镉与铜的分离与测定研究
铜镉渣中铜、镉、锌的提取分离研究.pdf
AMaster’SThesisinChemistryEngineering
^Researchontheextractionandseparationofcopper,cadmiumandzincfrom
coper-cadmiumresidue
By:ZhouHui
Supervisor:ProfessorLuDiankun
NortheasternUniversity
June2010
东北大学硕士论文第3章铜镉渣的酸性浸出
注:浸出率=(Go.G1)/GoGo为铜镉渣中金属的质量Gl为酸浸渣中金属的质量
担
、\
瓣
丑
螂
O
图3.6硫酸用量对浸出率的影响
Fig.3.6Theeffectofacidityonleachingrate
由表3.7和图3.6可知,在铜镉渣的酸浸出过程中,被优先浸出的是Cd,只需要很少量的硫酸(7mll:1的硫酸1,Cd的浸出率就高达97.25%,当硫酸用量增加到9ml时,Cd的浸出率就达到了98.61%,此后硫酸加入量的增加对Cd的浸出率的提高几乎没有作用。
其次优先浸出的是金属Zn,当硫酸加入量从7ml增加到9ml时,Zn的浸出率从92.69%提高到99.08%,达到了最大的浸出率。
与Zn、Cd相比,Cu的浸出率虽然较低,当硫酸加入量从7ml增加到9ml时,Cu的浸出率从3.80%提高到16.26%。
当硫酸用量达到9ml以后,随着硫酸用量的。
AAS测定土壤中镉铜铅锌
实验四原子吸收分光光度法测定土壤中的镉、铜、铅、锌实验目的:1、学习和掌握土壤中金属离子的测定方法和原理。
2、学习和掌握用原子吸收分光光度法测定土壤中金属离子的测定方法和原理。
实验原理:土壤样品经过HCl-HNO3-HClO4混酸体系消解后,将消解液喷入空气-乙炔火焰。
在火焰中形成的金属(Cd、Cu、Pb、Zn)基态原子蒸汽对光源发射的特征电磁辐射产生吸收。
测得试液吸光度扣除全程序空白吸光度,从标准曲线查得金属含量,计算土壤中Cd含量。
金属(Cd、Cu、Pb)含量低时可用碘化钾-甲基异丁酮萃取富集分离后测定,方法简便、灵敏、准确、选择性好,可以消除背景和基体效应干扰。
铜、铅含量较低时,可用石墨炉无火焰法测定,含量较高时,可用石墨炉无火焰法测定,含量较高时,可不经萃取,直接将消解液喷入空气-乙炔火焰中进行测定(土壤受污染的成分复杂时,最好萃取分离)。
仪器:原子吸收分光光度计镉、铜、铅、锌单元素空心阴极灯。
试剂:硝酸(特级纯)盐酸(特级纯)高氯酸(优级纯)2mol/L碘化钾溶液:称取333.4g碘化钾溶于1L去离子水中。
抗坏血酸甲基异丁酮(MIBK).镉标准储备液:称取0.5000g金属镉粉(99.9%),溶于10mL盐酸(1+1)中,转移至500mL容量瓶中,用去离子水稀释至标线。
此溶液每毫升含1.00mg镉。
测定时将此溶液逐级稀释为1mL含5μg的镉标准使用液。
铅标准储备液:称取0.5000g金属铅(99.9%),用适量硝酸(1+1)溶解后,移入500mL容量瓶中,用去离子水稀释至标线。
此溶液每毫升含1.00mg铅。
铜标准储备液:称取1.0000g金属铜(99.9%),溶于15mL硝酸(1+1)中,转移至1000mL容量瓶中,用去离子水稀释至标线。
此溶液每毫升含1.00mg铜。
锌标准储备液:称取1.0000g金属锌(99.9%),用20mL盐酸(1+1)溶解后,用去离子水稀释至标线。
此溶液每毫升含1.00mg锌。
锌冶炼铜渣提取铜、锌、镉的试验研究
[1]铅锌冶金学编委会.铅锌冶金学[M].北京:科学出版
社,2003. [2]朱祖泽,马克毅.铜冶金学[M].昆明:云南科技出版 社,1995.
[3]刘学雷.从含锌废渣中回收锌盐的研究[J].安徽化
工,2000(2):41-43.
[4] 宁模功,等.处理湿法炼锌净化钻镍的试验研究[J]. 有色金属(冶炼部分),2001(10):11.14. [5] 毕振明,等.固体废弃物的处理与处置[M].北京:高 等教育出版社,1998.
