第三章----电路的暂态分析讲课教案
第三章 电路的暂态分析1培训资料
第三章电路的暂态分析1培训资料电路的暂态分析是电路理论中的重要内容,它研究电路在初始状态或在切换瞬间的瞬态响应。
在本章中,我们将介绍电路暂态分析的基本概念、方法和应用。
一、电路暂态分析的基本概念电路暂态分析是指在电路切换瞬间或在初始状态下,电路中各元件的电流、电压和功率的瞬态变化情况。
电路暂态分析是电路理论中的基础知识,它对于理解电路的动态行为和瞬态响应具有重要意义。
二、电路暂态分析的方法1. 瞬态响应方程瞬态响应方程是描述电路在切换瞬间或初始状态下的电流、电压和功率变化的数学方程。
通过求解瞬态响应方程,可以得到电路在瞬态过程中的电流、电压和功率的变化规律。
2. 拉普拉斯变换法拉普拉斯变换法是求解电路暂态响应的一种常用方法。
通过将电路中的元件和信号用拉普拉斯变量表示,可以将电路暂态分析转化为求解代数方程的问题,从而得到电路的瞬态响应。
3. 数值模拟方法数值模拟方法是通过计算机仿真来求解电路暂态响应的一种方法。
通过建立电路的数学模型,并利用数值计算方法进行仿真计算,可以得到电路在瞬态过程中的电流、电压和功率的变化情况。
三、电路暂态分析的应用1. 电路开关过程的分析在电路中,开关的切换过程会引起电路中电流、电压和功率的瞬态变化。
通过电路暂态分析,可以研究开关过程中电路的动态行为,为电路设计和故障诊断提供依据。
2. 电源启动过程的分析电源启动过程是指电源从初始状态到正常工作状态的过程。
在电源启动过程中,电路中的电流、电压和功率会发生瞬态变化。
通过电路暂态分析,可以研究电源启动过程中电路的瞬态响应,为电源设计和调试提供参考。
3. 电路故障诊断在电路中,故障会引起电路中的电流、电压和功率的异常变化。
通过电路暂态分析,可以分析故障引起的瞬态响应,从而判断故障的位置和原因,为电路的修复和维护提供指导。
总结:电路暂态分析是电路理论中的重要内容,它研究电路在初始状态或在切换瞬间的瞬态响应。
电路暂态分析的方法包括瞬态响应方程、拉普拉斯变换法和数值模拟方法。
《电工电子》第3章电路的暂态分析
预测直流电路中的故障
利用暂态分析可以预测直流电路中的短路、断路等故障,从而及时采取维修措施,避免故障扩大 。
优化直流电路的控制策略
通过暂态分析可以了解直流电路在不同控制策略下的响应特性,从而选择最优的控制策略,提高 电路的控制精度和稳定性。
在暂态过程中,电阻的电压和电流会发生变 化,但电阻本身不会储存能量,因此电阻的 暂态响应是被动的,取决于外部电路的变化 。
电阻的阻值决定了电路中电流的大小, 因此在暂态过程中,电阻的阻值会影 响电流的变化速率。
电容的暂态特性
电容的充电和放电过程
当电容两端的电压发生变化时,电容会进行充电或放电, 这个过程需要一定的时间,因此电容的暂态过程相对较长。
稳态过程
电路在稳定状态下的工作过程, 此时电路中各处的电压、电流等 物理量均保持恒定或呈周期性变 化。
暂态分析的重要性
01
02
03
理解电路行为
通过暂态分析,可以深入 了解电路在开关操作、电 源变化等条件下的行为特 性。
优化电路设计
暂态分析有助于优化电路 设计,提高电路的稳定性 和可靠性,减少不必要的 能量损失和电磁干扰。
分析仿真与实验结果之间存在的误差,探 讨误差产生的原因,如元件参数不准确、 测量误差等。
改进建议
总结与反思
根据误差分析结果,提出相应的改进建议 ,如优化仿真模型、提高测量精度等,以 提高暂态分析的准确性。
对整个暂态分析的仿真与实验验证过程进行 总结与反思,总结经验教训,为后续的电路 设计与分析提供参考。
阻尼比与振荡性质
阻尼比是描述振荡衰减快慢的参数。根据阻尼比的大小,二阶电路的振荡可分为过阻尼、 临界阻尼和欠阻尼三种情况。在欠阻尼情况下,电路将呈现持续的振荡现象。
暂态分析课程设计
暂态分析课程设计一、课程目标知识目标:1. 理解并掌握暂态现象的基本概念和分类;2. 学习并掌握分析暂态过程的方法,如三要素法、稳态误差法等;3. 掌握暂态过程中电压、电流的变化规律,并能够进行简单的计算。
