概率论与数理统计-参数估计
华东师范大学茆诗松《概率论与数理统计教程》第6章 参数估计.
ˆ (a , , a ), j j 1 k
其中
1 n j a j xi n i1
j 1, , k ,
25 November 2018
华东师范大学
第六章 参数估计
第7页
例6.1.2 设总体服从指数分布,由于EX=1/, 即 =1/ EX,故 的矩法估计为
ˆ 1/ x
华东师范大学
第六章 参数估计
第8页
例 6.1.3 x1, x2, …, xn 是来自 (a,b) 上的均匀分布 U(a,b) 的样本, a 与 b 均是未知参数,这里 k=2 , 由于
ab EX , 2 (b a ) 2 Var( X ) , 12
不难推出
a EX 3Var( X ), b EX 3Var( X ),
L( ) ( ) [2 (1 )] [(1 ) ]
2 n1 n2 2 n3
2
n2
2 n1 n 2
(1 )
2 n3 n2
其对数似然函数为
ln L( ) (2n1 n2 ) ln (2n3 n2 ) ln(1 ) n2 ln 2
1 n n n 2 2 ln L( , ) 2 ( xi ) ln ln(2) 2 i 1 2 2
2
25 November 2018
华东师范大学
第六章 参数估计
第14页
将 lnL(, 2) 分别关于两个分量求偏导并令 其为0, 即得到似然方程组
ln L( , 2 ) 1 n 2 ( xi ) 0 i 1 ln L( , 2 ) 1 n n 2 4 ( xi ) 2 0 2 2 i 1 2
概率论与数理统计教案参数估计
概率论与数理统计教案-参数估计教案章节一:参数估计概述教学目标:1. 理解参数估计的定义及意义;2. 掌握参数估计的两种方法:最大似然估计和最小二乘估计;3. 了解参数估计的假设条件。
教学内容:1. 参数估计的定义及意义;2. 最大似然估计和最小二乘估计的方法及步骤;3. 参数估计的假设条件。
教学方法:1. 讲授法:讲解参数估计的定义、意义、方法及步骤;2. 案例分析法:分析实际案例,让学生更好地理解参数估计的方法及应用。
教学难点:1. 最大似然估计和最小二乘估计的方法及步骤;2. 参数估计的假设条件。
教学准备:1. 教学PPT;2. 相关案例资料。
教学过程:1. 引入参数估计的概念,讲解其意义;2. 讲解最大似然估计和最小二乘估计的方法及步骤;3. 分析实际案例,展示参数估计的应用;4. 讲解参数估计的假设条件;5. 课堂互动,回答学生问题。
作业布置:1. 复习parameter estimation 的定义及意义;2. 学习maximum likelihood estimation 和least squares estimation 的相关知识;3. 思考如何应用parameter estimation 解决实际问题。
教案章节二:最大似然估计教学目标:1. 理解最大似然估计的定义及意义;2. 掌握最大似然估计的计算方法;3. 了解最大似然估计的应用场景。
教学内容:1. 最大似然估计的定义及意义;2. 最大似然估计的计算方法;3. 最大似然估计的应用场景。
教学方法:1. 讲授法:讲解最大似然估计的定义、意义、计算方法;2. 案例分析法:分析实际案例,展示最大似然估计的应用。
教学难点:1. 最大似然估计的计算方法;2. 最大似然估计的应用场景。
教学准备:1. 教学PPT;2. 相关案例资料。
教学过程:1. 引入最大似然估计的概念,讲解其意义;2. 讲解最大似然估计的计算方法;3. 分析实际案例,展示最大似然估计的应用;4. 课堂互动,回答学生问题。
概率论与数理统计第7章参数估计PPT课件
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,
概率论与数理统计应用_参数估计_
第7章 参数估计
7.2 估计量的评选标准
授课教师:李林杉 副教授
估计量的评选标准
由前面的学习知道, 对于同一个参数,用不同的估计方法求出的估计量可能不相同,对 不同的样本值也会得到不同的估计值,原则上任何统计量都可以作为未知参数的估计量.
问题 (1)对于同一个参数究竟采用哪一个估计量好? (2)评价估计量的标准是什么?
D(1 6
X1
5 6
X
3)
1 36
D
X1
25 36
D
X
2
13 ቤተ መጻሕፍቲ ባይዱ8
因为 13 18
5 ,所以估计量 9
ˆ1
2 3
X1
1 3
X 2 更有效.
