第六章钢筋混凝土受拉构件承载力计算.

合集下载

混凝土结构设计原理思考题答案

混凝土结构设计原理思考题答案

混凝土结构设计原理部分思考题答案第一章钢筋混凝土的力学性能思考题1、钢筋冷加工的目的是什么?冷加工的方法有哪几种?各种方法对强度有何影响?答:冷加工的目的是提高钢筋的强度,减少钢筋用量。

冷加工的方法有冷拉、冷拔、冷弯、冷轧等。

这几种方法对钢筋的强度都有一定的提高,2、试述钢筋混凝土结构对钢筋的性能有哪些要求?答:钢筋混凝土结构中钢筋应具备:(1)有适当的强度;(2)与混凝土粘结良好;(3)可焊性好;(4)有足够的塑性。

4、除凝土立方体抗压强度外,为什么还有轴心抗压强度?答:立方体抗压强度采用立方体受压试件,而混凝土构件的实际长度一般远大于截面尺寸,因此采用棱柱体试件的轴心抗压强度能更好地反映实际状态。

所以除立方体抗压强度外,还有轴心抗压强度。

5、混凝土的抗拉强度是如何测试的?答:混凝土的抗拉强度一般是通过轴心抗拉试验、劈裂试验和弯折试验来测定的。

由于轴心拉伸试验和弯折试验与实际情况存在较大偏差,目前国内外多采用立方体或圆柱体的劈裂试验来测定。

6、什么叫混凝土徐变?线形徐变和非线形徐变?混凝土的收缩和徐变有什么本质区别?答:混凝土在长期荷载作用下,应力不变,变形也会随时间增长,这种现象称为混凝土的徐变。

当持续应力σC ≤0.5f C 时,徐变大小与持续应力大小呈线性关系,这种徐变称为线性徐变。

当持续应力σC >0.5f C时,徐变与持续应力不再呈线性关系,这种徐变称为非线性徐变。

混凝土的收缩是一种非受力变形,它与徐变的本质区别是收缩时混凝土不受力,而徐变是受力变形。

10、如何避免混凝土构件产生收缩裂缝?答:可以通过限制水灰比和水泥浆用量,加强捣振和养护,配置适量的构造钢筋和设置变形缝等来避免混凝土构件产生收缩裂缝。

对于细长构件和薄壁构件,要尤其注意其收缩。

第二章混凝土结构基本计算原则思考题1.什么是结构可靠性?什么是结构可靠度?答:结构在规定的设计基准使用期内和规定的条件下(正常设计、正常施工、正常使用和维护),完成预定功能的能力,称为结构可靠性。

第六章 轴心受力构件承载力

第六章 轴心受力构件承载力

N
初始受力
试验表明,在整个加载过程中,由于钢 筋和混凝土之间存在着粘结力,两者压应变 基本一致。
变形条件:s =c = 物理关系: s Es
钢筋:
y y
fy Es
fy
Es
1
s fy
混凝土:
y
2 2 fc 0 0 fc
由平衡条件得:
Ass1—单根间接钢筋的截面面积; fy—间接钢筋的抗拉强度设计值; s——沿构件轴线方向间接钢筋的 间距; dcor—构件的核心直径; Asso——间接钢筋的换算截面面
) N 0.9( f c Acor 2f y Asso f y As
注:1.为使间接钢筋外面的混凝土保护层对抵抗脱落有足够的安 全,《规范》规定螺旋式箍筋柱的承载力不应比普通箍筋 柱的承载力大50%。 2.凡属下列情况之一者,不考虑间接钢筋的影响而按普通箍 筋柱计算承载力: (1)当l0/d >12时,因长细比较大,因纵向弯曲引起螺旋筋不 起作用; (2)当算得受压承载力小于按普通箍筋柱算得的受压承载力; (3)当间接钢筋换算截面面积小于纵筋全部截面面积的25% 时,可以认为间接钢筋配置得太少,套箍作用的效果不明 显。间接钢筋间距不应大于800mm及dcor/5,也不小于40mm。
螺旋式箍筋柱的受力特点:
轴向压力较小时,混凝土和纵筋分别受 压,螺旋箍筋受拉但对混凝土的横向作用不 明显;接近极限状态时,螺旋箍筋对核芯混 凝土产生较大的横向约束,提高混凝土强度, 从而间接提高柱的承载能力。当螺旋箍筋达 到抗拉屈服强度时,不能有效约束混凝土的 横向变形,构件破坏。在螺旋箍筋受到较大 拉应力时其外侧的混凝土保护层开裂,计算 时不考虑此部分混凝土。

