制冷系统设计
制冷系统的管道设计⑴⑵
![制冷系统的管道设计⑴⑵](https://img.taocdn.com/s3/m/b4d7828af524ccbff12184f9.png)
制冷系统的管道设计⑴⑵制冷系统管道设计包括管径的确定、管道和设备的防腐、保温以及管道的布置问题。
管道设计的好坏,关系到制冷装置运行的安全性、经济性和安装操作的简单方便程度。
通过本章的学习,掌握公式法和图表法确定系统管径以及管材、阀件的正确选用、管道安装布置时需注意的问题。
第一节氨制冷系统管道设计要求(一)对管道、阀件及连接件的一般要求1、管道氨制冷系统的管道应采用无缝钢管。
2、阀门制冷管道系统应采用氨专用阀门,氨系统所用阀类不允许有铜和铜合金的零部件。
阀体应是灰铸铁、可锻铸铁或铸钢的。
其公称压力不应小于2.5Mpa(表压),应有倒关阀座,当阀开足后能在运行中更换材料。
3、连接件氨系统管道一律采用焊接,一般管壁厚度小于4mm者宜用气焊,管壁厚度4mm以上者可用电焊。
(1)弯头一律采用煨弯。
(2)法兰用A3镇静钢制作,应带凸凹口。
(3)两根管子做T形连接时,应作顺流向的弯头。
若两根管子管径相同,则应在结合部位加一段较大的管子,如图7-1 (4)小口径阀门用丝扣连接时,连接管车削螺纹后剩余厚度不小于2.5~3.0mm,应先用一短管与阀门连接后,再与系统管道焊接,丝扣连接时不得使用白油麻丝,应采用纯甘油与黄粉(氧化铅)调和的填料。
(5)支管与集管的连接,支管管头应开弧形叉口与集管平接,不应插入集管内。
一、管道内允许的流速和压降在工程设计中,一般是采用限定管段流动阻力损失来确定对应管径的大小,氨制冷系统的吸气管道的压力损失不宜超过相当蒸发温度降低0.5℃,排气管道的压力损失不宜超过相当冷凝温度升高0.5℃。
二、氨管道布置原则氨与润滑油几乎是不互溶的,因此,在氨制冷系统中,设置氨油分离器,并在可能集油的设备底部装设放油阀,制冷系统中应有放油装置。
(1)吸气管为防止氨液滴进入压缩机,氨压缩机的吸气管应有不小于0.5%的坡度,坡向蒸发器。
(2)排气管为防止润滑油和冷凝液氨回流至压缩机,压缩机的排气管道应有不小于0.01的坡度,坡向油分离器。
毕业设计--冷库制冷系统的设计[管理资料]
![毕业设计--冷库制冷系统的设计[管理资料]](https://img.taocdn.com/s3/m/dbb821b2a8956bec0875e337.png)
毕业设计题目:小型冷库制冷系统的设计毕业设计(论文)任务书2、类别是指毕业论文或毕业设计目录目录 (1)摘要 (1)第一章库址选择 (1)第一节工程概况 (1)第二节气侯情况 (1)第二章冷库隔热防潮设计 (2)第一节冷库的结构 (2)第二节隔热与防潮的基本要求 (2)第三节维护结构的材料及选择 (3)第三章冷负荷计算 (3)第一节计算各传热层系数 (4)第二节设备负荷计算 (5)第三节各房间的负荷汇总 (9)第四章冷库制冷方案的确定 (10)第五章制冷机及辅助设备的选择 (11)第一节制冷压缩机的选型计算 (11)第二节制冷系统辅助设备选型计算 (12)第六章制冷系统管道 (18)第七章制冷系统的试压、试漏及管道保温 (19)结论 (21)参考文献摘要:本次毕业设计的课题是对南京的某冷库进行设计。
设计分为七个过程,首先给冷库进行选址,根据冷库提供的要求和当地的气候条件进行选址。
然后进行冷库隔热防潮设计,包括结构,要求及材料的选择。
冷负荷计算是本设计的重点,根据结构材料和传热系数计算出各房间的负荷及汇总。
确定冷库设计方案,包括压缩形式,冷凝器的配置,及系统的供液方式和冷间的冷却方式,而后简单的对冷间工艺设计和系统管道及管道的试压、试漏及管道保温的一些说明。
关键词:冷库设计制冷系统负荷计算选型计算第一章工程概况与原始资料第一节工程概况此次毕业设计为南京某公司进行制冷系统设计,主要内容包括制冷机房、冻结间及冷库。
该工程包括冻结间 ( -23℃),低温冷藏间( -18℃)两项制冷系统。
此设计题目是我们专业主要发展方向,通过毕业设计对我以前学习的专业知识作一个全面的总结,从而进一步提高对本专业知识的应用能力。
本制冷系统设计原始资料概况如下:一、冻结间、冻结物冷藏间冻结间:设计温度-23℃。
