3.2 解一元一次方程(一)——移项习题

合集下载

【含答案与解析】新人教数学7年级上同步训练:(3.2 解一元一次方程(1))

【含答案与解析】新人教数学7年级上同步训练:(3.2 解一元一次方程(1))

3.2 解一元一次方程(1)5分钟训练 (预习类训练,可用于课前)1.初一(1)班举行了一次集邮展览,展出的邮票比平均每人3张多24张,比平均每人4张少26张,这个班共展出邮票的张数是()A.164B.178C.168D.174思路解析:设这个班有x人,根据题意得3x+24=4x-26,解得x=50,所以邮票的张数为3×50+24=174.答案:D2.将下列方程的某些项进行移项,并合并,使方程左边只含未知数,方程的右边只含已知数.(1)4x-6=8x+9; (2) 12(4-5x)=3x+6.思路解析:移项之前,先要分清不移的项和要移的项,只有要移的项在方程的一边与不移的项是加减的形式时,才能移项.方程两边的未移项不变号,要移的项在移项时要变号. 解:(1)由4x-6=8x+9移项得4x-8x=9+6,即-4x=15.(2)两边都乘以2,得4-5x=6x+12.移项得-5x-6x=12-4,即-11x=8.10分钟训练 (强化类训练,可用于课中)1.A、B两地相距50 km,一辆货车以40 km/h的速度从A地开出,一辆客车以32 km/h的速度从B地开出同向而行,则图2-2-1中线段图表示的相等关系是_________________________.图3-2-1思路解析:当货车追上客车时,货车的行程就等于客车的行程+50.答案:货车的行程=客车的行程+502.判断下面的移项对不对,如果不对,应怎样改正?(1)从7+x=13得到x=13+7;(2)从5x=4x+8得到5x-4x=8;(3)从3x-2=x+1得到3x+x=2+1;(4)从8x=7x-2得到8x-7x=2.思路解析:判断移项是否正确,关键看移项后的符号是否改变,一定要牢记“移项变号”.注意:没有移动的项,符号不要改变;另外等号同一边的项互相调换位置,这些项的符号不改变,所以利用的是加法交换律.答案:(1)不对,正确的应为:x=13-7;(2)对;(3)不对.正确的应为:3x-x=2+1;(4)不对.正确的应为:8x-7x=-2.3.解方程:(1)3x=15;(2)4x=2; (3)34x=-12;(4)-0.5x=-3.思路解析:根据等式的性质2.把等号左边未知的系数化为1,即可得到方程的解.答案:(1)x=5,(2)x=12,(3)x=-23,(4)x=64.解方程:(1)6x+2=5x-7;(2)2t-5=8t+15;(3)13-2y=12;(4)4-53m=-m.思路解析:解方程的思路是将已知方程通过一系列变形化为最简方程mx=n的形式,也就是说把mx=n作为已知方程变形的目标.因此,要把已知方程转化为最简化,就要把含有未知数的项都移到等号的一边,常数项移到等号的另一端.解:(1)移项合并,得x=-9.(2)移项合并,得t=-103.(3)移项,得-2y=12-13=16.左、右两边同除-2,得y=-112.(4)移项合并,是52m=-4.左、右两边同乘52,得m=-105.目前,包括长江、黄河等七大流域在内,全国水土流失总面积达到367万平方千米,其中长江与黄河流域的水土流失总面积占全国的32.4%,而长江流域的水土流失面积比黄河流域的水土流失面积还要多29万平方千米,则长江流域的水土流失面积是多少?(结果保留整数) 思路解析:这是个实际问题,通过设未知数、列出方程,可将其转化为一个数学问题.题中有这样一个关系:“长江与黄河流域的水土流失总面积占全国的32.4%解:设长江流域水土流失面积为x万平方千米(在实际生活中你有环保意识吗?)根据题意得x+(x-29)=367×32.4%,解得x=74.答:长江流域的水土流失面积是74万平方千米.快乐时光戴帽子有个孩子刚学了几个字,就想给父亲写信.可“父亲”的“父”字怎么写,他却记不得了.于是他只好打开字典一页一页地翻,心想总能找到那个“父”字。

3.2解一元一次方程——合并同类项与移项(讲+练)

3.2解一元一次方程——合并同类项与移项(讲+练)

3.2解一元一次方程——合并同类项与移项合并同类项解方程的方法与步骤(1)合并同类项,即把含有未知数的同类项和常数项分别合并.(2)系数化为1,即在方程的两边同时除以未知数的系数.注意:(1)解方程中的合并同类项和整式加减中的合并同类项一样,它们的依据都是乘法分配律,实质都是系数的合并,目的是运用合并同类项,使方程变得更简单,为运用等式性质2求出方程的解创造条件;(2)系数为1或-1的项,合并时不能漏掉.题型1:解一元一次方程——合并同类项1.解下列方程∶(1)3x+2x+x=24; (2)-3x+6x=18.【答案】(1)x=4 (2)x=6【变式1-1】(1)5x-6x=-57 (2)13x-15x+x=-3.【答案】(1)x=57 (2)x=3移项解方程的方法与步骤1.移项把等式的某项变号后移到另一边,叫做移项.移项必须变号.2.移项的依据移项的依据是等式的性质1,在方程的两边加(或减)同一个适当的整式,使含未知数的项集中在方程的一边,常数项集中在另一边.3.解简单的一元一次方程的步骤(1)移项;(2)合并同类项;(3)系数化为1.注意:(1)移项通常把含有未知数的项移到“=”的左边,常数项移到“=”的右边(2)若将2=x变形为x=2,直接利用的是等式性质的对称性,不能改变符号.(3)方程中的每项都包括前面的符号.题型2:解一元一次方程——移项2.将下列方程移项(1)7+x=13,移项得x=13+7(2)5x=4x+8,移项得 5x-4x=8(3)3x-2=x+1,移项得 3x-x=2+1(4)8x=7x-2,移项得 8x-7x=-2(5)2x-1=3x+4,移项得 2x-3x=1+4【变式2-1】解下列方程(1)4x+2=3x-3; (2)4y=203y+16【答案】(1)x=-5 (2)y=-6【变式2-2】解下列方程(1)2x+3=4x-5; (2)9x-17=4x-2.【答案】(1)x=4 (2)x=3题型3:绝对值方程3.解方程 |2x-3|=1.【分析】解绝对值方程的关键是把绝对值符号去掉,将方程转化为普通方程求解.【解答】∶因为|2x-3|=1,所以2x-3=1或2x-3=-1,解得x=2或x=1.【变式3-1】如果|2x+3|=|1﹣x|,那么x的值为( )A.−23B.−32或1C.−23或﹣2D.−23或﹣4【分析】根据绝对值的意义得到2x+3=1﹣x或2x+3=﹣(1﹣x),然后解两个一次方程即可.【解答】解:∵|2x+3|=|1﹣x|,∴2x+3=1﹣x或2x+3=﹣(1﹣x),题型4:依题意构建方程求解4.代数式2x+5与x+8的值相等,则x的值是 .【答案】3【解析】【解答】解:∵代数式2x+5与x+8的值相等,∴2x+5=x+8,解得:x=3,故答案为:3.【分析】根据已知条件:2x+5与x+8的值相等,可得到关于x的方程,解方程求出x的值.【变式4-1】当x= 时,代数式6x+1与-2x-5的值互为相反数。

人教版数学七年级上册3.2《用移项法解一元一次方程》训练(有答案)

人教版数学七年级上册3.2《用移项法解一元一次方程》训练(有答案)