《工程结构》第六章:钢筋混凝土受扭构件承载力计算结构师、建造师考试

《工程结构》第六章:钢筋混凝土受扭构件承载力计算结构师、建造师考试

主页 目录
上一章 下一章 帮助
混凝土结构
第6章
塑性状态下能抵抗的扭矩为:
TU ftWt
…6-1
式中: Wt ––– 截面抗扭塑性抵抗矩;对于矩形截面
Wt
b2 6
3h
b
…6-2
h为截面长边边长;b为截面短边边长。
2. 素混凝土纯扭构件 T 0.7 ftWt
…6-3
主页 目录
上一章 下一章 帮助
混凝土结构
z fy Astl s
f A u yv st1 cor
…6-5
主页 目录
上一章 下一章 帮助
混凝土结构
第6章
式中: Astl ––– 全部抗扭纵筋截面面积; ucor ––– 截面核心部分周长, ucor = 2(bcor + hcor)。
主页
为了保证抗扭纵筋和抗扭箍筋都能充分被利用,要求: 目录
主页 目录
上一章 下一章 帮助
混凝土结构
第6章
规范将其简化为三段折线,简化后的结果为 : (1)当Tc/Tco≤ 0.5时,即T≤ 0.175ftWt时,可忽略扭
矩影响,按纯剪构件设计; (2)当Vc/Vco ≤ 0.5时,即V≤ 0.35ftbh0时,可忽略剪
力影响,按纯扭构件设计; (3)当T>0.175ftWt和V> 0.35ftbh0时,要考虑剪扭的相
混凝土结构 ➢ 扭矩分配:
腹板
受压翼缘
第6章
Tw
Wtw Wt
T
T' f
W' tf
Wt
T
…6-12 …6-13
受拉翼缘
Tf
Wtf Wt
T
…6-14

第6章-受拉构件的截面承载力

第6章-受拉构件的截面承载力

e' e0 e
α1 fc fy’As’
fyAs
大偏心受拉构件正截面的承载力计算
基本公式:
e' e0 e
Nu
f y As
f
' y
As'
fcbx
Nu
e
fcbx
h0
x 2
f
' y
As'
h0 as'
As'
Ne
1
f
cbxb
h0
f
' y
h0 as'
xb 2
Nu
As
1 fcbxb Nu
e e' e0
fy’As’ fyAs
小偏心受拉构件正截面的承载力计算
基本公式:
Nu
e
f
' y
As'
h0 as'
Nue' fy As h0 as
Nu
As'
As
fy
Nue ' h0 as'
e e' e0
fy’As’ fyAs
三、偏心受拉构件斜截面受剪承载力计算
计算公式:
V
1.75
fy
f
' y
fy
As'
α1 fc fy’As’
fyAs
相关截面设计和截面复核的计算与大偏心受压构件相似,
所不同的是轴向力为轴力。
小偏心受拉构件正截面的承载力计算
小偏心受拉构件破坏特点:
轴向拉力N在As与A’s之间,全截面均 受拉应力,但As一侧拉应力较大, 一侧拉应力较小。 随着拉力增加,As一侧首先开裂,Nu 但裂缝很快贯通整个截面, As与A’s 纵筋均受拉,最后,As与A’s均屈服 而达到极限承载力。

混凝土钢筋混凝土受拉构件承载力计算PPT课件

混凝土钢筋混凝土受拉构件承载力计算PPT课件

fy'A's
h0-as'
fyAs as
as‘
远离轴力N一侧的钢筋As’是达不到屈服的。
第14页/共24页
大偏拉构件正截面承载力计算
• 截面设计 • 截面复核
第15页/共24页
截面复核
1、不对称配筋
N f y As f yAs 1 fcbx
2a '
x
b h0
x
b h0
x
b h0
x 2a '
第六章 受拉构件承载力的计算
• 概述 • 轴心受拉构件承载力计算 • 偏心受拉构件承载力计算
第5页/共24页
轴心受拉构件承载力计算
受力过程
第6页/共24页
轴心受拉构件承载力计算
轴心受拉构件的承载力计算是以上述第三阶段的应 力状态作为依据的,此时截面上的裂缝已经贯通,混凝 土已不再承受拉力,纵向受拉钢筋达到其受拉屈服强度 fy,正截面承载力公式如下:
• 难点为大偏心受拉正截面承载力计算。
第1页/共24页
第六章 受拉构件承载力的计算
• 概述 • 轴心受拉构件承载力计算 • 偏心受拉构件承载力计算
第2页/共24页
第六章 受拉构件承载力的计算
• 概述 • 轴心受拉构件承载力计算 • 偏心受拉构件承载力计算
第3页/共24页
概述
轴心受拉
偏心受拉
第4页/共24页
计算公式:
V
1.75
1.0
ft bh0
f yv
Asv s
h0
0.2N
第21页/共24页
思考题
6-1 大小偏心受拉的界限是如何划分的?试写出对称配筋矩形截面大小偏心受拉界 限时的轴力和弯矩。

混凝土与结构设计填空题及答案

混凝土与结构设计填空题及答案
4.钢筋混凝土矩形截面构件在弯、剪、扭共同作用下的承载力计算,纵筋应通过正截面受弯承载力和剪扭构件的受扭承载力计算求得的纵向钢筋进行配置,重叠处的钢筋截面面积可以叠加;箍筋应按剪扭构件受剪承载力和受扭承载力计算求得箍筋配置,相应部位处的箍筋截面面积也可叠加。
3.钢筋混凝土大偏心受拉构件正截面承载力计算公式的适用条件是ξ≤ξb和x≥2a’,如果出现了x<2a’的情况说明As’不会屈服,此时可假定混凝土压应力合力点与受压钢筋压力作用点重合。
4.钢筋混凝土偏心受拉构件,轴向拉力的存在提高混凝土的受剪承载力。因此,钢筋混凝土偏心受拉构件的斜截面受剪承载力要大于同样情况下的受弯构件斜截面受剪承载力。
6.钢筋的捆扎连接是通过钢筋与混凝土之间的粘结力实现传力;钢筋的机械连接是通过连贯于两根钢筋之间的套筒实现传力;钢筋的焊接是通过受力钢筋之间通过熔融金属实现传力。
第二章混凝土结构设计计算原则
1.结构的功能要求包括安全性、适用性、耐久性。
2.结构可靠性是指结构在规定的时间,规定的条件下,完成预定功能的能力。
5.区别大小偏心受压的关键是远离轴向压力一侧的钢筋先屈服,还是靠近轴心压力一侧的混凝土先压碎,前者为大偏心受压,后者为小偏心受压。这与区别受弯构件中适筋梁和超筋梁的界限类似。
6.矩形截面偏心受压构件,当l0/h≤8时属于短柱范畴,可不考虑纵向弯曲的影响,即取η=1;当l0/h>30时为细长柱,应考虑纵向弯曲的影响。
3.将截面尺寸、混凝土强度等级及配筋相同的长柱和短柱相比较,可发现长柱的破坏荷载低于短柱,并且柱越细长则弯曲变形越多。因此在设计中必须考虑由于长细比对柱的承载力的影响
4.影响钢筋混凝土轴心受压柱稳定系数的主要因素是长细比,当它≤8时,可以不考虑纵向弯曲的影响,称为短柱;当柱过分细长时受压后容易发生弯曲变形,而导致破坏。因此对一般建筑物中的柱常限制柱的长细比的计算长度l0及短边尺寸b。

