对multisim仿真的积分电路的分析-推荐下载
Multisim电路仿真实验报告
![Multisim电路仿真实验报告](https://img.taocdn.com/s3/m/aa846207b80d6c85ec3a87c24028915f804d849a.png)
Multisim电路仿真实验报告精33张聪20130106571实验目的:熟悉电路仿真软件Muitisim的功能,掌握使用Muitisim进行输入电路、分析电路和仪表测试的方法。
2使用软件:NIMultisimstudentV12。
(其他版本的软件界面稍有不同)3预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。
4熟悉软件功能(1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。
初步了解各部分的功能。
(2)初步定制:定制元件符号:Options|Globalpreferences,选择Components标签,将SymbolStandard区域下的元件符号改为DIN。
自己进一步熟悉全局定制Options|Globalpreferences窗口中各标签中的定制功能。
(3)工具栏定制:选择:View|Toolbars,从显示的菜单中可以选择显示或者隐藏某些工具栏。
通过显示隐藏各工具栏,体会其功能和工具栏的含义。
关注几个主要的工具栏:Standard(标准工具栏)、View(视图操作工具栏)、Main(主工具栏)、Components(元件工具栏)、Instruments(仪表工具栏)、Virtual(虚拟元件工具栏)、Simulation(仿真)、Simulationswitch(仿真开关)。
(4)Multisim中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。
另有一类只有封装没有模型的元件,只能布线不能仿真。
在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。
元件库的结构:元件库有三个:Masterdatabase(主库)、Corporatedatabase (协作库)和Userdatabase(用户库)。
multisim电路分析方法
![multisim电路分析方法](https://img.taocdn.com/s3/m/efb0b16bbdd126fff705cc1755270722192e59d9.png)
在Variables in Circuit栏中列出的是电路中可 用于分析的节点和变量。点击 Variables in circuit 窗口中的下箭头按钮,可以给出变量类型选择表。 在变量类型选择表中: 点击Voltage and current选择电压和电流变量。
点击Voltage选择电压变量。 点击 Current选择电流变量。 点击Device/Model Parameters 选择元件/ 模型参数变量。 点击All variables选择电路中的全部变量。
其中Output variables、 Miscellaneous Options 和Summary 3个选项与直流工作点分析的设置 一样,下面仅介绍Analysis Parameters选项, Analysis Parameters对话框如图1.6.8所示。
图1.6.8 Analysis Parameters对话框
图 1.6.5 Miscellaneous Options对话框
如果选择Use this custom analysis,可以用 来选择用户所设定的分析选项。可供选取设定的 项目已出现在下面的栏中,其中大部分项目应该 采用默认值,如果想要改变其中某一个分析选项 参数,则在选取该项后,再选中下面的Use this option选项。选中Use this option选项将在其右边
2. Parameters区 在Parameters区可以对时间间隔和步长等参数 进行设置。
Start time窗口:设置开始分析的时间。 End time窗口:设置结束分析的时间。
点击Maximum time step settings,可以设 置分析的最大时间步长。其中:
(1)设置单位时间内的采样点数 点击Minimum number of time points,可以 设置单位时间内的采样点数。
第五讲 multisim 仿真分析PPT课件
![第五讲 multisim 仿真分析PPT课件](https://img.taocdn.com/s3/m/53f7cb7584254b35effd3498.png)
第五讲 multisim的仿真分析 单击Add按钮。