,总建筑面积为8×18= 144㎡,冻结能力20吨/小时。
冻结物冷藏间:设计温度-18℃。
库房内净高5 m,总建筑面积为20×24 =480㎡,低温冷藏总能力为500吨。
制冷系统设计规范
![制冷系统设计规范](https://img.taocdn.com/s3/m/5fbaef16b307e87101f696eb.png)
系统设计规范1范围本设计规范规定了空调性能总体设计规范、整机功能设计规范和压缩机选型规范三部分本设计规范适用于内销和外销的空调器产品,其他产品可参考使用2相关标准QJ/MK02.001-2001a 房间空气调节器3空调性能总体设计规范3.1性能设计是空调器设计的核心空调器作为一个在市场销售的产品,其设计主要包括结构设计、性能(制冷系统设计)、平面设计、电控、电器设计,但就其基本功能来讲,空调器的作用就是实现制冷或制热的温度调节,制冷系统的性能是否发挥良好是空调器品质的最重要指标;另一方面,就空调器材料成本的构成来讲,普通空调器中,制冷系统的材料成本占总成本的50%左右,因此性能设计的重要性是不言而喻的,可以说性能设计是空调器设计的核心。
正因如此,性能设计是否规范,对整个空调器设计的成本、质量、开发速度均有很大影响。
3.2性能设计要立足本厂实际设计过程中,要敢于创新,应用新的技术,设计的产品才有竞争力。
但同时也要注意工厂毕竟不同于科研单位,设计时要充分考虑工厂目前的生产设备情况、工艺水平、实验条件、计划进度等实际情况。
特别是换热器的设计,就要考虑换热器的设备情况。
3.3性能设计要符合相关标准性能设计执行的标准有:内销机型执行国家标准GB/T 7725-2004《房间空气调节器》,外销机型执行相应出口国家或地区的标准,以及执行美的企业标准中相关机型的内控标准。
主要控制指标有:制冷量、制热量、功率消耗、能效比(EER)、性能系数(COP)、噪音;各项型式实验必须通过相应国家标准:最大运行制冷、最小运行制冷、凝露、最大运行制热、最小运行制热、自动除霜、运输跌落等。
除GB—7725—2004试验之外必须追加如下实验:(1)长配管试验分体机15m,柜机20m,天花机30m,定制机另算,在此试验下,做7725—2004要求的可靠性试验,主要观察压缩机在各种工况下面的油位、温度、压力等参数,确保压缩机运行在压缩机厂允许范围内。
空调制冷系统课程设计
![空调制冷系统课程设计](https://img.taocdn.com/s3/m/9bbcbc7fa200a6c30c22590102020740bf1ecd69.png)
空调制冷系统课程设计一、课程目标知识目标:1. 学生能够理解空调制冷系统的基础工作原理,掌握制冷循环的关键部件及其功能。
2. 学生能够描述制冷剂在空调系统中的作用,并解释其热力学特性。
3. 学生能够掌握空调制冷系统中能量转换的基本过程,以及影响制冷效率的主要因素。
技能目标:1. 学生能够通过模型或实物演示,分析空调制冷系统的工作流程,正确解读系统图。
2. 学生能够运用基本的物理原理,计算空调制冷系统的制冷量和功率消耗。
3. 学生能够设计简单的制冷系统,并对系统进行模拟优化,提高能源使用效率。
情感态度价值观目标:1. 学生能够认识到空调制冷技术对现代生活的影响,培养对节能减排的重视。
2. 学生在团队合作中培养沟通能力和解决问题的能力,增强探究精神和创新意识。
3. 学生通过学习空调制冷系统,激发对物理学科的兴趣,形成积极的学习态度和终身学习的观念。
课程性质分析:本课程属于物理与技术实践相结合的内容,强调理论与实践的统一,注重培养学生的动手能力和实际应用能力。
学生特点分析:考虑到学生所在年级,应充分调动他们的好奇心和探究欲,同时注意引导他们从直观的操作体验上升到理论的认识。
教学要求:教学内容应与学生的实际生活和未来发展趋势相结合,注重知识的系统性和实用性,强调过程评价与结果评价相结合,确保学生达到预定的学习目标。
二、教学内容1. 空调制冷原理概述:包括制冷剂的选择、热力学循环(卡诺循环、逆卡诺循环)的基础知识,以及空调系统的基本构成。
- 教材章节:第三章“制冷原理与制冷剂”2. 制冷循环关键部件:深入讲解压缩机、冷凝器、膨胀阀、蒸发器等部件的结构、工作原理及其在制冷系统中的作用。