技能目标:1. 能够运用所学知识对电路中的暂态过程进行正确分析;2. 能够运用三要素法、稳态误差法等方法解决实际电路暂态问题;3. 能够运用仿真软件对暂态过程进行模拟,验证理论分析的正确性。
情感态度价值观目标:1. 培养学生对电路暂态分析的兴趣,激发学生主动学习的积极性;2. 培养学生的团队协作意识,提高学生在小组讨论中的沟通与协作能力;3. 引导学生关注暂态分析在实际工程中的应用,培养学生的工程意识。
分析课程性质、学生特点和教学要求,本课程旨在帮助学生掌握暂态分析的基本理论和实践方法。
针对学生所在年级的知识深度,课程目标具体、可衡量,便于学生和教师在教学过程中明确预期成果。
通过本课程的学习,学生将能够具备分析电路暂态过程的能力,为后续相关课程的学习和实际工程应用打下坚实基础。
二、教学内容1. 暂态现象基本概念:介绍暂态现象的定义、产生原因及分类;相关教材章节:第一章第二节。
2. 暂态过程分析方法:a. 三要素法:讲解三要素法的原理及运用;b. 稳态误差法:介绍稳态误差法的计算步骤及应用;相关教材章节:第二章第一、二节。
3. 暂态过程中的电压、电流变化规律:a. 介绍RC电路、RL电路的暂态过程;b. 讲解电压、电流的变化规律及计算方法;相关教材章节:第三章第一、二节。
4. 暂态过程计算与仿真:a. 结合实例进行暂态过程计算;b. 运用仿真软件(如Multisim、PSpice等)对暂态过程进行模拟;相关教材章节:第四章。
5. 实践与案例分析:a. 分析实际电路中的暂态问题;b. 探讨暂态过程在工程中的应用;相关教材章节:第五章。
教学内容安排与进度:第一周:暂态现象基本概念;第二周:暂态过程分析方法(三要素法);第三周:暂态过程分析方法(稳态误差法);第四周:暂态过程中的电压、电流变化规律;第五周:暂态过程计算与仿真;第六周:实践与案例分析。
第三章 电路的暂态分析
注意:这样一个高压将使 电压表损坏,所以直流电 压表不宜固定连接在电感 uV (0 ) RViL (0 ) 2500V 线圈两端。
3.3.2
RL电路接通直流电源
假设在开关合上前,线圈 中未储有能量;在t=0时, 将开关S合上,与直流电 源接通。因为电感中的电 流不能突变 i L (0 ) i L (0 ) 0
3.1电路暂态的基本概念及换路定则
3.1.1电路的稳态与暂态
1、稳态:
(对直流电路)电流和电压是恒定的, (对交流电路)随t按周期性变化的
2、换路:电路状态的变。
如电路接通、断开、改接及元件参数改 变等。
3、暂态:
旧稳态
换路
t(暂态)
新稳态
“稳态”与 “暂态”的概念示例:
S R R
+ _
U
uC
(t 0)
RC放电电路的特点:
uC、uR、i均按指数规律衰减,衰减的速度完
全由电路的参数τ决定
的物理意义: 决定电路过渡过程变化的快慢。
S + _U R C
关于时间常数的讨论
i
uC
uC (t ) U Ue U Ue
t t
RC
RC
uC
t
u C (t ) U Ue
解: ① 开关S在t=0时刻断开,这时电容C原来 所储存的电能通过电阻 R2 放电,因此
uC Ae
t RC
(t 0)
根据换路定则
R2 uC (0 ) uC (0 ) U R1 R2 100 120V=100V 20 100
所以得
A uC (0 ) 100
因电阻与电容串联,所以 t=0时,电阻两端的电压为
《电路的暂态分析 》课件
暂态分析的重要性
理解电路在不同工作 状态下的性能表现。
为电路设计和优化提 供依据。
预测电路在不同工作 条件下的响应。
暂态分析的基本方法
时域分析法
通过建立和求解电路的微分方程来分析暂态过 程。
频域分析法
通过将电路转换为频域表示,利用频率特性来 分析暂态过程。
状态空间分析法
通过建立和求解电路的状态方程来分析暂态过程。
03
了解电路暂态分析在电子设备和电力系统 中的应用实例。
04
提高学生对电气工程学科的认识和理解, 培养其解决实际问题的能力。
CHAPTER
02
电路暂态的基本概念
暂态与稳态
01
暂态
电路从一个稳定状态过渡到另一 个稳定状态的过程。
02
03
稳态
暂态分析
电路中各变量不再随时间变化的 状态。
研究电路在暂态过程中的行为和 特性。
分析方法
