医用物理学复习资料
医用物理学,期末复习整理,
第八、九章 振动波动和声
简谐振动的运动方程 速度
加速度
简谐振动的能量
x Acos( t )
dx A sin(t )
dt
a
d2x dt 2
A 2
cos( t
)
E
Ep
Ek
1 2
kA2
1 2
m 2 A2
1 2
mm2
同方向、同频率简谐振动的合成:
A A12 A22 2A1A2 cos(2 1)
q C et / RC Qet / RC
UC
q C
(1 et / RC )
i dq et / RC
dt R
UC
q C
et / RC
i dq et / RC
dt R
例:电量Q(Q>0)均匀分布在长为L的细棒上,在细棒的延长 线上距细棒中心O距离为a的P点处放一带电量为q(q>0)的点电 荷,求带电细棒对该点电荷的静电力。
解:
f '' u v f uv
330 v
,
110
100
330 v
第五章 静电场
电场强度的计算
电势的计算:
E
dE
1 4πε0
V
dq r2
r
1
ΦE
S
E
dS
ε0
qi
( S内)
UP
1 4πε0
dq r
U P E dl
P
导体的静电平衡条件:
(a) 导体内电场强度处处为零; (b) 导体是个等势体,导体表面为等势面; (c) 导体表面场强处处与导体表面正交。
例题:一个敞口圆筒容器,高度20cm,直径10cm,圆筒底部开一横截面
医用物理学复习资料
流体的流动一、 基本概念1 理想液体2 稳定流动3 层流与湍流 流量 流阻 粘度二、基本定律及定理 1 *连续性方程2211v s v s Qsv ==2 *柏努利方程 2222121122121 21gh v p gh v p E gh v p ρρρρρρ++=++=++3 *泊肃叶定律 lP P r Q RP Q ηπ8)(214-=∆=4 牛顿粘滞定律 dxdvs F η=三、重要结果及结论1 小孔流速问题 h g v ∆=22 测速、测流量问题 (皮托管,汾丘里管) 3实际流体的能量损耗)21()21(2222121112gh v p gh v p E ρρρρ++-++=∆4雷诺数及判据 ηρvr=Re 四、注意的问题空气中有大气压 Pa P 5010013.1⨯=水的密度 3kg/m 1000=ρ空吸与虹吸现象振动和波一、 基本概念1 振动 简谐振动 谐振动的矢量表示2 振幅 初相位 圆频率 周期3 波速 波长 频率 v u λ=4 振动的合成(同方向、同频率)5 相位差 同相 反相6 波动 波动方程的物理意义7 波的叠加原理 二、 基本规律及重要公式1*简谐振动方程 )cos(ϕω+=t A x220)(x v tg v x A ωϕω-=+=2 谐振动能量 2222121A m kA E ω==3 *简谐波的波动方程 ])(cos[ϕω+-=uxt A y4波的强度公式 2221ωρuA I =球面波212211221)(,r r I I r r A A == 5 惠更斯原理6*波的干涉 )(21212r r ---=∆λπϕϕϕ干涉加强2112122)(2A A A k r r +==---=∆πλπϕϕϕ干涉减弱211212)12()(2A A A k r r -=+=---=∆πλπϕϕϕ三、注意的问题1、已知初始条件及振动系统性质,求振动方程 (求?=ϕ)2、已知振动方程,求波动方程 (确定时间上是落后还是超前 ?ux) 3、两振动、波动叠加时,相位差的计算声波一、基本概念1 声速u2 振动速度 声压 声特性阻抗 Zp v A v u Z mm m ===,,ωρ 3 *声强 声强级 响度 响度级 )(lg 1022102222dB I IL Zp Z p uA I e m ====ωρ4 *听阈 痛阈 听阈区域二、重要公式1 声波方程]2)(cos[)](cos[πωωρω+-=-=u y t u A p uyt A x2 *多普勒效应公式 0v V u V u v so±=正负号的确定 : 0远离来确定时,根据相互靠近还是、当≠s o V V 三、注意的问题1 两非相干的声波叠加时,声强可简单相加,而声强级不能简单相加2 标准声强 2120/ 10m w I -=分子动理论一、 基本概念1 物质的微观理论物质是由大量的分子、原子所组成,是不连续的 分子是在作无规则的运动-----热运动 分子之间有相互作用2 表面张力 表面能 表面活性物质 表面吸附3 附加压强4 润湿与不润湿 接触角 毛细现象 二、 重要公式 1 *表面张力SE ∆=∆=σσLF2 *附加压强 )(4)(2双液面单液面Rp Rp σσ==3 *毛细现象 grh ρθσcos 2=三、注意的问题1 表面张力产生原因2 气体栓塞3 *连通器两端大、小泡的变化4 水对玻璃完全润湿,接触角为零静电场一、基本概念 1 电场强度 q=2 电通量 ⎰=Φse Eds θcos3 电势能 ⎰∞∞==rr r Edl q A W θcos 04 电势 ⎰∞==rr r Edl q W V θcos 0电势差 ⎰=-=bab a ab Edl V V U θcos *电场力作功)(0b a ab V V q A -=5 *电介质的极化 电极化强度Vpp i∆=∑ 电极化率χ E p 0χε=6 介电常数rr εεεχε01=+=7 电场能量密度 ,212E e εω=电场能量⎰=Ve dV W ω 二、基本规律1 高斯定理1cos εθ∑⎰⎰==ni iqEds2环路定理 0cos =⎰θEdl 3*场强叠加原理 ∑==ni i14*电势叠加原理 ∑==ni iVV 05场强与电势的关系 n dndVE -= 6*有介质时:介质中的场强与外场强的关系rE E ε0=, 电容关系0C C r ε=三、场强、电势的计算 1 *点电荷 场强 2041r q E πε=电势 rq V 041πε=2 *点电荷系 电偶极子 场强 )(41 )( 2413030中垂线,延长线r p E r p E πεπε==电势 cos 4120θπεrpV =电偶极矩ql p = 3 连续带电体均匀带电长直棒 aE λπε041=均匀带电圆环 )1(222xR x q E +-=πε均匀带电无限大平板 02εσ=E 平板电容器 0εσ=E )11(`σεσr-= E 0`εσx p ==均匀带电球壳 )(0),(4120R r E R r r qE <=>=πε均匀带电球体 )(41),(412030R r r q E R r R qr E >=<=πεπε直流电一、基本概念1电流强度 dtdqi = 2电流密度 dsdi j =3 *充、放电时间常数 RC =τ二、基本定律及重要关系式1 电流密度与漂移速度关系 v v Zen j e ρ==2 *欧姆定律微分形式 E j σ=3 *一段含源电路欧姆定律 ∑∑-=iiiab R I U ε4 *节点电流定律 0=∑iI5 *回路电压定律 0=-∑∑iiiR I ε6 充放电规律充电: )1(RCt e C q --=ε)1(RCt c e u --=εRCt c eRi -=ε放电: RCt eC q -=εRCt c eu -=εRCt c eR i -=ε三、 注意问题1、 *一套符号规则2、 解题后对解要说明几何光学一、基本概念1 焦点 焦距 焦度2 近点 远点 明视距离 视力 *近视眼 *远视眼 散光眼3 线放大率 hh m '=, 单薄透镜p p m '-=4 *角放大率 βγα=(单放大镜f 25=α, *显微镜 目物f f L m M 25-==α)5 *分辨本领 AN n z .61.0sin 61.0λβλ==6 数值孔径 βsin ..n A