课时2用移项法解一元一次方程基础训练知识点1(解一元一次方程----移项)1.下列变形中属于移项的是()A.由5x-2x=2,得3x=2B.由6x-3=x+4,得6x-3=4+xC.由8-x=x-5,得﹣x-x=﹣5-8D.由x+9=3x-1,得3x-1=x+92.把方程4x+4=6-3x进行移项,下列变形正确的是()A.4x-3x=6-4B.4x+3x=6-4C.4x-3x=4-6D.4x+3x=4-63.解方程x-4=x,移项,得__________,合并同类项,得________,系数化为1,得________.4.当x=________时,代数式3x-5与1+2x的值相等.5.解下列方程:(1)5x+2=4x-3;(2)7x-3=4x+6;(3)4y=y+16;(4)x-2=x+5.知识点2(列一元一次方程解决实际问题)6.两个水池共存水40吨.现甲池注进水4吨,乙池放出水8吨,甲池中水的吨数与乙池中水的吨数相等,两个水池原来各有水多少吨?7.[2019黑龙江哈尔滨道外区期末]一个长方形的周长为26厘米.若这个长方形的长减少1厘米,宽增加2厘米,就可成为一个正方形,求这个长方形的长和宽.8.[2019广东东莞期末]2019~2019学年度七年级(1)班课外活动小组计划做一批“中国结”.如果每人做6个,那么比计划多了7个;如果每人做5个,那么比计划少了13个.求该小组计划做多少个“中国结”?参考答案1.C【解析】选项A,属于合并同类项,不属于移项;选项B,等式右边运用了加法交换律,不属于移项;选项C,将等式左边的8变号移到等式右边,等式右边的x变号移到等式左边,属于移项;选项D,等式两边交换了位置,不属于移项.故选C.2.B【解析】选项A,-3x移项后没有变号,所以A错误;选项C,4和-3x移项后都没变号,6没移项却改变了符号,所以C错误;选项D,4移项后没变号,6没移项却改变了符号,所以D错误.故选B.3.x-x=4 x=4x=124.6【解析】根据题意,得3x-5=1+2x,移项,得3x-2x=1+5,合并同类项,得x=6.5.【解析】(1)移项,得5x-4x=-3-2,合并同类项,得x=-5.(2)移项,得7x-4x=6+3,合并同类项,得3x=9,系数化为1,得x=3.(3)移项,得4y-y=16,合并同类项,等-y=16,系数化为1,得y=-6.(4)移项,得x-x=2+5,合并同类项,得x=7.6.【解析】设甲池原有水x吨,则乙池原有水(40-x)吨.根据题意,得x+4=40-x-8,解这个方程.得x=14,所以40-x=26..答:甲池原有水14吨,乙池原有水26吨.7.【解析】设这个长方形的长是x厘米,则宽是(13-x)厘米.根据题意,得x-1=13-x+2,解得x=8,所以13-x=5.答:这个长方形的长为8厘米、宽为5厘米.8.【解析】设小组成员共有x名,则计划做(6x-7)或(5x+13)个“中国结”. 根据题意,得6x-7=5x+13,解得x=20,所以6x-7=113.答:计划做113个“中国结”.课时2用移项法解一元一次方程提升训练1.[2019江西高安中学课时作业]下列方程中,解是负整数的共有()①﹣x=;②x=﹣14;③3x+4=4x+4;④4x-5=﹣5x-8.A.1个B.2个C.3个D.4个2.[2019四川雅安中学课时作业]若﹣2x2m+1y6与x3m-1y10+4n是同类项,则m,n的值分别为()A.2,﹣1B.﹣2,1C.﹣1,2D.﹣2,﹣13.[2019吉林五中课时作业]某同学在解方程5x-1=□x+3时,把□处的数字看错了,解得x=﹣2,则该同学把□看成了()A.4B.7C.﹣7D.﹣144.[2019安徽合肥四十八中课时作业]已知关于x的方程4x-m=3m+12的解是x=2m,则m的值是________.5.[2019江苏南京市中华中学课时作业]解下列方程:(1)x-8x=3-x;(2)0.5x-0.7=6.5-1.3x.6.[2019河北衡水六中课时作业]若关于x的方程2x-a=0的解比方程4x+5=3x +6的解大1,求a的值.7.[2019河北省实验中学课时作业]已知+m=my-m,(1)当m=4时,求y的值;(2)当y=4时,求m的值.8.[2019陕西师大附中课时作业]一个两位数,个位上的数字是十位上的数字的3倍,如果把个位上的数字与十位上的数字对调,那么得到的新数比原数大54,求原来的两位数.参考答案1.A【解析】①系数化为1,得x=﹣;②系数化为1,得x=-4;③移项,得3x-4x=4-4,合并同类项,得-x=0,系数化为1,得x=0;④移项,得4x+5x=-8+5,合并同类项,得9x=-3,系数化为1,得x=-.所以解为负整数的只有②.故选A.2.A【解析】因为-2x2m+1y6与x3m-1y10+4n同类项,所以2m+1=3m-l,6=10+4n,解得m=2,n=﹣1.故选A.3.B【解析】□用a表示,把x=-2代入方程5x-1=ax+3中,得-10-1=-2a +3,解得a=7,所以该同学把□看成了7.故选B.归纳总结方程的解就是使方程中等号左右两边相等的未知数的值,若题目给出方程的解,则将这个数代入到原方程中就可以得到一个含所求字母的方程.4.3【解析】把x=2m代人方程4x-m=3m+12,得8m—m=3m+12,所以7m=3m+12,移项,得7m-3m=12.合并同类项,得4m=12,系数化为1,得m=3.5.【解析】(1)移项,得x+x-8x=3,合并同类项,得﹣3x=3,系数化为1,得x=-1.(2)移项,得0.5x+1.3x=6.5+0.7,合并同类项,得 1.8x=7.2,系数化为1,得x=4.6.【解析】方程2x-a=0的解是x=,方程4x+5=3x+6的解是x=1.由题意,得=1+1,解得a=4.7.【解析】(1)把m=4代人+m=my-m,得+4=4y-4,该方程是关于y的一元一次方程,移项,得-4y=-4-4,合并同类项,得-y=﹣8,系数化为1,得y=.(2)把y=4代入+m=my-m,得2+m=4m-m,该方程是关于m的一元一次方程移项,得2=4m-m-m,合并同类项,得2=2m,系数化为1,得m=l.8.【解析】设这个两位数的十位上的数字是x,则个位上的数字是3x. 根据题意,得10×3x+x=10x+3x+54,移项、合并同类项,得18x=54,系数化为1,得x=3,10×3+3×3=39.答:原来的两位数是39.。

解一元一次方程(一)初中数学人教版

解一元一次方程(一)初中数学人教版

第三章一元一次方程3.2解一元一次方程(一)——合并同类项与移项一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程3x–5=8–4x移项后,正确的是A.3x–4x=8+5 B.3x–4x=8–5C.3x+4x=8–5 D.3x+4x=8+52.解方程时,不需要合并同类项的是A.3x=2x+1 B.4x=3x+2C.2x=1 D.6x–5=13.下列各变形中,不正确的是A.从x+3=6,可得x=6–3B.从2x=x–2,可得2x–x=–2C.从x+1=2x,可得x–2x=1D.从2x–4=3x+8,可得2x–3x=8+4A.①B.②C.③D.④5.已知方程2x+1=8,那么4x+1的值等于A.17 B.16C.15 D.19二、填空题:请将答案填在题中横线上.6.由方程x–9=–15,可得x=–15+__________,这是根据__________,在等式两边都__________,所以x=__________.7.若5x–7的值与4x+9的值相等,则x的值为__________.8.2x–7与4互为相反数,则x=__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.判断下列方程的求解过程是否正确,说明原因:10.解下列方程.第三章一元一次方程3.2解一元一次方程(一)——合并同类项与移项一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程3x–5=8–4x移项后,正确的是A.3x–4x=8+5 B.3x–4x=8–5C.3x+4x=8–5 D.3x+4x=8+5【答案】D【解析】方程3x–5=8–4x,移项得:3x+4x=8+5.故选D.2.解方程时,不需要合并同类项的是A.3x=2x+1 B.4x=3x+2C.2x=1 D.6x–5=1【答案】C3.下列各变形中,不正确的是A.从x+3=6,可得x=6–3B.从2x=x–2,可得2x–x=–2C.从x+1=2x,可得x–2x=1D.从2x–4=3x+8,可得2x–3x=8+4【答案】C【解析】A、将3从等号左边移到右边,变为–3,正确;B、将x从右边移到左边,变为–x,正确;C、将2x从右边移到左边,变为–2x,正确,但将1从等号左边移到右边不变号,错误;D、将3x从右边移到左边,变为–3x,正确,将–4从等号左边移到右边变为4,正确.故选C.4.解方程4(y–1)–y=2(y+12)的步骤如下:解:①去括号,得4y–4–y=2y+1②移项,得4y+y–2y=1+4③合并同类项,得3y=5④系数化为1,得y=53.经检验y=53不是方程的解,则上述解题过程中是从第几步出错的A.①B.②C.③D.④【答案】B【解析】第②步中将y的符号弄错,而出现错误,应为4y–y–2y=1+4而不是4y+y–2y=1+4.故选B.5.已知方程2x+1=8,那么4x+1的值等于A.17 B.16 C.15 D.19【答案】C【解析】方程2x+1=8,解得:x=3.5,把x=3.5代入4x+1得:14+1=15,故选C.学#@科网二、填空题:请将答案填在题中横线上.6.由方程x–9=–15,可得x=–15+__________,这是根据__________,在等式两边都__________,所以x=__________.【答案】9;等式的性质1;加9;–67.若5x–7的值与4x+9的值相等,则x的值为__________.【答案】16【解析】根据题意得:5x–7=4x+9,解得:x=16.故答案为:16.8.2x–7与4互为相反数,则x=__________.【答案】3 2【解析】依题意得:2x–7=–4,即2x=3,系数化1得:x=32.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.判断下列方程的求解过程是否正确,说明原因:(1)–6x+3x=–1–8.解:合并同类项,得–9x=–9.系数化为1,得x=1.(2)5x+4x=18.解:合并同类项,得9x=18.系数化为1,得x=12.【答案】(1)不正确,理由见解析;(2)不正确,理由见解析.10.解下列方程.(1)9x–7=10x+8;(2)2.3y–3.8=4.8y+1.2;(3)32x–2.8+x=0.7:(4)113x–112=105x+16;(5)|x|+2=3.【答案】(1)x=–15;(2)y=–2;(3)x=75;(4)x=132;(5)x=1或–1.【解析】(1)移项,得:9x–10x=8+7,合并同类项,得:–x=15,。