表6 二段浸出液固比单因素试验
试样编号TZ2.5
液固比
1:1
浸出温度/℃
90
浸出时间/h
铜浸出影%
2 92.84
1雹.6
1.5:l 90 2
93.71
TZ2-7 2:1 90 2
92.59
TZ2-8 2.5:1
90 2 91.63
由表6可见,随着液固比的提高,铜浸出率基本 保持稳定。因此,选择液固比1.5:1为最佳条件,并 达到减少浸液量的目的。 3.2.3浸出时间单因素试验
1.5:l。
3.2二段高温氧化酸浸试验
二段氧化酸浸的原料为一段氧化酸浸后的浸
渣,一浸渣在低温氧化酸浸时,铜较难浸出,因此,在
二段浸出时严格试验条件。使用高温高酸,同时加人 一定量的强氧化剂,以促进铜的浸出。 3.2.1 二段浸出温度单因素试验
西瘤毽罄孵眦E-m㈣ail:G“SLY…JL@1626·com
镉充分反应,又可以使铜大量的存在于渣中,达到预
由表3可见,随着液固比的提高,锌和镉浸出率 基本保持稳定,铜浸出率有上升的趋势,但幅度不 大。因此,选择液固比1.5:l为最佳条件,而且达到
减少浸液量的目的。 3,1.3浸出时间单因素试验
铜、锌、铅、镉测定作业指导书
8.6.4 根据表4选择波长和调节火焰,吸入硝酸溶液(6.7),将仪器调零。吸入空白工作标准溶液或样品,记录吸光度。
表4
元 素
特征谱线波长,nm
火焰类型
铜
锌
铅
镉
324.7
213.8
283.3
228.8
乙炔-空气,氧化性
乙炔-空气,氧化性
乙炔-空气,氧化性
1 目的
准确检测水质中的铜、锌、铜、镉,为各种环境状况分析提供合理依据。
2 定义
2.1 溶解的金属:未酸化的样品中能通过0.45μm滤膜的金属成分。
2.2 金属总量:未经过滤的样品经强烈消解后测得的金属浓度,或样品中溶解和悬浮的两部分金属浓度的总量。
3 采样和样品
3.1 用聚乙烯塑料瓶采集样品。采样瓶先用洗涤剂洗净,再在硝酸溶液(6.6)中浸泡,使用前用不冲洗干净。分析金属总量的样品,采集后立即加硝酸(6.1)酸化至PH1~2,正常情况下,每1000ml样品加2ml硝酸(6.1)。
注:①如果单独测定铅,最佳萃取PH为2.3±0.2。
②样品中存在强氧化剂时,可能破坏吡咯烷二硫代氨基甲酸铵,萃取前应去除。
③有些金属离子和吡咯烷二硫代氨基酸铵的络合物不稳定,萃取操作时要避免日光直射和避开热源。
13.4.2 根据表4选择波长和调节火焰,吸入水饱和的甲基异丁基甲酮(11.5),将仪器调零。吸入空白、工作标准或试份的萃取有机相,记录吸光度。
5 原理
将样品或消解处理过的样品直接吸入火焰,在火焰中原子对特征电磁辐射产生吸收,将测得的样品吸光度和标准溶液的吸光度进行比较,确定样品中被测元素的浓度。
6 试剂
除非另有说明,分析时均使用符合国家标准或专业标准的分析纯试剂、去离子水或同等纯度的水。
水质 铜、锌、铅、镉的测定方法
水质铜、锌、铅、镉的测定方法
水质中铜、锌、铅、镉的测定方法可以通过以下几种常见的方法来进行:
1. 原子吸收光谱法(AAS):该方法通过测量溶液中金属元
素的吸收光谱来确定其浓度。
先将水样中的金属元素溶解到溶液中,然后使用原子吸收光谱仪测定吸收光谱,再根据校准曲线计算出金属元素的浓度。
2. 电感耦合等离子体质谱法(ICP-MS):该方法是一种高灵
敏度、高精度的分析方法,可以同时测定多种金属元素。
首先将水样溶解成溶液,然后使用电感耦合等离子体质谱仪测定溶液中的金属元素浓度。
3. 恒电位伏安法(DPASV):该方法是一种电化学分析方法,适用于铅和镉的测定。
在恒定电位下,通过测量电流来确定铅和镉的浓度。
该方法需要先将水样中的金属离子还原成金属,然后通过电流测定其浓度。
4. 原子荧光光谱法(AFS):该方法是一种基于金属元素的荧
光特性来确定其浓度的分析方法。
先将水样中的金属元素溶解到溶液中,然后使用原子荧光光谱仪测定荧光光谱,再通过校准曲线计算金属元素的浓度。
以上是常见的几种方法,具体选择哪种方法需要根据实际情况和分析要求来确定。
萃取分离-原子吸收光谱法测定海水中镉铜铅锌铬镍