采用时域和频域分析方法,研究电机启动过程中的电压和 电流波形,分析电路中的阻抗和传递函数,计算电路的响 应时间和超调量等参数。
应用价值
电机广泛应用于工业生产和电力系统中,通过暂态分析可 以更好地理解其工作原理和性能特点,为实际应用提供理 论支持。
数字信号处理中的暂态分析
数字信号处理中的暂态分析
开关电源的暂态分析
01 02
开关电源的暂态分析
开关电源在启动、关闭或负载变化时,电路中的电压和电流会经历暂态 过程。通过暂态分析,可以了解开关电源的性能,优化电路设计,提高 电源的稳定性和效率。
分析方法
采用时域和频域分析方法,研究开关电源的电压和电流波形,分析电路 中的阻抗和传递函数,计算电路的响应时间和超调量等参数。
第3章 电路的暂态分析
+
S uR uC
duC RC uC U S dt
返回
2 . 解微分方程
RCduC(t)/dt+uC(t) = US ∵ uC(0) = 0 uC(∞) = US
- t / RC uC(t)=US(1-e )
令τ=RC uC(t)=US(1-e -t/τ) i(t)=CduC(t)/dt=(US/R) e-t/τ uR(t)= i(t) R =US e-t/τ
返回
二、求解一阶电路的三要素法 用f (t)表示电路中的某一元件的电压 或电流, f (∞)表示稳态值, f (0+)表示初 始值,τ为时间常数。
返回
例3、换路前电路已处于稳态, t=0时S断开, 求uC(0+ )、uL(0+)、uR2(0+)、iC(0+ )、iL(0+ )。 S 解: iL ∵ t = 0 ,电路稳态 - R1 iC L uL C 开路,L短路, uC + iL(0- ) =US/(R1+R2) C R2 US uC(0- )= iL(0- ) R2 -
返回
例、已知R1=R2 =10Ω,US=80V,C=10μF, t=0开关S1闭合,0.1ms后,再将S2断开,求 uC的变化规律。(C上初始能量为零) i S1 解: (2) t> (1) 0 < 0.1ms t < 0.1ms uR )=0 uu (t )= uu (C t (0- )=50.56V R C(0 +)=
习题
通往天堂的班车已到站, 恭喜你!
题解
习题
i1 R1 iC
S
解: ∵t =0-,电路稳态。 C 相当于开路, i1(0- )= i2(0- )=US/(R1+R2) = 2mA uC(0- )= i2(0- ) R2= 6V
电工学(上)第三章电路的暂态分析讲解
教学要求: 1. 理解电路的暂态和稳态、零输入响应、零状 态响应、全响应的概念,以及时间常数的物 理意义。 2. 掌握换路定则及初始值的求法。 3. 掌握一阶线性电路分析的三要素法。
稳定状态: 在指定条件下电路中电压、电流已达到稳定值。
暂态过程: 电路从一种稳态变化到另一种稳态的过渡过程。
一阶电路暂态过程的求解方法 一阶电路
仅含一个储能元件或可等效为一个储能元件的线性 电路, 且由一阶微分方程描述,称为一阶线性电路。
求解方法 1. 经典法: 根据激励(电源电压或电流),通过求解 电路的微分方程得出电路的响应(电压和电流)。
2. 三要素法 求
初始值
稳态值 (三要素) 时间常数
总目录 章目录 返回 上一页 下一页
t =0+时的电流方程中 iL = iL ( 0+)。
总目录 章目录 返回 上一页 下一页
例1.暂态过程初始值的确定
S C R2
已知:换路前电路处稳态,
+ t=0
U
R1
-
L
C、L 均未储能。
试求:电路中各电压和电
流的初始值。
(a)
解:(1)由换路前电路求 uC (0 ), iL(0 )
由已知条件知 uC (0 ) 0, iL(0 ) 0
当电容元件两端加以恒定电压时,其中电 流i为零,故电容元件可视为开路。
总目录 章目录 返回 上一页 下一页
当电容元件两端加以恒定电压时,其中电
流i为零,故电容元件可视为开路。
将式: i dq C du dt dt
两边乘以u,并积分,则得:
t uidt
u Cudu 1 Cu2
《电力系统暂态分析》课程教学大纲(第三章)