- 教材章节:第四章“制冷系统关键部件”3. 制冷剂的热力学性质:探讨制冷剂的压力-温度图、焓-熵图,以及制冷剂在系统中的状态变化。
- 教材章节:第五章“制冷剂及其热力学性质”4. 空调制冷系统的能量转换与效率:包括能效比(COP)的计算,以及影响制冷效率的因素分析。
汽车空调制冷系统匹配设计
![汽车空调制冷系统匹配设计](https://img.taocdn.com/s3/m/ef4ac57f0a4c2e3f5727a5e9856a561252d321cf.png)
2、参数设定:根据汽车的实际使用环境和负荷要求,设定制冷系统的制冷 量、制冷剂流量、温度等参数。
3、设备选型:根据制冷系统的参数要求,选择合适的压缩机、冷凝器、蒸 发器等设备,并确保其性能和可靠性。
1、更高效的制冷技术:随着新材料和新技术的出现,未来汽车空调制冷系 统可能会采用更高效的制冷技术,提高制冷效果。
2、智能化控制:通过引入人工智能和大数据技术,实现汽车空调制冷系统 的智能化控制,提高驾乘人员的舒适性和经济性。
3、新能源驱动:随着新能源汽车的普及,未来汽车空调制冷系统可能会采 用新能源驱动,降低能源消耗和排放。
相关技术
汽车空调制冷系统匹配设计涉及到众多技术领域,包括热力学、流体动力学、 机械设计等。其中,热力学是汽车空调制冷系统的基础,涉及制冷剂的物性、热 力过程和热力学循环等;流体动力学则制冷剂在系统中的流动与传热特性;机械 设计则涉及到制冷剂的储存、压缩、冷凝和蒸发等设备的结构和运动。
系统设计
在进行汽车空调制冷系统匹配设计时,需要遵循以下步骤:
五、总结
汽车空调制冷系统的常见故障诊断和维修是非常重要的。通过了解故障现象 和掌握诊断方法,车主可以及时发现并解决故障问题,确保车内环境的舒适度和 行车安全。此外,车主还应注意空调制冷系统的日常维护,定期检查、清洗和更 换部件,以预防故障的发生。在维修时,应选择正规的维修店或4S店进行维修, 避免因操作不当导致故障加重或影响车辆的使用寿命。
感谢观看
参考内容
汽车空调制冷系统是汽车的重要组成部分,它的作用是为乘客提供舒适的车 内环境。然而,当空调制冷系统出现故障时,车内环境可能会变得不舒适,甚至 影响行车安全。本次演示将介绍汽车空调制冷系统的常见故障及其诊断方法,帮 助车主更好地维护空调制冷系统。
某啤酒工厂制冷系统设计
![某啤酒工厂制冷系统设计](https://img.taocdn.com/s3/m/43d93ec1b14e852458fb5725.png)
某啤酒工厂制冷系统设计摘要:通过啤酒厂设计实例,介绍了啤酒厂生产工艺的制冷要求、制冷站设备选型及制冷系统流程以及冰蓄冷在氨制冷系统里面的应用。
关键词啤酒工厂制冷站氨制冷冰蓄冷0引言随着中国经济的发展,人民生活水平的提高,啤酒作为人民大众最喜爱的饮料之一,啤酒生产也得到了很大发展。
在啤酒的生产工艺中,从麦芽冷却、发酵、滤酒到酵母扩培,无一不用到制冷介质。
制冷介质的满足生产温度要求以及稳定输送将影响到整个啤酒生产线的正常运行。
设计一套配置合理、运行经济稳定的制冷系统在新建啤酒工厂的设计中显得尤为重要。
本文叙述的是一个典型的啤酒生产工厂的设计实例,该项目中采用的冰蓄冷系统,对老制冷站房的改造也是可行的。
1工程概况某啤酒工厂新建年产10万千升(一期5万千升)啤酒工程项目,工艺生产需要-4℃的乙二醇溶液以及2℃~4℃的冰水,满负荷时总需冷量为2000kW,制冷系统应满足非全天使用但在整个啤酒旺季可能经常使用的情况。
2制冷站房设计制冷站靠近负荷中心糖化车间、发酵罐场设置。
氨制冷站属于乙类站房,宜单独设置。
制冷站考虑生产线扩容需要,预留压缩机及蒸发器位,面积约430平方米。
冰蓄冷间,于制冷站外独立搭建,蒸发式冷凝器放置在冰蓄冷间屋面。
站房的设计要点:2.1 本冷冻站按照《建筑设计防火规范》(GB50016-2006)的规定,生产的火灾危险性为乙类。
应设置事故通风系统。
2.2 站房应避免西晒。
室内净高不小于6m,建筑泄爆面积不小于站房地面面积的10%。
2.3 冷冻站的电源应在机房内外均能切断,但此时事故电源不得中断。
2.4 在压缩机及设备间的主要通道和站房的主要出入口设事故照明,所有设备及电气元件均要求防爆。
2.5 制冷站宜配套设置维修间及控制室(或是值班室)。