萃取分离-原子吸收光谱法测定海水中镉铜铅锌铬镍王增焕;王许诺【摘要】建立了海水中铜、铅、镉、锌、铬和镍的原子吸收光谱测定方法.在pH4.0±0.5条件下,样品溶液经水浴加热,以吡咯烷二硫代氨基甲酸铵(APDC)为螯合剂,铜、铅、镉、锌、铬和镍被定量螯合,生成的螯合物被甲基异丁基酮(MIBK)萃取后,采用火焰原子吸收光谱法测定锌,石墨炉原子法测定其余元素.结果表明,镉、铬、铜、铅、镍和锌的检出限分别为0.04、0.3、0.13、0.2、0.4和1.0 μg/L.对GBW(E)080040海水标准样品进行分析,除镍因没有认定值外,其他元素的测定值与认定值一致.方法应用于珠江口和大亚湾海域的海水分析,各元素测定结果的相对标准偏差(RSD,n=7)在2.3%~6.5%之间,回收率在94%~105%范围.【期刊名称】《冶金分析》【年(卷),期】2014(034)002【总页数】4页(P44-47)【关键词】海水;重金属;原子吸收光谱法;吡咯烷二硫代氨基甲酸铵;甲基异丁基酮(MIBK)【作者】王增焕;王许诺【作者单位】中国水产科学研究院南海水产研究所,广东广州510300;广东省渔业生态环境重点实验室,广东广州510300;农业部水产品加工重点实验室,广东广州510300;中国水产科学研究院南海水产研究所,广东广州510300;广东省渔业生态环境重点实验室,广东广州510300;农业部水产品加工重点实验室,广东广州510300【正文语种】中文【中图分类】O657.31海水中重金属元素通常采用原子吸收光谱法测定,其中石墨炉原子吸收光谱法具有很高的检测灵敏度。
由于海水盐度高、成分复杂、基体效应大,测定海水中的重金属,需要对海水进行复杂的前处理,将待测元素从海水基体中分离[1-2]。
分离富集方法有活性碳法[3]、螯合萃取法[4-6]、浊点萃取法[7-8]、共沉淀法[9-10]、析相微萃取法[11-12]等。
原子吸收分光光度法测定水中重金属的铜、锌、铅、镉
原子吸收分光光度法测定水中重金属的铜、锌、铅、镉原子吸收分光光度法能够有效测定水中的重金属元素,其测定结果精确度高,得到了广泛的应用。
本文采用原子吸收分光光度法,对水体中的重金属铜、锌、铅、镉等进行了测定,为有关需要提供参考。
标签:原子吸收分光光度法;重金属;测定0 引言随着社会经济的快速发展以及工业化进程的不断推进,水体污染问题日益突出,其中,重金属污染尤为严重。
水体中的重金属铜、锌、铅、镉元素对人体健康具有较大的危害,对其进行测定,为水体重金属污染控制提供依据具有十分重要的意义。
基于此,笔者进行了相关介绍。
1 铜、锌测定试验部分1.1 测定方法原理将样品或消解处理过的样品直接吸入火焰,在火焰中形成的原子对特征电磁辐射产生吸收,将测得的样品吸光度和标准溶液的吸光度进行比较,确定样品中被测元素的浓度。
1.2 主要试剂及仪器试剂:硝酸,优级纯;高氯酸,优级纯;1%硝酸溶液;1000mg/L铜标准溶液、500mg/L锌标准溶液(环境保护部标准样品研究所生产)。
仪器:电热板;AA6880原子吸收分光光度计,岛津企业管理(中国)有限公司生产;原子吸收分光光度计相应辅助设备。
1.3 试验过程1.3.1 样品的预处理取100mL水样置于200mL烧杯中,加入5mL硝酸溶液,在电热板上加热消解(样品不沸腾),蒸至10mL左右,加入5mL硝酸溶液和2mL高氯酸,再蒸至1mL左右。
如果消解不完全,再加入5mL硝酸和2mL高氯酸,再蒸至1mL 左右。
取下冷却,加水溶解残渣,转移至25mL的容量瓶中,用水稀释至标线。
取1%硝酸溶液,按上述相同的程序操作,以此为空白样。
1.3.2 校準曲线的配制取1000mg/L铜标准溶液5.00mL、500mg/L,锌标准溶液2.00mL于100mL 容量瓶中,用1%硝酸溶液定容至标线,配制成含铜50.0mg/L、锌10.0mg/L的混合标准溶液。
分别取此混合标准溶液0、0.20、0.50、1.00、2.00、3.00、4.00、5.00mL于100mL容量瓶中,用1%硝酸溶液定容,配制成含铜浓度分别为0、0.10、0.25、0.50、1.00、2.00mg/L的标准系列和含锌浓度0、0.02、0.05、0.10、0.20、0.30、0.50mg/L的标准系列。
定性分析中碘化钾法分离铜与镉离子
5 后 的情 况
。
由此 可见
取
6
滴 K l 就 能使 C
.