6钢筋混凝土偏心受力构件承载力计算

6钢筋混凝土偏心受力构件承载力计算

6钢筋混凝土偏心受力构件承载力计算钢筋混凝土偏心受力构件是一种常用的结构形式,常见于各种建筑和桥梁工程中。

在设计和施工过程中,对其承载力进行准确计算是十分重要的。

本文将介绍钢筋混凝土偏心受力构件的承载力计算方法,包括偏心受压构件和偏心受拉构件的计算。

首先,我们来介绍偏心受压构件的承载力计算方法。

偏心受压构件是指受压钢筋与截面重心之间有一个偏心距的构件。

其计算工作主要分为两个步骤:截面计算和偏心距计算。

1.截面计算:确定混凝土和钢筋的受力状态。

首先,计算构件的受拉区和受压区的面积,分别记为A_s和A_c。

其次,计算出受拉区的应力,记为σ_s。

然后,计算出受拉区的抗拉钢筋面积As',使得其能够承受施加在构件上的最大拉力。

最后,通过平衡条件,计算出混凝土的受压区的应力σ_c。

2.偏心距计算:确定偏心距的大小。

偏心距的计算与混凝土和钢筋的受力状态有关。

在受力状态已知的情况下,可以通过拉力平衡方程计算出偏心距的大小,即:e=(α*As'*σ_s-As*σ_c)/b*f_c其中,e为偏心距,α为抗拉钢筋的应力分配系数,As为受压区的钢筋面积,b为构件宽度,f_c为混凝土的抗压强度。

偏心距的计算对于后续的承载力计算非常重要。

当偏心距大于受压区最大尺寸的一半时,构件发生弯曲破坏;当偏心距小于受压区最大尺寸的一半时,构件发生压碎破坏。

下面,我们来介绍偏心受拉构件的承载力计算方法。

偏心受拉构件是指受拉钢筋与截面重心之间有一个偏心距的构件。

其计算工作同样分为两个步骤:截面计算和偏心距计算。

1.截面计算:确定混凝土和钢筋的受力状态。

首先,计算构件中混凝土的受拉面积A_c,然后计算受拉区的应力σ_c。

其次,计算出能够承受施加在构件上的最大拉力的钢筋面积A_s'。

最后,通过平衡条件,计算出抗拉钢筋的应力σ_s。

2.偏心距计算:确定偏心距的大小。

偏心距的计算方法同样适用于偏心受拉构件,即使用拉力平衡方程计算出偏心距e,公式如下:e=(A_s*σ_s-A_c*σ_c)/(b*f_c)在计算偏心受拉构件的承载力时,需要注意偏心距的大小。

混凝土结构设计规范_2010(第六章)

混凝土结构设计规范_2010(第六章)

混凝⼟结构设计规范_2010(第六章)6 承载能⼒极限状态计算6.1 ⼀般规定6.1.1 本章适⽤于钢筋混凝⼟、预应⼒混凝⼟构件的承载能⼒极限状态计算;素混凝⼟结构构件设计应符合本规范附录D的规定。

深受弯构件、⽜腿、叠合式构件的承载⼒计算应符合本规范第9章的有关规定。

6.1.2 对于⼆维或三维⾮杆系结构构件,当按弹性分析⽅法得到构件的应⼒设计值分布后,可按主拉应⼒设计值的合⼒在配筋⽅向的投影确定配筋量、按主拉应⼒的分布确定钢筋布置,并应符合相应的构造要求;混凝⼟受压应⼒设计值不应⼤于其抗压强度设计值,受压钢筋可按构造要求配置。

当混凝⼟处于多轴受压状态时,其抗压强度设计值可按本规范附录C.4的有关规定确定。

6.1.3 采⽤⾮线性分析⽅法校核、验算混凝⼟结构、结构构件的承载能⼒极限状态时,应符合下列规定:1 应根据设计状况和性能设计⽬标确定混凝⼟和钢筋的强度取值;2 钢筋应⼒不应⼤于钢筋的强度取值;3 混凝⼟应⼒不应⼤于混凝⼟的强度取值,多轴应⼒状态混凝⼟强度验算可按本规范附录C.4的有关规定进⾏。

