塞曼原理简介

合集下载

赛曼效应讲解.pptx

赛曼效应讲解.pptx

Dk, 2
4
f
2
d
16
第17页/共26页
Dk
k 1 k
代入:k 2d /
k,a
k,b
2 (D2 k,a D2 k,b )
2d (D2(k1), D2 k, )
~
1(
D2 k ,b
D2 k ,a
)
2d
D2 (k 1),
D
2 k ,
参考参数:汞 546.1nm
17
第18页/共26页
2. F—P标准具测量测电子荷质比(不做)
4
第5页/共26页
正常赛曼效应的产生是由于原子电子的轨道磁矩与 磁场作用的结果。而反常赛曼效应则是原子的电子总 磁矩(轨道磁矩加自旋磁矩)和磁场相互作用的结果, 在磁场较弱时,原子的轨道磁矩与自旋磁矩首先耦合 后再和外磁场作用,产生所谓的一般的反常塞曼效应; 如果磁场极强时,则原子的轨道磁矩与自旋磁矩分别 和磁场相互作用,从而产生所谓的帕刑-巴克效应。
原子由于磁矩的存在,在磁场中就会受到
磁场的力矩作用,原子的总磁矩在外磁场中 受到的力矩为:
J
M j B
8
第9页/共26页
力矩使原子的总磁矩绕磁场方向旋进,也就是总角动量 绕磁场方向旋进,旋进会引起原子能级的附加能量为:
E
j
B
j B cos
g
e 2m
BPj
cos
其中, B eh为/ 4玻 m尔磁子。由于原子总角动量在磁场中
3
第4页/共26页
实验原理及设计
赛曼效应实验是研究原子的光谱在磁场中受磁场影响而变 化的实验。根据原子所处的磁场强度不同谱线分裂的条数 不同,赛曼效应由于历史的习惯可分为正常赛曼效应和反 常赛曼效应。通常一条谱线分裂条数为三条的效应叫正常 赛曼效应(可以用经典理论加以解释),多于三条的叫反常 赛曼效应(只能用量子理论解释)。反常赛曼效应通常发 生在磁场很弱或者磁场很强的条件下。

塞曼效应预实验报告

塞曼效应预实验报告

1. 理解塞曼效应的基本原理,掌握塞曼效应的实验方法。

2. 掌握使用光栅摄谱仪、偏振片等实验仪器进行塞曼效应实验的操作技能。

3. 通过实验,观察和分析塞曼效应现象,验证塞曼效应的基本规律。

二、实验原理塞曼效应是指在外加磁场的作用下,原子光谱线发生分裂的现象。

当原子处于外磁场中时,其能级会发生分裂,导致光谱线发生偏转和分裂。

根据分裂情况,塞曼效应可分为三种类型:横向塞曼效应、纵向塞曼效应和混合塞曼效应。

横向塞曼效应:原子能级在垂直于外磁场方向的分量发生分裂,导致光谱线在横向发生偏转和分裂。

纵向塞曼效应:原子能级在平行于外磁场方向的分量发生分裂,导致光谱线在纵向发生偏转和分裂。

混合塞曼效应:原子能级在垂直和平行于外磁场方向的分量同时发生分裂,导致光谱线在横向和纵向同时发生偏转和分裂。

三、实验仪器与材料1. 光栅摄谱仪2. 偏振片3. 笔形汞灯4. 电磁铁装置5. 聚光透镜6. 546nm滤光片7. F-P标准具8. 成像物镜与测微目镜组合而成的测量望远镜9. 标准具间距(d=2mm)10. 实验台1. 准备实验仪器,检查各部件是否完好,连接线路无误。

2. 将光栅摄谱仪、偏振片、笔形汞灯、电磁铁装置等实验仪器安装在实验台上,调整各仪器至合适位置。

3. 打开电磁铁电源,调整电流,使电磁铁产生所需的外加磁场。

4. 将笔形汞灯放置在实验台上,调整光路,使光束通过偏振片、546nm滤光片、F-P标准具等部件。

5. 调整F-P标准具的间距,观察光束在标准具内多次反射后形成的干涉条纹。

6. 逐渐调整电磁铁电流,观察光谱线的分裂情况,记录分裂条纹的间距、偏转角度等数据。

7. 重复实验,改变电磁铁电流,观察光谱线的分裂情况,记录数据。

8. 分析实验数据,验证塞曼效应的基本规律。

五、实验数据及处理1. 记录不同电磁铁电流下,光谱线的分裂条纹间距、偏转角度等数据。

2. 对实验数据进行处理,计算分裂条纹间距与电磁铁电流的关系,分析塞曼效应的规律。

塞曼效应(lmj3)

塞曼效应(lmj3)

塞曼效应塞曼效应是物理学史上一个著名的实验。

荷兰物理学家塞曼在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体使光谱发生变化,一条谱线即会分裂成几条偏振化的谱线,这种现象称为塞曼效应。

塞曼效应是继法拉第磁致旋光效应之后发现的又一个磁光效应。

这个现象的发现是对光的电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化,使人们对物质光谱、原子、分子结构有更多了解,特别是由于及时得到洛仑兹的理论解释,更受到人们的重视,被誉为继X 射线之后物理学最重要的发现之一。

1902年,塞曼与洛仑兹因发现塞曼效应而共同获得了诺贝尔物理学奖。

【实验目的】(1) 证实原子具有磁矩和空间取向量子化。

(2) 应用实验的方法,求洛仑兹单位值,并与理论值比较。

【实验仪器】电磁铁及电源 交直流高斯计 调压器 汞灯 法布里—珀罗标准具 小型摄谱仪测量显微镜 【实验原理】当光源放在足够强的磁场中时,原来的一条谱线分裂成波长很靠近的几条偏振化的谱线,分裂的条数随能级的类别而不同,这种现象称为塞曼效应。