N = 二、重要关系式1单球面 *成像公式rn n p n p n 12'21-=+ 焦距公式 12221211,n n rn f n n r n f -=-=焦度公式 rn n 12-=Φ 2 共轴球面系统 厚透镜 (方法:单球面依次成像) 3薄透镜 *成像公式f p p 111'=+ *焦距公式 12100)]11([---=r r n n n f 焦度公式 f1=Φ 4薄透镜组 一般情形: (方法:薄透镜依次成像)密接情形:fp p 111'=+, 21111f f f += 三、 注意的问题1 *符号规则2 *依次成像时:前次所成的像作为后次成像的物的虚实3 系统所成像的性质要说明(位置、大小、虚实、正倒)一、基本概念1 相干光 *光程 干涉 衍射 偏振2 *半波损失 *半波带3 自然光 偏振光 布儒斯特角 双折射 二、基本规律及重要关系式1 干涉 *杨氏双疑缝干涉 亮纹 ) .......2,1,0( sin =±=k k d λθ 暗纹 ) ........2,1( 2)12(sin =-±=k k d λθ*薄膜干涉 总的光程差=实际光程差+附加光程差 加强 ) 2,1,0( ==∆k k s λ 减弱 ) 2,1,0( 2)12(=+=∆k k s λ2 衍射 单缝衍射 *暗纹 ) .......2,1( sin =±=k k a λθ 亮纹 ) ......2,1( 2)12(sin =+±=k k a λθ圆孔衍射 第一暗环满足:暗纹 22.1sin λϕ=D 3 光栅 光栅方程 *亮纹 ) .......2,1,0( sin =±=k k d λθ 4 偏振 *布儒斯特定律 120n n tgi =*马吕斯定律 θ20cos I I =四、 注意的问题1 薄膜干涉时光在界面反射有无半波损失2 单缝衍射考虑衍射条纹亮、暗的公式与干涉相反,取决于半波带的奇偶性3 光栅存在缺级、最大级数问题4 自然光通过偏振片光强减小一半一、基本概念1 热辐射 单色辐射出射度 单色吸收率2 黑体 *普朗克量子假设3 光子 逸出功 临阈频率 波粒二象性4 自发辐射 *受激辐射 粒子数反转 光放大 亚稳态5 光电效应 康普顿效应 二、基本规律1 基尔霍夫定律λλλ0M a M i i = 2 *维恩位移定律 Tb m =λ 3 *斯特藩-波尔兹曼定律 4)(T T M σ= 4 *爱因斯坦光电效应方程 A mV hv +=2215 *波粒二象性λh P hvE ==三、注意的问题 1 有关物理常数2 *激光器的组成及特性X 射线一、基本概念1 强度 *硬度 *轫致辐射2 *线衰减系数 质量衰减系数 质量厚度x x m ρ= 半价层ux 2ln 21=二、重要关系式1 强度 ii hv n I ∑= 2 *连续谱的最短波长 )()(242.1nm KV U m =λ 3 *强度衰减规律 m m x u ux e I e I I --==004 *低能时质量衰减系数的表示式 3λαkZ u m =三、注意的问题1 *X 射线谱的特点:连续谱与管压有关,与靶材料无关标识谱与靶材料有关,与管压无关2 X 射线的基本性质3 管电压、管电流反映的物理实质 管电流----X 射线的强度管电压----X 射线的硬度原子核和放射性一、基本概念1 原子质量单位 核素 *同位素 质量亏损 比结合能2 放射性 *核衰变 俄歇电子3 *衰变常数 *半衰期 平均寿命 λλτ2ln ,12/1==T *活度4 电离比值 射程二、重要关系式1 核半径 310A r r = 2 *核的衰变规律 2/1)21(00T t tN N e N N --==λ NA e A A tλλ==-0 五、 注意的问题1 *射线作用方式及防护要点:带电粒子 α粒子:电离作用强 穿透力弱 防止内照射β粒子:电离作用弱,轫致辐射强,散射强 穿透力强 防止吸收伤害用铝、有机玻璃等轻材料防护光子类 光电效应 康普顿效应 电子对效应用铅等重金属材料防护中子 散射 核反应 用含氢多的材料吸收 (如水、石蜡)2 各种核衰变过程的位移规则及能谱特点3 结合能与原子核稳定性的关系4 比结合能与核能利用的关系医用物理学常见简答题1简述细胞除极和复极的过程。
医用物理学期末复习题库
第一章 生物力学基础重点:刚体转动定律和角动量守恒定律及其应用。
1、基本概念刚体,转动惯量及刚体的定轴转动,力矩与刚体转动定律,角动量守恒定律及其应用。
2、习题1-3 如图1-3图所示,质量为m ,长为l 的均匀细棒绕过O 点的转轴自水平位置以零角速度自由下摆. 求(1) 细棒运动到与水平夹角为θ 时的角加速度和角速度; (2) 此时细棒末端A 的速度和加速度.解:(1) lg ml l Mg 2cos 331cos 22θββθ=→=lg d l g d d lg d d d d dt d d d dt d θωθθωωθθθβωωθωωθθωωβθωsin 32cos 32cos 300=======⎰⎰(2) θωsin gl l 3==v ,2/cos 3θg a t =,θsin 3g a n =θ222sin 3123+=+=ga a a n t 1-4 如图1-4所示 长为l ,质量为m 的均质细长杆,求:(1) 杆件对于过质心C 且与杆的轴线相垂直的Z 轴的转动惯量;(2) 杆件对于过杆端A 且与Z 轴平行的Z 1轴的转动惯量. 解:设杆的线密度(单位长度的质量)为ρl ,则ρl =m /l 。
现取杆上一微段d x ,建立坐标如图1-4a 所示,其质量为d m =ρ1d x ,则杆件对于Z 轴的转动惯量为2222222121ml dx l m x dm x I l l l l Z ===⎰⎰-- 同样,建立坐标如图1-4b 所示,则杆件对于Z 1轴的转动惯量为20202311ml dx l m x dm x I ll Z ===⎰⎰补充: 有圆盘A 和B ,盘B 静止,盘A 的转动惯量为盘B 的一半。
它们的轴由离合器控制,(a )(b )图1-4图1-3开始时,盘A 、B 是分开的,盘A 的角速度为ω0,两者衔接到一起后,产生了2500 J 的热,求原来盘A 的动能为多少?解:已知I B =2I A ,由角动量守恒定律,可得两者衔接到一起后的共同角速度为ωI A ω0=(I A +I B )ω ω=13ω0 又由能量守恒,得 12I A ω02=12(I A +I B )ω2+2500所以E A =12I A ω02=3750 J第三章 振动、波动和声重点:简谐振动及其应用。
医用物理学期末复习
8. 一个简谐振动在t=0 时位于离平衡位置6cm 处,速 度v=0,振动的周期为2s,则简谐振动的振动方程为:
A.y 6cos(t );B.y 6cos(t )
2
2
C.y 6cos(t );D.y 6cost
9. 两相干波源的位相差为2π,则在波相遇的某点的振 幅为: A.一定为两波源振幅之和; B. 一定为两波源振幅之差 C. 条件不够,无法确定 D. 无衰减时为两波源振幅之和
2. 一个花样滑冰的运动员由张开双臂转动到收拢双臂 转动时,他的 : A 转动惯量增大 ,角速度减小 ; B 转动惯量增大 ,角速度增大 ; C 转动惯量减小 ,角速度增大 ; D 转动惯量减小 , 角速度减小 ;
3. 理想流体作稳定流动时,同一流线上任意两点的:
A. 速度不随时间改变; B. 速度一定相同;
14. 关于电力线,以下说法正确的是 (A) 电力线上各点的电场强度大小相等; (B) 电力线是闭合曲线,曲线上的每一点的切线方向都与该点的电场强度 方向平行; (A) 电力线的疏密可以反映电场强度的大小; (D) 在无电荷的电场空间,电力线可以相交.