第三章 电力系统三相短路电流的实用计算前述短路电流计算复杂却仍非严格,但得出的概念和结论却十分有益,可用来指导三相短路电流的实用计算,也可用来指导后续的不对称故障计算和稳定计算。
在某些事故需精确计算系统电压、电流变化情况时,可用该方法或数值计算法。
一般工程计算不可能也无须采用那么复杂的计算。
而用另一类方法,即实用计算法。
正如在无限大功率电源三相短路电流计算中已指出的,实用计算法的核心是抓住短路电流中的关键量,即短路电流周期分量的初始值,即0=t 时的次暂态电流I ''。
求出它,冲击电流、最大有效值电流和短路容量均可方便得到。
有时需要计算0≠t 时的电流,可用运算曲线查找求得。
第一节 短路电流周期分量初始值的计算由于q dX X ''≈'',取q d X X ''='',则由式(2-163)和式(2-165)可知,定子短路电流周期分量的初始值为d0d0q 0dq0d d0q qd j j j j j X E X E E X E X E I I I ''''=''''+''=''''-''''=''+''=''由此可见,在求短路电流周期分量初始值时,发电机可用次暂态电势E'' 和次暂态电抗dX ''来等值,等值电路如图3-1所示。
这样,短路电流周期分量初始值得计算实质上是一个稳态交流电路的计算问题。
也正因为这样,有时文献叙述时将“初始值”三字省略了。
d''E'' Gj Q +图3-1 实用计算中的发电机等值电路图一、较精确计算 (一)计算步骤(1)根据电网运行接线图,绘制等值电路图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章电路的暂态分析一、内容提要本章首先阐述了电路瞬变过程的概念及其产生的原因,指出了研究电路瞬变过程的目的和意义。
其次介绍换路定律及电路中电压和电流初始值的计算方法。
第三着重推荐用“三要素法”分析一阶RC、RL电路瞬变过程的方法。
二、基本要求1、了解性电路的瞬变过程的概念及其产生的原因;2、掌握换路定律,学会确定电压和电流的初始值;3、掌握影响瞬变过程快慢的时间常数的物理意义;4、掌握影响巡边过程快慢的时间常数的物理意义;5、学会对RC和RL电路的瞬变过程进行分析。
三、学习指导电路的暂态分析,实际上就是对电路的换路进行分析。
所谓换路是电路由一个稳态变化到另一个稳态,分析的重点是对含有储能元件的电路而言,若换路引起了储能元件储存的能量所谓变化,则由于能量不能突变,这一点非常重要,次之电路的两个稳态间需要暂态过程进行过渡。
在直流激励下,换路前,如果储能元件储能有能量,并设电路已处于稳态,则在-=0t 的电路中,电容C 元件可视为开路,电感L 元如果储能元件没有储能(00L C ==W W 或)只能00L C ==i u 或,因此,在-=0t 和+=0t 的电路中,可将电容元件短路,电感元件开路。
特别注意:“直流激励”,“换路前电路已处于稳态”及储能元件有无可能储能。
对一阶线性电路,求解暂态过程的方法及步骤1、经典法 其步骤为:(1)按换路后的电路列出微分方程; (2)求微分方程式的特解,即稳态分量; (3)求微分方程式的补函数,即暂态分量(4)按照换路定律确定暂态过程的初始值,定出积分常数。
对于比较复杂的电路,有时还需要应用戴维南定律或诺顿定理将换路后的电路简化为一个简单的电路,而后再利用上述经典法得出的式子求解,其步骤如下:(1)将储能元件(C或L)划出,而将其余部分看做一个等效电源,组成一个简单电路;(2)求等效电源的电动势(或短路电流)和内阻;(3)计算电路的时间常数;C 电路,eq C R =τL 电路eqR L=τ。
(4)将所得数据代入由经典法得出的式子。
①RC电路的零状态响应:;,,0R 00C τττtt t e U u e RU i e U u ----=-==②RC电路的零状态响应:;,),1(R C τττtttUe u e RU i e U u ----==-=③RC电路的全响应等于零输入响应与零状态响应二者的叠加:.,),1(R C0C iR u dtdu ci e U eU u tt==-+=--ττ2、三要素法所谓三要素法是:只要求出一阶线性电路中的τ和)(),0(∞+f f 这三个要素后,就可以方便地得出全解)t (f ,其表达式)t (f =这种利用“三要素”来得出一阶线性微积分方程全解 的方法,称为“三要素法”。