塞曼效应实验是研究原子的光谱在磁场中受磁场影响而变化的实验。

根据原子所处的磁场强度不同谱线分裂的条数不同,塞曼效应由于历史的习惯可分为正常塞曼效应和反常赛曼效应。

通常一条谱线分裂条数为三条的效应叫正常塞曼效应(可以用经典理论加以解释),多于三条的叫反常塞曼效应(只能用量子理论解释)。

反常塞曼效应通常发生在磁场很弱或者磁场很强的条件下。

塞曼效应是由于原子中电子的轨道磁矩和自旋磁矩共同受到磁场的作用而产生的,因此它进一步证实了原子具有磁矩和空间取向量子化。

通过本实验可以进一步认识原子的内部结构。

1. 原子的总磁矩塞曼效应是由于原子的内部磁矩受外磁场的作用而产生的,而原子中的电子又具有轨道运动和自旋运动,所以电子有轨道角动量P L 和自旋角动量P S ,有轨道磁矩μL 和自旋磁矩μS 。

在忽略核磁矩的情况下,P L 与P S 合成总角动量P J ,μL 与μS 合成总磁矩μ,见图(1)我们已知:轨道角动量 ⋅+=)1(L L P s图(1)自旋角动量 ⋅+=)1(S S P s轨道磁矩 L L P m e2=μ 自旋磁矩 S S P me2=μ 由于L L P μ 和μS/ P S 的值不同所以总磁矩μ不在总角动量L P 的延长线上,而是μ绕P J 的延长线旋进。

近代物理实验-塞曼效应实验

近代物理实验-塞曼效应实验

近代物理实验——塞曼效应实验一、实验简介如果把光源置于足够强的磁场中,则光源发出的大部分单色光都分裂为若干条偏振的谱线,分裂的条数随能级的类别而不同。

这种现象被称为塞曼效应。

塞曼效应是1896年荷兰物理学家塞曼发现的,洛伦兹对此作出了令人满意的解释。

塞曼效应的发现及其解释对研究原子中电子的角动量和反应角动量耦合作用的朗德因子等原子结构的信息有重要的作用,因此,两人于1902年获得了诺贝尔物理学奖。

本实验将采用光栅摄谱仪的方法来研究这一现象。

二、实验目的1.观察塞曼效应;2.利用塞曼裂矩,计算电子的质核比e/m e;三、实验原理1.塞曼效应概念:将光源放到磁场中,观察到光谱线发生分裂。

原因是原子的能级发生了分裂,根据原子物理学知识,原子中的电子在磁场中的附加能量为:∆E=MgμB B其中g是朗德因子:g=1+J(j+1)−L(L+!)+S(S+1)2J(J+1)2.能级E1与E2之间的跃迁如果产生频率为γ的光,在磁场中上下能级都发生分裂,分裂后的谱线与原谱线的频率差为:∆γ=(m2g2−M1g1)μB B/ℎ其中μB是玻尔磁子:μB=eℎ4πm 得:∆γ=(m2g2−M1g1)eℎ4πmB用波数差表示为:∆σ=(m2g2−M1g1)e4πmcB导出电子的荷质比为:em =()22114cm g m gπσ∆-(em理论值是1.76*1011C/kg)3.观察塞曼效应的方法:F-P标准具光路图,标准具由两块平板玻璃构成,形成干涉极大的条件是:2ndcosθ=kλ(一组同心圆)由于tanθ=D2⁄f,在θ很小时:θ=sinθ=tanθ所以cosθ=1−2sin2θ2=1−12tan2θ=1−D28f2最后推导出波数差: ∆σ=12d (D b2−Da2D k−12−Dk2)含义:Dk与Dk-1是分裂前相邻两个圆环的直径,Db与Da是分裂后同一级次两个圆环的直径(注意计算中∆σ的单位是cm-1)磁感应强度:B=1.2T四、实验仪器摄谱仪、Fe弧光源、Hg放电管五、实验内容1.摄谱和反射镜Bs在摄(1)调整外光路,使得汞放电管发出的光辐射经透镜L1谱仪入射狭缝上成像。

塞曼效应的原理与应用

塞曼效应的原理与应用

塞曼效应的原理与应用引言塞曼效应是指在磁场中运动的粒子所产生的谱线被磁场分裂成多个频率的现象。

这一现象是由瑞典物理学家塞曼于1896年首次发现的,随后被广泛应用于物理学和化学领域的研究中。

本文将介绍塞曼效应的原理及其在科学研究与应用中的重要性。

塞曼效应的原理塞曼效应是基于磁光现象的原理而产生的。

当光线穿过磁场时,由于光波的电矢量与磁场方向垂直,会受到磁场的作用而发生改变。

具体来说,如果原子或分子的能级结构中存在着电子的紧密能级,那么在磁场中,原子或分子的电子将发生能级的分裂和重新排列,从而产生出不同频率的谱线。

塞曼效应的原理可以用以下公式来表示: \[ ΔE = g \cdot μ_B \cdot B \cdot m \] 其中,\[ ΔE \]表示能级的分裂,\[ g \]表示磁量子数,\[ μ_B \]表示玻尔磁子,\[ B \]表示磁场强度,\[ m \]表示电子的自旋量子数。