6.2 正截⾯承载⼒计算(I)正截⾯承载⼒计算的⼀般规定6.2.1 正截⾯承载⼒应按下列基本假定进⾏计算:1 截⾯应变保持平⾯;2 不考虑混凝⼟的抗拉强度3 混凝⼟受压的应⼒与应变关系按下列规定取⽤:式中:σc——混凝⼟压应变为εc时的混凝⼟压应⼒;f c——混凝⼟轴⼼抗压强度设计值,按本规范表4.1.4-1采⽤;ε0——混凝⼟压应⼒达到f c时的混凝⼟压应变,当计算的ε0值⼩于0.002时,取为0.002;εcu——正截⾯的混凝⼟极限压应变,当处于⾮均匀受压且按公式(6.2.1-5) 计算的值⼤于0.0033时,取为0.0033;当处于轴⼼受压时取为ε0;f cu——混凝⼟⽴⽅体抗压强度标准值,按本规范第4.1.1条确定;n——系数,当计算的n值⼤于2.0时,取为2.0。

4 纵向受拉钢筋的极限拉应变取为0.01;5纵向钢筋的应⼒取钢筋应变与其弹性模量的乘积,但其值应符合下列要求。

混凝土结构设计基本原理第6章讲义

混凝土结构设计基本原理第6章讲义
小偏拉:N在 As 与 As之间 时。全截面受拉,砼因 开裂不能抗拉。
h 2 as e0
大偏拉:N在 As与As一 侧时。截面部分受压, 部分受拉。
混凝土结构设计基本原理
第六章
二、小偏心受拉构件正截面承载力 e0 h 2 as
N
a's
e'
e as
e0
A' s
As
f A' ' ys
a's
h0
力设计值
•受剪计算公式
V
1.75
1
ftbh0
f yv
Asv s
h0
0.2N
(6 16)
计算截面 的剪跨比
当式(6 16)右边的计算值小于fyv
Asv s
h0时,
应取等于fyv
Asv s
h0,且f yv
Asv s
h0值不得
小于0.36 ftbh0。
混凝土结构设计基本原理
第六章
第一节 概 述
理想的轴拉构件不存在。
近似按轴拉构件计算的构件类型 偏拉构件类型
轴拉构件
1、屋架下弦杆 2、圆形水池池壁
偏拉构件
1、承受节间荷载的 悬臂桁架上弦; 2、矩形水池池壁 3、双肢柱受拉肢杆
混凝土结构设计基本原理
第二节 轴心受拉构件
1 受力过程及破坏特征
N
N
N
第六章 钢筋混凝土受拉构件 承载力计算
混凝土结构设计基本原理
本章重点
第六章
➢ 了解轴心受拉构件的受力全过程; ➢ 掌握轴心受拉构件正截面承载力的计算方法; ➢ 了解偏心受拉构件的受力工作特性; ➢ 掌握两类偏心受拉构件正截面承载力的计算方法; ➢ 掌握偏心受拉构件斜截面受剪承载力计算; ➢ 熟悉构造要求。

第6章钢筋混凝土受扭构件承载力计算-文档资料

第6章钢筋混凝土受扭构件承载力计算-文档资料

式中β 值为与截面长边和短边h/b比值有关的系数,当比 值h/b=1~10时,β =0.208~0.313。 若将混凝土视为理想的弹塑性材料,当截面上最大 切应力值达到材料强度时,结构材料进人塑性阶段 由于 材料的塑性截面上切应力重新分布,如图5-3b。当截面 上切应力全截面达到混凝上抗拉强度时,结构达到混凝 上即将出现裂缝极限状态.根据塑性力学理论,可将截 面上切应力划分为四个部分,各部分切应力的合力,如 图5-3c。
根据极限平衡条件,结构受扭开裂扭矩值为
(6-3)
实际上,混凝上既非弹性材料 又非理想的塑性材 料。而是介于二者之间的弹塑性材料、对于低强度等 级混凝土。具有一定的塑性性质;对于高强度等级混 凝土,其脆性显著增大,截面上混凝土切应力不会象 理想塑性材料那样完全的应力重分布,而且混凝土应 力也不会全截面达到抗拉强度ft因此投式(6-2)计算的受 扭开裂扭矩值比试验值低,按式(6-3)计算的受扭开裂 扭矩值比试验值偏高。 为实用计算方便,纯扭构件受扭开裂扭矩设计时 采用理想塑性材料截面的应力分布计算模式,但结构 受扭开裂扭矩值要适当降低。试验表明,对于低强度 等级混凝上降低系数为0.8,对于高强度等级混凝上降 低系数近似为0.8。为统一开裂扭矩值的计算公式,并 满足一定的可靠度要求其计算公式为
考虑到设计应用上的方便《规范》采用一根略为偏低 的直线表达式,即与图中直线A′C′相应的表达式。在式(67)。取α1=0.35,α2=1.2。如进一步写成极限状态表达式, 则矩形截面钢筋混凝土纯扭构件的抗扭承载力计算公式为
(6-8)
式中 T——扭矩设计值; ft——混凝土的抗拉强度设计值; Wt——截面的抗扭塑性抵抗矩; fyv——箍筋的抗拉强度设计值;
Tcr=0. 7ftWt