3.2.2解一元一次方程——移项

3.2.2解一元一次方程——移项

3x+20=4x-25
这个方程怎么变形呢?
3x+20=4x-25
利用等式性质:两边同时减20,同时减4x,得 3x-4x=-25-20
移项: 把等式一边的某项变号后,移到另一边,
叫作移项
移项
3x-4x=-25-20
合并同类项
-x=-45
系数化为1
x=45
练习:
(1)5x=3x+2
(2) 7m+5=4m-4
(3)-4y-1=3y-8 (4) 0.5x-3=1.5x+2
例4
:某制药厂制造一批药品,如 用旧工艺,则废水排量要比环保限 制的最大量还多200t;如用新工艺, 则废水排量比环保限制的最大量少 100t.新、旧工艺的废水排量之比 为2:5,两种工艺的废水排量各是 多少?
练习:下面的移项对不对?如果不 对,错在哪里?应当怎样改正?
(1)从7+x=13,得到x=13+7
×
改:从7+x=13,得到x=13–7
(2)从5x=4x+8,得到5x–4x=8
例3 解方程3x+7=32-2x
解: 移项,得 3x+2x=32-7 合并同类项,得 5x=25 系数化为1,得 X=5
——移项
复习练习
① -3x-2x=10 ② -7x+5x=7
③ x 2
3x =3 4
④ -3x+0.5x=5
问题:
把一些图书分给某班学生阅读,如果每人 3本,还剩余20本;如果每人分4本,则还 缺25本,这个班有多少学生?
如果设这个班有学生x人, 每人分3本,共分出了____ 3X 本,加上剩 余的20本,这批书共___________ (3X+20 ) 本。 4X 本,减去缺少 每人分4本,需要____ 的25本,这批书共_____________ 本。 ( 4X-25 )

《3.2解一元一次方程(一)——合并同类项与移项》作业设计方案-初中数学人教版12七年级上册

《3.2解一元一次方程(一)——合并同类项与移项》作业设计方案-初中数学人教版12七年级上册

《3.2 解一元一次方程(一)——合并同类项与移项》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生在课堂上所学的合并同类项与移项的解一元一次方程的基本方法,加强学生对一元一次方程的认知,提高学生的运算能力和解题技巧。

二、作业内容1. 练习题:(1)合并同类项练习:设计一系列题目,如“3x的平方-2x 的平方+5x-3x的平方”,要求学生合并同类项,并说明合并的原理。

(2)移项练习:如“3x-5=4x+a”,要求学生将等式中的项进行移项,使x的系数归一。

(3)实际运用:设计一些与日常生活相关的一元一次方程问题,如购物找零、行程问题等,让学生运用所学知识解决实际问题。

三、作业要求(1)独立完成:学生需独立完成作业,不得抄袭他人答案。

(2)细致审题:要求学生在解题前认真审题,理解题目的意思和要求。

(3)步骤清晰:解题过程中,学生需写出详细的步骤,清晰表达解题思路。

(4)准确计算:要求学生计算准确,避免因计算错误导致的答案错误。

(5)按时提交:学生需在规定时间内提交作业,并保证作业的整洁和规范。

四、作业评价(1)教师评价:教师根据学生的作业情况进行评分,并给出详细的评价和建议。

(2)互评:鼓励学生之间互相评价作业,互相学习,互相进步。

(3)自评:学生需对自己的作业进行自评,反思自己的不足之处,以便下次改进。

五、作业反馈(1)及时反馈:教师需及时批改作业,并给予学生及时的反馈。

(2)针对性指导:针对学生在作业中出现的错误和不足,教师需给出针对性的指导和建议。

(3)鼓励表扬:对于表现优秀的学生,教师应给予鼓励和表扬,激发学生的积极性。

(4)整理错题:将学生的错题进行整理和归类,以便后续复习和巩固。

六、总结本作业设计旨在通过练习、实践和反馈等方式,帮助学生巩固一元一次方程的基本知识和技能,提高学生的解题能力和运算技巧。

同时,通过互评、自评和教师评价等方式,帮助学生发现自己的不足之处,以便及时改进和提高。

32解一元一次方程移项

32解一元一次方程移项
这批书的总数有几种表示方法?
它们之间的有什么关系?
学一招 这个方程怎么变 3x+20=4x-25 形呢?
利用等式性质:两边同时减20,同时减4x,得
v
3x-4x=-25-20
v 移项:
把等式一边的某项变号后,移到另一边, 叫作移项

题 过
3x+20=4x-25
移项

3x-4x=-25-20
合并
-x=-45
系数化为1
x=45
练习:下面的移项对不对?如果不 对,错在哪里?应当怎样改正?
(1)从7+x=13,得到x=13+7
改:从7+x=13,得到x=13–7
(2)从5x=4x+8,得到5x–4x=8
例1 解方程3x+7=32-2x
试 一
解: 移项,得

3x+2x=32-7

合并,得
能 行
5x=25
-x=5
系数化为1,得
系数化为1,得
y=1
x=-5
隔墙听得客分银, 不知人数不知银.

七两分之多四两, 九两分之少半斤.