根据这个公式,我们可以推断出塞曼效应与磁场强度、自旋量子数等因素密切相关。

塞曼效应的应用塞曼效应在科学研究和实际应用中有着广泛的应用价值。

以下是其中几个重要的应用领域:1. 光谱学塞曼效应在光谱学中起着重要的作用。

利用塞曼效应可以对物质的结构和性质进行分析和研究。

通过测量物质在磁场中的吸收或发射谱线的分裂情况,可以获得有关原子或分子的信息,比如其能级结构、转动和振动等特性,从而推断出物质的组成和结构。

2. 核磁共振成像(MRI)核磁共振成像是一种非侵入式的医学成像技术,广泛应用于医学诊断中。

在核磁共振成像中,利用塞曼效应可以对人体组织中的氢原子进行分析和成像。

通过对核磁共振现象的观察,可以获得具有空间分辨能力的影像,用于检测和诊断人体内部的病变。

3. 量子计算塞曼效应也在量子计算领域得到了应用。

量子计算是一种利用量子力学原理设计和实现的计算方法,相较于传统计算机具有更高的计算效率和存储容量。

塞曼效应在量子比特的控制和测量中扮演着重要的角色,通过调节磁场强度可以实现量子比特的耦合和操作,从而实现量子计算。

塞曼效应

塞曼效应
F—P标准具调整:根据2dcosφ=kλ,对于某一波长同一干涉级k,如 果在某一方向上标准具的间距d大,则这个方向上干涉环直径也大。所 以可以直接观察标准具的干涉环进行调整,当眼睛向某一个调整螺丝方 向移动时,若花纹从中间冒出或向外扩大,说明此方向标准具间隔大, 应将该方向的螺丝旋紧或放松其他两个螺丝,直到眼睛向各个方面移动 时,干涉环的大小不变为止,此时F—P标准具的两玻璃板严格平行。调 整L位置,可使亮环最亮。 (2) 观察汞546.1 nm在B=0与B≠0时的物理图象;转动偏振片,检查
图1-3-5 塞曼效应实验装置图 汞灯光由会聚透镜成平行光,经滤光片后5461 A0光入射到F-P标准 具上,由偏振片鉴别π成份和σ成份,再经成像透镜将干涉图样成像在 测量望远镜(或CCD光敏面、摄谱仪底板)上。观察塞曼效应纵效应 时,可将电磁铁极中的芯子抽出,磁极转900,光从磁极中心通过。将 1/4波片置于偏振片前方,转动偏振片可以观测σ成份的左旋和右旋圆 偏振光。
光谱线的间线(上下能级自旋量子数S=0即单重态间的跃迁)在磁场 作用下,把原波数为
的一条谱线分裂成波数为
,

的三条谱线,中间的一条为π成份,分裂的二条为σ成份,谱线间隔为 一个洛仑兹单位。对于双重态以上的谱线将分裂成更多条谱线。前者称 为正常塞曼效应,后者称为反常塞曼效应。 例:钠589nm 谱线的塞曼效应 钠589nm谱线是
一、原理
1、 电子自旋和轨道运动使原子具有一定的磁矩。在外磁场中,原子磁 矩与磁场相互作用,使原子系统附加了磁作用能ΔE。又由于电子 轨道和自旋的空间量子化。这种磁相互作用能只能取有限个分立的 值,此时原子系统的总能量为:
(1-3-1) 式中E0为未加磁场时的能量,M为磁量子数,B为外加磁场的磁感应 强度,e为电子电量,m为电子质量,h为普朗克常数,g为朗德因子。 朗德因子的值与原子能级的总角动量J、自旋量子数S和轨道量子 数L有关,在L-S耦合情况下:

塞曼效应的简介

塞曼效应的简介

塞曼效应的简介塞曼效应Zeeman effect塞曼效应是原子的光谱线在外磁场中出现分裂的现象。

塞曼效应是1896年由荷兰物理学家塞曼发现的.他发现,原子光谱线在外磁场发生了分裂。

随后洛仑兹在理论上解释了谱线分裂成3条的原因。

这种现象称为“塞曼效应”。

进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。

完整解释塞曼效应需要用到量子力学,电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。

在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。

塞曼效应是继1 845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。

塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是1 9世纪末20世纪初物理学最重要的发现之一。

利用塞曼效应可以测量电子的荷质比。

在天体物理中,塞曼效应可以用来测量天体的磁场。

[编辑本段]塞曼效应的发现1896年,荷兰物理学家塞曼使用半径10英尺的凹形罗兰光栅观察磁场中的钠火焰的光谱,他发现钠的D谱线似乎出现了加宽的现象。

这种加宽现象实际是谱线发生了分裂。

随后不久,塞曼的老师、荷兰物理学家洛仑兹应用经典电磁理论对这种现象进行了解释。

他认为,由于电子存在轨道磁矩,并且磁矩方向在空间的取向是量子化的,因此在磁场作用下能级发生分裂,谱线分裂成间隔相等的3条谱线。

塞曼和洛仑兹因为这一发现共同获得了1902年的诺贝尔物理学奖。

1897年12月,普雷斯顿(T.supeston)报告称,在很多实验中观察到光谱线有时并非分裂成3条,间隔也不尽相同,人们把这种现象叫做为反常塞曼效应,将塞曼原来发现的现象叫做正常塞曼效应。

反常塞曼效应的机制在其后二十余年时间里一直没能得到很好的解释,困扰了一大批物理学家。

1925年,两名荷兰学生乌仑贝克(G.E. Uhlenbeck,1900--1974)和古兹米特(S.A.Goudsmit,1902--1978)提出了电子自旋假设,很好地解释了反常塞曼效应。