钢筋混凝土受拉构件计算

钢筋混凝土受拉构件计算

f y As
全截面受拉,N很小时,混凝土和钢筋共同 承担拉力。 随着N的增大,拉力较大侧混凝土先开裂, 裂缝迅速贯通,混凝土退出工作。拉力由As 和As’共同承受。 当配筋适量时最后As先屈服,As’后屈服。截 面破坏。
e0
N
偏心距e0较大,但N仍在As和As’之间时
a
a'
As’ As
fyAs’
N作用在As和As’之间
破坏时,轴向拉力由As和As’共同承受,配筋适量时均达到屈服。
N作用在As和As’之外
大偏心受拉构件的破坏特点
e0 N
a'
As’ x fy’As’ f cbx As
a
f y As
N很小时,靠近轴向力一侧受拉,远离轴向力 一侧受压。 随着N的增大,拉力较大侧混凝土先开裂。 根据力的平衡,裂缝虽能开展,但不全截面 裂通,始终保持一定受压区。 当配筋适量时先As先拉屈服,最后受压区混 凝土达到极限压应变。截面破坏。
KNe As f y ( h0 a) KNe As f y ( h0 a)
小偏心受拉计算图
将e' ,e,M=Ne0代入:
As As KNe f y ( h0 a) KNe f y ( h0 a)
KN (h 2a) KM As 2 f y (h0 a) f y (h0 a) As KN (h 2a) KM 2 f y (h0 a) f y (h0 a)
公式右边不小于: 1.25 f yv
Asv h0 f y Asb sin s s
同时,保证箍筋占有一定数量的受剪承载力:
1.25 f yv
Asv h0 0.36 f t bh0 s

第六章轴向受力构件-受拉构件承载力计算3

第六章轴向受力构件-受拉构件承载力计算3
在工程中,有不少构件同时承受轴向拉力、弯矩和 剪力的作用。轴向力N不仅对正截面承载力有影响,也 对斜截面受剪承载力有影响。在偏心受拉构件的受剪承 载力计算中,必须考虑轴向力的作用。
6.5.3 偏心受拉构件斜截面承载力计算
轴向拉力使斜裂缝裂得更宽,加大了斜裂缝剪承载力降低。
6.5.1 轴心受拉构件
6.5.1.3 算例
[ 例 1] 已 知 某 钢 筋 混 凝 土 屋 架 下 弦 , 截 面 尺 寸
b×h=200mm×150mm , 承 受 的 轴 心 拉 力 设 计 值
N=234kN,混凝土强度等级 C30,钢筋为 HRB335。
求截面配筋。
[解]查表可知: f y 300 N mm 2 ,代入轴心受拉计算公式 得
时,仍应按 300
N mm 2
取用”的要求,取
f
' y

fy
300
N
mm 2
h
400
e 2 e0 as 2 114 40 46mm ;
e'

h 2

e0
as'

400 2
114 40

274mm
6.5.4 算例
代入计算公式得:
As'

Ne f y (h0 as' )
6.5.2 偏心受拉构件正截面承载力计算
6.5.2.3 矩形截面偏心受拉构件正截面承载力计算公式 对小偏拉,应验算: As minbh , As minbh 应注意,对钢筋混凝土小偏心受拉构件,当 fy 大于 300N/mm2 时,取 300N/mm2。
6.5.2 偏心受拉构件正截面承载力计算

钢筋混凝土轴心受压及受拉构件

钢筋混凝土轴心受压及受拉构件

2判 断 大 、 小 偏 心 受 拉
由e0

M N

60 400

0.15 150mm
ha 2

200 40 160mm,
可 知 构 件 为 小 偏 心 受 拉.
3求e、e'
e

h 2

e0

a

200
150
40

10m m
e'

h 2

e0

a'

200
150
6—4
e’
N
e0 e
f'yA's fcbx
fyAs
大偏心受拉构件
一、基本公式
N

1
d
Nu

1
d
(
f y As

f yAs
fcbx )
Ne
1
d
Nue
1
d
[
fcbx( h0

x 2
)
f yAs( h0
a'
)]
e e0 0.5h a
As’
a'
As h0
适用条件
N
f'yA's fcbx
fyAs
As一侧受拉,A’s一侧受压,
混凝土开裂后不会形成贯通
整个截面的裂缝。最后,As
达到受拉屈服,受压侧混凝
土受压破坏。
f yA's
fyAs
全截面均受拉,但As一侧拉应力较大, A’s一侧拉应力较小。随着拉力增加, As一侧首先开裂,但裂缝很快贯通整 个截面,As和A’s纵筋均受拉,最后As 和A’s均屈服而达到极限承载力。