(注:在古代1斤是16两,半斤就是8两)
过 去古诗ຫໍສະໝຸດ 意思:有几个客人在房间内分银子,每 人分七两,最后多四两,每人分 九两,最后还差八两,问有几个 人?有几两银子?
对自己说,你有什么收获? 对同学说,你有什么温馨提示? 对老师说,你还有什么困惑?
3.2 解一元一次方程(一)
——移项(2)
① 3x - 2x=10 ② -7x+5x=7

x 2
-
3x 4
=3

七年级数学上册 3-2 解一元一次方程(一)--合并同类项与移项 同步习题精讲精练【含答案】

七年级数学上册 3-2 解一元一次方程(一)--合并同类项与移项 同步习题精讲精练【含答案】

3.2 解一元一次方程(一)-合并同类项与移项同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.2.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。

将ax=b系数化为1时,一是弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二是要准确判断符号,a、b同号x为正,a、b异号x为负.【热点题型精练】一、选择题1.方程3x+4=2x﹣5移项后,正确的是()A.3x+2x=4﹣5 B.3x﹣2x=4﹣5 C.3x﹣2x=﹣5﹣4 D.3x+2x=﹣5﹣42.若多项式3x+5与5x﹣7的值相等,则x的值为()A.6 B.5 C.4 D.33.如果单项式﹣xy b+1与是同类项,那么关于x的方程ax+b=0的解为()A.x=1 B.x=﹣1 C.x=2 D.x=﹣24.下面4个方程的变形中正确的是()A.4x+8=0⟹x+2=0 B.x+7=5﹣3x⟹4x=2C.x=3⟹x=D.﹣4x=﹣2⟹x=﹣25.若关于x的方程kx﹣2x=14的解是正整数,则k的整数值有()个.A.1个B.2个C.3个D.4个6.代数式2ax+5b的值会随x的取值不同而不同,如下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b =0的解是()x﹣4﹣3﹣2﹣102ax+5b12840﹣4A.0 B.﹣1 C.﹣3 D.﹣47.某同学解方程5x﹣1=□x+3时,把“□”处的系数看错了,解得x=﹣4,他把“□”处的系数看成了()A.4 B.﹣9 C.6 D.﹣68.规定一种新运算:a⊗b=a2﹣2b,若2⊗[1⊗(﹣x)]=6,则x的值为()A.﹣1 B.1 C.2 D.﹣29.对于两个不相等的有理数a,b,我们规定符号max{a,b}表示a,b两数中较大的数,例如max{2,﹣4}=2.则方程max{x,﹣x}=3x+4的解为()A.﹣1 B.﹣2 C.﹣1或﹣2 D.1或210.已知a,b,c,d为有理数,现规定一种新的运算=ad﹣bc,那么当=18时,则x的值是()A.x=1 B.C.D.x=﹣1二、填空题11.设P=2y﹣2,Q=2y+3,且3P﹣Q=1,则y的值为.12.关于x的方程9x﹣2=kx+7的解是自然数,则整数k的值为.13.小华同学在解方程5x﹣1=()x+3时,把“()”处的数字看成了它的相反数,解得x=2,则该方程的正确解应为x=.14.已知关于x的方程2mx﹣6=(m+2)x有正整数解,则整数m的值是.15.用⊕表示一种运算,它的含义是:A⊕B=.如果,那么3⊕4=.16.对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=2x﹣1的解为.三、解答题17.解一元一次方程:4x﹣1=2x+5.18.对任意有理数a、b,规定一种新运算“⊗”,使a⊗b=3a﹣2b,例如:5⊗(﹣3)=3×5﹣2×(﹣3)=21.若(2x﹣1)⊗(x﹣2)=﹣3,求x的值.19.对于两个非零常数a,b,规定一种新的运算:a※b=a﹣2b,例如,3※2=3﹣2×2=﹣1.根据新运算法则,解答下列问题:(1)求(﹣2)※5的值;(2)若2※(x+1)=10,求x的值.20.小东同学在解一元一次方程时,发现这样一种特殊现象:x+=0的解为x=﹣,而﹣=﹣1;2x+=0的解为x=﹣,而﹣=﹣2.于是,小东将这种类型的方程作如下定义:若一个关于x的方程ax+b=0(a≠0)的解为x=b﹣a,则称之为“奇异方程”.请和小东一起进行以下探究:(1)若a=﹣1,有符合要求的“奇异方程”吗?若有,求出该方程的解;若没有,请说明理由;(2)若关于x的方程ax+b=0(a≠0)为奇异方程,解关于y的方程:a(a﹣b)y+2=(b+)y.3.2 解一元一次方程(一)-合并同类项与移项同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.2.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。

人教版数学七年级上册:3.2 解一元一次方程(一)——合并同类项与移项 同步练习(附答案)

人教版数学七年级上册:3.2 解一元一次方程(一)——合并同类项与移项  同步练习(附答案)