15.下面说法正确的是
(A)等势面上各点场强的大小一定相等;
C. 速度一定不同;
D. 速率一定相同
4. 伯努利方程适用的条件是: A.理想流体的稳定流动 B.粘性流体的稳定流动 C.所有流体的稳定流动 D.以上答案均不对
5. 理想流体作稳定流动时,同一流管上任意两截面处: A. 动能相等; B.势能和压强能之和相等; C.动能、势能、压强能之和相等 D.条件不足,无法确定
二、考 试 大 纲
第一章 医用力学基础 1、刚体定轴转动力学特征,转动定律;
力对转轴的力矩M:力的大小与力臂(即力
医用物理学复习资料
流体得流动一、基本概念1理想液体2稳定流动3层流与湍流流量流阻粘度二、基本定律及定理1 *连续性方程2 *柏努利方程3 *泊肃叶定律4 牛顿粘滞定律三、重要结果及结论1小孔流速问题2测速、测流量问题 (皮托管,汾丘里管) 3实际流体得能量损耗4雷诺数及判据四、注意得问题空气中有大气压水得密度空吸与虹吸现象振动与波一、基本规律及重要公式1*波得干涉干涉加强干涉减弱声波一、基本概念1 声速2 振动速度声压声特性阻抗3 *声强声强级响度响度级4 *听阈痛阈听阈区域二、重要公式1 声波方程2 *多普勒效应公式正负号得确定 :三、注意得问题1 两非相干得声波叠加时,声强可简单相加,而声强级不能简单相加2 标准声强分子动理论一、基本概念1 物质得微观理论物质就是由大量得分子、原子所组成,就是不连续得分子就是在作无规则得运动热运动分子之间有相互作用2表面张力表面能表面活性物质表面吸附3附加压强4润湿与不润湿接触角毛细现象二、重要公式1 *表面张力2 *附加压强3 *毛细现象三、注意得问题1 表面张力产生原因2 气体栓塞3 *连通器两端大、小泡得变化4 水对玻璃完全润湿,接触角为零静电场一、基本概念1 电场强度2 电通量3 电势能4 电势电势差 *电场力作功5 *电介质得极化电极化强度电极化率6 介电常数7 电场能量密度电场能量二、基本规律1高斯定理2环路定理3*场强叠加原理4*电势叠加原理5场强与电势得关系6*有介质时:介质中得场强与外场强得关系, 电容关系三、场强、电势得计算1 *点电荷场强电势2 *点电荷系电偶极子场强电势电偶极矩3 连续带电体均匀带电长直棒均匀带电圆环均匀带电无限大平板平板电容器均匀带电球壳均匀带电球体直流电一、基本概念1电流强度2电流密度3 *充、放电时间常数二、基本定律及重要关系式1 电流密度与漂移速度关系2 *欧姆定律微分形式3 *一段含源电路欧姆定律4 *节点电流定律5 *回路电压定律6 充放电规律充电:放电:三、注意问题1、*一套符号规则2、解题后对解要说明几何光学一、基本概念1 焦点焦距焦度2 近点远点明视距离视力 *近视眼 *远视眼散光眼3 线放大率, 单薄透镜4 *角放大率(单放大镜, *显微镜)5 *分辨本领6 数值孔径二、重要关系式1单球面 *成像公式焦距公式焦度公式2共轴球面系统厚透镜(方法:单球面依次成像)3薄透镜*成像公式*焦距公式焦度公式4薄透镜组一般情形: (方法:薄透镜依次成像)密接情形: ,三、注意得问题1 *符号规则2 *依次成像时:前次所成得像作为后次成像得物得虚实3 系统所成像得性质要说明(位置、大小、虚实、正倒)光得波动性一、基本概念1 相干光 *光程干涉衍射偏振2 *半波损失 *半波带3 自然光偏振光布儒斯特角双折射二、基本规律及重要关系式1 干涉 *杨氏双疑缝干涉亮纹暗纹*薄膜干涉总得光程差=实际光程差+附加光程差加强减弱2 衍射单缝衍射 *暗纹亮纹圆孔衍射第一暗环满足:暗纹3 光栅光栅方程 *亮纹4 偏振 *布儒斯特定律*马吕斯定律四、注意得问题1薄膜干涉时光在界面反射有无半波损失2单缝衍射考虑衍射条纹亮、暗得公式与干涉相反,取决于半波带得奇偶性3光栅存在缺级、最大级数问题4自然光通过偏振片光强减小一半光得粒子性一、基本概念1 热辐射单色辐射出射度单色吸收率2 黑体 *普朗克量子假设3 光子逸出功临阈频率波粒二象性4 自发辐射 *受激辐射粒子数反转光放大亚稳态5 光电效应康普顿效应二、基本规律1 基尔霍夫定律2 *维恩位移定律3 *斯特藩波尔兹曼定律4 *爱因斯坦光电效应方程5 *波粒二象性三、注意得问题1 有关物理常数2 *激光器得组成及特性X射线一、基本概念1 强度 *硬度 *轫致辐射2 *线衰减系数质量衰减系数质量厚度半价层二、重要关系式1 强度2 *连续谱得最短波长3 *强度衰减规律4 *低能时质量衰减系数得表示式三、注意得问题1 *X射线谱得特点:连续谱与管压有关,与靶材料无关标识谱与靶材料有关,与管压无关2 X射线得基本性质3 管电压、管电流反映得物理实质管电流X射线得强度管电压X射线得硬度原子核与放射性一、基本概念1 原子质量单位核素 *同位素质量亏损比结合能2 放射性 *核衰变俄歇电子3 *衰变常数 *半衰期平均寿命*活度4 电离比值射程二、重要关系式1 核半径2 *核得衰变规律五、注意得问题1*射线作用方式及防护要点:带电粒子粒子:电离作用强穿透力弱防止内照射粒子:电离作用弱,轫致辐射强,散射强穿透力强防止吸收伤害用铝、有机玻璃等轻材料防护光子类光电效应康普顿效应电子对效应用铅等重金属材料防护中子散射核反应用含氢多得材料吸收(如水、石蜡) 2各种核衰变过程得位移规则及能谱特点3结合能与原子核稳定性得关系4比结合能与核能利用得关系医用物理学常见简答题1简述细胞除极与复极得过程。
医用物理学,期末复习整理,免费下载教材
r2 r1
2
(2)A A12 A22 2A1 A2 cos 0.28102 m
5、利用多普勒效应 检测汽车行驶的速度,以固定波源发出频率为100kHz的超声波, 当一汽车迎着波源驶来时,与波源安装在一起的接收器收到从汽车反射回来的超声波 的频率为110kHz,已知空气中声速为330m/s,求该汽车行驶的速度。
第七章 电流与电路
基尔霍夫第一定律:
I 0
规定:流入节点的电流为负,流出节点的电流为正。
基尔霍夫第二定律:
IR ε
规定:电流方向与回路绕行方向相同时 I 取正;反之取负。
❖电动势方向与回路绕行方向相同时ε取正。反之取负。
电容器的充电过程
电容器的放电过程:
q C (1 et / RC ) Q(1 et / RC )
第十一章 几何光学
单球面成像公式: n1 n2 n2 n1
u
v
r
焦距与焦度
f1
n1 n2 n1
r
n1 n2 n2 n1
f2
r