混凝土结构设计原理第六章受扭构件

混凝土结构设计原理第六章受扭构件

第6章 钢筋混凝土受扭构件承载力计算
混凝土是介于二者之间的弹塑性材料,对于低强度等级混凝土, 混凝土是介于二者之间的弹塑性材料,对于低强度等级混凝土, 具有一定的塑性性质;对于高强度等级混凝土,其脆性显著增大, 具有一定的塑性性质; 对于高强度等级混凝土,其脆性显著增大, 截面上混凝土剪应力不会出现理想塑性材料那样完全的应力重分 而且混凝土应力也不会全截面达到抗拉强度f 布,而且混凝土应力也不会全截面达到抗拉强度 t。 故实际梁的 扭矩抗力介于弹性分析和塑性分析结果之间。 扭矩抗力介于弹性分析和塑性分析结果之间。 按弹性理论计算的Tcr比试验值低 , 按塑性理论计算的 cr比试验 按弹性理论计算的 比试验值低,按塑性理论计算的T 值高。 值高。 采用理想塑性材料理论计算值乘以一个降低系数。 ∴ 采用理想塑性材料理论计算值乘以一个降低系数 。 《 混凝土 结构设计规范》统一取为0.7,故开裂扭矩计算公式为: 结构设计规范》统一取为 ,故开裂扭矩计算公式为:
超静定结构中由于变形的协调 使截面产生扭转, 使截面产生扭转, 扭矩大小与 受扭构件的抗扭刚度有关。 受扭构件的抗扭刚度有关。
第6章 钢筋混凝土受扭构件承载力计算
协调扭矩的设计方法: 协调扭矩的设计方法: ⑴《规范》设计法 规范》 规范》规定支承梁(框架边梁) 《 规范 》 规定支承梁 (框架边梁 ) 的扭矩宜采用考虑内力重 分布的分析方法, 分布的分析方法 , 将支承梁按弹性分析所得的梁端扭矩内力 设计值进行调整, ( 设计值进行调整,T=(1-β )T弹 ⑵零刚度设计法 国外一些国家规范通常采用的方法。假定支承梁(框架边梁) 国外一些国家规范通常采用的方法。 假定支承梁 ( 框架边梁) 的截面抗扭刚度为零,则框架边梁的扭矩内力值为零。 的截面抗扭刚度为零 ,则框架边梁的扭矩内力值为零。 在支 承梁内只配置相当于开裂扭矩时所需的受扭构造钢筋, 承梁内只配置相当于开裂扭矩时所需的受扭构造钢筋, 用以 满足支承梁的延性和裂缝宽度限值的要求。 满足支承梁的延性和裂缝宽度限值的要求。

第6章-混凝土梁承载力计算原理

第6章-混凝土梁承载力计算原理

6 混凝土梁承载力计算原理6.1 概述本章介绍钢筋混凝土梁的受弯、受剪及受扭承载力计算方法。

钢筋混凝土梁是由钢筋和混凝土两种材料所组成,且混凝土本身是非弹性、非匀质材料。

抗拉强度又远小于抗压强度,因而其受力性能有很大不同。

研究钢筋混凝土构件的受力性能,很大程度上要依赖于构件加载试验。

建筑工程中梁常用的截面形式如图6-1所示。

6.2 正截面受弯承载力6.2.1 材料的选择与一般构造1)截面尺寸为统一模板尺寸以便施工,现浇钢筋混凝土构件宜采用下列尺寸:梁宽一般为100mm、120mm、 150mm、180mm、 200mm、220mm、250和300mm,以上按b/,50mm模数递增。

梁高200~800mm,模数为50mm,800mm以上模数为100mm。

梁高与跨度只比lh/,主梁为1/8~1/12,次梁为1/15~1/20,独立梁不小于1/15(简支)和1/20(连续);梁高与梁宽之比b在矩形截面梁中一般为2~2.5,在T形梁中为2.5~4.0。

2)混凝土保护层厚度为了满足对受力钢筋的有效锚固及耐火、耐久性要求,钢筋的混凝土保护层应有足够的厚度。

混凝土保护层最小厚度与钢筋直径,构件种类、环境条件和混凝土强度等级有关。

具体应符合下表规定。

表6-1 混凝土保护层最小厚度注:(1)基础的保护层厚度不小于40mm;当无垫层时不小于70mm。

(2)处于一类环境且由工厂生产的预制构件,当混凝土强度不低于C20时,其保护层厚度可按表中规定减少5mm,但预制构件中的预应力钢筋的保护层厚度不应小于15mm;处于二类环境且由工厂生产的预制构件,当表面另做水泥砂浆抹面层且有质量保证措施时,保护层厚度可按表中一类环境数值取用。

(3)预制钢筋混凝土受弯构件钢筋端头的保护层厚度不应小于10mm,预制肋形板主肋钢筋的保护层厚度应按梁的数值采用。

(4)板、墙、壳中分布钢筋的保护层厚度不应小于10mm,梁、柱中箍筋和构造钢筋的保护层厚度不应小于15mm。

《混凝土结构设计原理》第六章-课堂笔记

《混凝土结构设计原理》第六章-课堂笔记

《混凝土结构设计原理》第六章受压构件正截面承载力计算课堂笔记♦主要内容受压构件的构造要求轴心受压构件承载力的计算偏心受压构件正截面的两种破坏形态及英判别偏心受压构件的N厂血关系曲线偏心受压构件正截面受压承载力的计算偏心受压构件斜截面受剪承载力的汁算♦学习要求1.深入理解轴心受压短柱在受力过程中,截而应力重分布的概念以及螺旋箍筋柱间接配筋的概念。

2.深入理解偏心受压构件正截而的两种破坏形式并熟练掌握其判别方法。

3.深入理解偏心受压构件的Nu-Mu关系曲线。

4.熟练掌握对称配筋和不对称配筋矩形截而偏心受压构件受压承载力的计算方法。

5.掌握受压构件的主要构造要求和规定。

♦重点难点偏心受压构件正截而的破坏形态及其判别;偏心受压构件正截面承载力的计算理论:对称配筋和不对称配筋矩形截面偏心受压构件受压承载力的计算方法:偏心受压构件的Nu-Mu关系曲线;偏心受压构件斜截面抗剪承载力的计算。

6.1受压构件的一般构造要求结构中常用的柱子是典型的受压构件。

6.1.1材料强度混凝上:受压构件的承载力主要取决于混凝丄强度,一般应采用强度等级较髙的混凝上,目前我国一般结构中柱的混凝土强度等级常用C30-C40,在髙层建筑中,C50-C60级混凝上也经常使用。