3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程1.对于方程8x +6x -10x =8,合并同类项正确的是( )A.3x =8B.4x =8C.-4x =8D.2x =82.方程x +2x =-6的解是( )A.x =0B.x=1 C.x =2 D.x=-2 3.方程2x +x +x 2=210的解是( )A.x =20B.x=40 C.x =60 D.x=804.下列各方程中,合并正确的是( )A.由3x -x =-1+3,得2x =4B.由23x +x =-7-4,得53x =-3C.由52-13=-x +23x ,得136=13xD.由6x -4x =-1+1,得2x =05.解下列方程:(1)6x -5x =3; (2)-x +3x =7-1;(3)x 2+5x 2=9; (4)6y +12y -9y =10+2+6.6.解方程:-23x +x =3.7.若式子3x -7和6x +13互为相反数,则x 的值为( )A.23B.32C.-32D.-238.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:2y -12y =12-■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为y =-53,于是,他很快知道了这个常数,这个常数是 .9.解下列方程:(1)0.3x -0.4x =0.6; (2)5x -2.5x +3.5x =-10;(3)x -25x =3+6; (4)16x -3.5x -6.5x =7-(-5).第2课时 利用合并同类项解一元一次方程的实际问题1.某数的3倍与这个数的2倍的和是30,这个数为( )A.4B.5C.6D.72.小王的妈妈买回一筐苹果,小王吃了13,弟弟吃了12,还剩下4个苹果,则妈妈买回的这筐苹果共有 个.3.已知3个连续偶数的和为36,则这三个偶数分别是 .4.一条长1 210 m 的水渠,由甲、乙两队从两头同时施工.甲队每天挖130 m ,乙队每天挖90 m ,则挖好水渠需要几天?5.麻商集团三个季度共销售冰箱2 800台,第一季度销售量是第二季度的2倍,第三季度销售量是第一季度的2倍,试问麻商集团第二季度销售冰箱多少台?6.我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m 3,问中、美两国人均淡水资源占有量各为多少(单位:m 3)?7.有这样一列数,按一定规律排列成1,2,4,8,16,…,其中某三个相邻数的和是448,则这三个数是 .8.某人把360 cm长的铁丝分成两段,每段分别做成一个正方形,已知两个正方形的边长之比是4∶5,则这两个正方形的边长分别是 .9.在排成每行七天的日历表中取下一个3×3方块.若所有日期数之和为189,则n的值为 .10.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块的数目比为3∶5,一个足球表面一共有32块皮,黑色皮块和白色皮块各有多少?11.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,求此人第六天走的路程.第3课时 利用移项解一元一次方程1.解方程2x -5=3x -9时,移项正确的是( )A.2x +3x =9+5B.2x -3x =-9+5C.2x -3x =9+5D.2x -3x =9-52.若式子x +2的值为1,则x 等于( )A.1B.-1C.3D.-33.解方程4x -2=3-x 的步骤是( )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.A.①②③B.③②①C.②①③D.③①②4.下列四组变形属于移项的是( )A.由x -24=3,得x -2=12 B.由9x -3=x +5,得9x -3=5+xC.由5x =15,得x =3D.由1-7x =2-6x ,得-7x +6x =2-15.若3x +6=4,则3x =4-6,这个过程是 .6.解下列方程:(1)4-35m =7; (2)2x -3=3x +4.7.解方程:x -3=-12x -4.8.已知x =1是关于x 的方程a(x -2)=a +3x 的解,则a 的值等于( )A.32B.-32C.34D.-349.下列方程中与2x -4=x +2的解相同的方程为( )A.3x +4=xB.x -2=3C.3x +6=0D.x +1=2x -510.某同学在解方程5x -1=■x+3时,把■处的数字看错了,解得x =-43,则该同学把■看成了( )A.3B.-1289C.-8D.8 11.对于有理数a ,b ,规定运算※的意义是:a ※b =a +2b ,则方程3x ※x =2-x 的解是x = .12.解下列方程:(1)3x +6=31-2x ; (2)x -2=13x +43.13.当m 为何值时,关于x 的方程4x -2m =3x +1的解是x =2x -3m 的解的2倍?第4课时利用移项解一元一次方程的实际问题1.天平的左边放2个硬币和10克砝码,右边放6个硬币和5克砝码,天平恰好平衡.已知所有硬币的质量都相同,如果设一个硬币的质量为x克,可列出方程为( )A.2x+10=6x+5B.2x-10=6x-5C.2x +10=6x -5D.2x -10=6x +52.甲厂库存钢材100吨,每月用去15吨;乙厂库存钢材82吨,每月用去9吨.经过m 个月,两厂剩余钢材相等,则m 的值应为( )A.2B.3C.4D.53.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队人数与乙队人数相等,则应调往甲队的人数是 ,调往乙队的人数是 .4.七年级某班小组活动中,如果每组5人则余3人,每组6人则缺5人,则该班的学生人数为 人.5.小华的妈妈在25岁时生了小华,现在小华妈妈的年龄是小华的3倍多5岁,求小华现在的年龄.6.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( )A.x +1=2(x -2)B.x +3=2(x -1)C.x +1=2(x -3)D.x -1=x +12+17.“栖树一群鸦,鸦数不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树.请你仔细数,鸦树各几何?”在这一问题中,若设树有x棵,通过分析题意,鸦的只数不变,则可列方程:.8.甲、乙两人同时从A地出发去B地,甲骑自行车,骑行速度为10 km/h,乙步行,行走速度为6 km/h.当甲到达B地时,乙距B地还有8 km.甲走了多长时间?A,B两地的路程是多少?9.小明到书店帮同学买书,售货员告诉他,如果用20元钱办理“购书会员卡”,将享受八折优惠.(1)请问在这次买书中,小明在什么情况下办会员卡与不办会员卡一样?(2)当小明买标价为200元的书时,怎样做合算,能省多少钱?10.我市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,那么树苗缺21棵;如果每隔6米栽1棵,那么树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是( )A.5(x+21-1)=6(x-1)B.5(x+21)=6(x-1)C.5(x+21-1)=6xD.5(x+21)=6x参考答案:3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程1.B2.D3.C4.D5.(1)6x -5x =3;解:合并同类项,得x =3.(2)-x +3x =7-1;解:合并同类项,得2x =6.系数化为1,得x =3.(3)x 2+5x 2=9;解:合并同类项,得3x =9.系数化为1,得x =3.(4)6y +12y -9y =10+2+6.解:合并同类项,得9y =18.系数化为1,得y =2.6.解方程:-23x +x =3.解:合并同类项,得13x =3.系数化为1,得x =9.7.D8. 3.9.(1)0.3x -0.4x =0.6;解:合并同类项,得-0.1x =0.6.系数化为1,得x =-6.(2)5x -2.5x +3.5x =-10;解:合并同类项,得6x =-10.系数化为1,得x =-53. (3)x -25x =3+6; 解:合并同类项,得35x =9. 系数化为1,得x =15.(4)16x -3.5x -6.5x =7-(-5).解:合并同类项,得6x =12.系数化为1,得x =2.第2课时 利用合并同类项解一元一次方程的实际问题1.C2. 24 .3. 10,12,14.4.解:设需要x天才能挖好水渠,则130x+90x=1 210.解得x=5.5.答:挖好水渠需要5.5天.5.解:设麻商集团第二季度销售冰箱x台,则第一季度销售量为2x台,第三季度销售量为4x台.根据总量等于各分量的和,得x+2x+4x=2 800.解得x=400.答:麻商集团第二季度销售冰箱400台.6.解:设中国人均淡水资源占有量为x m3,美国人均淡水资源占有量为5x m3,根据题意,得x+5x=13 800.解得x=2 300.则5x=11 500.答:中、美两国人均淡水资源占有量各为2 300 m3,11 500 m3.7.64,128,256.8.40__cm,50__cm.9.21.10.解:设黑色皮有3x块,白色皮有5x块.根据“足球表面一共有32块皮”,可得3x +5x =32.解得x =4.所以3x =3×4=12,5x =5×4=20.答:黑色皮有12块,白色皮有20块.11.解:设第一天走的路程为x 里,则后面5天走得路程分别为:12x 里,14x 里,18x 里,116x 里,132x 里.根据题意,得 则x +12x +14x +18x +116x +132x =378. 解得x =192.则132x =132×192=6. 答:此人第六天走的路程为6里.第3课时 利用移项解一元一次方程1.B2.B3.C4.D5. 移项.6.(1)4-35m =7;解:移项,得-35m =7-4.合并同类项,得-35m =3.系数化为1,得m =-5.(2)2x -3=3x +4.解:移项,得2x -3x =3+4.合并同类项,得-x =7.系数化为1,得x =-7.7.解:移项,得x +12x =-4+3.合并同类项,得32x =-1.系数化为1,得x =-23.8.B9.D10.D11. 13.12.(1)3x +6=31-2x ;解:移项,得3x +2x =31-6.合并同类项,得5x =25.系数化为1,得x =5.(2)x -2=13x +43. 解:移项,得x -13x =2+43. 合并同类项,得23x =103. 系数化为1,得x =5.13.解:因为关于x 的方程x =2x -3m 的解为x =3m ,所以关于x 的方程4x -2m =3x +1的解是x =6m.将x =6m 代入4x -2m =3x +1,得24m -2m =18m +1.移项、合并同类项,得4m =1.所以m =14.第4课时 利用移项解一元一次方程的实际问题1.A2.B3. 10, 18.4. 43 .5.解:设小华现在的年龄为x 岁,则妈妈现在的年龄为(x +25)岁.根据题意,得 x +25=3x +5.解得x =10.答:小华现在的年龄为10岁.6.C7. 3x+5=5(x-1).8.解:设甲走了x h,则A,B两地的路程是10x km.根据题意,得10x=6x+8.解得x=2.则10x=20.答:甲走了2 h,A,B两地的路程是20 km.9.解:(1)设小明在买x元的书的情况下办会员卡与不办会员卡一样.则x=20+80%x.解得x=100.答:小明在买100元的书的情况下办会员卡与不办会员卡一样.(2)20+200×80%=180(元).200-180=20(元).答:当小明买标价为200元的书时,应办理会员卡,能省20元钱. 10.A。