3制冷系统3.1冷却介质3.1.1酿造冰水:糖化车间内冷却麦汁用冰水。
将温度为96℃的麦汁与制冷站内输送来的2℃~4℃的酿造冰水进行热交换,麦芽冷却至大约7~9℃,而水升温至80℃。
大型冷库制冷系统设计方案
![大型冷库制冷系统设计方案](https://img.taocdn.com/s3/m/96ff274ca66e58fafab069dc5022aaea998f4108.png)
大型冷库制冷系统设计方案一、项目规模本项目为高低温综合冷链配送中心,冷库总占地面积为6948㎡,设计可储存货量为7000吨。
设计日周转率为存货量的10%,即日进出货量为700吨,则年周转货量约为20万~25万吨。
序号库温(℃)面积(㎡)高度(m)库容(m³)设计存货量(t)#3栋01低温库-24100611.65125752012#3栋02低温库-24101011.65126252020#3栋01高温库0~41017 4.655593.5895#3栋02高温库0~4788 4.654334693#2栋01低温库-24265 4.651590254#2栋02低温库-24266 4.651596255#2栋高温库0~4948 4.655688910合计7040二、设计依据用户提供的相关技术参数、厂区及冷库平面方案图及国家有关规范:[1]《民用建筑供暖通风与空气调节设计规范》GB50736-2012[2]《冷库设计规范》GB50072—2021[3]《室外装配冷库设计规范》SBJ17-2009[4]《设备及管道保温技术通则》GB4272-92[5]《冷库制冷设计手册》商业部设计院著[6]《冷库及冷藏技术》[7]《冷库制冷供液设计》[8]《民用建筑暖通空调设计技术措施》[9]《制冷设备、空气分离设备安装工程施工及验收规范》GB 50274-2010[10]《氢氯氟烃,氢氟烃类制冷系统安装工程施工及验收规范》SBJ14-2007三、制冷设计1.计算方法如何选择冷库适配的制冷设备需要对该冷库的冷量需求进行核算,不同的冷库的热负荷来源不尽相同。
食品冷库的热量来源主要有以下几个方面:1维护结构传热引起的耗冷量Q1:库外空气和太阳辐射透过围护结构向库内传热。
2食品冷加工耗冷量Q2:食品在冷却、冻结和冷藏过程中释放的显热、潜热和呼吸热。
3通风换气耗冷量Q3:蔬果类冷库需要向库内通入新风,新风温度一般高于库内温度所带来的热量。
冷冻水制冷系统设计-课程设计
![冷冻水制冷系统设计-课程设计](https://img.taocdn.com/s3/m/6535b6820b4c2e3f572763db.png)
冷冻水制冷系统设计摘要:为了理论与实际相结合,更好的掌握《制冷技术》这门课程的知识,现对其进行冷冻水制冷系统的课程设计。
设计内容包括以下几点:1、根据设计要求和任务,合理拟定制冷系统总体方案。
2、根据制冷系统设计方案要求,选择制冷剂、制冷压缩机、节流阀及制冷辅助设备等部件。
3、依据热力学、传热学及流体力学原理,设计计算制冷换热器(主要是冷凝器和蒸发器)。
4、制冷管道计算及保温层结构、厚度等设计。
5、绘制制冷系统流程图和机器设备布置图,并注明有关尺寸和技术要求。
设计资料:冷冻水工艺需冷量Q=(150+50×N)KW,=150+50 34=1850KWN=34,Q载冷剂为冷媒水:供水温度t1=+5℃;回水温度t2=+10℃,冷媒水采用闭式系统。
冷凝器采用水冷却式,冷却水进水温度tw=32℃。
关键字:蒸发器;压缩机;保温层;冷负荷目录第一章设计说明 (2)1.1确定制冷剂种类和系统型式 (2)1.2制冷系统的设计工况确定 (2)1.3制冷系统热力计算 (2)1.4选配制冷压缩机 (3)第二章蒸发器与冷凝器的设计选型 (5)2.1卧式壳管式蒸发器的计算 (5)2.2冷凝器设计 (7)第三章制冷辅助设备选型 (11)3.1油分离器的选择 (11)3.2贮液器的选择 (12)3.3空气分离器的选择 (12)3.4紧急泄氨器的选择 (13)3.5 氨液分离器的选择 (13)3.6 集油器的选择 (14)第四章冷冻站制冷设备布置 (15)4.1冷冻站位置选择 (15)4.2制冷设备的布置 (15)第五章制冷系统的管路设计 (17)5.1管路布置要点 (17)5.2 管路管径的选择 (18)5.3设备及管道的保温 (21)设计体会 (23)参考文献 (24)第一章 设计说明1.1确定制冷剂种类和系统型式制冷剂为氨;单级蒸汽压缩式制冷;供冷方式为直接供液;冷凝器的冷却方式为水冷却。