,
+
全 部 转化 为 u C l沉 淀
,
为 保证 结果 可 靠
,
取
8
滴 K l溶
3
.
H
:
S 用量
3
:
表
H
:
S 用量
1
现
象
滴
4
浅 黄 色浑 浊 白色 浑 浊
2 5 7
~ ~ ~
滴 滴
:
6
浅黄 色 浑 浊 黄 色沉 淀
S 溶液 后 的 颜 色
。
3
~ ~ <
红 棕 色浑 浊 红 棕色 浑 浊 红 棕色浑 浊
H NO
2
.
:
用量 取
2
滴为 佳
。
k l 用 量试 验
表
2
K l 用量
2 4
现
象
滴 滴
黄色 杏 ~ 黑色 杏 黄 色 杏( 伴 有 少 量 黑 色 否)
黄色 令
6滴 8
1
滴
黄色 今 黄色 杏
2
2滴
注
:
上 表 的 现 象 指加入 K l 后 离 心 分离 得到 的分离 液 中加入 H
,
,
保 险 粉法 或 利 用 调 节
,
酸 度
生 成 C S而 C d
,
“ +
不 沉 淀 的方 法
,
其中 与Cd
“十
虽 氰 化钾 分 离 效果好
,
但氰 化钾剧 毒
(O H )
“十
使 用时 既 污 染 环 境
水质中铜、锌、铅、镉的测定──火焰原子吸收法
实验五 水质中铜、锌、铅、镉的测定──火焰原子吸收法一、目的意义(1)熟悉原子吸收分光光度计的使用方法。
(2)掌握原子吸收分光光度法测定铜、锌、铅、镉的定量方法。
二、方法原理火焰原子吸收法。
其原理是,在使用锐线光源和在低浓度的情况下,基态原子蒸气对共振线的吸收符合比耳定律:A=lgII 0=KLN 0 式中:A ——吸光度;I 。
——入射光强度;I ——经原子蒸气吸收后的透射光强度; K ——吸光系数;L ——光穿过原子蒸气的光程长度; N 。
——基态原子密度。
当试样原子化,火焰的绝对温度低于30000K 时,可以认为原子蒸气中基态原子的数目实际上接近于原子总数,在固定的实验条件下,原子总数与试样浓度C 的比例是恒定的,因此,A =K ′C上式是原子吸收分光光度法的定量基础,其中K ′是与K 、L 等有关的常数。
定量方法可用标准曲线法或标准加入法等。
火焰原子化法是目前使用最广泛的原子化技术。
火焰中原子的生成是一个复杂的过程, 其最大吸收部位是出该处原子生成和消失速度决定的。
它不仅和火焰的类型及喷出效率有 关,并且还因元素的性质及火焰燃料气与助燃气的比例不同而异。
三、仪器(1)原子吸收分光光度计(附铜、锌、铅、镉空心阴极灯); (2)空气钢瓶或无油气体压缩机。
(3)乙炔钢瓶。
(4)容量瓶。
(5)移液管。
四、试剂(1)硝酸(优级纯)。
(2)高氯酸(优级纯)。
(3)金属标准贮备溶液:各准确称取0.5000g 干燥后的光谱纯金属,分别用适量硝酸(1+1)溶解,必要时加热直至溶解完全。
用水稀即至500.0mL ,此溶液每mL 含1.00mg 金属(铜、锌、铅、镉)。
(4)混合标准使用溶液:用0.2%硝酸稀释金属标准贮备液,使配成的混合标准使用液每mL 含铜、锌、铅、镉分别为50.0、10.0、100.0、10.0ug 。
(5)去离子水。
(6)燃气:乙炔,纯度不低于99.6%。
五、操作步骤1.样品预处理取l00mL水样放入200mL烧杯中,加入硝酸5mL,在电热板上加热消解(不要沸腾)。
铅、镉、砷、汞、铜测定法
附录Ⅸ B 铅、镉、砷、汞、铜测定法(一部)一、原子吸收分光光度法本法系采用原子吸收分光光度法(附录Ⅴ D)测定中药材中的铅、镉、砷、汞、铜,除另有规定外,按下列方法测定。
1.铅的测定(石墨炉法)测定条件 参考条件:波长 283.3nm,干燥温度 100~120℃,持续 20 秒;灰化温度 400~750℃,持续 20~25 秒;原子化温度 1700~2100℃,持续 4~5秒;背景校正为氘灯或塞曼效应。
铅标准储备液的制备 精密量取铅单元素标准溶液适量,用 2%硝酸溶液稀释,制成每 1ml 含铅(Pb)1µg 的溶液,即得(0~5℃贮存)。