第五讲 multisim的仿真分析
1号节点被移至右边的Selected variables for栏内。
第五讲 multisim的仿真分析 用同样方法选定节点2。
第五讲 multisim的仿真分析 将其移至Selected variables for栏 。
Analysis Options分页:确定分析选项,但通常情况下不 需要任何干预,采用默认设置就可以顺利进行分析。
Summary分页,提供对用户所作分析设置的快速浏览,不 需用户再做任何设置,但可以利用此页查阅分析设置信息。
第五讲 multisim的仿真分析
从下拉的目录里 选择输出变量的 类型。
被选择电路的可 能输出变量。
直流工作点分析 交流分析 瞬态分析 傅里叶分析 噪声分析 噪声系数分析 失真分析 直流扫描分析 灵敏度分析 参数扫描分析 温度扫描分析 极零点分析 传递函数分析 最坏情况分析 蒙特卡洛分析 布线宽度分析 批处理分析 用户自定义分析
第五讲 multisim的仿真分析
主工具栏
第五讲 multisim的仿真分析
第五讲 multisim的仿真分析
3.1 设置瞬态分析参数
瞬态分析对话框也有4个分页,默认为Analysis Parameters分页,其余3页与直流工作点分析完全一 样。
选择设置初始条件。
设置瞬态分析的起始时间。
设置瞬态分析的结束时 间, 该值需大于起始时间。
选中此复选项,可输入 最小时间点数。
蒙特卡洛分析
布线宽度分析 其它分析 批处理分析
用户自定义分析
计算电路的输出变量对元器件参数的 敏感程度 元器件参数对电路性能产生的最坏影 响的统计分析 给定电路元器件参数容差的统计分布 规律情况下,研究元器件参数变化对 电路性能影响的统计分析 原理图转化为PCB板时需要确定连接 导线的最小宽度 按顺序处理同一电路的多种分析,或 同一分析的不同应用
multisim电路仿真图
![multisim电路仿真图](https://img.taocdn.com/s3/m/68029233eefdc8d376ee322b.png)
一.直流叠加定理仿真图1.1图1.2图1.3结果分析:从上面仿真结果可以看出,V1和I1共同作用时R3两端的电压为36.666V;V1和I1单独工作时R3两端的电压分别为3.333V和33.333V,这两个数值之和等于前者,符合叠加定理。
二.戴维南定理仿真戴维南定理是指一个具有直流源的线性电路,不管它如何复杂,都可以用一个电压源UTH与电阻RTH串联的简单电路来代替,就它们的性能而言,两者是相同的。
图2.1如上图2.1电路所示,可以看出在XMM1和XMM2的两个万用表的面板上显示出电流和电压值为:IRL=16.667mA,URL=3.333V。
图2.2如上图2.2所示电路中断开负载R4,用电压档测量原来R4两端的电压,记该电压为UTH,从万用表的面板上显示出来的电压为UTH=6V。
图2.3在图2.2所测量的基础之上,将直流电源V1用导线替换掉,测量R4两端的的电阻,将其记为RTH,测量结果为RTH=160Ω。
图2.4在R4和RTH 之间串联一个万用表,在R4上并接一个万用表,这时可以读出XMM1和XMM2上读数分别为:IRL1=16.667mA ,URL1=3.333V 。
结果分析:从图2.1的测试结果和图2.4的测试结果可以看出两组的数据基本一样,从而验证了戴维南定理。
三.动态电路的仿真1、一阶动态电路:V1 1 VR110kΩC110uF12图3.12、二阶动态电路分析:图3.2 2、二阶动态电路:V110 VC11uFR12kΩL11H123图3.3一阶动态电路中V2随时间的变化可以看出,在0~500ms之间随时间的增大而非线性增大,大于500ms后趋于稳定。
图3.4当R1电位器阻值分别为500Ω,2000Ω,4700Ω时,输出瞬态波形的变化如上图所示。
四.交流波形叠加仿真图4.1图4.2结果分析:在信号分析中,一个周期的波形只要满足狄利克雷条件,该波形就可以分解为傅里叶级数。
图4.1为波形叠加仿真电路,将1kHz 15V,3kHz 5V和5kHz 3V的3路正弦信号通过电阻网络予以叠加,从图4.2可以看出示波器D通道的波形正好是示波器A,B,C通道波形的叠加,满足交流波形叠加。
3 Multisim 电路仿真仿真分析(二)
![3 Multisim 电路仿真仿真分析(二)](https://img.taocdn.com/s3/m/52b894045acfa1c7ab00cc77.png)
Multisim 电路仿真Multisim 12.0提供了多种电路仿真引擎,包含Xspice、VHDL和Verilog等。
电路仿真分析的一般流程为:(1)设计仿真电路图;(2)设置分析参数;(3)设置输出变量的处理方式;(4)设置分析项目;(5)自定义分析选项开始/终止仿真分析,可以单击仿真运行开关按钮,或者执行主菜单的Simulate|Run命令。