塞曼效应(大学近代物理实验)概要

塞曼效应(大学近代物理实验)概要


塞曼研究磁场对光谱的作用,是受著名 英国物理学家法拉第的启示。
塞曼( Pieter Zeeman ) 1865~1943
诺贝尔物理学奖 (1902年)
1845年法拉第发现了平面偏振光通过在 强磁场作用下的玻璃偏振面会旋转的事实。 后来又发现,不只是玻璃,许多物质都具有 这一特性。法拉第认为:“磁力和光彼此是 有联系的。” 1875年,物理学家John kerr在法拉第思想的 激励下,注意到玻璃片在强电场下对光有双 折射作用,次年又发现平面偏振光经电磁铁 的磁极反射后,变成了椭圆偏振光。
2、汞光谱灯—本实验中用作光源,产生汞的谱线。注意光谱灯同时产 生较强紫外线。应避免直接观测光源。 3、电磁铁—磁场由电磁铁提供。调节激磁电源电流的大小可以获得不 同强度的磁场。电流值由直流电流表读出。

3、高斯计——系根据霍尔效应设计的一种测量磁场强 度的仪器。使用前请仔细阅读说明书。特别要保护探 头,因为霍尔片就在探头内,极易损坏。 4、偏振片——偏振片用于检出一定方向的线偏振光。 5、F-P标准具——塞曼分裂的波长差是很小的,这一 点可以通过自己估计其数量级来加以理解。因此一般 的光谱仪是难以观察到其分裂现象的。F-P标准具的分 辨率很高,而且构造简单。本实验用它来观察和测量 谱线的分裂。
2h[1
1 D2 ] N 8 f 2
标准具测量波长差的公式:
1 D2 2d [1 ] k 8 f2



式中D表示圆环的直径,f 为透镜的焦距,d为法-泊板间的距离。 由上式可见,公式左边第二项的负号表明直径愈大的干涉环纹序 愈低。同理,对于同一级序的干涉环直径大的波长小。 对于同一波长相邻级项k和k-1圆环直径分别为Dk和Dk-1,其直径平 方差用ΔD2表示,可得 ΔD2= D2K-1— D2K= 4λf2k

塞曼效应实验报告

塞曼效应实验报告

一、实验目的1. 理解塞曼效应的原理和现象;2. 通过实验观察塞曼效应,验证其存在;3. 学习光栅摄谱仪的使用方法;4. 掌握数据处理和误差分析的方法。

二、实验原理塞曼效应是指在外加磁场作用下,原子或分子的光谱线发生分裂的现象。

塞曼效应的发现对研究原子结构和电子角动量有重要意义。

本实验采用光栅摄谱仪观察汞原子谱线的分裂情况,以此对外加磁感应强度进行估测。

根据量子力学理论,原子中的电子具有轨道角动量L和自旋角动量S,两者耦合形成总角动量J。

原子总磁矩与总角动量不共线,在外加磁场作用下,总磁矩与磁场有相互作用,导致能级发生分裂。

三、实验仪器与材料1. 光栅摄谱仪;2. 阿贝比长仪;3. 汞原子光源;4. 电磁铁装置;5. 望远镜;6. 测微目镜;7. 数据采集卡;8. 计算机。

四、实验步骤1. 将汞原子光源、电磁铁装置和光栅摄谱仪连接好;2. 调节光栅摄谱仪,使汞原子光源发出的光通过光栅后成像于望远镜;3. 将电磁铁装置通电,产生外加磁场;4. 观察并记录汞原子谱线的分裂情况;5. 关闭电磁铁装置,重复实验步骤,观察无外加磁场时的谱线情况;6. 对比两组数据,分析塞曼效应的存在;7. 使用阿贝比长仪测量光栅常数;8. 根据光栅摄谱仪的成像原理和能级分裂公式,计算外加磁感应强度。

五、实验结果与分析1. 实验现象:在外加磁场作用下,汞原子谱线发生分裂,形成若干条偏振的谱线;2. 数据处理:根据光栅摄谱仪的成像原理和能级分裂公式,计算外加磁感应强度;3. 误差分析:分析实验过程中可能存在的误差来源,如光栅常数测量误差、光栅角度测量误差等;4. 结果验证:将实验结果与理论值进行对比,验证塞曼效应的存在。

六、实验总结1. 本实验成功观察到了塞曼效应,验证了其存在;2. 通过实验,掌握了光栅摄谱仪的使用方法;3. 学会了数据处理和误差分析的方法;4. 对原子结构和电子角动量的研究有了更深入的了解。

七、实验拓展1. 研究不同磁场强度下塞曼效应的变化规律;2. 观察其他元素原子的塞曼效应;3. 研究塞曼效应在激光技术、天体物理等领域的应用。

塞曼效应原理

塞曼效应原理

塞曼效应原理
塞曼效应是指原子在外磁场中发光谱线发生分裂且偏振的现象,也就是外加磁场会使原子产生更多不同频率的特征谱线的偏振光。

历史上首先观测到并给予理论解释的是谱线一分为三的现象,后来又发现了较三分裂现象更为复杂的难以解释的情况,因此称前者为正常或简单塞曼效应,后者为反常或复杂塞曼效应。

塞曼效应是外加磁场改变了原子中电子运动轨道平面和围绕原
子核的运动频率,从而导致原子核围绕质心的运动频率不同,原子核在电子失去期间所产生的光谱自然也会发生频率和偏振方向的变化。

将电子围绕原子核运动产生的磁场视为垂直于轨道平面的磁偶极子,并在外加磁场的作用下磁偶极子的方向和偶极矩将随之变化也可以
解释塞曼效应。

但并不能直观地描述电子在围绕原子核运动一个周期期间内电子在不同位置上实际受到的外加磁场所产生的磁力的变化
情况,因为电子受到磁力的大小与方向不仅与外加恒定磁场的方向与大小有关,还与电子自身的运动速度与运动方向有关。