标准曲线的制备 分别精密量取铅标准储备液适量,用 2%硝酸溶液制成每1ml 分别含铅 0ng、5ng、20ng、40ng、60ng、80ng 的溶液。
分别精密量取 1ml,精密加含 1%磷酸二氢铵和 0.2%硝酸镁的溶液 1ml,混匀,精密吸取 20µl 注入石墨炉原子化器,测定吸光度,以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。
供试品溶液的制备 A 法取供试品粗粉 0.5g,精密称定,置聚四氟乙烯消解罐内,加硝酸 3~5ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。
消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽,并继续缓缓浓缩至 2~3ml,放冷,用水转入 25ml 量瓶中,并稀释至刻度,摇匀,即得。
同法同时制备试剂空白溶液。
B 法取供试品粗粉 1g,精密称定,置凯氏烧瓶中,加硝酸 高氯酸(4∶1)混合溶液 5~10ml,混匀,瓶口加一小漏斗,浸泡过夜。
置电热板上加热消解,保持微沸,若变棕黑色,再加硝酸 高氯酸(4∶1)混合溶液适量,持续加热至溶液澄明后升高温度,继续加热至冒浓烟,直至白烟散尽,消解液呈无色透明或略带黄色,放冷,转入 50ml 量瓶中,用 2%硝酸溶液洗涤容器,洗液合并于量瓶中,并稀释至刻度,摇匀,即得。
水质 铜、锌、铅、镉的测定 原子吸收分光光度法
水是我们生活中不可或缺的重要资源,而水质的好坏直接关系到我们的健康和生活质量。
其中,铜、锌、铅、镉等重金属物质的含量是衡量水质的重要指标之一。
本文将以原子吸收分光光度法为切入点,深入探讨水质中铜、锌、铅、镉的测定方法及其重要性。
一、原子吸收分光光度法的原理在介绍水质中重金属的测定方法之前,首先需要了解原子吸收分光光度法的原理。
该方法利用物质对特定波长的光的吸收特性来测定其中某种化学元素的含量。
通过将待测样品转化为气态原子或原子离子,然后使其通过特定波长的光束,测定其吸收能力,从而得出目标元素的含量。
二、水质中铜、锌、铅、镉的测定1. 铜的测定铜是一种重要的金属元素,但过量的铜含量对人体和环境都有害。
原子吸收分光光度法可以准确、快速地测定水质中铜的含量,为环境保护和健康管理提供重要数据支持。
2. 锌的测定和铜一样,锌也是人体和环境中必需的微量元素,但其过量含量同样会危害健康。
通过原子吸收分光光度法可以对水质中的锌含量进行精确检测,帮助制定合理的水质控制措施。
3. 铅的测定铅是一种典型的污染物,其存在对人体健康造成严重威胁。
利用原子吸收分光光度法可以对水质中铅的含量进行快速、准确的分析,为环境监测和治理提供强大的技术支持。
4. 镉的测定镉是一种具有强烈毒性的重金属元素,存在偶然性污染和长期积累的风险。
原子吸收分光光度法可以对水样中镉的微量含量进行精确测定,为及时发现和控制水质污染提供技术手段。
三、重金属测定的重要性水质中重金属元素的测定不仅是环境监测和水质评价的重要内容,更是保障公众健康和生态安全的重要基础。
铜、锌、铅、镉等重金属物质的测定结果直接关系到饮用水、工业废水、农田灌溉水等多个方面的安全性和适用性。
四、个人观点和总结通过对水质中重金属元素的准确测定,可以及时发现水质污染问题,制定有效治理措施,保障人民的饮水安全和环境的可持续发展。
原子吸收分光光度法作为一种成熟、可靠的分析技术,为水质监测和环境保护提供了重要的技术支持。
水质 铜、铅、镉的测定 石墨炉原子吸收分光光度法水和废水监测分析方法(第四版) 方法确认
水质铜、铅、镉的测定石墨炉原子吸收分光光度法水和废水监测分析方法(第四版)方法确认1.目的通过石墨炉原子吸收分光光度法测定水质中铜、铅、镉的浓度,分析方法精密度,判断本实验室的检测方法是否合格。
2. 适用范围本方适用于对下水和清洁地表水。
3. 原理将样品注入石墨管,用电加热方式使石墨炉升温,样品蒸发离解形原子蒸汽,对来自光源的特征电磁辐射产生吸收。
将测得的样品吸光度和标准吸光度进行比较,确定样品中被测金属的含量。