6.1.2截面形状和尺寸柱常见截面形式有圆形、环形和方形和矩形。

单层工业厂房的预制柱常采用工字形截面。

圆形截面主要用于桥墩、桩和公共建筑中的柱。

柱的截面尺寸不宜过小,一般应控制在lo/b^30及l°/hW25°当柱截面的边长在800mm以下时,一般以50mm为模数,边长在800mm以上时,以100mm为模数。

6.1.3纵向钢筋构造纵向钢筋配筋率过小时,纵筋对柱的承载力影响很小,接近于素混凝土柱,纵筋不能起到防止混凝上受压脆性破坏的缓冲作用。

同时考虑到实际结构中存在偶然附加弯矩的作用(垂直于弯矩作用平面),以及收缩和温度变化产生的拉应力,规定了受压钢筋的最小配筋率。

混凝土结构设计原理 第六章 钢筋混凝土受压构件承载力计算

混凝土结构设计原理  第六章  钢筋混凝土受压构件承载力计算
螺旋箍筋对承载力的影响系数α,当fcu,k≤50N/mm2时,取α = 1.0;当fcu,k=80N/mm2时,取α =0.85,其间直线插值。 ; ,其间直线插值。
6.1 轴心受压构件的承载力计算
第六章 受压构件的截面承载力
采用螺旋箍筋可有效提高柱的轴心受压承载力。 采用螺旋箍筋可有效提高柱的轴心受压承载力。 如螺旋箍筋配置过多,极限承载力提高过大, ◆ 如螺旋箍筋配置过多,极限承载力提高过大,则会在远未 达到极限承载力之前保护层产生剥落,从而影响正常使用。 达到极限承载力之前保护层产生剥落,从而影响正常使用。 规范》规定: 《规范》规定: ● 按螺旋箍筋计算的承载力不应大于按普通箍筋柱受压承载 力的50%。 力的 。 对长细比过大柱,由于纵向弯曲变形较大, ◆ 对长细比过大柱,由于纵向弯曲变形较大,截面不是全部 受压,螺旋箍筋的约束作用得不到有效发挥。 规范》规定: 受压,螺旋箍筋的约束作用得不到有效发挥。《规范》规定: 对长细比l 大于 的柱不考虑螺旋箍筋的约束作用。 大于12的柱不考虑螺旋箍筋的约束作用 ● 对长细比 0/d大于 的柱不考虑螺旋箍筋的约束作用。 螺旋箍筋的约束效果与其截面面积A 和间距s有关 有关, ◆ 螺旋箍筋的约束效果与其截面面积 ss1和间距 有关,为保证 有一定约束效果, 规范》规定: 有一定约束效果,《规范》规定: 螺旋箍筋的换算面积A 不得小于全部纵筋A' 面积的25% ● 螺旋箍筋的换算面积 ss0不得小于全部纵筋 s 面积的 螺旋箍筋的间距s不应大于 不应大于d ● 螺旋箍筋的间距 不应大于 cor/5,且不大于 ,且不大于80mm,同时 , 为方便施工, 也不应小于 也不应小于40mm。 为方便施工,s也不应小于 。
普通钢箍柱 螺旋钢箍柱
6.1 轴心受压构件的承载力计算