1.2制冷系统的设计工况确定1.蒸发温度t o :一般比冷冻水供水温度低3~5℃,由所给条件知冷冻水供水温度为t 1=5℃,所以t o =5-5=0℃。
冰箱制冷系统设计说明书
![冰箱制冷系统设计说明书](https://img.taocdn.com/s3/m/df97210ba7c30c22590102020740be1e650eccc6.png)
电冰箱设计方案电冰箱方案图设计一台直冷式BCD—195中温型电冰箱。
1.电冰箱的总体布置箱体设计要求及形式冰箱箱体尺寸见下表。
箱体尺寸箱体结构:外形尺寸为545mm*545mm*l332mm(宽*深*高)。
绝热层用聚氨酯发泡,箱体结构图如下图所示。
箱体结构图2.电冰箱热负荷计算.电冰箱各面的绝热层厚度(mm)2。
1冷冻室热负荷Q F(1)箱体的漏热量Q1冷冻室箱体各表面的传热量Q1=4.296+5。
98+3.275+2.98+4。
218=21。
379W(2)门封漏热量Q2Q2=0.0406·L·(t o—t i)=0.0406×2(545+356)×10—3[32-(18)]=3。
66W(3)除露管漏热量Q3Q3=(L D/1。
79)×0。
2294×(t D—0.84t o-0。
16t F)×P r={[2(545+356)+545] ×10-3/1.79}×0。
2294×(120—0.84×32—0。
16×(—18))×35%=10.1W冷冻室总热负荷Q F=Q1+Q2+Q3=21.379+3。
66+10。
1=35.14W2。
2冷藏室热负荷Q R(1)箱体的漏热量Q1冷藏室箱体各表面的传热量Q1=-1.94+10。
07+6.219+3。
89+3。
05=21。
289W(2)门封漏热量Q2Q2=0。
0406·L·(t o-t i)=0.0406×2(865+545) ×10-3(32-5)=3。
1W冷藏室总热负荷Q R=Q1+Q2=21.289+3。
1=24。
389W电冰箱总热负荷为Q=1。
2(Q F+Q R)=1.2(35.14+24。
389)=71.43W(考虑一定的热负荷余量,乘以一个放大系数1。
2。
)3.箱体外表面凝露校核箱体外表面凝露校核也分冷冻室和冷藏室进行。
制冷系统方案设计(好)
![制冷系统方案设计(好)](https://img.taocdn.com/s3/m/236f183bcec789eb172ded630b1c59eef8c79ad0.png)
制冷系统⽅案设计(好)第⼀章制冷系统⽅案设计第⼀节制冷系统慨述⼀、制冷系统的定义及分类1.定义任何使⽤外部能量不断把温度低的物质的热量档蛤温度较⾼的物质的系统称制冷系统。
2.分类按上述定义,制冷系统可分为蒸汽制冷系统,空⽓制冷系统和热电制冷系统。
其中蒸汽制冷系统⼜可分为:(1)蒸汽压缩式;(2)蒸汽喷射式;(3)蒸汽吸收式。
蒸汽制冷系统是利⽤液体汽化成蒸汽时要吸收热量的原理来实现制冷的。
可以说蒸汽制冷系统是⽬前使⽤得最为⼴泛的制冷系统*特别是冷库中的制冷装置,绝⼤部分是采⽤蒸汽压缩式制冷系统,因此本教材所述及的范围也只限于蒸汽压缩式制冷系统的设计。
⼆、蒸汽压缩式制冷系统基本构成1.单级压缩系统的基本构成⑦蒸发器,②压缩机,②冷凝器,④节流阀这是单级庄缩系统必不可少的四⼤部件,如图1—1⼀I所⽰。
这些设备之间⽤管道依次连接形成⼀个封闭系统,制冷剂在系统中经过压缩、冷凝、节流、汽化这样四个过程,完成了⼀个循环。
2.双级压缩系统的基本构成①蒸发钳,②低压级压缩机(缸>,⑧中间冷却器,④⾼压级压缩机<缸)、⑤待凝器,⑥节流阀,这是双级压缩系统必不可少的六部件,把它们依次⽤管道连接起来,就构成了⼀个最基本的双级压缩系统,如图1—1—2所⽰。
来⾃蒸发器的制冷剂先经低压级压缩机(缸)压缩⾄中间压⼒,低压级排出的过热⽓体在冷凝器中被等压冷却⾄饱和蒸汽,然后再⼊⾼压级压缩机被压缩⾄系统的冷授压⼒,最后经节流阀进⼊蒸发器去执⾏制冷任务。