电子围绕原子核的运动速度虽然变化不大,但运动方向的不断变化也会导致受到外加恒定磁场的磁力的大小与方向不断变化。

塞曼效应实验报告误差(3篇)

塞曼效应实验报告误差(3篇)

第1篇一、实验背景塞曼效应是指在外磁场作用下,原子光谱线发生分裂的现象。

该效应是量子力学和原子物理学中的一个重要实验,通过观察和分析塞曼效应,可以研究原子的能级结构、电子的角动量和自旋等基本物理量。

本实验旨在通过实验验证塞曼效应,并分析实验过程中可能出现的误差。

二、实验原理1. 塞曼效应的原理当原子置于外磁场中时,原子内部电子的轨道角动量和自旋角动量会相互作用,产生总角动量。

总角动量在外磁场中具有量子化的取向,导致原子能级发生分裂,从而产生塞曼效应。

2. 塞曼效应的能级分裂根据量子力学理论,原子在外磁场中的能级分裂可表示为:ΔE = -μB·g·J(J+1)其中,ΔE为能级分裂能量,μB为玻尔磁子,g为朗德因子,J为总角量子数。

三、实验方法1. 实验仪器本实验采用光栅摄谱仪、电磁铁、聚光透镜、偏振片、546nm滤光片、F-P标准具等仪器。

2. 实验步骤(1)将光栅摄谱仪调整至最佳状态,确保光谱清晰。

(2)将电磁铁的磁场强度调整至预定值。

(3)将汞灯发射的光通过546nm滤光片,使其成为单色光。

(4)将单色光通过电磁铁,使其在磁场中发生塞曼效应。

(5)通过光栅摄谱仪观察和记录塞曼效应的分裂谱线。

(6)调整电磁铁的磁场强度,重复实验步骤,记录不同磁场强度下的分裂谱线。

四、实验结果与分析1. 实验结果通过实验,我们观察到汞原子546.1nm谱线在磁场中发生了分裂,分裂谱线的条数与磁场强度有关。

2. 误差分析(1)系统误差1)仪器误差:光栅摄谱仪、电磁铁等仪器的精度和稳定性会影响实验结果,导致系统误差。

2)环境误差:实验过程中,环境温度、湿度等因素的变化也会对实验结果产生一定影响。

(2)随机误差1)人为误差:实验操作过程中,如调整仪器、记录数据等环节,可能存在人为误差。

2)测量误差:测量磁场强度、光谱线强度等物理量时,可能存在测量误差。

(3)数据处理误差1)谱线识别误差:在观察和分析分裂谱线时,可能存在谱线识别误差。

塞曼效应

塞曼效应

原子在外磁场中发光谱线发生分裂且偏振的现象称为塞曼效应;历史上首先观测到并给予理论解释的是谱线一分为三的现象,后来又发现了较三分裂现象更为复杂的难以解释的情况,因此称前者为正常或简单塞曼效应,后者为反常或复杂塞曼效应。

基本信息中文名称:塞曼效应外文名称:Zeeman effect解释:原子的光谱线在外磁场中出现分裂发现者:荷兰物理学家塞曼发现时间:1896年奖项:诺贝尔物理学奖原理简介荷兰物理学家塞曼在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体使光谱发生变化,一条谱线即会分裂成几条偏振化的谱线,这种现象称为塞曼效应。

塞曼效应是法拉第磁效致旋光效应之后发现的又一个磁光效应。

这个现象的发现是对光的电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化,使人们对物质光谱、原子、分子有更多了解,特别是由于及时得到洛仑兹的理论解释,更受到人们的重视,被誉为继X射线之后物理学最重要的发现之一。

1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰他们研究磁场对光的效应所作的特殊贡献)。

详细内容塞曼效应,英文:Zeeman effect,是1896年由荷兰物理学家塞曼发现的.他发现,原子光谱线在外磁场发生了分裂。

随后洛仑兹在理论上解释了谱线分裂成3条的原因。

这种现象称为"塞曼效应"。

进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。

完整解释塞曼效应需要用到量子力学,电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。

在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。

塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。

塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。

塞曼效应

塞曼效应

塞曼效应,英文:Zeeman effect,是1896年由荷兰物理学家塞曼发现的.1896年,荷兰物理学家塞曼使用半径10英尺的凹形罗兰光栅观察磁场中空间的取向是量子化的,因此在磁场作用下能级发生分裂,谱线分裂成间隔相等的3条谱线。

塞曼和洛仑兹因为这一发现共同获得了1902年的诺贝尔物理学奖。

1897年12月,普雷斯顿(T.supeston)报告称,在很多实验中观察到光谱线有时塞曼效应的发现者——荷兰物理学家塞曼。

并非分裂成3条,间隔也不尽相同,人们把这种现象叫做为反常塞曼效应,将塞曼原来发现的现象叫做正常塞曼效应。

反常塞曼效应的机制在其后二十余年时间里一直没能得到很好的解释,困扰了一大批物理学家。

1925年,两名荷兰学生乌仑贝克(G.E.Uhlenbeck,1900--1974)和古兹米特(S.A.Goudsmit,1902--1978)提出了电子自旋假设,很好地解释了反常塞曼效应。