暂停/继续仿真分析,可以单击仿真运行开关按钮,或者执行主菜单的Simulate|Pause命令。
1. Multisim 12.0的仿真参数设置在使用Multisim12.0进行仿真分析时,需要对各类仿真参数进行设置,包含仿真基本参数(仿真计算步长、时间、初始条件等)的设置;仿真分析参数(分析条件、分析范围、输出结点等)设置;仿真输出显示参数(数据格式、显示栅格、读数标尺等)设置。
1)仿真基本参数的设置仿真基本参数的设置,可以通过执行Simulate|Interactive Simulation Settings 命令,打开交互式仿真设置对话框,如图2-1所示,通过修改或者重设其中的参数,可以完成仿真基本参数的设置。
图3-1 仿真基本参数设置对话框2)仿真输出显示参数的设置仿真输出参数的设置,是通过执行View|Grapher命令,打开Grapher View 仿真图形记录器,对话框如图3-2所示。
图3-2 Grapher View仿真图形记录器2. Multisim 12.0的仿真分析Multisim12.0提供了多种仿真分析方法,如图3-3所示,主要包含:直流工作点分析(DC Operation Point Analysis),交流分析(AC Analysis),单频交流分析( Single Frequency AC Analysis),瞬态分析( Transient Analysis),傅立叶分析( Fourier Analysis),噪声分析(Noise Analysis),噪声系数分析( Noise Figure Analysis),失真分析( Distortion Analysis),直流扫描分析( DC Sweep Analysis),灵敏度分析( Sensitivity Analysis),参数扫描分析( Parameter Sweep Analysis),温度扫描分析(Temperature Sweep Analysis),极点-零点分析( Pole-Zero Analysis)),传递函数分析(Transfer Function Analysis),最坏情况分析( Worst case Analysis),蒙特卡罗分析(Monte Carlo Analysis),批处理分析(Batched Analysis)和用户自定义分析(User Defined Analysis)等。
共集电极放大电路Multisim仿真结果及分析
![共集电极放大电路Multisim仿真结果及分析](https://img.taocdn.com/s3/m/3c31a60866ec102de2bd960590c69ec3d5bbdbfa.png)
共集电极放大电路Multisim仿真结果及分析概述共集电极放大电路是一种常用的实际电路,用于放大信号并将其输出。
本文将介绍通过Multisim仿真软件对共集电极放大电路进行仿真,并对仿真结果进行分析。
仿真设置在进行仿真之前,我们首先需要设置共集电极放大电路的仿真参数。
在Multisim中,我们需要确定电路的元件和连接方式,并设置各个元件的参数。
在本次仿真中,我们使用单个晶体管作为放大元件,并设置其参数为常用值。
仿真结果通过对共集电极放大电路进行仿真,我们可以得到以下结果:1. 输入输出特性曲线:通过改变输入信号的幅值,我们可以观察到输出信号的变化。
输入输出特性曲线用于描述输入信号幅值与输出信号幅值之间的关系。
通过观察特性曲线,我们可以判断电路的放大倍数以及是否存在非线性失真现象。
2. 直流工作点:直流工作点是指电路在稳定状态下的工作点。
通过仿真,我们可以得到晶体管的静态工作点,即其输入和输出电压的数值。
直流工作点的稳定性对电路的放大性能有重要影响。
3. 交流放大特性:交流放大特性描述的是电路对交流信号的放大效果。
我们可以通过输入一个交流信号,观察输出信号的变化来评估电路的交流放大性能。
结果分析通过对共集电极放大电路的仿真结果进行分析,我们可以得到以下结论:1. 输入输出特性曲线呈现非线性特性:通过观察输入输出特性曲线,我们可以看到信号幅值在一定范围内,输出信号的变化与输入信号不成线性关系。
这可能是由于晶体管的非线性特性引起的。
2. 直流工作点稳定:通过观察直流工作点的变化情况,我们可以发现在仿真过程中,直流工作点较为稳定。
这对于保证电路的稳定性和放大性能是非常重要的。
3. 交流放大效果较好:通过输入交流信号并观察输出信号的变化,我们可以看到电路对交流信号有较好的放大效果。
这说明共集电极放大电路在放大交流信号方面具有一定的能力。