4.仪器工作参数5.分析方法5.1样品预处理取100ml水样放入200ml烧杯中,加入硝酸5ml,在电热板上加热消解(不要沸腾)。
蒸至10ml左右,加入5ml硝酸和10ml过氧化氢,继续消解,直至1ml左右。
如果消解不完全,再加入硝酸5ml和10ml过氧化氢,再次蒸至1ml左右。
取下冷却,加水溶解残渣,在过滤液中加入10ml硝酸钯溶液,用水定容至100ml。
取0.2%硝酸100ml,按上述相同的程序操作,以此为空白样。
5.2混合标准使用溶液用0.2%硝酸稀释金属标准贮备溶液配制而成,使配成的混合标准溶液含量为镉10.0ug/ml、铜10.0ug/ml、10.0ug/ml5.3校准曲线的绘制参照下表,在50ml容量瓶中,用硝酸溶液稀释混合标准溶液,配置至少5个工作标准溶液,其浓度范围应包括试料中铜、铅、镉的浓度。
注:定容体积为50ml。
5.4样品测定将20ul样品注入石墨炉,参照仪器工作参数表的仪器参数测量吸光度。
以零浓度的标准溶液为空白样,扣除空白样吸光度后,从校准曲线上查出样品中被测金属的浓度。
5.5计算实验室样品中的金属浓度按下式计算:式中:c—实验室样品中的金属浓度,ug/L;W—试份中的金属含量,ug;V—试份的体积,ml。
6. 结果分析选取6份样品加标,使铜、铅、镉的加标浓度均为100ug/L,按5进行测试。
由附表可知,精密度RSD<10%。
铜标准偏差<5.9ug/L,满足水和废水监测分析方法(第四版)要求。
土壤中铜锌铅镉的测定原子吸收光谱法
土壤中铜锌铅镉的测定原子吸收光谱法土壤中铜锌铅镉的测定-原子吸收光谱法001 方法(土壤中铜锌铅镉的测定|分析|检测方法)土壤样品常用消解方法有硝酸-氢氟酸-高氯酸分解法、王水-氢氟酸-高氯酸分解法和微波消解法等。
在实际操作中,对于微波消解方法,微波炉功率和时间选择不当,会导致土样消解不完全的情况出现。
要获得完全的消解必须对不同的样品的具体消解时间和功率进行实验确定,费时费力,而且消解液中存在的大量的酸必须赶尽,否则会对样品测定产生严重的干扰。
用硝酸.氢氟酸.高氯酸分解法即可得铜锌铅镉的全量分析。
但是,发现高氯酸的使用对石墨炉法测定铅、镉不利,对火焰原子吸收法测铜锌则无影响。
在进行了一系列实验和对比后发现,硝酸-氢氟酸-双氧水消解体系对用石墨炉原子吸收法测定土壤中的铅、镉更有利。
2实验主要仪器与试剂:(土壤中铜锌铅镉的测定|分析|检测方法)1、Q45微波消解仪2、火焰原子吸收分光光度计3、石墨炉原子吸收分光光度计 4、聚四氟乙烯烧杯(具盖),塑料容量杯(由于氢氟酸会严重腐蚀玻璃仪器,导致空白值失控,影响测定,所以在移取氢氟酸时不能使用玻璃仪器) 5、硝酸钯溶液(10 μg/mL) 6、浓硝酸(优级纯)、氢氟酸(优级纯)、双氧水(优级纯) 7、铅、镉标准储备液;铅、镉混合标准使用液 8、铅50μg/L、镉5μg/L 9、铜、锌标准使用液是用1 000 mg/L标准贮备液逐级稀释而成。
由仪器自动稀释进样并绘制标准曲线。
注:分析过程中全部用水均使用去离子水,均使用符合国家标准分析纯以上化学试剂。
所用玻璃仪器及聚四氟乙烯容器均需以硝酸(1+5)浸泡过夜,用水反复冲洗,最后用去离子水冲洗干净。
仪器工作条件:PE-6OO原子吸收分光光度计工作参数见表1。
其程序升温参数见表2。
火焰原子吸收分光光度计的工作条件见表3。
微波最佳消解工作条件见表4。
配套仪器价格|资料|详细操作等咨询:021-******** 3样品处理及测定(土壤中铜锌铅镉的测定|分析|检测方法)3.1 微波消解:准确称取土壤样品0.200 0~0.250 0 g,置于微波消解罐中,加入硝酸8 mL,浸泡0.5 h去除有机质,加入氢氟酸2 mL,过氧化氢1 mL,加盖密封,放人微波消解装置中。
镉、铅、铬、铜的电化学分析法