应用正常塞曼效应测量谱线分裂的频率间隔可以测出电子的荷质比。

由此计算得到的荷质比数值与约瑟夫·汤姆生在阴极射线偏转实验中测得的电子荷质比数量级是相同的,二者互相印证,进一步证实了电子的存在。

塞曼效应也可以用来测量天体的磁场。

1908年美国天文学家海尔等人在威尔逊山天文台利用塞曼效应,首次测量到了太阳黑子的磁场。

偏振特性对于Δm=+1,原子在磁场方向的角动量减少了一个\hbar,由于原子和光子的角动量之和守恒,光子具有与磁场方向相同的角动量\hbar,方向与电矢量旋转方向构成右手螺旋,称为σ+偏振,是左旋偏振光。

反之,对于Δm=-1,原子在磁场方向的角动量增加了一个\hbar,光子具有与磁场方向相反的角动量\hbar,方向与电矢量旋转方向构成左手螺旋,称为σ-偏振,是右旋偏振光。

对于Δm=0,原子在磁场方向的角动量不变,称为π偏振。

如果沿磁场方向观察,只能观察到σ+和σ-谱线的左旋偏振光和右旋偏振光,观察不到π偏振的谱线。

塞曼效应

塞曼效应

2 e 2c D ab m dB D 2
现象预测:标准值为
e 1.76 1011 (C kg1) m
5/15/2015
四、参考文献
[1]高立模.近代物理实验.南开大学出版社,2006 [2]杨福家.原子物理学.高等教育出版社,1985 [3]於黄忠.近代物理实验.华南理工大学出版社,2013 [4]吴先球,熊予莹.近代物理实验教程(第二版).科学出 版社,2009 [5]褚圣麟.原子物理学.人民教育出版社,1979 [6]母国光,战元龄.光学.人民教育出版社,1978
3 1 S(S 1) L(L 1) LS耦合: g 2 2 J(J 1)
g2 计算得: 2,g1 3 / 2
M M2 M1 0,1 ,得到: 由选择规则:
3 1 1 3 ~ (2, ,1 , ,0, ,1 , ,2)L 2 2 2 2 5/15/2015
5/15/2015
End
二、实验原理 ——1.谱线在磁场中的分裂
B0
3
B0
S1
M 1 0 -1
Mg 2 0 -2
3
P2
546.1nm
546.1nm
2 3 1 3/2 0 0 -1 -3/2 -2 -3
5/15/2015



二、实验原理 ——2.用标准具测量波数差
标准具
2 4 f 2 2 D 2 Dk D 1 k d
1)磁场: 由2A~4A低压直流稳压电源提供0.6T~1T磁场 2)光源 笔形汞灯L 1 会聚透镜 :增强整个光路的光强 偏振片P:垂直磁场方向or沿磁场方向 透射干涉滤光片F:滤出546.1nm的谱线
3)分光系统 F-P标准具

塞曼效应实验报告论文

塞曼效应实验报告论文

摘要:塞曼效应是原子物理学中一个重要的现象,它揭示了原子在外磁场中能级的分裂。

本实验旨在通过观察汞原子光谱线的分裂,验证塞曼效应的存在,并测量外加磁场的强度。

实验采用光栅摄谱仪和阿贝比长仪进行观测,通过摄谱法分析谱线的分裂情况,并结合理论计算,对实验结果进行讨论。

关键词:塞曼效应,原子能级,外磁场,光栅摄谱仪,阿贝比长仪一、引言塞曼效应是指在外加磁场的作用下,原子光谱线发生分裂的现象。

这一效应的发现,不仅证实了原子能级在外磁场中的分裂,而且揭示了原子磁矩的存在。

塞曼效应在原子物理学、固体物理学和天体物理学等领域都有着重要的应用。

本实验通过观察汞原子光谱线的分裂,验证塞曼效应的存在,并测量外加磁场的强度。

实验采用光栅摄谱仪和阿贝比长仪进行观测,通过摄谱法分析谱线的分裂情况,并结合理论计算,对实验结果进行讨论。

二、实验原理1. 塞曼效应的原理根据量子力学理论,原子在外磁场中的能级会发生分裂。

对于具有总角动量量子数\(J\) 的原子,其能级在外磁场 \(B\) 中的分裂情况可以表示为:\[ E_J = E_0 + \frac{g \mu_B J}{2} B \]其中,\(E_0\) 为无磁场时的能级,\(g\) 为朗德因子,\(\mu_B\) 为玻尔磁子,\(J\) 为总角动量量子数。

2. 实验原理本实验采用光栅摄谱仪和阿贝比长仪进行观测。

实验步骤如下:(1)将汞原子灯置于电磁铁的磁场中,调节磁场强度。

(2)用光栅摄谱仪对汞原子光谱进行观测,记录谱线的位置。

(3)改变磁场强度,重复步骤(2),记录不同磁场强度下的谱线位置。

(4)根据理论公式,计算不同磁场强度下的能级分裂情况,并与实验结果进行比较。

三、实验结果与讨论1. 实验结果通过实验观测,发现汞原子光谱线在外磁场作用下发生分裂,分裂的条数与磁场强度有关。

随着磁场强度的增加,分裂的条数也相应增加。

2. 结果讨论(1)实验结果与理论公式吻合,验证了塞曼效应的存在。

实验35塞曼效应

实验35塞曼效应

B=0 3S1
B=B
M
Mg
1
2
0
0
-1
-2
3P2 546.1nm
546.1nm
2
3
1
3/2
0
0
-1
-3/2
-2
-3
σ
π
σ
汞546.1nm线在磁场中分裂为9条新谱线,其中对应的 线与原谱线相同,各相邻的分裂谱线波数差是L/2。
当ΔM=0时,产生3条线。沿垂直磁场方向观测,线为 振动方向平行于磁场的线偏振光。沿磁场方向观测不到线。
通过塞曼效应实验,可由能级分裂的个数知道能级的值,由能级的 裂距可以知道因子。如果原子遵从耦合,则可由值判断该能级的和值。
二、实验原理
1、谱线在磁场中的分裂 按量子理论,当光源处于磁场强度为的磁场中,能级
要发生分裂,其附加能量 E MgB B
当光源未受磁场作用时,设电子由能级跃迁到能级,
产生频率为的谱线 h E2 E1
当ΔM=±1时,产生6条线。沿垂直磁场方向观测,线 为振动方向垂直于磁场的线偏振光。沿磁场方向观测,线 为圆偏振光。