结论通过对共集电极放大电路的Multisim仿真及结果分析,我们得出以下结论:共集电极放大电路在放大信号方面具有一定的能力,但是其输入输出特性存在非线性现象。
Multisim电路仿真实验报告
![Multisim电路仿真实验报告](https://img.taocdn.com/s3/m/cedd1bbbf61fb7360b4c656d.png)
Multisim电路仿真实验报告谢永全1 实验目的:熟悉电路仿真软件Multisim的功能,掌握使用Multisim进行输入电路、分析电路和仪表测试的方法。
2使用软件:NI Multisim student V12。
(其他版本的软件界面稍有不同)3 预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。
4熟悉软件功能(1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。
初步了解各部分的功能。
(2)初步定制:定制元件符号:Options|Global preferences,选择Components标签,将Symbol Standard区域下的元件符号改为DIN。
自己进一步熟悉全局定制Options|Global preferences窗口中各标签中的定制功能。
(3)工具栏定制:选择:View|Toolbars,从显示的菜单中可以选择显示或者隐藏某些工具栏。
通过显示隐藏各工具栏,体会其功能和工具栏的含义。
关注几个主要的工具栏:Standard(标准工具栏)、View(视图操作工具栏)、Main(主工具栏)、Components(元件工具栏)、Instruments (仪表工具栏)、Virtual(虚拟元件工具栏)、Simulation(仿真)、Simulation switch(仿真开关)。
(4)Multisim中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。
另有一类只有封装没有模型的元件,只能布线不能仿真。
在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。
元件库的结构:元件库有三个:Master database(主库)、Corporate database(协作库)和User database(用户库)。
multisim使用及电路仿真实验报告_范文模板及概述
![multisim使用及电路仿真实验报告_范文模板及概述](https://img.taocdn.com/s3/m/ed00b24eeef9aef8941ea76e58fafab069dc442e.png)
multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。
在这里,我们将引入Multisim的使用以及电路仿真实验报告。
Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。
通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。
1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。
在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。
在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。
接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。
最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。
1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。
通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。
同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。
希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。
2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。
它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。
使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。
2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。