n1 n2 n2 n1
f1 f2
r
横向放大率
m y ' n1v
y
n2u
透镜的成像公式: 1 1 n n0 ( 1 1 )
uv
n0 r1 r2
y(cm)
(2)写出该平面谐波的波动方程。
解、(1)A=0.1m
ω=
2
=πrad/s
T
10
0 20 40
x(m)
由x=0处,t=0.5s时 y=0 V<0 φ=0 故原点振动方程为y=0.1 cosπt
(2)λ=40m y=0.1 cos(πt-
2x )=0.1cos π(t- x )
医用物理学复习提要(药学药分卫检)-2023年个人用心整理
医用物理学复习提要第1章 物体的弹性1. 掌握物体弹性的基本概念:形变、应变、应力、模量线应变:0l l ∆=ε 正应力:S F =σ 杨氏模量:εσ=Y 切应变:d x ∆=γ 切应力:S F=τ 切变模量:γτ=G2. 理解应力与应变的关系1)了解低碳钢拉伸形变的阶段:弹性、屈服、硬化、紧缩 2)熟悉弯曲、扭转形变的应力分布特点 ☆人体骨骼的常见受力载荷?☆请从弯曲和扭转的角度来解释为什么人的四肢长骨是中空的?☆低碳钢材料,其正应力与线应变关系曲线的各段代表的物理意义。
延展性好是何含义?第2章 流体的运动1.熟悉理想流体、稳定流体、流线、流管概念 2.掌握并熟练应用流体连续性方程2211v S v S Q ==该方程反映理想流体作稳定流动遵守流量守恒,即流管不同截面的流量相等3.掌握并熟练应用伯努利方程222212112121gh v P gh v P ρ+ρ+=ρ+ρ+即单位体积中压强、动能、势能之和恒定 熟悉应用,掌握计算方法 4. 阐释体位对血压的影响5.熟悉层流、湍流、牛顿流体、流阻概念6.掌握牛顿粘滞定律的涵义dx dv s F η=7.掌握泊肃叶公式的涵义L PR Q η∆π=84流阻 48R LR f πη=8.了解雷诺数,粘滞流体的伯努利方程及斯托克斯公式 9.了解血压在血管中分布情况大气压: Pa P 510013.1⨯= 水的密度: 3kg/m 1000=ρ☆若两只船平行前进时靠的很近,则容易发生碰撞,试用连续性方程和伯努利方程解释原因。
☆利用伯努利方程简单说一说:人体从平躺到站立情况下的血压变化。
☆如果躯体中血液流经一段血管的流动作层流,血管截面上的流速分布大致是怎样的?☆简述黏性流体的两种流动形式有什么区别,并说明在圆管中决定流体流动形式的因素。
☆用落球法测量黏度,影响实验结果的精确度的因素主要有哪些?☆黏度差别大的液体,为什么要用不同的测量方法? ☆如果用如图所示金属丝框测量表面张力系数,结果会怎样?为什么?第5章5.5节 液体的表面现象1. 表面张力 表面能 表面活性物质2. 附加压强3. 润湿与不润湿 接触角 毛细现象 重要公式1. 表面张力 S∆α=α=W LT2. 附加压强 )(4)(2双液面、液膜单液面Rp Rp α=∆α=∆ 3. 毛细现象 gr cos h ρθα=2注意的问题1. 表面张力产生原因2. 气体栓塞3. 连通器两端大、小泡的变化4. 水对玻璃完全润湿,接触角为零☆位于表面层和液体内部的液体分子有何不同?简述表面张力系数α的单位“N.m -1”和“J.m -2”分别代表的物理意义。
医用物理期末复习重点
一、名词解释1.多普勒效应当声源或观察者两者之中至少有一个相对于介质是运动的,观察者接收到的频率与声源发出的频率就会不同,这种现象叫做多普勒效应2.气体栓塞当液体在细管中流动时,如果管中有气泡,将阻碍液体的流动,气泡多时可发生阻塞现象。
3.电泳在电场作用下,带电胶粒将发生迁移,胶粒在电场作用下的迁移现象叫做电泳。
4.显微镜的分辨率本领显微镜能分辨被观察物体细节的本领,最小分辨距离的倒数。
5.光的干涉两列频率相同,振动方向相同的波在空间相遇,相遇点的相位差在观察时间内恒定,相交区域内有些地方加强,有些地方振动减弱。
6.听觉阈由听阈曲线,痛阈曲线,20Hz 线和20000Hz 线所围成的范围。
7.空间心电向量环将瞬时心电向量相继平移,使向量尾集中在一点上,对向量头的坐标按时间,空间顺序加以描记形成空间心电向量环。
8.平面心电向量环空间心电向量环在xy ,yz ,zx 三个平面上的投影所形成的曲线。
9.X 射线的硬度X 射线的贯穿本领,只决定于X 射线的波长,而与光子数无关。
10.基尔霍夫定律基尔霍夫第一定律:电路中任一个节点上,在任一时刻,流入节点的电流之和等于流出节点的电流之和。
基尔霍夫第二定律:在任何一个闭合回路中,各元件上的电压降的代数和等于电动势的代数和,即从一点出发绕回路一周回到该点时,各段电压的代数和恒等于零,即∑U=011.电偶极子是两个等量异号点电荷相距很近时所组成的系统12.磁偶极子具有等值异号的两个点磁荷构成的系统称为磁偶极子13.液体表面的自由能保持相应的特征变量不变,每增加单位表面积时,相应热力学函数的增值二、公式1.Sv=常量Sv 为体积流量,S ↑,V ↓,Sv Sv ρρ=2120.w 10I --=m (1000Hz 的听阈值)总I 任意声波的声强ir α强度反射系数 Z 声阻抗 I 声强5.()212214Z Z Z Z I I t i it +=αit α强度透射系数 Z 声阻抗 I 声强 6.2221I A uw ρ= I 声强 ρ介质密度 u 声速 A 振幅 7.ηρvr e =R e R 雷诺数 ρ介质密度 v 流速 r 管半径 η流体的黏度 8.4f RL 8R πη= f R 流阻 η流体的黏度 R 流体半径 L 流体长度 9.fR P Q ∆= P ∆管两端压强差 Q 流量 f R 流阻放大率 f 焦距13.αλλsin 61.0N 61.0Z n A =•= αsin n 物镜的数值孔径 λ波长 Z 最小分辨距离14.....)3.2.1.0(sin d =±=k k λθθsin d 光程差λ波长 d 双缝之间的距离15.ux e I I -=0 u 吸收系数 x 介质厚度 I 为X 射线强度 I0为入射X 射线强度 16.RP α2=∆ P ∆液面内外压强差 R 曲率半径 α表面张力系数17.3λαKZ u m =m u 吸收系数 K 常数 Z 原子系数 X 射线的α=3.5 λ波长 18.T v u λλ==λ波长 v 频率 T 周期 u 波速三、基本知识要求1.什么叫机械波?产生的条件是什么? 机械振动在介质中的传播称为机械波 产生条件是波源和弹性介质2.