3.单、双级综合系统的基本构成冷库中,蒸汽压缩制冷装置并不总是纯粹的单级或纯粹的双级系统,更多的情况是两者并存的综合系统,如图I—I⼀3所⽰,由图可见:综合系统实际上是单级系统和双级系统共同并联到⼀个冷凝器上的综合体。
从理论上来讲,⼀个系统只要有上述的基本部件就可以⼯作了。
但在实际的制冷装置中,为了提⾼运⾏的经济性和保证操作管理的安全可芹.除T这些部件外,还增设f许多其它的辅助设备,这些辅助设备有:油分离器、⾼压贮液器、汽液分离设施、排液捅、柴油器、空⽓分离器、加氨站和各种⾼、低庆调节站。
制冷系统及6缸制冷压缩机设计
![制冷系统及6缸制冷压缩机设计](https://img.taocdn.com/s3/m/c28d1e1259eef8c75fbfb3f9.png)
前言1.介绍当今制冷系统的发展状况2.压缩机发展状况及特点。
3.设计压缩机的简要过程。
第一章制冷系统一、制冷系统组成制冷系统由制冷主系统制冷辅助系统电器控制三大部分组成。
制冷主系统由压缩机、冷凝器、蒸发器、膨胀阀组成;制冷辅系统由储液器、干燥过滤器、截止阀、视液镜、电磁阀组成;电器控制部分由电动机等组成。
1.1制冷主系统各部分作用1.压缩机作用:消耗一定的外界功率后,把蒸发器中气态制冷剂吸入,并压缩到冷凝压力后排入冷凝中。
由液态变为气态;它起着压缩和输送制冷剂蒸汽作用;它是低压升高压(气体)(1)压缩机的工作原理压缩机是制冷系统的心脏,它从吸气管吸入低温低压的制冷剂气体,通过曲轴转动带动活塞对其进行压缩后,向排气管排出高温高压的制冷剂气体,为制冷循环提供动力,从而实现压缩→冷凝→膨胀→蒸发( 吸热) 的制冷循环。
压缩机一般由壳体、电动机、缸体、活塞、控制设备( 启动器和热保护器) 及冷却系统组成。
(2)压缩机的种类压缩机都是容积式,其中又可分为往复式和旋转式。
往复式压缩机使用的是活塞、曲柄、连杆机构或活塞、曲柄、滑管机构,旋转式使用的是转轴曲轴机构。
按应用范围又可分为低背压式、中背压式、高背压式。
低背压式( 蒸发温度-35 ~-15 ℃) ,中背压式( 蒸发温度-20 ~0 ℃) ,高背压式( 蒸发温度-5 ~15 ℃。
2.蒸发器作用:(1)蒸发器:制冷剂在其中沸腾(蒸发)吸收被冷却介质的热量后,由液态变为气态;它是低温低压的(对外供冷)。
(2)膨胀阀(节流阀):将冷凝后的高压液态制冷剂通过节流作用,降低到蒸发器所需的压力后,送入蒸发器中.(3)冷凝器:气态制冷剂在冷凝中将热量传递给冷却介质(常温水或空气)后,冷凝成液体。
制冷主系统工作原理:用管道依次将这些设备连接,形成一个封闭式系统。
系统工作时,压缩机将蒸发器所产生的低温低压制冷剂蒸气吸入汽缸内,经压缩机压缩,压力升高(温度也升高)到稍大于冷凝器内的压力时, 将其汽缸内的高压制冷制蒸气排到冷凝器中。
制冷系统管路系统设计总原则1
![制冷系统管路系统设计总原则1](https://img.taocdn.com/s3/m/ed0f000b453610661ed9f456.png)
空调管路配管规定1. 制冷系统管路系统设计总原则:1.1. 按既定的制冷剂系统流程配置管路系统,以使系统按所要求的循环,按预期效果运行。
1.2. 保证系统运行安全,如:压缩机不发生回液、压缩机不发生失油等现象。
1.3. 管路系统走向力求合理,尽量减小阻力,尤其应优先考虑减少吸气管的阻力,阀件配置合理,便于操作与维修。
1.4. 根据制冷剂特点选用管材.阀门及仪表。
小型氟利昂系统采用铜管,大型系统可采用无缝钢管。
各管路管径必须符合设计要求。
1.5. 由于R22与润滑油有限溶解,所以在配管时,要确保压缩机回油充分,同时防止大量油液涌入压缩机发生液击现象。
2. 吸气管设计2.1. 为了保证系统回油,吸气管有向下朝向压缩机的0.01坡度。
同时为增大制冷剂速度,可减小立管管径,增大水平管管径。
2.2. 变负荷系统:当蒸发器不在压缩机上面时,蒸发器出口(回压缩机)管路要向下打一个U型弯(即存油弯),U型弯高度为弯管最小高度即可,以保证在负荷减小时,存油弯内的油量积累到隔断管路时,润滑油在压差作用下可返回压缩机。
2.3. 无汽液分离器的系统:当蒸发器在压缩机上部时,蒸发器回压缩机管路应该先向上打一个U型弯再回压缩机,U型弯要保持一定高度,高于蒸发器中部以上,避免在停机时蒸发器液体进入压缩机。