优点:它在分析RC和RL一阶电路的暂态响应时,可避免求解微分方程,而使分析简便,并且物理意义清楚。
其步骤如下:(1)求初始值)0(+f 。
根据题意可求出换路前的终了时刻的值)0(-f ,再根据换路定理确定)0(+f =)0(-f ,即R-C电路)0()0(C C -+=u u ;R-L电路)0()0(L L -+=i i 。
(2)求稳态)(∞f 。
换路后,电路达到最稳定状态时的电压和电流值。
在稳态为直流量的电路中,电路的处理方法是:电容开路,电感短路;用求稳态电路的方法求出电容的开路电压即为)(L ∞u ,电感中的短路电流即为)(L ∞i 。
(3)求时间常数τ。
对于电路中的任一变量(如电流、电压),它们的时间常数是相同的,并与外加信号源无关。
为求得一阶电路的时间常数,可将电压短路,将电流源开路,经过简后必然能得到一个等值的RC 或RL闭合电路,回路中RC或RL即为原电路的时间常数。
时间常数是电路瞬变过程中一个重要的物理参数。
因为它的大小可以反映出RC(或RL)电路瞬变过程的快慢。
3、列方程时应注意的问题(1)在所求解的电路中有多个待求量时,不必列出全部待求量的微分方程,而是选出一个适当的待求量,其它变量则利用与该变量的关系来求解。
例如,在R 、L 、C 串联电路中,可选电路i 作为变量(i 为公共量,然后由⎰===idt Cu dt di Lu iR U 1,,C L R 来求C L R u u u 和、等。
(2)一般情况下微分比积分计算方便,因此,含有电容的电路,选C u 作为变量;在电感电路中,选L i 作为变量较好。
若L 、C 同时存在,选L i 或C u 均可。
(3)也可把支路电流,网孔电压,节点电位等作为变量,而后由KCL 或KVL 列出微分方程。
P45 练习与思考3.1.1. 电路中产生暂态过程的实质是储能源元件的能量不能跃变。
3.1.2. 因为换路时,电感储存的磁场能与电容储存的电场能均不能发生跃变为先决条件,由2CC 2L L 21,21u C W Li W ⋅==可知,换路时,电感的电流与电容两端的电压降不发生跃变。
而其它物理量只能具体问题具体分析。
3.1.3. 由于换路前电路已稳定,所以0,,0)0(2)0(C )0(C )0(1====----i U u i i闭合后,+=0t 时,由于换路定律有:)0(c )0(c +-=U U 可知U U =+)0(c 所以:0,02)0(c )0(21)0(c )0(1≠==-=++++R u i R U U i练习与思考3.1.3图P50 练习与思考3.2.1 由于物理学中,从量能分析可知:S F 111=⋅Ω,所以RC 电路中,RC 为该电路的充放电的时间常数,则它的大小直接影响C 的放电快与慢。
3.2.2 相等,同为放电时间与初始电压的大小无关。
3.2.3 解:tt t e dt du C i e u e U u 21C C 21C 210C )210(C ,10,----⋅=⋅=⋅=⋅=即由题意可知:S RC 02.01.051=⨯==τ30C 101101-=⨯-=⨯-=C i t τΩ=⨯=-k R 1010202.06,F C 6310250010--⨯==所以:t t e i 503)(C 10---=3.2.4 解:V 6)0(C )0(C ==+-u u ,t tt t eeeu u 610102)21(121)0(C )(C 6666-⋅⨯⨯+--+⋅=⋅=⋅=-t t t ee i ⋅--⋅-=⋅-⋅=61066106)(C 6610)610(6,s RC 6106-⨯==τ练习与思考3.2.4图 P533.3.1 RC 电路中,电容充电过程的自由分量,由于端电压C U 由0逐渐上升到S U ,而电流C i 由RU S逐渐变小到0,在+=0t 时刻电流发生跃变引起的。
由于变化规律与外施激励无关i u 与总是按指数规律变化逐渐稳态值。
充电结束后,电容相当开路0=i ,端电压达到最大值,因此反映了电路本身的固有性质。