质点振动方程为y=Asin(wt+ϕ),其振幅,振动频率,相位和初相位是什么? A 振幅 w 角频率 wt+ϕ相位ϕ初相位3.声波在两种介质界面处发生反射和透射现象与两种介质的声阻的关系()212214Z Z Z Z I I t i it += 当两种介质声阻相差较大时,反射越强,透射越弱 4.液体和气体的黏滞系数η值随温度变化情况液体的η值随温度升高而减少,气体的η值随温度升高而增大5.已知张力系数a ,吹一个直径D 的气泡做功是什么?E=πDa6.简单RC 充放电电路充电放电规律及时间常数t 表达式、含义t=RC R 电阻 C 电容在RC 充电过程中C 两端的电压随时间按指数上升,在放点过程中,呈指数衰减7.光学显微镜主要像差及提高分辨率的方法增加孔径数 利用波长短的光8.医用X 射线产生的条件有高速运动的电子流有适当的障碍物来阻止电子的运动,把电子的动能转变为X 射线的能量9.X 射线管产生的X 射线谱类型连续X 射线谱 标识X 射线谱 10.有关核素的几个基本概念核素:具有一定数目质子和一定数目中子的一种原子 同位素:具有相同质子数,不同中子数的同一元素的不同核素同核异能素:质子数和中子数都相同,但能量状态不同的核素同量异位素:质子数不同而质量数相同的核素同中子异位素:中子数相同而质子数不同的一类核素11.已知一个质点同时参加两个反相的同方向的振动,合振动的振幅计算方法12.如1y =40sin(wt+090),2y =80sin(wt-090),合振动振幅是多少?1y =40sin(wt+090) 2y =80sin(wt-090)根据上式A=12013.机械波的波速u ,波长λ,频率f 之间关系及计算Tv u λλ==14.声波在固体,液体和气体中的传播速度快慢比较固体>液体>气体 15.会使用流阻公式计算流阻4f RL 8R πη= 16.液体从动脉血管到毛细血管速度逐渐变慢的主要原因是什么?毛细血管的总面积比动脉管的大17.电偶极子周围电势的分布情况中垂面上各点电势为零,在含正电荷的中垂面一侧电势为正,负电荷的中垂面一侧电势为负18.肢体导联和胸导联肢体导联反映冠状面情况,,,胸导联反映心脏水平面情况19已知一个电路网络,能说出网孔数,回路数和节点数。
第二章 医用物理学知识
第一节 物质结构一、原子的核外结构(一)量子数1、主量子数n (决定电子壳层) n 取1、2、3、…时,相对应的电子壳层可用K 、L 、M 、N 、O 、P 等符号表示。
故主量子数是决定原子能级的主要因素。
2、角量子数L (决定电子亚层即决定电子能量及运动形式) 同一电子壳层中电子具有的能量及运动形式不同,又分为若干电子亚层,由角量子数L 决定。
n 确定后,L 取0、1、2、…、(n-1),对应的电子亚层分别用s 、p 、d 、f 、g 、h 等符号表示。
还有磁量子数m L (决定轨道量子数)和自旋量子数m s(决定电子的自旋状态)他们的取值分别是m L =0、±1、±12、…,±L ;m s =±21。
(二)核外电子的排布按照波尔理论,主量子数为n 的壳层可容纳电子数为:N n =2n 2。
但除K 层为2个电子,其他层最多容纳8个电子。
二、原子能级(一)原子能级和结合能1、原子能级 以电子伏特表示,1eV=1.6×10-19J。
2、结合力 原子核对电子的吸引力。
近原子核的壳层电子结合力强。
还和原子序数Z有关,Z越高,核内正电荷越多,对电子的吸引力越大。
3、结合能 原子能级是结合能的负值。
(二)激发和跃迁1、基态(正常态) 原子处于最低能量状态(最稳定)叫基态(n=1)。
2、激发 电子从低能级向高能级过渡,称激发。
n=2的能量状态称为第一激发,n=3的能量状态称为第二激发等。
3、电离 电子吸收的能量大于结合能时,电子将脱离原子核的束缚,成为自由电子,这个过程称为电离。
4、跃迁 处于激发态的原子,其外层电子或自由电子将自发地填充其空位,同时放出一个能量等于两能级之差的h υ光子,这个过程称为跃迁。
特征X 线(特征光子)就是根据这个道理产生。
第二节 磁学基础知识一、自旋和核磁的概念 原子核总以一定的频率绕着自己的轴高速旋转的这一特性称为自旋;原子核自旋形成电流环路,从而产生具有一定大小和方向的磁化矢量,故把由带正电荷的原子核自旋产生的磁场称为核磁。
医用物理学复习总结
dN
2)v1-v2区间的面积:v2 v1
f
(v)dv
v1
N
Nv1v2 N
表示分子在速率v1-v2速率区间出现的 概率。
dN
表3)示曲分线子下在的全总部速面率积区:间出0 f现(v)的dv概 率0 N。
N N
1
归一化
四、三种速率
vp
2kT m
2RT 1.41 RT
t1
t1
作用于质点上的力对某一点的冲量矩等于质点对该点的 角动量的增量。
14.质点的角动量守恒定律 若质点所受力矩为零,即 M 0
则 dL 0, L 恒矢量。 dt
刚体力学
1.转动惯量 J miri2, J r2dm i 2.转动动能
3.力对轴的力矩 4.刚体转动定律 5.力矩的功
非完全弹性碰撞(0<e<1):总动量守恒;机械能不守恒
11.力矩 M r F, M rF sin
12.角动量(动量矩) L r (mv ) r P,
13.角动量定理
M dL dt
力矩等于质点角动量对时间的变化率。
t2
t2
G Mdt dL L2 L1
2
2
分子的平均动能:
1 (t r)kT i kT
2
2
三、麦克斯韦速率分布率
速率分布函数f(v):
f (v) dN Ndv
表示分子在速率v附近单位速率区间出现的概率。
速率分布函数f(v)曲线的物理意义:
1)宽度为dv的窄条面积:f
(v)dv
dN N
表示分子在速率v附近dv速率区间出现的概率。 v2
医用物理学
