2015年全国大学生电子设计大赛四旋翼飞行器论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年全国大学生电子设计竞赛多旋翼自主飞行器(C题)
2015年8月15日
摘要
本文对四旋翼碟形飞行器进行了初步的研究和设计。首先,对飞行器各旋翼的电机选择做了论证,分析了实际升力效率与PWM的关系并选择了此样机的最优工作频率,并重点对飞行器进行了硬件和软件的设计。
本飞行器采用瑞萨R5F100LEA单片机为主控制器,通过四元数算法处理传感器MPU6000采集机身平衡信息并进行闭环的PID控制来保持机身的平衡。整个控制系统包括电源模块、传感器检测模块、电机调速模块、飞行控制模块及微处理器模块等。角度传感器和角速率传感模块为整个系统提供飞行器当前姿态和角速率信号,构成飞行器的增稳系统。本系统经过飞行测试,可以达到设计要求。关键字:R5F100LEA单片机、传感器、PWM、PID控制。
目录
1系统方案 (1)
1.1电机的论证与选择 (1)
1.2红外对管检测传感器的论证与选择 (1)
1.3电机驱动方案的论证与选择 (2)
2系统控制理论分析 (2)
2.1控制方式 (2)
2.2 PID模糊控制算法 (2)
3控制系统硬件与软件设计 (4)
3.1系统硬件电路设计 (4)
3.1.1系统总体框图 (4)
3.1.2 飞行控制电路原理图 (4)
3.1.3电机驱动模块子系统 (5)
3.1.4电源 (5)
3.1.5简易电子示高模块电路原理图 (6)
3.2系统软件设计 (6)
3.2.1程序功能描述与设计思路 (6)
3.2.2程序流程图 (6)
4测试条件与测试结果 (7)
4.1 测试条件与仪器 (7)
4.2 测试结果及分析 (7)
4.2.1测试结果(数据) (7)
4.2.2测试分析与结论 (8)
附录1:电路图原理 (9)
附录2:源程序 (10)
1系统方案
本系统主要由电源模块、电机调速控制模块、飞行控制模块、传感器模块组成,下面分别论证这几个模块的选择。
1.1电机的论证与选择
四旋翼无人飞行器是通过控制四个不同无刷直流电机的转速,达到控制四旋翼无人飞行器的飞行姿态和位置,与传统直升机通过控制舵机来改变螺旋桨的桨距角,达到控制直升机的目的不同。在电机的选型上,主要有直流有刷电机和直流无刷电机两种。
方案一:直流有刷电机是当前普遍使用的一种直流电机,它的驱动电路简单、控制方法成熟,但是直流有刷电机使用电刷进行换向,换向时电刷与线圈触电存在机械接触,电机长时间高速转动使极易因磨损导致电气接触不良等问题,而且有刷电机效率低、力矩小、重量大,不适合对功率重量比敏感的电动小型飞行器。
方案二:直流无刷电机能量密度高、力矩大、重量轻,采用非接触式的电子换向方法,消除了电刷磨损,较好地解决了直流有刷电机的缺点,适用于对功率重量比敏感的用途,同时增强了电机的可靠性。
综合以上两种方案,选择方案二。
1.2红外对管检测传感器的论证与选择
探测地面黑线的基本原理是:光线照射到路面并反射,由于黑线和白色地面对光的反射系数不同,所以可以根据接收到的反射光强弱来判断黑线。可实现的方案有:方案一:采用普通发光二极管及光敏电阻组成的发射接收方案。该方案在实际使用时,容易受到外界光源的干扰,有时甚至检测不到。主要是因为可见光的反射效果跟地表的平坦程度、地表材料的反射情况均对检测效果产生直接影响。虽然可采取超高高度发光二极管降低一定的干扰,但这又增加额外的功率损耗。
方案二:红外避障传感器E18-D80NK。这是一种集发射与接收于一体的光电传感器,发射光经过调制后发出,接收头对反射光进行解调输出,有效的避免了可见光的干扰。透镜的使用,也使得这款传感器最远可以检测80厘米距离。检测障碍物的距离可以根据要求通过尾部的电位器旋钮进行调节。并且具有探测距离远、受可见光干扰小、价格便宜、易于装配、使用方便等特点。
综合以上两种方案,选择方案二。
1.3电机驱动方案的论证与选择
方案一: 采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整。这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高。
方案二: 采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。更主要的问题在于一般电动机的电阻很小,但电流很大;分压不仅会降低效率,而且实现很困难。
方案三:采用全桥驱动PWM电路。这种驱动的优点是使管子工作在占空比可调的开关状态,提高使用效率实现电机转速的微调。并且保证了可以简单的方式实现方向控制。
基于上述三种方案,应选择方案三比较合适。
2系统控制理论分析
2.1控制方式
本次比赛的难点在于如何使飞行器在空中较好的实现平衡控制,然后使其进行巡线飞行和降落。题中所研究的四旋翼结构属于X型分布,即螺旋桨M1和M4与M2和M3关于X轴对称,螺旋桨M1和M3与M2和M4关于Y轴对称如图1所示。对于四旋翼的模型简单的数学物理建模。通过陀螺仪返回的六个数据进行四元数拟合处理得到空间欧拉角。然后返回给系统进行闭环PID控制。
图1 螺旋桨分布示意图
2.2 PID模糊控制算法
PID是工业控制上的一种控制算法,在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有
近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
PID控制算法原理如图2所示。
图2 PID计算方式
经过测算和推导,我们得出了PID的计算公式为:
进入PID调节子程序时,首先需要根据系统给定值和采样值计算偏差。另外,在系统进入稳态后,偏差是很小的。当控制过程进入这种状态后,就进入了系统设定的一个允许带里。本设计中的算法设计与流程图如图3所示。
图3 PID调节子程序流程图