档