医用物理学第一章流体力学1.具有下列特点的流体是理想流体:A.绝对不可压缩B.流动时没有粘滞性C.A、B二者都对D.A、B 二者都不对具有下列特点的流体是实际流体:A.绝对不可压缩B.流动时没有粘滞性C.A、B二者都对D.A、B二者都不对 2. 理想流体作稳定流动时:A.流体流经空间中各点速度一定相同B.流体流动时的流速一定要很小C.流体流经空间流线是一组平行的曲线;D.流体流经空间各点的速度不随时间变化E.流体流动只要内摩擦极小3.理想流体作稳定流动时,同一流线上任意三点的: A. 三点各自的速度都不随时间而改变 B. 三点速度一定是相同 C. 三点速度一定是不同的D. 三点速率一定是相同E.三点速率一定是不同的4.研究液体运动时所取的流管: A. 一定是直的刚性管B.一定是刚性园筒形体C.一定是许多流线组成的管状体;D.一定是截面相同的管状体E. —定是截面不同的圆形管 5. 水在同一流管中稳定流动,截面为处的流速为12cm/s,在流速为4cm/s 处的截面积为:A. cm2 B. cm2 C. cm2 D. cm2 E.都不对 6. 水在同一流管中稳定流动,半径为处的流速为m/s,那么半径为处的流速为:A. /s B. /s C. /s D. m/s E. m/s 7. 理想液体在同一流管中稳定流动时,对于不同截面处的流量是:A. 截面大处流量大 B. 截面小处流量大 C. 截面大处流量等于截面小处流量 D. 截面不知大小不能确定8.伯努利方程适用的条件是:(多选题) A. 同一流管 B. 所有液体 C.理想液体 D. 稳定流动E. 对单位体积的液体9.一个截面不同的水平管道,在不同截面竖直接两个管状压强计,若流体在管中流动时,两压强计中液面有确定的高度。
如果把管口堵住,此时压强计中液面变化情况是:A. 都不变化 B. 两液面同时升高相等高度 C. 两液面同时下降相等高度 D. 两液面上升到相同高度E. 两液面下降到相同高度10.理想液体在一水平管中作稳定流动,截面积S 、流速v 、压强p的关系是:A. S 大处v 小p小 B. S大处v 大p大C. S小处v 大p大 D. S小处v 小p小 E. S小处v 大p小11.水在粗细均匀的虹吸管中流动时,图中四点的压强关系是: A. p1 = p2 = p3 = p4 B. p1 >p2 = p3 = p4 C. p1 = p4 >p2 = p3 D p1 >p2 >p3>p4 12.一盛水大容器,水面离底距离为H , 容器的底侧面有一面积为A的小孔,水从小孔流出,开始时的流量为:A.2AH B.C. D.E.2AgH 213. 一个顶端开口的圆形容器,横截面积为10cm,在圆形容器底侧面及底部中心各开一个截面积为的小孔,。
医学物理学
医学物理学复习题第二章物体的弹性一、填空题1.根据形变在外力去掉之后能否恢复其原来的情况,形变分为和。
(弹性形变,塑性形变)2.在弹性力学中将材料的与之比,称为该材料的弹性模量。
(应力与相应应变之比)3.边长为10 cm的正方体的两对面的切力都是10 N,相对位移1 cm,则切应变是。
(0.1)4.弹性体的应变可分为、和三种。
(线应变,体应变,切应变)5.弹跳蛋白是一种存在于跳蚤的弹跳机构和昆虫的飞翔机构中的弹跳蛋白,其杨氏模量接近于橡皮。
今有一截面积为30 cm2的弹跳蛋白,加270 N的力后长度为原长的1.5倍,求其杨氏模量为。
(1.8×105 Pa)6.设某人的一条腿骨长为0.4 m,横截面积平均为5 cm2,试求用此骨支持整个体重时(相当于500 N的力),其长度缩短;占原长的。
(骨的杨氏模量可按1×1010 Pa计算)(4.0×10-5m ,0.01 )7.假设股骨为一空心圆管,已知其最细处的内半径与外半径之比为0.5,可在5×104N的压力下产生骨折。
试求此股骨最细处的外直径是。
(抗压强度按1.68×108 Pa计算)(2.25 cm)8.人的股骨的平均截面积为10-3 ㎡,长为0.4 m ,已知其杨氏模量为0.9×1010 N★m-2。
问受压时倔强系数是。
(2.25×107 N★m-1)9.一根钢棒长为4 m,横截面积为0.5 cm2,在12 000 N的张力作用下,伸长0.2 cm,则此钢材的杨氏模量是。
(4.8×1011 Pa)二、选择题1.边长为L的正方体,在切应力的作用下,在受力作用的面上各偏移L,则此正方体的切应变为:(A)A 、L L∆2 ; B 、L L ∆ ;C 、L L 2∆ ;D 、LL tg ∆ 。
2.弹性模量是:(D )A 、作用在物体单位截面上的弹性力;B 、物体恢复形变的能力;C 、应变与相应应力之比;D 、应力与相应应变之比。
医用物理学重点(1)
第一章物体的弹性★1. σ=FS,把垂直作用在物体某截面上的内力F 与该截面面积S 的比值,定义为物体在此截面处所受的正应力,用σ表示正应力。
(P5)★2.ε=∆ℓℓ,物体在外力作用下单位长度所发生的改变量,即比值Δℓ/ ℓ,称为正应变。
(P5)★3.杨氏模量:E =σε=F ∙ ℓS ∙ ∆ℓ,E 表示弹性模量。
(P8)★4.肌肉包括骨骼肌、心肌和平滑肌。
骨骼肌可以随意收缩,称为随意肌。
(P14)第二章流体的运动★1.流体具有三大特性:流动性、粘滞性、可压缩性。
(P22)★2. 只考虑流体的运动性而忽略流体的可压缩性和粘滞性,引入一个理想模型,称为理想流体。
(P23) ★3.流体粒子通过空间各点的流速不随时间而变化,则这种流动称为稳定流动。
(P23)★4.为了形象地描述流体的运动情况,在流体通过的空间中画一些假想的曲线,称为流线。
(P23) ★5.在流体中取一截面S ,则通过截面周边上各点的流线围城的管状区域称为流管。
(P23)★6.S 1v 1=S 2v 2积小处流速大。
(P24)★7.伯努利方程:12ρν²+ρgh +p =恒量,12ρν²是单位体积流体的动能、ρgh 是单位体积的重力势能。
(P26) ★8.血液是非牛顿粘滞性流体,而血清是牛顿粘滞性流体。
(P34)★例题:水以压强为4x105Pa ,流速为4m/s 从内径为20mm 的管子流到比它高5m 的细管子中,细管的内径为10mm ,求细管的流速和高处压强。
(P26)解:由连续方程S 1v 1=S 2v 2得:ν₂=S₁S₂ν₁=d₁²d₂²ν₁已知d 1=2.0x10-2m ,d 2=1.0x10-2m ,v 1=4m/s ,则ν₁=(2.0×10−2)2(1.0×10−2)2×4=16m/s在伯努利方程12ρν₁²+ρgh₁+p₁=12ρν₂²+ρgh₂+p₂中∵P 1=4×105Pa ,h 1-h 2=5m∴P 2=4×105+12×103×42﹣12×103×162-103×10×5=2.3×105Pa第三章 液体的表面性质★1.f=αL ,张力f 作用在表面任意分界线的两侧,其方向沿着液体表面,并且与分界线垂直;其大小与分界线的长度L 成正比.α称为表面张力系数。
《医用物理学学习指导》章节试题解答(大学期末复习资料).docx