实验指导书(电路分析multisim)
![实验指导书(电路分析multisim)](https://img.taocdn.com/s3/m/bfee88e9e009581b6bd9eba8.png)
对于上述零状态响应、零输入响应和全响应的过程,uC (t)和iC (t)的波形只有用长余辉 示波器才能直接显示出来,普通示波器难于观察。
如用方波信号源激励,RC 电路的方波响应,在电路的时间常数远小于方波周期时,前
5
半周期激励作用时的响应就是零状态响应,得到电容充电曲线;而后半周期激励为 0,相当
容量大小就代表时间常数的大小。如图 3 所示给出了电容容量较小时, C = 100μF 时,电
容的充放电波形,该波形近似为矩形波,充放电加快,上升沿和下降沿变陡。
4.2 二阶电路的过渡过程 1 创建电路:从元器件库中选择电压源、电阻、电容、电感、单刀双掷开关和虚拟示波器, 创建二阶电路如图 4 所示。
R1
1kHz
10Ω
0°
图 1 串联谐振电路 2、电路的幅频特性:单击运行(RUN)按钮,双击频率特性仪XBP1 图标,在Mode选项组 中单击Magnitude(幅频特性)按钮,可得到该电路的幅频特性,如图 2 所示。从图中所知, 电路在谐振频率f0处有个增益极大值,而在其他频段增益大大下降。需要说明的是,电路的 谐振频率只与电路的结构和元件参数有关,与外加电源的频率无关。本处电路所选的电源频 率为 1kHz,若选择其他频率,幅频特性不变。
7
切换开关,就能得到电容的充放电波形
图 3 电容容量较小时的充放电波形
说明: 1 当开关停留在触点 1 时,电源一直给电容充电,电容充到最大值 12V,如图 2 中电容充放 电波形的开始阶段。 2 仿真时,电路的参数大小选择要合理,电路的过渡过程快慢与时间常数大小有关,时间常 数越大,则过渡过程越慢;时间常数越小,则过渡过程越快。电路中其他参数不变时,电容
R
R
(自由分量)
第4讲.电路分析Multisim仿真
![第4讲.电路分析Multisim仿真](https://img.taocdn.com/s3/m/5e6e7024a5e9856a56126051.png)
电阻电路分析
电路分析方法与组成电路的元件、激励源和结构有关,但基本 方法相同。以下介绍 Multisim 7 在由时不变的线性电阻、线性 受控源和独立源组成的电阻电路中的应用,包括:
直流电路网孔电流分析 直流电路节点电压分析 齐次定理 (Homogeneity Property) 叠加定理 (Superposition Theorem) 替换定理 (Substitution Theorem) 戴维南定理 (Thevenin's Theorem ) 诺顿定理 (Norton's Theorem) 特勒根定理 (Tellegen’s Theorem)
5
电路基本规律
例. 受控源电路仿的模型,是指电压源的电压或电 流不是给定的时间常数,而是受电路中某支路电压或电流控制的。
6
电路基本规律
右图的电路中,受控源为电压控 制的电流源。受控电流源的电流 I=gU1,g=10S。当U1=10V时, 受控源电流为100A。理论计算 与仿真结果一致。当R2替换成阻 值为2.0kΩ时,电流表读数仍为 100A,说明该受控源的电流值 取决于控制量(电压U1)的大小。
电路基本规律 电阻电路分析 动态电路分析 正弦稳态分析
2
电路基本规律
欧姆定律、基尔霍夫电流定律、基尔霍夫电压定律 欧姆定律
线性电阻元件两端的电压和流过的电流成正比,比例常数即为电阻值。
U = RI
例. 电源电压为12V,电阻R1为10Ω。求流过R1的电流。
放置电流表和电压表(元件)
A
3
V
电路基本规律
图1 14
电阻电路分析
R2右侧二端网络用6V的电压源替换,如图2所示。可见电路其它各处电压、 电流保持不变。 R2右侧二端网络用2A的电流源替换,如图3所示。可见电路其它各处电压、 电流保持不变。
用Multisim仿真积分求和运算实验
![用Multisim仿真积分求和运算实验](https://img.taocdn.com/s3/m/a7e8c14f804d2b160b4ec0d4.png)
用Multisim仿真积分求和运算实验王桑田 5130309480一、实验目的1、学习用Multisim仿真模拟电路的方法;2、加深对用运算放大器实现信号运算的理解。
二、实验原理1、实验电路图图1、图2为本实验电路图。
图1 图22、理论分析图1实现积分求和运算,u o从反向输入端输入,利用R2与C串联实现求和、积分运算,电阻上电压与输入电压的比例系数为−R2R1⁄。