2、用标准具测量波数差 本实验采用干涉滤光片和法布里-珀罗标准具完成分光
任务。
i
i
d
f
当光程差等于波长的数倍时,形成干涉亮环,即对于级干涉环,满足
k 2d cosi
经推导,波数差可表示为
一、背景知识
1896年,荷兰著名的实验物理学家塞曼(Zeeman)将光源置于强磁 场中,研究磁场对谱线的影响,结果发现原来的一条光谱线,分裂成几 条光谱线,分裂的谱线成份是偏振的,这一现象称为塞曼效应。由于发 现了这个效应,塞曼在1902年获得诺贝尔物理学奖。这是当时实验物 理学家的重要成就之一,它使人们对物质的光谱、原子和分子的结构有 了更多的了解。

塞曼效应实验报告步骤

塞曼效应实验报告步骤

一、实验目的1. 通过观察塞曼效应,加深对原子结构和量子力学基本概念的理解。

2. 学习使用光栅摄谱仪和阿贝比长仪等实验仪器。

3. 掌握塞曼效应的原理和实验方法。

二、实验原理1. 塞曼效应是指在外加磁场作用下,原子发射的光谱线发生分裂的现象。

这种现象是由原子总磁矩在外磁场中的取向量子化所引起的。

2. 根据量子力学理论,原子总磁矩与总角动量不共线,因此在磁场中,总磁矩与总角动量方向上的分量J与磁场有相互作用,产生附加能量。

由于磁量子数m的量子化,原子的能级在外磁场作用下将分裂成2J+1个能级。

3. 在实验中,利用光栅摄谱仪观测汞原子谱线的分裂情况,通过分析分裂谱线的波长和间距,可以计算出外加磁场的强度。

三、实验步骤1. 准备实验仪器:光栅摄谱仪、阿贝比长仪、汞灯、电磁铁装置、聚光透镜、偏振片、546nm滤光片、F-P标准具、成像物镜与测微目镜组合而成的测量望远镜。

2. 调节光路:将汞灯与电磁铁装置固定在实验台上,调节电磁铁装置使磁场方向与实验台垂直。

将汞灯发出的光通过聚光透镜、偏振片和546nm滤光片,使光束聚焦在F-P标准具上。

3. 调节F-P标准具:将F-P标准具的两个平行面调节至严格平行,调整测微目镜,使观察到清晰明锐的干涉圆环。

4. 观察塞曼效应:在不加磁场的情况下,调节F-P标准具的间距,使干涉圆环直径适中。

然后逐渐增加电磁铁装置的电流,观察干涉圆环的变化。

5. 记录数据:在磁场作用下,记录干涉圆环的直径和间距,分别对应不同的磁感应强度。

6. 分析数据:利用光栅摄谱仪和阿贝比长仪,分别测量分裂谱线的波长和间距。

根据实验原理,计算出外加磁场的强度。

7. 比较结果:将实验测得的外加磁场强度与理论计算值进行比较,分析误差来源。

8. 撰写实验报告:整理实验数据、分析结果,撰写实验报告。

四、注意事项1. 实验过程中,注意安全操作,避免触电和烫伤。

2. 调节F-P标准具时,要细心操作,确保平行面严格平行。

塞曼效应实验

塞曼效应实验

塞曼效应实验作者杨桥英指导老师杨建荣绪论塞曼效应实验是近代物理中的一个重要实验,它证实了原子具有磁矩和空间量子化,可由实验结果确定有关原子能级的几个量子数如M,J和g因子的值,有力地证明了电子自旋理论。

对于教学和学习来说本文所讨论的实验方案的结合使用,不但可以使我们对塞曼实验的原理有更深层次的触动,加深我们对于塞曼效应原理的理解,而且可以使我们对计算机及相应的软件开发在实验中的应用有所了解。

塞曼效应是原子的光谱线在外磁场中出现分裂的现象。

塞曼效应是1896年由荷兰物理学家塞曼发现的。

他发现,原子光谱线在外磁场发生了分裂。

随后洛仑兹在理论上解释了谱线分裂成3条的原因。

这种现象称为“塞曼效应”。

进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。

完整解释塞曼效应需要用到量子力学、电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。

在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。

塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。

塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。

利用塞曼效应可以测量电子的荷质比。

在天体物理中,塞曼效应可以用来测量天体的磁场[]1。

1.实验原理1.1原子的总磁矩与总角动量的关系原子的总磁矩由电子磁矩和核磁矩两部分组成,由于核磁矩比电子磁矩小三个数量级以上,所以可只考虑电子的磁矩这一部分。

原子中的电子做轨道运动时产生轨道磁矩,做自旋运动时产生自旋磁矩。

根据量子力学的结果,电子轨道角动量PL和轨道磁矩μL 以及自旋角动量PS和自旋磁矩μS在数值上有下列关系:,,(1-1)式中e,m分别表示电子电荷和电子质量;L,S分别表示轨道量子数和自旋量子数。