3.3.2 只有表针偏转后,慢慢返回到原刻度处,说明电容正常。
3.3.3 解:零状态响应:)1(21)(C )(C t t eU u -∞-=,V 20s )(C ==∞U Us RC 3631029.31047.0107--⨯=⨯⨯⨯==τ所以:)1(2029.310)(C 3t t eu --=,当64.12)(1=t u C 。
即64.12)1(201329.310=--t e,36.7201331029.310=⨯-t e368.01331029.310=⨯-t e,0368.0ln 29.31013=-t解得:ms t 3.300335.01≈=t t t t e e u c i 29.310329.31036')(C )(C 3329.3104.9)29.310(201047.0----⨯=⎥⎥⎦⎤⎢⎢⎣⎡⋅-⨯-⨯=⋅=t tR e i R u ττ112029.38.65--⋅≈=⋅=。
(ms 29.3=τ)练习与思考3.3.3图P56 练习与思考3.4.1 只有线性的一阶电路,才具有叠加性。
3.4.2 teU U U u τ1S 0S C )(--+=得t t e e u 2.02.0C 812)124(12---=-+= 由dtdu Ci CC =得 t t e e i 2.02.0C 8)2.0()8(5--=-⨯-⨯=练习与思考3.4.2图P59 练习与思考3.5.1 三要素法只适用于直流电源作用的RC 或RL 阶段性电路,当以0t t =时刻计时,只需将公式中的0t t t -用代替即可。
3.5.2 解:-∞+=-=-=0,V 15,V 5)(c ))0(c t u u 计时, 当V 32.11,3)(C 1-==t u s t 时则有313110151551532.11⨯-⨯-+-=+-+-=-ττee )(3,1068.331=⋅=⨯-ττe则:t t e u 31)(C 1015-+-=练习与思考3.5.2图习题三3-1 如图所示电路换路前已处于稳态,试求换路后电路中所标出的电流、电压初始值和稳态值。
习题3-1图解:a )图中V150)0()0(C C ==-+u u ;A 5)0(=-i ,A 1510150)0()0(1C ===++R u iA 5)(V ,50)(C =∞=∞i ub )图中A 1196466//426)0()0(L L =+⨯+==-+i i ,A 1115)0(=-iV 0)0(L =-u ,V 1112119)42(6)0(A,119)0()0(L L =⨯+-===+++u i iA 1)(i V ,0)(L L =∞=∞u3-2 如图所示的电路中,开关S 动作前,电路已达到稳态,t =0时打开开关,求)0(C +u 、)0(L +u 、)0(C +i 和)0(L +i 以及上述各量电路换路后的稳态值。
习题3-2图 解: V 818)0()0(A,18443)0()0(C C L L =⨯===+⨯==-+-+u u i i 4))0(3()0()0(2)0(L C L L ⨯-=+⨯+++++i u i u ,代入得: A 1)0()0(V ,28124)13()0(L C L ==-=-⨯-⨯-=+++i i uV 0)(V ,1243)(,0)()(L C C L =∞=⨯=∞=∞=∞u u i i3-3 如图所示的电路中,换路前已处于稳态。
求0≥t 时C C i u 和,并画出它们的波形。
习题3-3图解: V 601010106)0()0(33C C =⨯⨯⨯==--+u u ,闭合后,为零输入响应。
s 01.010*******)63633(636=⨯⨯⨯=⨯⨯+⨯+==--kk kk k RC τ V 60)0()(1001C C t te eu t u --+==τ,A 012.0)100(60102)()(1001006C C t t e e dtt du Ct i ----=-⨯⨯⨯==3-4如图所示电路中,已知Ω=Ω====k R k R F C C U 6,12,10V ,202121S μ,电容元件换路前未充电,求0≥t 时的C u ,并画出随时间变化的曲线。