钢筋混凝土受拉构件承载力计算

钢筋混凝土受拉构件承载力计算
轴心受拉构件正截面承载力计算公式为
1.2 偏心受拉构件正截面承载力
1.2.1 两种偏心受拉构件
常见的偏心受拉构件有:矩形水池的池壁以及带有节间荷载的桁架和拱的下弦杆等。 设矩形截面上距离轴向力较近一侧的钢筋为As,较远一侧的钢筋为A's。按照轴心力作用 点位置的不同,偏心受拉构件正截面承载力计算可分为两种情况:①轴向力作用在钢筋As 合力 点和钢筋A's合力点之间,属于小偏心受拉情况;②轴向力作用在钢筋As 合力点和钢筋A's合力点 之外,属于大偏心受拉情况(如图所示)。
工程结构
工程结构
1.1 轴心受拉构件承载力
钢筋混凝土受拉构件根据拉力作用的位置分为轴心受拉和偏心受拉两种。同时承受 轴心拉力和弯矩的构件属于偏心受拉构件。
工程上,理想的轴心受拉构件是不存在的。但是,对于屋架或托架的受拉弦杆和ab、 bc腹杆以及拱的拉杆(如图1所示),当自重及节点位移引起的弯矩很小时,可近似的按照轴 心受拉构件进行计算。此外,圆形水池的池壁,在静水压力的作用下,池壁的垂直截面在水 平方向处于环向受拉状态,(如图2所示)也可按照轴心受拉构件计算。
矩形截面的大偏心受拉构件正截面承载力计算的应力图形如图所示,纵向受拉钢筋As 的 应力达到fy,受压区混凝土应力简化成矩形,受压钢筋的应力假定达到抗压强度设计值。由平衡 条件可得
1.2 偏心受拉构件正截面承载力
矩形截面大偏心受拉构件正截面承载力计算简图
1.2 偏心受拉构件正截面承载力
1.2.3 小偏 屋架中的受拉杆件
图2 水池的池壁受力状态
1.1 轴心受拉构件承载力
轴心受拉构件裂缝的出现和开展类似于受弯构件。当拉力较小时,截面未出现裂缝,随着 拉力的增大,构件截面出现裂缝并开展。由于混凝土抗拉能力很低,其一开裂便退出工作,裂缝 截面的拉力全部由钢筋承受。此时,钢筋周围的混凝土可起保护钢筋的作用,裂缝间混凝土仍能 协助钢筋抵抗拉力。对于轴心受拉构件来说,当拉力使裂缝截面处的钢筋应力达到屈服强度时, 构件便进入破坏阶段。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小偏心受拉破坏:轴向拉力N在As与A's之间,全截面均受拉 应力,但As一侧拉应力较大,A's一侧拉应力较小。
随着拉力增加,As一侧首先开裂,但裂缝很快贯通整个截面, As和A‘s纵筋均受拉,最后As和A’s均屈服而达到极限承载力。 不考虑混凝土的受拉工作。
a' fyA's e' e0 h0-a' fyAs
bh0 0.0021000 490 980mm2 取 As min
选配4 18的受压钢筋,A’s=1017mm2。 按A’s已知的情况计算As
as
(h0 a) Ne f y As
2 f c bh0
201 103 113 300 1017 (490 60) 0 2 11.9 1000 490
大偏心受拉破坏:轴向拉力N在As外侧,As一侧受拉,A's一侧受 压,混凝土开裂后不会形成贯通整个截面的裂缝。
最后,与大偏心受压情况类似,As达到受拉屈服,受压侧混凝土 受压破坏。
a1 fc
x fy'A's a'
e’
h0-a' e0 fyAs e
大偏心受拉构件
a
N
基本 公式
N
1
d
1
Nu
1
d
afc
fy'A's
a'
N e
e’
h0-a' e0 fyAs e
ó Æ ´ « Ð Ä Ê Ü À ­ ¹ ¼ þ
a
a
N
¡ Æ Ð « Ð Ä Ê Ü À ­ ¹ ¼ þ
当纵向拉力N作用在钢筋As合力点即A’s合力点范围以外时,属 于大偏心受拉;作用在合力点范围以内时,属于小偏心受拉。
第二节 大偏心受拉构件正截面的承载力计算
As
d Ne
a) f y (h0
As
d Ne
f y (h0 a )
对称配筋时
As As
d Ne
a) f y (h0
例题7.1 一矩形截面偏心受拉构件,b×h=1000mm×550mm,承受的内力 设计值M=66kN.m,N=201kN,a=a’=60mm,混凝土强度等级为 C25,钢筋为HRB335级,试进行配筋设计。 【解】 1. 设计参数
3. 配筋计算 e=e0-h/2+a=328-550/2+60=113mm,设xb=xbh0=0.55×490=269.5mm
Ne a 1 f c bxb (h0 xb / 2) As f y (h0 a ) 201 103 113 1 11.9 1000 269.5 (490 269.5 / 2) 0 300 (490 60)
说明按所选的A’s进行设计就不需要混凝土承担任何内力了,意 味着A’s的应力不会达到屈服强度,所以按x<2a’计算As
Ne Nu e f y As (h0 a)
e e0 h a 328 550 / 2 60 543 mm 2
Ne 201 103 543 2 As 843mm f y (h0 a) 300 (490 60)
1
d
N u e
1
d
f y As (h0 a )
h e e0 a 2
截面设计时,取x=xb或者x=xb,由基本公式可得到
As
d Ne a 1 f c bxb (h0 xb / 2)
f y (h0 a )
f c bxb N f y As As fy fy
1
( f y As f y As a 1 f c bx)
x N e Nue [ f c bx(h0 ) f y As (h0 a )] d d 2
h e e0 a 2
若x<2a‘,则对A’s作用点取矩,
适用条件:
x ≤ xb
x≥2a'
Ne
对称配筋时,As=A’s和fy=f’y,由基本公式(1)显然x<0,则 不满足第二个适应条件,则取x=2a’,由
Ne
1
d
As
N u e
1
d
f y As (h0 a )
h e e0 a 2
d Ne
f y (h0 a )
第三节 小偏心受拉构件正截面的承载力计算
fc=11.9N/mm2,fy=f ’y=300N/mm2,h0=h-a=550-60=490mm,
xb=0.55 2. 判断大小偏心受拉破坏类型 e0=M/N=66/201=0.328m=328mm>(h/2-a)=215mm 所以N作用点在钢筋范围之外,属于大偏心受拉构件,一侧受拉, 一侧受压,配筋分别为As和A’s
选配6 14的受压钢筋,As=923mm2。
N e
a
¡ Æ Ð « Ð Ä Ê Ü À ­ ¹ ¼ þ
Ne
基本 公式
1
d
1
Nue
1
d
1
( h0 a ) f y As a) f y As ( h0
Ne
d
N u e
d
h e e0 a 2 h e e0 a 2
截面 设计
三个受力阶段:第Ⅰ阶段为从加载到混凝土受拉开裂前; 第Ⅱ阶段为混凝土开裂后至钢筋即将屈服;
第Ⅲ阶段为受拉钢筋开始屈服到全部受拉钢
筋达到屈服。
承载力计算公式:
N N u f y As
N-为轴向拉力的设计值; fy-为钢筋抗拉强度设计值;
As-为全部受拉钢筋的截面面积,
a' fyA's e' e0 h0-a' fyAs
第六章
钢筋混凝土受拉构件承载力计算
钢筋混凝土桁架或拱拉杆、受内压力作用的环形 截面管壁及圆形贮液池的筒壁等,通常按轴心受 拉构件计算。 矩形水池的池壁、矩形剖面料仓或煤斗的壁板、 受地震作用的框架边柱,以及双肢柱的受拉肢, 属于偏心受拉构件。
受拉构件除Leabharlann 向拉力外,还同时受弯矩和剪力作 用。
第一节 大小偏心受拉构件的界限
相关文档
最新文档