轨道角动量和自旋角动量合成原子的总角动量РJ,轨道磁矩和自旋磁矩合成原子的总磁矩μ,如图1-1所示:图1-1 磁矩和角动量的关系由于μS 和PS的比值是μL和PL比值的两倍,因此合成的原子总磁矩μ不在总角动量РJ 的方向上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Zeeman背景校正原理介绍
1.相关知识:
(1)原子吸收:
待测元素的光源发光光路通过样品原子蒸气产生光谱吸收检测吸光度Abs。

这个吸光度Abs与样品中待测元素的浓度C具有线性关系,根据吸光度Abs的大小,就可以计算出样品中待测元素浓度C的大小了。

(2)背景校正:
但是产生的光谱吸收不仅仅是待测元素产生的吸光度AA,往往样品中的基体组分也会产生吸收,这被称作背景吸收BG,从而造成吸光度的误差,也就造成了测量数据的误差。

而背景校正就是扣除背景吸收BG。

2.塞曼背景校正:
★原理:
1886年,荷兰物理学家塞曼发现光源在强磁场作用下产生发射线分裂的现象,这种现象称为塞曼效应,而当磁场施加在吸收池时,同样可以观测到吸收线分裂的现象,称为逆向塞曼效应。

在磁场作用下,原子能级发生分裂致使谱线分裂为三条(或多条)谱线,称为正常(或反常)塞曼效应。

分裂后的谱线具有偏振性,波长分别为λ0、λ0±λ1、λ0±λ2……。

对于正常塞曼效应,波长未发生变化的λ0谱线称为π成分,偏振方向与磁场方向平行;波长发生变化的λ0±λ1谱线称为σ±成分,偏振方向与磁场方向垂直。

在采用塞曼背景校正时,用π成分测量出原子吸收(AA)与背景吸收(BG),即AA+BG,用σ±成分测量出背景吸收(BG’),且有BG=BG’,两次测量值相减,即得到扣除背景后的原子吸收信号。

★分类:
应用塞曼效应进行背景校正时,仪器结构并不是固定或一致的,校正方式也可进一步细分为若干种,它由磁场位置、磁场方向、以及磁场性质这三方面的不同选择而决定:
磁场位置不同分为2种。

磁场施加在光源产生发射线塞曼分裂的光源调制,后者磁场施加在原子化器产生吸收线塞曼分裂的吸收线调制。

磁场方向不同分为2种。

磁场与光路垂直称作横向塞曼效应,磁场与光路平行称作纵向塞曼效应。

磁场性质不同分为2种。

采用恒定磁场的偏振调制方式,采用交变磁场的磁场调制方式。

对上述三方面的不同选择就形成了一共2*2*2=8种塞曼背景校正仪器:
a.光源调制横向塞曼恒定磁场型
b.光源调制横向塞曼交变磁场型
c.光源调制纵向塞曼恒定磁场型
d.光源调制纵向塞曼交变磁场型
e.吸收线调制横向塞曼恒定磁场型
f.吸收线调制横向塞曼交变磁场型
g.吸收线调制纵向塞曼恒定磁场型
h.吸收线调制纵向塞曼交变磁场型
但是:
a.光源调制方式对于仪器光源结构有较大要求,使得元素灯不具有通用性,逐渐被市场所淘汰吧就算...因此,目前市场上的塞曼背景校正的仪器都是采用原子化器调制方式,没有使用光源调制的类型了。

b.关于横向与纵向磁场的问题。

横向磁场效应产生的是波长不变的π成分和波长变化的σ±成分,前者用于测量原子吸收信号,后者不产生原子吸收信号,是用于对背景校正。

而纵向磁场仅能产生σ±成分,也就是说仅能产生背景信号。

c.因此,横向磁场可以使用恒定磁场和交变磁场来实现原子吸收与背景吸收的测量。

而纵向磁场只能采用交变磁场,通过磁场的有无来分别实现对原子吸收信号和背景信号的测量,纵向磁场若采用恒定磁场则只有背景信号,不能用于原子吸收仪器分析。

纵上所述,所以目前市场上只有3种塞曼背景校正的仪器:
吸收线调制恒定磁场横向塞曼型:
WFX-810型(北京瑞利分析仪器公司)
Z8000/Z5000/Z2000系列(日本Hitachi公司)
吸收线调制交变磁场横向塞曼型:
ZEEnit系列(德国analytik-jena公司)
Z3030型(美国Perkin-Elmer公司)
吸收线调制交变磁场纵向塞曼型:
ZL4100/Z600/Z800 AnalytTM600/800型(美国Perkin-Elmer公司)
继续,这就引起了一个问题,采用交变磁场背景校正的,它必须要求有复杂、庞大的电路系统,而且磁间隙有限,现有的机械、电学、物理学等水平决定了它不能够生产出有火焰燃烧缝那么长(一般15cm左右)的磁场,仅仅应用于石墨炉分析的纵向交变磁场的正常消耗功率就已经达到了4kW!这已经对用于分析的实验室的电路造成了很大的负荷,而且还不包括石墨炉电源,仅仅是它的交变磁场就是4kW了。

因此目前采用纵向交变磁场背景校正的仪器,仅仅是石墨炉分析而已,仪器在火焰一侧的背景校正方式采用的必然是D2灯。

而横向恒定磁场就没有这个问题了,可以实现火焰与石墨炉的塞曼背景校正,但是并不是说这就比交变磁场要好或是技术更先进,应该说是各有所长也各有所短,真正的评判依据在于用户,用户分析自己的样品适用的方式,就是对他来说好的方式。

谢谢…
应用或转载请注明出处北京瑞利分析仪器公司原子吸收事业部李晓晨。

相关文档
最新文档