估计量的评选标准
三、相合性
我们不仅希望一个估计量是无偏的,并且具有较小的方差,还希望当样本容量n 增大时,估计量能充分地接近于未知参数的真值, 因此就引出相合性(一致性)的 评价标准.
解
的矩估计量和极大似然估计量都是 X
1 n
n i 1
Xi
.
的估计值都是 ˆ x 1200
估计值与真值的误差?(精度) 点估计可信程度有多大?(可信度)
区间估计
二、置信区间
定义 设总体X 的分布函数F(x,θ)含有一个未知参数θ. X1, X 2, , X n 为总体的样本, 对于给定值α( 0<α<1), 若能确定两个统计量
( X1, X 2, , X n ), ( X1, X 2, , X n ) 满足: P{ } 1
则称随机区间 , 是θ 的置信度为1 的置信区间,
——置信下限, ——置信上限, 置信度1 ——称为置信水平.
概率论和数理统计(第三学期)第8章参数估计
由契比雪夫不等式,有
P( S 2 ES2
n
n
)
DS
2
n
=
2 4
2 n 1 2
即 lim P( S 2 ES2 ) 0
n
n
n
(n 1)S 2
E
2
n n 1
ES2 2 n
故 lim P( S 2 2 ) 0
n
n
§8.3 参数的区间估计
定义
设是总体的未知参数,若 (1 1
6
S~2 1 1.20 0.162 0.85 0.162 0.30 0.162 6 0.45 0.162 0.82 0.162 0.12 0.162 1 1.042 0.692 0.142 0.612 0.982 0.282 6 1 2.99 6 0.498 2
n
p xi
1
p
1 xi
xi p i1
1
p
n
n xi
i1
i 1
n
令y xi,得: i 1 ln Lxi , p y ln p n yln1 p
由对数似然方程
d ln L y n y 0 dp p 1 p
解得
p
y n
1 n
n i 1
xi
x
因为这是惟一的解,所 以p的极大似然估计值为
二、顺序统计量法
定义
1
, 2
,
,
为总体
n
的一个样本,将它
们按大小次序排列,取 居中的一个数 (若n为偶
数时,则取居中两数的 平均值)记为~,称~为
样本中位数。
即
~
k
1
,
1 2
k
《概率论与数理统计》学习笔记十一
σ 2 = S2 =
2 1 n Xi − X ) ( ∑ n i =1
n −1 2 ⎛ n −1 2 ⎞ n −1 S ⎟= E (S2 ) = 由于 E σ 2 = E S 2 = E ⎜ σ , n n ⎝ n ⎠
n 3 ⎡ X 2 − nX 2 ⎤ ∑ i ⎥ n⎢ ⎣ i =1 ⎦
3 ( X − X )2 i n∑ i =1
n
在总体 X 为离散型随机变量情形, 求未知参数 θ 的矩估计量的方法和连续型 情形完全相同。 极大似然估计法 直观想法:概率最大的事件最可能出现。 设总体 X 为连续型随机变量,具有密度函数 f ( x;θ ) ,其中 θ 是待估未知参 数,又设 ( x1 ,L , xn ) 是样本 ( X 1 ,L , X n ) 的一个观测值,则样本 ( X 1 ,L , X n ) 落在观
n
(1)
ˆr , 把上式中的 α r 都换成相应的样本矩 M r = 1 ∑ X ir ,便得到参数 θ r 的矩估计量 θ n i =1
概率论与数理统计—学习笔记十一
即
θˆr = hr ( M 1 ,L , M k ) , r = 1, 2,L , k .