根据节点电流法可以解出图1电路的运算关系为:u o=−R2R1u I−1R1C∫u I dt=−u I−1000∫u I dt从上式可以看出,u o是两部分的叠加,一部分是−u I,另一部分是−1000∫u I dt,实现了求和、积分运算。
图2实现同相积分运算,u o从同向输入端输入,利用R和C串联实现求积分运算。
根据节点电流法可以解出图2电路的运算关系为:u o=1RC∫u I dt=1000∫u I dt从上式可以看出,u o是u I的积分,并放大1000倍。
不同于图1电路,图2电路输入信号是从同相输入端输入,所以系数为正。
三、实验过程利用Multisim搭建实验电路,如图3、图4所示。
图3实现电路图1中电路,图4实现图2中电路。
图3图4对两个电路分别输入方波,如图5所示。
图5从示波器输出观察波形,可以明显观察出这个电路输出是对输入的积分。
输入为方波,输出为三角波。
结果如图6、图7所示。
图6四、实验心得通过做这个实验,我学会了Multisim的基本使用方法,这个软件操作简单,使用起来非常方便,功能很强大,可以帮助我们设计电路,仿真结果。
做这个实验过程感觉很有趣,只要搭建好电路,就能得到想要的结果。
之前学模电课程只是进行理论上的分析和计算,对于结果不是很确定。
通过Multisim仿真,我能更直观的看到结果。
而且,改变不同的参数,可以看到电路各部分电压、电流以及输出的变化,这对理解电路各部分组成有很大帮助。
电子电路multisim仿真实验报告
![电子电路multisim仿真实验报告](https://img.taocdn.com/s3/m/cb337b34a517866fb84ae45c3b3567ec102ddc0e.png)
电子电路multisim仿真实
验报告
班级:XXX
姓名:XXX
学号:XXX
班内序号:XXX
一:实验目的
1:熟悉Multisim软件的使用方法。
2:掌握放大器静态工作点的仿真方法及其对放大器性能的影响。
3:掌握放大电路频率特性的仿真方法。
二:虚拟实验仪器及器材
基本电路元件(电阻,电容,三极管)双踪示波器波特图示仪直流电源
三:仿真结果
(1)电路图
其中探针分别为:
探针一探针二
(2)直流工作点分析。
(3)输入输出波形
A通道为输入波形B通道为输出波形
四:实验流程图
开始
选取实验所需电路元件
及测量工具
合理摆放元件位置并连
接电路图
直流特性分析
结束
五:仿真结果分析
(1)直流工作点
电流仿真结果中,基极电流Ib为7.13u,远小于发射极和集电极,而发射极和集电极电流Ie和Ic近似相等,与理论结果相吻合。
电压仿真结果中,基极与发射极的电位差Vbe经过计算约为0.625V,符合三极管的实际阈值电压,而Vce约为5.65V。
以上数据均满足放大电路的需求,所以电路工作在放大区。
(2)示波器图像分析
示波器显示图像中,A路与B路反相,与共射放大电路符合。
六:总结与心得
这次的仿真花费了大量时间,主要是模块的建立。
经过本次的电子电路仿真实验,使我对计算机在电路实验中的应用有了更为深刻的认识,对计算机仿真的好处有了进一步的了解。
仿真可以大大的减轻实验人员的工作负担,同时更可以极大的提升工作效率,事半功倍,所以对仿真的学习是极为必要的。
multisim仿真数电实验报告
![multisim仿真数电实验报告](https://img.taocdn.com/s3/m/ac067e3e1eb91a37f1115c93.png)
实验报告课程名称:数字电子技术实验姓名:学号:专业:开课学期:指导教师:实验课安全知识须知1.须知1:规范着装。
为保证实验操作过程安全、避免实验过程中意外发生,学生禁止穿拖鞋进入实验室,女生尽量避免穿裙子参加实验。
2.须知2:实验前必须熟悉实验设备参数、掌握设备的技术性能以及操作规程。
3.须知3:实验时人体不可接触带电线路,接线或拆线都必须在切断电源的情况下进行。
4.须知4:学生独立完成接线或改接线路后必须经指导教师检查和允许,并使组内其他同学引起注意后方可接通电源。
实验中如设备发生故障,应立即切断电源,经查清问题和妥善处理故障后,才能继续进行实验。
5.须知5:接通电源前应先检查功率表及电流表的电流量程是否符合要求,有否短路回路存在,以免损坏仪表或电源。
特别提醒:实验过程中违反以上任一须知,需再次进行预习后方可再来参加实验;课程中违反三次及以上,直接重修。
实验报告撰写要求1.要求1:预习报告部分列出该次实验使用组件名称或者设备额定参数;绘制实验线路图,并注明仪表量程、电阻器阻值、电源端编号等。
绘制数据记录表格,并注明相关的实验环境参数与要求。
2.要求2:分析报告部分一方面参考思考题要求,对实验数据进行分析和整理,说明实验结果与理论是否符合;另一方面根据实测数据和在实验中观察和发现的问题,经过自己研究或分析讨论后写出的心得体会。