蒸发器自身带有此U型弯就不用再考虑。
2.4. 多台并联压缩机需使全部压缩机在同一吸气压力下运转,且使运转中的压缩机能有相同比例的回油。
2.4.1. 吸气总管位置要比压缩机吸气口高;2.4.2. 吸气分支管从吸气总管旁边引出,并且和总管同样尺寸,到压缩机吸气口之前不得缩小。
2.4.3. 吸气总管水平分支时,在各分支点打一个向下的U型弯,以防止润滑油流入不工作的压缩机的吸气口。
2.4.4. 大小不相同的压缩机都能保持在所推荐的曲轴箱工作油位。
相同的压机保证机座高度相同,均油管位置要比压缩机均油口的高度略低。
2.4.5. 当多台相同型号的压机并联时,吸气管的长度和折弯形式尽量保证一致。
冷库工程制冷系统设计方案
![冷库工程制冷系统设计方案](https://img.taocdn.com/s3/m/a4f866b84793daef5ef7ba0d4a7302768e996fcc.png)
冷库工程制冷系统设计方案第一节绪论1.1 项目背景冷库工程在农业、食品加工、制药、化工、机械制造等领域应用广泛,它可以为原料、成品或半成品的储存提供恒定的低温或者恒湿环境。
本文将对冷库工程中的制冷系统进行设计,并详细介绍其构成、选型、布局、运行管理等内容,以期为冷库工程的建设及运营提供指导。
1.2 研究目的根据不同的应用需求,本文将研究设计一套符合冷库工程实际需要的制冷系统方案,使其在满足要求的同时具有较高的能效比、运行稳定性、安全性和可维护性。
1.3 布局与要求本文将以具体的冷库工程实例为基础,根据冷库的库容、使用温度、使用范围等要求,进行具体的制冷系统设计。
其中,设计内容包括压缩机、冷凝器、蒸发器、膨胀阀等冷库制冷系统的关键设备。
同时,还将结合系统运行特点,对系统的控制方式、运行参数、监测手段等进行深入的研究。
第二节制冷系统工艺流程设计2.1 制冷系统的工艺流程一般而言,冷库工程中使用的制冷系统主要包括制冷剂循环、吸收式制冷系统等。
其工艺流程大致为:压缩机—冷凝器—膨胀阀—蒸发器—冷凝器。
值得注意的是,不同种类的冷库、不同的制冷温度要求,需要的制冷系统也不尽相同。
因此,需要根据不同的情况进行具体的制冷系统设计。
2.2 制冷系统参数及要求冷库工程制冷系统设计需要充分考虑到库房的使用要求和实际工艺要求。
比如,对于食品冷库要求对温度和湿度的要求较高;对于制药冷库要求对温度的稳定性和洁净度要求较高。
因此,在设计制冷系统时需要全面考虑实际的使用需求,确定合适的制冷系统参数和要求。
第三节制冷系统关键设备及选型3.1 压缩机压缩机是冷库制冷系统中的核心设备,其性能将直接影响到整个制冷系统的运行效果。
在选择压缩机时,需要综合考虑其制冷量、能耗、可靠性等指标。
一般情况下,采用螺杆式或螺杆式压缩机能够满足较大冷量的要求。
3.2 冷凝器冷凝器是将高温高压的冷媒气体冷却成液体的设备,其性能直接关系到制冷系统的能效比和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章制冷系统方案设计(6学时)
主要内容:制冷系统的基本构成;蒸汽压缩式制冷装置原理;制冷系统方案设计;提高制冷效率的基本措施;制冷系统的安全保护措施;制冷机器、设备的配置方案;制冷装置自控方案。
学习要求:熟悉制冷系统的基本构成;掌握制冷系统方案设计;熟悉制冷系统的安全保护措施;熟悉制冷机器、设备的配置方案;熟悉制冷装置自控方案。
主要内容:活塞式制冷压缩机的选型计算;螺杆式制冷压缩机的选型;冷凝器的选型计算;冷却设备的选型计算;节流阀的选型计算;辅助设备的选型计算。
学习要求:掌握活塞式制冷压缩机的选型计算;掌握螺杆式制冷压缩机的选型;掌握各类冷凝器的选型计算;掌握各类冷却设备的选型计算;掌握节流阀的选型计算;掌握辅助设备的选型计算。
课程名:食品制冷系统设计(Design of Food Refrigerating System)学分:3学时:48
课程类别:专业教育选修课
开课学院:食品学院所属基层教学组织:
曾任课教师:
课程大纲:
一、课程性质与目的