淮海工学院课程论文仪器分析综述论文学院:化学工程学院班级:化学工程与工艺082班姓名:王海宁学号: 050811237镉、铅、铬、铜的电化学分析摘要:工业生产的快速发展、“工业三废”的不清洁排放,自然界中微量金属元素在大气、水质、土壤、固体废弃物及生物体内往往过量,这对人类造成很大的危害, 并且由于其形态不同导致其毒性化学特性和生理功能也不同。
为防微杜渐, 在了解重金属离子毒性以及对环境危害的基础上, 通过分析环境中金属的种类、含量和存在形态, 对其环境效应提前作出预测, 可有效防止环境的进一步恶化以及带来的灾难性后果。
目前, 关于金属离子的监测方法有很多, GC、HPLC、FT -IR、GS/MS、ICP-MS、X射线荧光光谱法、离子色谱等方法已经用于污染物的测定。
这些方法的灵敏度较高, 然而实验所需的仪器设备比较昂贵, 并且测定的前处理工作要求精细。
而电化学技术仪器设备简单, 易自动化, 便于携带, 灵敏度和准确度高, 选择性好, 并且运行费用远低于上述光谱法和色谱法, 更具有实用性, 在现代环境分析中得到了更广泛的推广。
关键词:重金属;电化学分析1 电化学分析方法概述电化学分析法是仪器分析的一个重要分支,不仅可以应用于各种试样的成分分析,而且还可以进行形态分析,并对各种电化学反应过程机理及其热力学和动力学性质进行研究。
它具有仪器分析设备简单,分析速度快,灵敏度高,选择性好,易于实现自动化等优点,故得到广泛应用。
用于元素分析的电化学方法有极谱法、伏安法、库仑分析法。
伏安法(voltammetry)与极谱法(polarography)都是以测定电解过程重所得的电流-电位曲线为基础的电化学分析法。
两者只存在使用的工作电极的不同。
伏安法使用的是固体电极或者表面静止的液体电极;极谱分析法使用的是表面能周期性更新的滴汞电极,这可以避免电解过程中可能析出的金属残留在电极表面从而引起电极表面性质的改变。
库仑分析法是通过被测物质在测定过程中所消耗的电量, 据Faraday 定律来计算分析结果。
铅、镉、砷、汞、铜测定法
铅、镉、砷、汞、铜测定法一、原子吸收分光光度法本法系采用原子吸收分光光度法测定中药材中的铅、镉、砷、汞、铜,所用仪器应符合使用要求(附录47)。
除另有规定外,按下列方法测定。
1.铅的测定(石墨炉法)测定条件参考条件:波长283.3nm,干燥温度100~120℃,持续20秒;灰化温度400~750℃,持续20~25秒;原子化温度1700~2100℃,持续4~5秒。
铅标准储备液的制备精密量取铅单元素标准溶液适量,用2%硝酸溶液稀释,制成每1ml含铅(Pb)1µg的溶液,即得(0~5℃贮存)。
标准曲线的制备分别精密量取铅标准储备液适量,用2%硝酸溶液制成每1ml分别含铅0ng、5ng、20ng、40ng、60ng、80ng的溶液。
分别精密量取1ml,精密加含1%磷酸二氢铵和0.2%硝酸镁的溶液0.5ml,混匀,精密吸取20µl注入石墨炉原子化器,测定吸光度,以吸光度为纵光标,浓度为横坐标,绘制标准曲线。
供试品溶液的制备A法取供试品粗粉0.5g,精密称定,置聚四氟乙烯消解罐内,加硝酸3~5ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。
消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽,并继续缓缓浓缩至2~3ml,放冷,用水转入25ml量瓶中,并稀释至刻度,摇匀,即得。
同法同时制备试剂空白溶液。
B法取供试品粗粉1g,精密称定,置凯氏烧瓶中,加硝酸-高氯酸(4:1)混合溶液5~10ml,混匀,瓶口加一小漏半,浸泡过夜。
置电热板上加热消解,保持微沸,若变棕黑色,再加硝酸-高氯酸(4:1)混合溶液适量,持续加热至溶液澄明后升高温度,继续加热至冒浓烟,直至白烟散尽,消解液呈无色透明或略带黄色,放冷,转入50ml量瓶中,用2%硝酸溶液洗涤容器,洗液合并于量瓶中,并稀释至刻度,摇匀,即得。
同法同时制备试剂空白溶液。