第一章生物力学基础通过复习后,应该:1.掌握刚体定轴转动的角速度、角加速度、转动愤■、转动定律、角动量、物体平衡的力学条件;2.理解物体形变时的张应变和张应力、切应变和切应力、体应变和体压强;3.了解人体骨骼、肌肉、血管壁的力学性质以及作用在骨骼上的力。
1-1 一飞轮以转速为1500rad・minT转动,受到制动后均匀地减速,经50s后静止,求:①飞轮的平均角加速度;②t = 25s时刻的角速度;③若飞轮的半径为0.25m, t = 25s时刻的飞轮边缘的切向速度和向心加速度。
解:①已知初始角速度为气=1500rad・minT = 25rad・sT ,末角速度a>2 =0rad-s-1, t = 50s ,根据g f ,可得飞轮的平均角加速度为B = -~—rad • s -= -0.5rad • s。
50②根据co = co。
十(31 ,可得t — 25s时刻的角速度为刃=(25 - 0.5 x 25)rad • s" = 12.5rad • s'1③已知r = 0.25m , l = 25s时刻的飞轮边缘的切向速度为v = a)r = 12.5 x 0.25m - s-1 = 3.125m-s-1 向心加速度为a n = co2r = 12.52 x 0.25m - s-2 «39.1m-s"21-2 一长为L ,半径为R、质量为m的均匀圆柱体,计算转轴通过圆柱体的几何轴线时,圆柱体的转动惯量。
解:由于质量是均匀分布的,其圆柱体密度p=—r L把圆柱体看成由许多同轴的薄圆筒组成(见本题附图),其半径为r ,厚度为dr的薄圆筒的质量元为dm = p-2jiM,该薄圆筒对于通过圆柱体几何轴线的转动惯量为dl=r2dm ,所以整个圆柱体对该转轴的转动惯量为rR 2 「R 3/ = J。
, dm = j 2/jiLp • r drc r R,—2/771J L._ npLR4_ -2~VY]将P = ^l代入上式得R2T m T K1 = --- - TIL --习题1-2附图7V R2L 21八2- — mR121-3 一密度均匀的圆环形薄板,质量为m ,内径为R],外径为R2 ,求该圆环形薄板对垂直通过中心的转轴的转动惯量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体的流动一、基本概念1 理想液体2 稳定流动3 层流与湍流 流量 流阻 粘度 二、基本定律及定理1 *连续性方程2211v s v s Qsv ==2 *柏努利方程 2222121122121 21gh v p gh v p E gh v p ρρρρρρ++=++=++3 *泊肃叶定律 lP P r Q RP Q ηπ8)(214-=∆=4 牛顿粘滞定律 dxdvs F η=三、重要结果及结论1 小孔流速问题 h g v ∆=22 测速、测流量问题 (皮托管,汾丘里管)3 实际流体的能量损耗)21()21(2222121112gh v p gh v p E ρρρρ++-++=∆ 4 雷诺数及判据 ηρvr=Re 四、注意的问题空气中有大气压 Pa P 5010013.1⨯=水的密度 3kg/m 1000=ρ空吸与虹吸现象振动和波一、基本概念1 振动 简谐振动 谐振动的矢量表示2 振幅 初相位 圆频率 周期3 波速 波长 频率 v u λ=4 振动的合成(同方向、同频率)5 相位差 同相 反相6 波动 波动方程的物理意义7 波的叠加原理 二、基本规律及重要公式1 *简谐振动方程 )cos(ϕω+=t A x220)(x v tg v x A ωϕω-=+=2 谐振动能量 2222121A m kA E ω==3 *简谐波的波动方程 ])(cos[ϕω+-=uxt A y4 波的强度公式 2221ωρuA I =球面波 212211221)(,r r I I r r A A == 5 惠更斯原理6 *波的干涉 )(21212r r ---=∆λπϕϕϕ干涉加强2112122)(2A A A k r r +==---=∆πλπϕϕϕ干涉减弱211212)12()(2A A A k r r -=+=---=∆πλπϕϕϕ三、注意的问题1、已知初始条件及振动系统性质,求振动方程 (求?=ϕ)2、已知振动方程,求波动方程 (确定时间上是落后还是超前 ?ux)3、两振动、波动叠加时,相位差的计算声波一、基本概念1 声速u2 振动速度 声压 声特性阻抗 Zp v A v u Z mm m ===,,ωρ 3 *声强 声强级 响度 响度级 )(lg 1022102222dB I IL Zp Z p uA I e m ====ωρ4 *听阈 痛阈 听阈区域二、重要公式1 声波方程]2)(cos[)](cos[πωωρω+-=-=u y t u A p uyt A x2 *多普勒效应公式 0v V u V u v so±=正负号的确定 : 0远离来确定时,根据相互靠近还是、当≠s o V V 三、注意的问题1 两非相干的声波叠加时,声强可简单相加,而声强级不能简单相加2 标准声强 2120/ 10m w I -=分子动理论一、 基本概念1 物质的微观理论物质是由大量的分子、原子所组成,是不连续的 分子是在作无规则的运动-----热运动 分子之间有相互作用2 表面张力 表面能 表面活性物质 表面吸附3 附加压强4 润湿与不润湿 接触角 毛细现象 二、重要公式1 *表面张力SE ∆=∆=σσLF2 *附加压强 )(4)(2双液面单液面Rp Rp σσ==3 *毛细现象 grh ρθσcos 2=三、注意的问题1 表面张力产生原因2 气体栓塞3 *连通器两端大、小泡的变化4 水对玻璃完全润湿,接触角为零静电场一、基本概念 1 电场强度 qF =2 电通量 ⎰=Φse Eds θcos3 电势能 ⎰∞∞==rr r Edl q A W θcos 04 电势 ⎰∞==rr r Edl q W V θcos 0电势差 ⎰=-=bab a ab Edl V V U θcos *电场力作功)(0b a ab V V q A -=5 *电介质的极化 电极化强度Vpp i∆=∑ 电极化率χ E p 0χε=6 介电常数rr εεεχε01=+=7 电场能量密度 ,212E e εω=电场能量⎰=Ve dV W ω 二、基本规律1 高斯定理1cos εθ∑⎰⎰==ni iqEds2 环路定理0cos =⎰θEdl3 *场强叠加原理 ∑==ni i14 *电势叠加原理 ∑==n i iVV 05 场强与电势的关系dndV -=6 *有介质时:介质中的场强与外场强的关系rE E ε0=, 电容关系0C C r ε=三、场强、电势的计算 1 *点电荷 场强 2041r q E πε=电势 rq V 041πε=2 *点电荷系 电偶极子 场强 )(41 )( 2413030中垂线,延长线r p E r p E πεπε==电势 cos 4120θπεrpV =电偶极矩ql p = 3 连续带电体均匀带电长直棒 a E λπε041=均匀带电圆环 )1(222xR x q E +-=πε均匀带电无限大平板 02εσ=E 平板电容器 0εσ=E )11(`σεσr-= E 0`εσx p ==均匀带电球壳 )(0),(4120R r E R r r qE <=>=πε均匀带电球体 )(41),(412030R r r q E R r R qr E >=<=πεπε直流电一、基本概念1电流强度 dt dqi =2电流密度 dsdij =3 *充、放电时间常数 RC =τ二、基本定律及重要关系式1 电流密度与漂移速度关系 v v Zen j e ρ==2 *欧姆定律微分形式 E j σ=3 *一段含源电路欧姆定律 ∑∑-=iiiab R I U ε4 *节点电流定律 0=∑iI5 *回路电压定律 0=-∑∑iiiR I ε6 充放电规律充电: )1(RCt e C q --=ε)1(RCt c e u --=εRCt c eRi -=ε放电:RCt eC q -=εRCt c eu -=εRCt c eR i -=ε三、注意问题1、 *一套符号规则2、 解题后对解要说明几何光学一、基本概念1 焦点 焦距 焦度2 近点 远点 明视距离 视力 *近视眼 *远视眼 散光眼3 线放大率 hh m '=, 单薄透镜p p m '-=4 *角放大率 βγα=(单放大镜f 25=α, *显微镜 目物f f L m M 25-==α)5 *分辨本领 AN n z .61.0sin 61.0λβλ==6 数值孔径 βsin ..n A N = 二、重要关系式1 单球面 *成像公式rn n p n p n 12'21-=+ 焦距公式 12221211,n n rn f n n r n f -=-=焦度公式 rn n 12-=Φ 2 共轴球面系统 厚透镜 (方法:单球面依次成像) 3 薄透镜 *成像公式fp p 111'=+ *焦距公式 12100)]11([---=r r n n n f 焦度公式 f1=Φ 4 薄透镜组 一般情形: (方法:薄透镜依次成像)密接情形:fp p 111'=+, 21111f f f += 三、注意的问题1 *符号规则2 *依次成像时:前次所成的像作为后次成像的物的虚实3 系统所成像的性质要说明(位置、大小、虚实、正倒)光的波动性一、基本概念1 相干光 *光程 干涉 衍射 偏振2 *半波损失 *半波带3 自然光 偏振光 布儒斯特角 双折射 二、基本规律及重要关系式1 干涉 *杨氏双疑缝干涉 亮纹 ) .......2,1,0( sin =±=k k d λθ 暗纹 ) ........2,1( 2)12(sin =-±=k k d λθ*薄膜干涉 总的光程差=实际光程差+附加光程差 加强 ) 2,1,0( ==∆k k s λ 减弱 ) 2,1,0( 2)12(=+=∆k k s λ2 衍射 单缝衍射 *暗纹 ) .......2,1( sin =±=k k a λθ 亮纹 ) ......2,1( 2)12(sin =+±=k k a λθ圆孔衍射 第一暗环满足:暗纹 22.1sin λϕ=D 3 光栅 光栅方程 *亮纹 ) .......2,1,0( sin =±=k k d λθ 4 偏振 *布儒斯特定律 120n n tgi =*马吕斯定律 θ20cos I I =四、注意的问题1 薄膜干涉时光在界面反射有无半波损失2 单缝衍射考虑衍射条纹亮、暗的公式与干涉相反,取决于半波带的奇偶性3 光栅存在缺级、最大级数问题4 自然光通过偏振片光强减小一半光的粒子性一、基本概念1 热辐射 单色辐射出射度 单色吸收率2 黑体 *普朗克量子假设3 光子 逸出功 临阈频率 波粒二象性4 自发辐射 *受激辐射 粒子数反转 光放大 亚稳态5 光电效应 康普顿效应二、基本规律1 基尔霍夫定律 λλλ0M a M i i = 2 *维恩位移定律 Tb m =λ 3 *斯特藩-波尔兹曼定律 4)(T T M σ=4 *爱因斯坦光电效应方程 A mV hv +=221 5 *波粒二象性 λh P hv E == 三、注意的问题1 有关物理常数2 *激光器的组成及特性X 射线一、基本概念1 强度 *硬度 *轫致辐射2 *线衰减系数 质量衰减系数 质量厚度x x m ρ= 半价层ux 2ln 21=二、重要关系式1 强度 ii hv n I ∑= 2 *连续谱的最短波长 )()(242.1nm KV U m =λ 3 *强度衰减规律 m m x u ux e I e I I --==004 *低能时质量衰减系数的表示式 3λαkZ u m =三、注意的问题1 *X 射线谱的特点:连续谱与管压有关,与靶材料无关标识谱与靶材料有关,与管压无关2 X 射线的基本性质3 管电压、管电流反映的物理实质 管电流----X 射线的强度管电压----X 射线的硬度原子核和放射性一、基本概念1 原子质量单位 核素 *同位素 质量亏损 比结合能2 放射性 *核衰变 俄歇电子3 *衰变常数 *半衰期 平均寿命 λλτ2ln ,12/1==T *活度4 电离比值 射程二、重要关系式1 核半径 310A r r = 2 *核的衰变规律 2/1)21(00T t tN N e N N --==λN A e A A tλλ==-0 五、注意的问题1 *射线作用方式及防护要点:带电粒子 α粒子:电离作用强 穿透力弱 防止内照射β粒子:电离作用弱,轫致辐射强,散射强 穿透力强 防止吸收伤害用铝、有机玻璃等轻材料防护光子类 光电效应 康普顿效应 电子对效应用铅等重金属材料防护中子 散射 核反应 用含氢多的材料吸收 (如水、石蜡)2 各种核衰变过程的位移规则及能谱特点3 结合能与原子核稳定性的关系4 比结合能与核能利用的关系医用物理学常见简答题1简述细胞除极和复极的过程。