3.2 解一元一次方程(一)第2课时 移项(分层作业)【解析版】

3.2 解一元一次方程(一)第2课时 移项(分层作业)【解析版】

3.2 解一元一次方程(一)第2课时移项分层作业1.(2022春•长泰县期中)下列方程的变形中,正确的是()A.若78x x=+,则1x=B.若153x=,则53x=C.若526x x+=,则2x=D.若4131x x-=+,则0x=【解析】解:A、方程78x x=+,移项得78x x-=,即68x=,解得43x=,故本选项不合题意;B、若153x=,则115x=,故本选项不合题意;C、方程526x x+=,移项得265x x=-,解得2x=,故本选项符合题意;D、方程4131x x-=+,移项得4311x x-=+,解得2x=,故本选项不合题意.故选:C.2.(2022•美兰区校级二模)代数式21a-+与2a-的值相等,则a等于()A.0B.1C.2D.3【解析】解:212a a-+=-,33a=,1a=,故选:B.3.(2022春•永春县期中)方程426x-=的解是()A.3B.1C.2-D.1-【解析】解:方程426x-=,移项得:264x-=-,合并得:22x-=,系数化为1得:1x=-,所以方程的解为1x=-,故选:D.4.(2022春•海南期末)若代数式3x+的值为1,则x等于()A.2B.2-C.4D.4-【解析】解:由题意,得31x+=,移项,合并同类项,得2x=-故选:B.5.解关于x的方程13952x x--=+时,下面的变形正确的是()A.13592x x-+=-B.13(9)(5)2x x--=-+-C.13(9)(5)2x x+=-+-D.13592x x+=+【解析】解:移项可知:13952x x--=+所以13952x x+=--故选:C.6.(2021秋•顺义区期末)小硕同学解方程2953x x-=+的过程如下:其中,第一步移项的依据是.【解析】解:解方程第一步移项的依据为等式的性质.故答案为:等式的性质.7.(2022春•方城县期中)若代数式4x+的值是2,则x等于.【解析】解:依题意,得42x+=移项,得42x=-+,解得2x=-,故答案为:2-.8.(2022春•耒阳市期末)若代数式32x+与代数式10x-的值互为相反数,则x=.【解析】解:因为代数式32x+与代数式10x-的值互为相反数,所以32100x x++-=,整理得:480x-=,解得:2x=,故答案为:2x=.9.(2022春•晋江市期末)一元一次方程420223x x-=的解是.【解析】解:移项,可得:432022x x-=,合并同类项,可得:2022x=.故答案为:2022x=.10.解下列方程.(1)6740.5x x-=-.(2)1342x x-=--.(3)15.5 2.57x x-=+.(4)137134x x x--=+.(5)111432x x+=-.(6)426x x+=--.【解析】解:(1)移项,得6470.5x x-=-,合并,得2 6.5x=,系数化为1,得 3.25x=.(2)移项,得1342x x+=-,合并,得1.51x=-,系数化为1,得23x=-.(3)移项,得15.5 2.57x x-=+,合并,得687x-=,系数化为1,得283x=-.(4)移项,得137134x x x--=+,合并,得1744x-=,系数化为1,得1617x=-.(5)移项,得1141 32x x+=-,合并,得536x=,系数化为1,得185x=.(6)移项,得426x x+=--.合并,得58x=-,系数化为1,得85x=-.11.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?思考:(1)这些书的总数有几种表示法?(2)它们中间有什么关系?(3)等量关系:.【解析】解:(1)设这个班有x名学生,每人分3本,加上剩余的20本,这批书共(320)x+本,每人分4本,需要4x本,减去缺的25本,这批书共(425)x-本,所以这些书的总数有两种表示法;(2)这批书的总数是个定值,所以两种表示方法应相等;(3)等量关系为:320425x x+=-,故答案为:320425x x+=-.12.(2021秋•樊城区期末)某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t,如用新工艺,则废水排量要比环保限制的最大量少100t,新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?【解析】解:设新、旧工艺的废水排量分别为2xt、5xt,则依题意得52002100x x-=+,解得100x=.则2200x=,5500x=.答:新、旧工艺的废水排量分别为200t、500t.13.(2022春•偃师市期末)方程22x x -=-的解是()A .1x =B .1x =-C .2x =D .0x =【解析】解:移项得:22x x +=+即24x =所以2x =.故选:C .14.已知方程238x y -+=,则整式2x y -的值为()A .5B .10C .12D .15【解析】解:由238x y -+=得:2835x y -=-=,故选:A .15.(2022春•唐河县月考)若235m x y --与1n x y -是同类项,则方程5nx m -=的解是()A .4x =B .3x =C .2x =D .1x =【解析】解:因为235m x y -与1n x y -是同类项,所以3112m n -=ìí-=î,解得:43m n =ìí=î,所以345x -=,移项,可得:354x =+,合并同类项,可得:39x =,系数化为1,可得:3x =.故选:B .16.(2022春•唐河县月考)某同学解方程43x -=□1x +时,把“□”处的系数看错了,解得4x =,他把“□”处的系数看成了()A .3B .3-C .4D .4-【解析】解:设“□”处的系数是y ,则41443y+=´-,所以4113y+=,移项,可得:4131y=-,合并同类项,可得:412y=,系数化为1,可得:3y=.故选:A.17.不讲究说话艺术常引起误会.相传一个人不太会说话,一次他设宴请客,眼看快到中午了,还有几个人没有来,就自言自语地说:“怎么该来的还不来呢?”在座的客人一听,想:难道我们是不该来的?于是有一半人走了,他看一眼很着急,又说:“嗨,不该走的倒走了!”剩下的人一听,是我们该走啊!于是剩下的又有三分之二的人离开了,他着急得直拍大腿,连说:“我说的不是他们.”结果仅剩下的3个人也都告辞了.聪明的你通过设未知数,列方程求解,知道来的客人人数为.【解析】解:设来的客人人数有x人,由题意得:121()3232x x x x+-+=,解得:18x=,故答案为:18.18.已知关于x的方程(1)23x x k+=+与(2)35x k-=,如果方程(1)的解比方程(2)的解大6,求k的值.【解析】解:解(1),得3x k=-,解(2),得53x k=+,因为方程(1)的解比方程(2)的解大6,所以3(53)6k k--+=.所以3536k k---=.解得3k=-.19.(2022春•封丘县月考)对于两个不相等的有理数m,n,我们规定符号{max m,}n表示m,n两数中较大的数,例如{5max,2}5-=.按照这个规定,方程{max x,}32x x-=+的解为()A.1x=-B.12x=-C.1x=D.1x=-或12x=-【解析】解:当x x>-时,即0x>,{max x,}x x-=,所以32x x=+,解得:1x=-,因为0x>,所以1x=-不符合条件,舍去,当x x<-时,即0x<,{max x,}x x-=-,所以32x x-=+,解得:12x=-,因为12x=-<,所以12x=-满足条件,故选:B.20.(2022春•姜堰区期中)整式mx n+的值随x的取值不同而不同,下表是当x取不同值时对应的整式的值:x2-1-012 mx n+75311-则关于x的方程8mx n-+=的解为.【解析】解:因为0x=时,3mx n+=,所以03m n´+=,解得:3n=;因为1x=时,31mx+=,所以31m+=,解得:2m=-,所以(2)38x--+=,所以238x+=,移项,可得:283x=-,合并同类项,可得:25x=,系数化为1,可得:52x=.故答案为:52x=.。

3.2解一元一次方程 ——移项

3.2解一元一次方程 ——移项

• 例4
• 某制药厂制造一批药品,如用 旧工艺,则废水环保限 制的最大量少100t。新、旧工 艺的废水排量只比为2:5,两种 工艺的废水排量各是多少?
检测题 • 解下列方程(只做移项这一步) • (1) 7x-6=8 (2) 5x=2x+9 • (3) 6x-7=4x-5 • 90页练习: • 1、2
3.2解一元一次方程 ——移项
学习目标
• 1.理解并识记移项的概念. • 2.会用移项的方法解一元一 次方程.
自学指导
• 认真看课本(P88“问题2”--P90例4). • ①理解“问题2”中所列方程的数量关系;
• ②理解移项的概念,思考移项时所移项的 符号如何变化,回答“思考”中的问题; • ③重点看例3的第一步,总结解一元一次方 程的一般步骤. • 6分钟后,比谁能仿照例题解一元一次方程.

3.2 解一元一次方程(一)---移项

3.2 解一元一次方程(一)---移项
量要比环保限制的最大量还多200t;如用新工艺, 则废水排量要比环保限制的最大量还少100t.新、 旧工艺的废水排量之比为2:5,两种工艺的废水排 量各是多少?
自主训练:
1.解下列方程
归纳:
解ax+b=cx+d型的一元一次方程的步骤:
(1)
.
(2)
.
(3)
.
自主训练:
2.王芳和李丽同时采摘樱桃,王芳平均每小时 采摘8kg,李丽平均每小时采摘7kg.采摘结束 后王芳从她采摘的樱桃中取出0.25kg给了李 丽,这时两人的樱桃一样多.她们采摘用了多 少时间?
合并同类项,得 可看作
x-7 =5
从左移右 改变符号
x=12
x=5+7
像上面这样把等式一边的某项变号后移到 另一边,叫做移项.
思考:如何解方程:
移项要变号
移项
依据?
3x-4x=-25-20
合并同 类项
依据?
-x=-45 系数 化为1
依据?
x=45
讲与练:
1.解下列方程
2.某制药厂制造一批药品,如用旧工艺,则废水排
自主训练:
3.小明在解方程x-4=7时,是这样写解的过程的:
x-4=7=x=7+4=11 (1)小明这样写对吗? (2)如果不对,应该怎么写?
3.2 解一元一次方程(一) ——移项
复习回顾
解下列方程,并说明每一步变形的目的.
新知情境
问题:将一些图书分给某班学生阅读, 如果每人分3本,则剩余20本;如果每 人分4本,则还缺25本.这个班有多少学 生?
学习新知
思考:由上面问题得到方程

如何解这个方程?
为解上面的方程,我们先看方程:

【教育资料】秋七年级数学(河北)人教版习题:3.2 解一元一次方程(一)——合并同类项与移项学习专用

【教育资料】秋七年级数学(河北)人教版习题:3.2 解一元一次方程(一)——合并同类项与移项学习专用

3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程基础题知识点 利用合并同类项解简单的一元一次方程1.对于方程8x +6x -10x =8,合并同类项正确的是(B)A .3x =8B .4x =8C .-4x =8D .2x =82.方程x +2x =-6的解是(D)A .x =0B .x =1C .x =2D .x =-23.方程x 2+x +2x =210的解是(C) A .x =20 B .x =40 C .x =60D .x =80 4.下列各方程中,合并同类项正确的是(D)A .由3x -x =-1+3,得2x =4B .由23x +x =-7-4,得53x =-3 C .由52-13=-x +23x ,得136=13x D .由6x -4x =-1+1,得2x =05.方程12x +13x =10的解是x =12. 6.解下列方程:(1)6x -5x =3;解:合并同类项,得x =3.(2)-x +3x =7-1;解:合并同类项,得2x =6.系数化为1,得x =3.(3)6y +12y -9y =10+2+6.解:合并同类项,得9y =18.系数化为1,得y =2.易错点 解方程时系数化为1时出错7.解方程:-23x +x =3. 解:合并同类项,得13x =3. 系数化为1,得x =9. 中档题8.如果x =m 是关于x 的方程12x -m =1的解,那么m 的值是(C) A .0B .2C .-2D .-69.(定州市期末)嘉淇同学在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:3y -12y =12-■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为y =-15,于是,他很快知道了这个常数,并补出这个常数是1. 10.解下列方程:(1)0.3x -0.4x =0.6;解:合并同类项,得-0.1x =0.6.系数化为1,得x =-6.(2)5x -2.5x +3.5x =-10;解:合并同类项,得6x =-10.系数化为1,得x =-53. (3)x -25x =3+6; 解:合并同类项,得35x =9. 系数化为1,得x =15.(4)16x -3.5x -6.5x =7-(-5).解:合并同类项,得6x =12.系数化为1,得x =2.第2课时 利用合并同类项解一元一次方程的实际问题基础题知识点 根据“总量=分量之和”列方程1.若三个连续偶数的和是24,则它们的积是(B)A .48B .480C .240D .1202.小王的妈妈买回一筐苹果,小王吃了13,弟弟吃了12,还剩下4个苹果,则妈妈买回的这筐苹果共有24个.3.(教材P87例2变式)有这样一列数,按一定规律排列成1,2,4,8,16,…,其中某三个相邻数的和是448,则这三个数是64,128,256.4.麻商集团三个季度共销售冰箱2 800台,第一季度销售量是第二季度的2倍,第三季度销售量是第一季度的2倍,试问麻商集团第二季度销售冰箱多少台?解:设麻商集团第二季度销售冰箱x 台,则第一季度销售冰箱2x 台,第三季度销售冰箱4x 台.根据总量等于各分量的和,得x +2x +4x =2 800.解得x =400.答:麻商集团第二季度销售冰箱400台.5.(苏州中考)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m 3,问中、美两国人均淡水资源占有量各为多少(单位:m 3)?解:设中国人均淡水资源占有量为x m 3,则美国人均淡水资源占有量为5x m 3.根据题意,得x +5x =13 800.解得x =2 300.则5x =11 500.答:中国人均淡水资源占有量为2 300 m 3,美国人均淡水资源占有量为11 500 m 3. 中档题6.在一张普通的日历中,相邻三行里同一列的三个日期之和为30,这三个日期分别为3,10,17.7.某种药含有甲、乙、丙3种草药,这3种草药的质量比是2∶3∶7,现在要配制1 440 g 这种中药,这3种草药分别需要多少克?解:设这3种草药分别需要2x g ,3x g ,7x g .根据题意,得2x +3x +7x =1 440.解得x =120.则2x =240,3x =360,7x =840.答:这3种草药分别需要240 g, 360 g, 840 g.综合题8.(沧州市孟村县期末)我国明代数学家程大为从事商业,终日奔波于大江南北,集市商行,每遇到有关数学传闻就马上记录下来,程大为曾提出过这样一个有趣的问题,有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面,后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答:“我如果再赶这么一群羊,再赶这么一群羊的一半,又赶这群羊的四分之一,最后把你牵的羊也给我,我恰好有一百只.”(1)若设这群羊有x 只,则这群羊的四分之一应该有x 4只. (2)求这群羊有多少只?(3)若赶羊的人把回答改为“我如果再赶这么一群羊数的2倍,并把你牵的羊也给我,我恰好有一百只.”求此时这群羊的只数.解:(2)设这群羊有x 只,根据题意可列方程为x +x +x 2+x 4+1=100, 解得x =36.答:这群羊有36只.(3)设这群羊有x 只,根据题意可列方程为x +2x +1=100,解得x =33.答:这群羊有33只.第3课时 利用移项解一元一次方程基础题知识点 利用移项解一元一次方程1.下列变形中属于移项的是(C)A .由2x =2,得x =1B .由x 2=-1,得x =-2 C .由3x -72=0,得3x =72D .由2x -1=3,得2x =3-12.(邢台宁晋市期末)由方程3x -5=2x -4变形得3x -2x =-4+5,那么这是根据( )变形的(A)A .移项B .乘法分配律C .合并同类项法则D .等式性质23.(海南中考)若式子x +2的值为1,则x 等于(B)A .1B .-1C .3D .-34.若3x +6=4,则3x =4-6,这个过程是移项.5.解方程6x +90=15-10x +70的步骤是:①移项,得6x +10x =15+70-90;②合并同类项,得16x =-5;③系数化为1,得x =-516. 6.解下列方程:(1)4x =9+x ;解:移项,得4x -x =9.合并同类项,得3x =9.系数化为1,得x =3.(2)4-35m =7;解:移项,得-35m =7-4. 合并同类项,得-35m =3. 系数化为1,得m =-5.(3)8y -3=5y +3.解:移项,得8y -5y =3+3.合并同类项,得3y =6.系数化为1,得y =2.易错点 解方程时,移项不变号或误将不移动的项也变号7.解方程:x -3=-12x -4. 解:移项,得x +12x =-4+3. 合并同类项,得32x =-1. 系数化为1,得x =-23. 中档题8.若方程3x +5=11的解也是方程6x +3a =22的解,则a 的值为(A)A.103B.310 C .10 D .3 9.若单项式3a 3x +1b 与12a 4x -2b 是同类项,则x 的值为3. 10.已知|3x -6|+(2y -8)2=0,则2x -y 的值为0.11.解下列方程:(1)2x -19=7x +6;解:移项,得2x -7x =19+6.合并同类项,得-5x =25.系数化为1,得x =-5.(2)x -2=13x +43; 解:移项,得x -13x =2+43. 合并同类项,得23x =103. 系数化为1,得x =5.(3)-5x +6+7x =1+2x -3+8x.解:移项,得-5x +7x -2x -8x =1-3-6.合并同类项,得-8x =-8.系数化为1,得x =1.12.当a 为何值时,式子12a -5与-23a +6的值相等?解:根据题意,得12a -5=-23a +6. 移项,得12a +23a =6+5. 合并同类项,得76a =11. 系数化为1,得a =667.第4课时利用移项解一元一次方程的实际问题基础题知识点根据“表示同一个量的两个不同式子相等”列方程1.(绵阳中考)朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还差3个,如果每人2个又多2个,请问共有________个小朋友(B)A.4 B.5 C.10 D.122.甲仓库有煤200吨,乙仓库有煤80吨,如果甲仓库每天运出15吨,乙仓库每天运进25吨,问多少天后两仓库存煤相等(D)A.6天B.5天C.4天D.3天3.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队人数与乙队人数相等,则应调往甲队的人数是10,调往乙队的人数是18.4.“栖树一群鸦,鸦数不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树.请你仔细数,鸦树各几何?”在这一问题中,若设树有x棵,通过分析题意,鸦的只数不变,则可列方程:3x+5=5(x-1).5.(教材P91习题T5变式)小华的妈妈在25岁时生了小华,现在小华妈妈的年龄是小华的3倍多5岁,求小华现在的年龄.解:设小华现在的年龄为x岁,则妈妈现在的年龄为(x+25)岁.根据题意,得x+25=3x+5.解得x=10.答:小华现在的年龄为10岁.中档题6.(天门中考改编)清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈,若每小组7人,则余下3人;若每小组8人,则少5人.该班共有多少名同学?解:设一共分为x个小组.由题意,得7x+3=8x-5.解得x=8.则7x+3=7×8+3=59.答:该班共有59名同学.7.如图,张新和李明相约到图书大世界去买书,请根据他们的对话内容,求出李明上次购买书籍的原价.解:设李明上次购买书籍的原价为x元,依题意,列方程,得0.8x+20=x-12.解得x=160.答:李明上次购买书籍的原价是160元.综合题8.如图,将一个长方形分成六个正方形,其中最小的正方形的面积是 1 cm2,求这个长方形的面积.解:设正方形E的边长为x cm, 则正方形F的边长为x cm,正方形D的边长为(x+1)cm,正方形B的边长为(2x-1)cm.根据正方形C的边长相等列方程,得x+1+1=2x-1-1.解得x=4.所以正方形E和F的边长为4 cm,正方形D的边长为5 cm,正方形B的边长为7 cm,所以长方形的面积为:(7+4)×(4+4+5)=143(cm2).。