C法取供试品粗粉0.5g,精密称定,置瓷坩埚中,于电热板上先低温炭化至无烟,移入高温炉中,于500℃灰化5~6小时(若个别灰化不完全,加硝酸适量,于电热板上低温加热,反复多次直至灰化完全),取出冷却,加10%硝酸溶液5ml使溶解,转入25ml量瓶中,用水洗涤容器,洗液合并于量瓶中,并稀释至刻度,摇匀,即得。
水质_铜、铅、镉、镍、铬的测定_石墨炉原子吸收分光光度法
水质铜、铅、镉、镍、铬的测定石墨炉原子吸收分光光度法1. 引言1.1 概述水质是生活中一个重要的指标,直接关系到人们的健康和生活环境。
铜、铅、镉、镍、铬等重金属元素对水质具有较大影响,其超标含量可能导致水体污染和生态破坏。
因此,准确测定这些重金属元素的含量对于保护环境和人类健康至关重要。
1.2 文章结构本文将详细介绍利用石墨炉原子吸收分光光度法测定水中铜、铅、镉、镍和铬的方法。
首先,在正文部分分别阐述了各种元素的测定方法,包括前处理步骤和仪器设备的使用。
随后,我们将进行实验结果总结并分析该方法的优缺点。
最后,对于水质监测的意义和应用前景展望也将在结论部分进行讨论。
1.3 目的本文旨在系统地介绍利用石墨炉原子吸收分光光度法测定水中铜、铅、镉、镍和铬的方法,并评估该方法在实际应用中的可行性和有效性。
通过本文的研究,我们希望能够为水质监测提供一种准确、快速且可靠的分析方法,从而保护人们的健康和环境的稳定。
2. 正文:2.1 铜的测定方法:铜是一种常见的重金属元素,它存在于自然界中的水体中。
为了准确测定水样中的铜含量,可以使用石墨炉原子吸收分光光度法。
该方法基于原子吸收光谱技术,通过测量在特定波长下被样品溶液中的铜原子吸收的光强度来确定其浓度。
2.2 铅的测定方法:水体中的铅污染也是一种常见问题。
为了测定水样中的铅含量,可以应用石墨炉原子吸收分光光度法。
这种方法通过将样品溶液注入石墨炉,并利用特定波长下被样品中的铅原子吸收的光强度来确定其浓度。
2.3 镉的测定方法:镉是另一种常见的重金属元素,它也可能存在于水体中。
要准确检测水样中镉的含量,可以采用石墨炉原子吸收分光光度法。
利用该法,我们能够使用特定波长下由镉原子在样品溶液中吸收而导致的光强度变化来判断其浓度。
2.4 镍的测定方法:镍是一种常见的水体污染物,特别是在一些工业废水中。
为了测定水样中镍的含量,可以使用石墨炉原子吸收分光光度法。
该方法通过测量在特定波长下由于样品溶液中镍原子吸收而导致的光强度变化来确定其浓度。
工业废水污染监测 镉、铅、铜和锌的测定
教学目标
1.能力目标
2.知识目标
(1)能技术规范完成镉、铅、(1)了解水样重金属污染物及
铜和锌样品的采集、保存和运 其化合物的测定方法;
输;
(2)理解AAS法测定镉、铅、铜
(2)能完成AAS法测定工业废 和锌的原理和方法(GB 7475-87)
水镉、铅、铜和锌含量的测定 要点;
采样人员应考核合格,持证上岗。 采样时需采集不少于10%的现场平行样。
4.2 实验室质量保证
工业废水的分析应特别重视水中干扰物质对测定的影响,并保证 分取测定水样的均匀性、代表性。
分析人员必须持证上岗,并熟悉和掌握有关分析方法,了解废水 特征,发现有共存干扰物质应及时采取有效的消除措施。
注意实验室环境,防止交叉干扰;保证水和试剂的纯度要求;各 种计量器具按有关规定,定期进行检定,加强经常性维护和正确 使用,达到有效测量;需控制温度、湿度条件的实验室应配置相 应的设备;尤其要重视所用标准溶液的准确性。
元素 镉 铅 铜 锌
直接分析法(mg/L) 0.05~1 0.2~10 0.05~5 0.05~1
萃取分析法(μg/L) 1~50
10~200 1~50 ——
3.4 主要仪器
➢ 原子吸收分光光度计(空心阴极灯) ➢ 电热板 ➢ 容量瓶、移液管等
3.5 试剂配制
➢ Pb、Cd、Cu和Zn标准贮备液
二类污染物
包括:悬浮物、硫化 物、挥发酚、氰化物、 有机磷化合物、石油类、 铜、锌、氟、硝基苯类、 苯胺类等。
取样位置:工厂废水 总排放口。
教学内容
概述 工业废水污染物分类
重金属及其化合物的测定
质量保证和质量控制措施
3.重金属及其化合物的测定