(2)
这种求估计量的方法称为矩估计法(简称矩法) ,由矩估计法得出的估计量称为 矩估计量。 例1 设总体 X 在 [ a, b ] 上服从均匀分布,a,b 未知, X 1 ,L , X n 是总体 X 的 一个样本,试求 a,b 矩估计量。 解 X 的概率密度为 1 , a≤ x≤b ⎧ ⎪ f ( x; a, b ) = ⎨ b − a ⎪ 其它 ⎩ 0,
上节介绍了总体参数的常用点估计方法,对同一参数用不同的估计方法可能 得到不同的估计量,哪个估计量更好些呢?下面给出几种评选估计量好坏的标 准。 无偏估计 估计量是样本的函数,是随机变量,对不同的样本观测值,它有不同的估计 值,我们希望估计量的取值在未知参数真值附近摆动,即希望估计量的数学期望 等于未知参数的真值,这就是无偏性的概念。 定义 设 θˆ ( X 1 ,L , X n ) 是未知参数 θ 的估计量,若
概率论与数理参数估计
概率论与数理参数估计参数估计是概率论与数理统计中的一个重要问题,其目标是根据样本数据推断总体的未知参数。
参数估计分为点估计和区间估计两种方法。
点估计是通过样本计算得到总体未知参数的一个估计值。
常见的点估计方法有最大似然估计和矩估计。
最大似然估计是通过观察到的样本数据,选择使得观察到的样本数据出现的概率最大的未知参数值作为估计值。
矩估计是通过样本的矩(均值、方差等统计量),与总体矩进行对应,建立样本矩与总体矩之间的方程组,并求解未知参数。
这两种方法都可以给出参数的点估计值,但是其性质和效果不尽相同。
最大似然估计具有渐近正态性和不变性,但是可能存在偏差较大的问题;矩估计简单且易于计算,但是可能存在方程组无解的情况。
区间估计是给出参数估计结果的一个范围,表示对未知参数值的不确定性。
常见的区间估计方法有置信区间和预测区间。
置信区间是指给定的置信水平下,总体参数的真值落在一些区间内的概率。
置信区间的计算依赖于样本的分布和样本量。
预测区间是对一个新的观察值进行预测的区间,它比置信区间要宽一些,以充分考虑不确定性。
在参数估计过程中,需要注意样本的选取和样本量的确定。
样本是总体的一个子集,必须能够代表总体的特征才能得到准确的估计结果。
样本量的确定是通过统计方法和实际需求来确定的,要保证估计结果的可靠性。
参数估计在实际应用中有着广泛的应用。
例如,在医学领域中,通过对病人的样本数据进行统计分析,可以推断患者患其中一种疾病的概率,进而进行治疗和预防措施的制定。
在金融领域中,可以通过对股票的历史价格进行统计分析,推断未来股价的变动趋势,从而进行投资决策和风险评估。
在市场调研中,可以通过对消费者的问卷调查数据进行统计分析,推断消费者的偏好和需求,为企业的市场开发和产品设计提供依据。
综上所述,概率论与数理统计中的参数估计是一门重要的学科,通过对样本数据的统计分析,可以推断总体的未知参数,并对不确定性进行评估。
参数估计在实际应用中有着广泛的应用,对于科学研究和决策制定具有重要的意义。
概率论与数理统计-参数估计
第七章 参数估计
例:
引言
设总体 X 是服从参数为 的指数分布,其中参数
未 知 ,
0 .X1 ,,
X
是总体
n
X
的一个样本,
我们的任务是根据样本,来估计 的取值,从
而估计总体的分布.
这 是 一 个 参 数 估 计 问 题.
第七章 参数估计
§1 点估计 §2 估计量的评选标准 §3 区间估计
第七章 参数估计 §1 点估计
2
令
A1
A2
, (
2
1)
.
第七章 参数估计
例6(续)
解此方程组,得
§1 点估计
ˆ
A1 2 A2 A12
,
ˆ
A2
A1 A12
.
ˆ X 2 ,
即
B2
ˆ X .
B2
其中 B2
1 n
n i 1
Xi X
2 为样本的二阶中心矩.
第七章 参数估计(第二十二讲) 三、 极大似然法
§1 点估计
1
第七章 参数估计
例6(续)
EX 2 x 2 f
x dx x 2
x 1e x dx
0
§1 点估计
2 2 x ( e 2)1 x dx
2 0 2
2 2
1 2
1
2
因此有
EX
,
EX
2
1 .
⑵ 在不引起混淆的情况下,我们统称估计量
与估计值为未知参数 的估计.