3.2一元一次方程--移项

3.2一元一次方程--移项

注意
1.移项时,通常把含有未知数的
项移到等号的左边,把常数项移到等
号的右边;
2.移项要改变符号.
例4 某制药厂制造一批药品,如用旧工艺,则
废水排量要比环保限制的最大量还多200 t;如
用新工艺,则废水排量比环保限制的最大量少
100 t. 新旧工艺的废水排量之比为2:5,两种工
艺的废水排量各是多少?
n
3.已知:y1 = 2x+1, y2 = 4 -x.当x取何 值时, y1 = y2 ? 解:由题意,得 2x+1= 4 -x 移项,得 2x+x=4-1 合并同类项,得 3x=3 系数化为1,得 x=1. 所以当x=1时, y1 = y2 .
4. 有一人问老师,他所教的班级有多 少学生,老师说:“一半学生在学数学, 四分之一的学生在学音乐,七分之一的学 生在学外语,还剩不足六位学生正在操场 踢足球.”你知道这个班有多少学生吗?
(1)从5+2x=10,得2x=10+5
2x=10-5
(2)从3x=2x-5,得3x+2x=5 3x-2x=-5 (3) 从-2x+5=1-3x,得-2x+3x=1+5 -2x+3x=1-5
练一练
下列移项正确的是( C ) A.由2+x=8,得到x=8+2 B.由5x=-8+x,得到5x+x= -8 C.由4x=2x+1,得到4x-2x=1 D.由5x-3=0,得到5x=-3
例2:解下列方程.
(1)6x – 7 = 3x + 8
解:移项,得 6x-3x=8+7 合并同类项,得 3x=15. 系数化为1,得 x=5.
6x - 7 = 3x + 8
6x - 3x = 8 + 7
移项时应注意改变项的符号
2 1 ( 2) x 5 x 2 3 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 移 项
要点感知 把等式一边的某项 后移到另一边,叫做 .
预习练习1-1 下列变形中属于移项的是( )
A .由2x =2,得x =1
B .由x 2
=-1,得x =-2 C .由3x -72=0,得3x =72
D .由2x -1=3得2x =3-1
1-2 解方程6x +90=15-10x +70的步骤是:①移项,得 ;②合并同类项,得 ;③系数化1,得 .
知识点1 利用移项解一元一次方程
1.下列四组变形属于移项变形的是( )
A .由x -24
=3得x -2=12 B .由2x =3得x =32
C .由4x =2x -1得4x -2x =-1
D .由3y -(y -2)=3得3y -y +2=3
2.(咸宁中考)若代数式x +4的值是2,则x 等于( )
A .2
B .-2
C .6
D .-6
3.解方程2x -5=3x -9时,移项正确的是( )
A .2x +3x =9+5
B .2x -3x =-9+5
C .2x -3x =9+5
D .2x -3x =9-5
4.若方程3x +5=11的解,也是方程6x +3a =22的解,则a 为( )
A.103
B.310
C .10
D .3 5.若3x +6=4,则 =4-6,这个过程是 .
6.解下列方程:
(1)4x =9+x ;
(2)4-35
m =7;
(3)4x +5=3x +3-2x ;
(4)8y -3=5y +3.
知识点2 根据“表示同一量的两个式子相等”列方程解决问题
7.(绵阳中考)朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还差3个,如果每人2个又多2个,请问共有多少个小朋友?( )
A .4个
B .5个
C .10个
D .12个
8.甲厂库存钢材100吨,每月用去15吨;乙厂库存钢材82吨,每月用去9吨.经过m 个月,两厂剩余钢材相等,则m 的值应为( )
A .2
B .3
C .4
D .5
9.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队人数与乙队人数相等,则应调往甲队的人数是 ,调往乙队的人数是 .
10.已知m 1=3y +1,m 2=5y +3,当y = 时,m 1=m 2.
11.将一堆糖果分给幼儿园某班的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗,这个班共有多少名小朋友?
12.在解下列方程时,需要移含未知数的项和常数项的是( )
A .2x =4-x
B .1-3x =4x -2
C .5x -1+2x =9
D .x +4=-1
13.方程4x -2=3-x 解答过程顺序是( )
①合并,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.
A .①②③
B .③②①
C .②①③
D .③①②
14.某同学在解方程5x -1=■x +3时,把■处的数字看错了,解得x =-43
,则该同学把■看成了( ) A .3 B .-1289
C .-8
D .8 15.(湘潭中考)湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人.如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x 位老人,依题意可列方程为 .
16.若x =2是方程ax -5=17+a 的解,则a = .
17.如果5m +14与m +14
互为相反数,那么m 的值为 . 18.解下列方程:
(1)2x -19=7x +6;
(2)x -2=13x +43
.
19.甲、乙两人同时从A 地出发去B 地,甲骑自行车,骑行速度为10 km/h ,乙步行,行走速度为6 km/h.当甲到达B 地时,乙距B 地还有8 km.甲走了多少时间?A 、B 两地的路程是多少?
20.某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班
分成几个小组,共有多少名同学?
挑战自我
21.小明到书店帮同学买书,售货员告诉他,如果用20元钱办理“购书会员卡”,将享受八折优惠.
(1)请问在这次买书中,小明在什么情况下办会员卡与不办会员卡一样?
(2)当小明买标价为200元的书时,怎样做合算,能省多少钱?
参考答案
要点感知 移项.
预习练习1-1 C
1-2 6x +10x =15+70-90;16x =-5;x =-516

1.C 2.B 3.B 4.A 5.移项.
6.(1)移项,得4x -x =9.合并同类项,得3x =9.系数化为1,得x =3.
(2)移项,得-35m =7-4.合并同类项,得-35
m =3.系数化为1,得m =-5. (3)移项,得4x -3x +2x =-5+3.合并同类项,得3x =-2.系数化为1,得x =-23
. (4)移项,得8y -5y =3+3.合并同类项,得3y =6.系数化为1,得y =2.
7.B 8.B 9.10,18 10.-1
11.设这个班共有x 名小朋友.根据题意,得
2x +8=3x -12.解得x =20.
答:这个班共有20名小朋友.
12.B 13.C 14.D 15.2x +16=3x 16.22 17.-112
18.解下列方程:
(1)移项,得2x -7x =19+6.合并同类项,得-5x =25.系数化为1,得x =-5.
(2)移项,得x -13x =2+43.合并同类项,得23x =103
.系数化为1,得x =5. 19.设甲走了x h .则A 、B 两地的路程是10x km.
根据题意,得10x =6x +8.
解得x =2.10x =20.
答:甲走了2小时,A 、B 两地的路程是20 km.
20.设该班分成x个组,则
7x+1=8x-6.解得x=7.
7x+1=7×7+1=50.
答:该班分成了7个小组,共有50名同学.
挑战自我
21.(1)设小明在买x元的书的情况下办会员卡与不办会员卡一样.x=20+80%x.解得x=100.
答:小明在买100元的书的情况下办会员卡与不办会员卡一样.
(2)20+200×80%=180(元).200-180=20(元).
答:当小明买标价为200元的书时,应办理会员卡,能省20元钱。

相关文档
最新文档