3.要求3:在数据处理中,曲线的绘制必须用坐标纸画出曲线,曲线要用曲线尺或曲线板连成光滑曲线,不在曲线上的点仍按实际数据标出其具体坐标。
4.要求4:本课程实验结束后,将各次的实验报告按要求装订,并在首页写上序号(实验课上签到表对应的序号)。
请班长按照序号排序,并在课程结束后按要求上交实验报告。
温馨提示:实验报告撰写过程中如遇预留空白不足,请在该页背面空白接续。
实验报告课程名称:数字电子技术实验实验 5 : multisim多位计数器仿真实验日期:年月日地点:实验台号:专业班级:学号:姓名:评分:教师评语:教师签字:日期:一、实验目的二、实验设备及元器件Multisim仿真洁面三、实验原理(简述实验原理,画出原理图)这一部分的实验主要涉及改变计数进制的问题,我分为以下几个部分预习一、首先需要明确各个芯片的计数最大进制 161系列为16进制,160系列的为10进制。
Multisim在电路分析中的应用
![Multisim在电路分析中的应用](https://img.taocdn.com/s3/m/1401b5ab03d276a20029bd64783e0912a2167c0c.png)
第6章 Multisim在电路分析中的应用 图6-18 微分波形图
第6章 Multisim在电路分析中的应用
习题
1. 仿真图6-19所示电路,利用戴维南等效电路求U。
R1
4 kohm
R2 6 kohm
+ V1
- 24V
R3 3 kohm
+ I1 2A
-
+ R2 4kohmU
-
图6-19 戴维南应用实践一
R2 3 ohm
图6-22 电容充放电练习
第6章 Multisim在电路分析中的应用
5.已知图6-23所示电路在t<0时已达稳态,t=0时开关断 开。改变L1大小,观察改变前后UL(t)的波形变化。
第6章 Multisim在电路分析中的应用
R1
R2
1 kohm J1 Key = Space
+
V1 - 12 V
-
V2 12 V
+
1 kohm
R3 2 kohm
C1 10 uF
XSC1
G AB T
图6-9 暂态响应电路图
第6章 Multisim在电路分析中的应用
基本操作: (1) 从元件库中选取所需元件,并选择适当参数,连接 成图6-9所示电路。从仪器库中选取示波器并接在C1的两端。 运行仿真开关,反复按下空格键,使电键J1反复打开和闭合, 在示波器上可观察到图6-10所示的波形。
第6章 Multisim在电路分析中的应用
R1 3 ohm
+
0.80A0
-
R2
6 ohm
R3 3 ohm
+
V1 - 12 V
图6-13 互易后电路图
第6章 Multisim在电路分析中的应用
基于Multisim的差分放大电路仿真分析
![基于Multisim的差分放大电路仿真分析](https://img.taocdn.com/s3/m/7dc8a8e377a20029bd64783e0912a21614797f2b.png)
基于Multisim的差分放大电路仿真分析差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点,以放大差模信号抑制共模信号为显著特征,广泛应用于直接耦合电路和测量电路的输入级。
但是差分放大电路结构复杂、分析繁琐,特别是其对差模输入和共模输入信号有不同的分析方法,难以理解,因而一直是模拟电子技术中的难点。
Muhisim作为著名的电路设计与仿真软件,它不需要真实电路环境的介入,具有仿真速度快、精度高、准确、形象等优点。
因此,Multisim被许多高校引入到电子电路实验的辅助教学中,形成虚拟实验和虚拟实验室。
通过对实际电子电路的仿真分析,对于缩短设计周期、节省设计费用、提高设计质量具有重要意义。
1 Multisim8软件的特点Muhisim是加拿大IIT(Interactive Image Tech—nologies) 公司在EWB(Electronics Workbench)基础上推出的电子电路仿真设计软件,Muhisim现有版本为Muhisim2001,Muhisim7和较新版本Muhisim8。
它具有这样一些特点:(1)系统高度集成,界面直观,操作方便。
将电路原理图的创建、电路的仿真分析和分析结果的输出都集成在一起。
采用直观的图形界面创建电路:在计算机屏幕上模仿真实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取。
操作方法简单易学。
(2)支持模拟电路、数字电路以及模拟/数字混合电路的设计仿真。
既可以分别对模拟电子系统和数字电子系统进行仿真,也可以对数字电路和模拟电路混合在一起的电子系统进行仿真分析。