本课程是食品物流工程专业的一门专业教育选修课。课程目的在于使学生了解和掌握:制冷装置设计的基本原理与方法。通过本课程的学习,能够按照食品冷藏加工工艺的要求,把制冷机器、设备进行组合,构成技术先进、工艺合理、操作方便,运行安全、节能,建设费用合理的制冷系统(重点是以氨为工质的制冷系统)。为今后进行课程设计、毕业设计以及将来的工程设计打下理论基础。
第四章制冷管道设计计算(4学时)
主要内容:制冷管道的阻力计算;制冷管道设计计算;管道的伸缩和补偿;管道的隔热。
学习要求:掌握制冷管道的阻力计算;掌握制冷管道设计计算;熟悉管道的伸缩和补偿的方法;掌握管道的隔热设计。
第五章机房设计(10学时)
主要内容:机房的建筑要求;机器设备和管道的布置原则;机器、设备和管道的布置。
平时作业以计算题、小型制冷系统的分Байду номын сангаас讨论为主。旨在加深学生对所学知识的理解、运用,拓宽学生的知识面。
五、教学方法
本课程采用的教学媒体主要有:文字教材(包括主教材和学习指导书)、课件(包括主讲老师对全书的系统讲授,还有重要内容的文字提示与电子教学幻灯片)以及网上辅导(主要采用E-MAIL形式)。
考试主要采用闭卷方式,考试范围应涵盖所有讲授内容,考试内容应能客观反映出学生对本门课程主要概念的记忆、掌握程度,对有关理论的理解、掌握及综合运用能力。
总评成绩:出勤占20%、平时表现占10%、闭卷考试占70%。
六、参考教材和阅读书目
参考教材:
庄友明编著《制冷装置设计》厦门:厦门大学出版社,2006年12月第2版。
阅读书目:
商业部主编《冷库制冷设计手册》北京:农业出版社,1991年第2版。
商业部主编《冷库制冷技术》北京:中国财政经济出版社,1980年第1版。
二、课程简介
本课程为专业教育选修课,以建筑学、工程热力学、传热学、流体力学、制冷原理与设备等多门学科为基础,介绍了制冷系统方案设计,制冷负荷计算,制冷机器设备的选型计算,制冷管道设计计算,机房设计,冷间设备布置及气流组织设计,施工图的设计深度,制冷装置的安装与调整等。是食品制冷系统设计的理论基础。
三、教学内容
第二章制冷负荷计算(6学时)
主要内容:计算的基础资料和一般规定;冷间内各项冷负荷的确定;冷却设备负荷和机械负荷的计算;小型冷库制冷负荷估算图表。
学习要求:掌握设计参数的确定;掌握冷库公称容积与计算吨位的关系;掌握冷间内各项冷负荷的计算;掌握冷却设备负荷和机械负荷的计算。
第三章制冷机器设备的选型计算(8学时)
主要内容:制冷机器设备的安装;制冷管道的制作及安装;制冷设备及管道的隔热;制冷装置的调整及试运转。
学习要求:熟悉制冷机器设备的安装工艺;熟悉制冷管道的制作及安装工艺;熟悉制冷设备及管道的隔热施工工艺;熟悉制冷装置的调整及试运转。
四、教学基本要求
教师在课堂上应对食品制冷系统设计的基本概念、规律、原理和方法进行必要的讲授,并详细讲授每章的重点、难点内容;讲授中应注意理论联系实际,加深学生对有关概念、理论等内容的理解,并应采用多媒体辅助教学,加大课堂授课的知识含量。
第七章制冰(4学时)
主要内容:盐水制冰系统;快速制冰系统;冰的输送。
学习要求:了解盐水的参数要求;了解制冰间的设备与工艺流程;了解制冰间的建筑要求;熟悉盐水制冰系统;熟悉快速制冰系统;了解桶式快速制冰机、沉箱管组式快速制冰机、管冰机、片冰机、板冰机的结构与工作原理;了解块冰的输送、碎冰的输送。
第八章制冷装置的安装与调整(4学时)
学习要求:熟悉机房在冷库总平面上的布置原则;熟悉机房的组成和机房的建筑形式;掌握机器设备和管道的布置原则;掌握机器、设备和管道的布置。
第六章冷间设备布置及气流组织(6学时)
主要内容:冷却间设计;冻结间设计;冷却物冷藏间设计;冻结物冷藏间设计;贮冰间(冰库)设计。
学习要求:掌握肉类冷却间、果蔬类冷却间、鲜蛋类冷却间的设计;掌握冻结间的设计;了解强吹风隧道网带式速冻装置、强吹风螺旋网带式速冻装置、强吹风链传动隧道式速冻装置的结构和工作原理;掌握冷却物冷藏间的设计;掌握冻结物冷藏间的设计;了解夹套式冷库的设计原理;掌握贮冰间(冰库)的设计。
湖北工业设计院《冷藏库设计》北京:中国建筑工业出版社1980年第1版。
七、本课程与其它课程的联系与分工
本课程是食品物流工程专业的专业教育选修课程。以工程热力学、传热学、流体力学、制冷原理与设备等多门学科为基础。通过本门课程的学习,学生应会分析和设计食品制冷系统,为后续的课程设计和毕业设计提供扎实的理论基础。