(3)电路分析手段完备,除了可以用多种常用测试仪表(如示波器、数字万用表、波特图仪等)对电路进行测试以外,还提供多种电路分析方法,包括静态工作点分析、瞬态分析、傅里叶分析等。
(4)提供多种输入/输出接口,可以输入由PSpice 等其他电路仿真软件所创建的Spice网表文件,并自动形成相应的电路原理图,也可以把Muhisim环境下创建的电路原理图文件输出给Protel等常见的印刷电路软件PCB进行印刷电路设计。
Multisim电路仿真实验报告
![Multisim电路仿真实验报告](https://img.taocdn.com/s3/m/fdbc42bcdd88d0d233d46a7a.png)
Multisim电路仿真实验报告谢永全1 实验目的:熟悉电路仿真软件Multisim的功能,掌握使用Multisim进行输入电路、分析电路和仪表测试的方法。
2使用软件:NI Multisim student V12。
(其他版本的软件界面稍有不同)3 预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。
4熟悉软件功能(1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。
初步了解各部分的功能。
(2)初步定制:定制元件符号:Options|Global preferences,选择Components标签,将Symbol Standard区域下的元件符号改为DIN。
自己进一步熟悉全局定制Options|Global preferences窗口中各标签中的定制功能。
(3)工具栏定制:选择:View|Toolbars,从显示的菜单中可以选择显示或者隐藏某些工具栏。
通过显示隐藏各工具栏,体会其功能和工具栏的含义。
关注几个主要的工具栏:Standard(标准工具栏)、View(视图操作工具栏)、Main(主工具栏)、Components(元件工具栏)、Instruments (仪表工具栏)、Virtual(虚拟元件工具栏)、Simulation(仿真)、Simulation switch(仿真开关)。
(4)Multisim中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。
另有一类只有封装没有模型的元件,只能布线不能仿真。
在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。
元件库的结构:元件库有三个:Master database(主库)、Corporate database(协作库)和User database(用户库)。
求和电路及积分电路仿真分析
![求和电路及积分电路仿真分析](https://img.taocdn.com/s3/m/fbfe9b376137ee06eef918e7.png)
1•课程设计的目的与作用⑴了解并掌握Multisim软件,并能熟练的使用其进行仿真:(2)培养学生综合运用前修课程所学的知识进行系统性的训练:(3)培养实际动手能力以及合作的能力:2.设计任务、及所用multisim软件环境介绍2.1设计任务2. 1・1求和电路在multisim中构建求和电路。
要求:加上直流输入电压,= lV,u i2 = 1V,U13 = IVU'J-,测得u° = -13.515V。
=0.^,1^ = 2VlM,测得u° = -8.56V,并且仿真结果与估算加上直流输入电压,=1.5V,UI2结果进行对比。
2. 1・2积分电路在multisim中构建求和电路。
要求:在积分电路的输入端加上有效值为0.5V,频率为50Hz的正弦交流电床:有虚拟示波器可以看到积分电路的输入、输出波形。
观察并比较,有波形图可见,输入电压是一个余弦波,输出电斥的相位必输入电斥领先90度,2. 2multisim软件环境介绍Multisim是加拿大IIT公司推出的基于Window的电路仿真软件,由于采交4式的界面,比较氏观, 操作方便,具冇丰富的元器件库和品种繁多的虚拟仪器,以及强人的分析功能等特点,因而得到了广泛的应用。
Multisim 10.0的主界面有菜单栏;系统工具栏;设计工具栏;元件工具栏;仪表栏使用中元件列表:仿真开关;状态栏。
Multisim 10.0提供了丰富的元器件,供用户构建电路图时取用。
1这些元器件包括现实元器件和虚拟元器件。
(一)MultisimlO. 0的主元器件库中有13个类电源库,基本元件库,二极管库,三极管库,模拟器件库,TTL器件库,CMOS器件库,模拟和数字混合器件库,指示器件库,其它器件库,射频器件库,电机类器件库。
(二)虚拟元器件电源,信号源,虚拟基本元器件,虚拟二极管,虚拟三极管,虚拟模拟器件,其他虚拟元器件,额定虚拟元器件,3D虚拟元器件,虚拟测量元器件。