第七章 参数估计
二、 矩估计法
§1 点估计
设X为连续型随机变量,其概率密度为
f ( x;1 ,, k ), X为离散型随机变量,其分布列为
概率论与数理统计实验实验3参数估计假设检验
概率论与数理统计实验实验3 参数估计假设检验实验目的实验内容直观了解统计描述的基本内容。
2、假设检验1、参数估计3、实例4、作业一、参数估计参数估计问题的一般提法X1, X2,…, Xn要依据该样本对参数作出估计,或估计的某个已知函数.现从该总体抽样,得样本设有一个统计总体,总体的分布函数向量). 为F(x, ),其中为未知参数( 可以是参数估计点估计区间估计点估计——估计未知参数的值区间估计——根据样本构造出适当的区间,使他以一定的概率包含未知参数或未知参数的已知函数的真?(一)、点估计的求法1、矩估计法基本思想是用样本矩估计总体矩.令设总体分布含有个m未知参数??1 ,…,??m解此方程组得其根为分别估计参数??i ,i=1,...,m,并称其为??i 的矩估计。
2、最大似然估计法(二)、区间估计的求法反复抽取容量为n的样本,都可得到一个区间,这个区间可能包含未知参数的真值,也可能不包含未知参数的真值,包含真值的区间占置信区间的意义1、数学期望的置信区间设样本来自正态母体X(1) 方差?? 2已知, ?? 的置信区间(2) 方差?? 2 未知, ?? 的置信区间2、方差的区间估计未知时, 方差?? 2 的置信区间为(三)参数估计的命令1、正态总体的参数估计设总体服从正态分布,则其点估计和区间估计可同时由以下命令获得:[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha)此命令以alpha 为显著性水平,在数据X下,对参数进行估计。
(alpha缺省时设定为0.05),返回值muhat是X的均值的点估计值,sigmahat是标准差的点估计值, muci是均值的区间估计,sigmaci是标准差的区间估计.例1、给出两列参数?? =10, ??=2正态分布随机数,并以此为样本值,给出?? 和?? 的点估计和区间估计命令:r=normrnd(10,2,100,2);[mu,sigm,muci,sigmci]=normfit(r);[mu1,sigm1,muci1,si gmci1]=normfit(r,0.01);mu=9.8437 9.9803sigm=1.91381.9955muci=9.4639 9.584310.2234 10.3762sigmci=1.68031.75202.2232 2.3181mu1=9.8437 9.9803sigm1=1.91381.9955muci1=9.3410 9.456210.3463 10.5043sigmci1=1.6152 1.68412.3349 2.4346例2、产生正态分布随机数作为样本值,计算区间估计的覆盖率。
概率论与数理统计第6章参数估计
设 x1, x2,…, xn 是来自总体 X 的一个样本,
我们用一个统计量 ˆ ˆ(x1,的,取xn值) 作为 的 估计值, 称为ˆ的点估计(量),简称估计。 在这里如何构造统计量 并没有明ˆ确的规定,
只要它满足一定的合理性即可。这就涉及到 两个问题:
k阶原点矩 k的无偏估计。但对中心矩则不一样, 譬如,由于 E(s *2 ) ,n 样1本2 方差s*2不是总体方差 2
的无偏估计,对此,有n 如下两点说明:
(1) 当样本量趋于无穷时,有E(s*2) 2,
我们称 s*2 为 2的渐近无偏估计。
(2)
若对s*2作如下修正:
s2
个无偏估计为1
2X ,2
n 1 n
Xn
,判别1与2哪个有效 n
2时?
解:Var
1
Var
2X
4 n
2
12
2
3n
由
f
n
x
nxBiblioteka n1 n 00 x
其它
E
X
2
n
0
nxn1
n
dx
n
n
2
2
于是Var
第六章 参数估计
§6.1 点估计的概念与无偏性 §6.2 矩估计及相合性 §6.3 最大似然估计与EM算法 §6.4 最小方差无偏估计 §6.5 贝叶斯估计 §6.6 区间估计
一般常用 表示参数,参数 所有可能取值
组成的集合称为参数空间,常用表示。参 数估计问题就是根据样本对上述各种未知参 数作出估计。
概率论与数理统计课件第7章参数估计
一、矩估计
4
A B
一、矩估计 例1
5
01
OPTION
02
OPTION
一、矩估计 解
6
一、矩估计
7
一、矩估计
8
解(1)
一、矩估计
9
解(2)
一、矩估计 例3
10
一、矩估计 解
11
一、矩估计
12
关于矩估计量有下列结论:
一、矩估计
13
例4
解
一、矩估计
14
01
OPTION
02
OPTION
一、无偏性 定义1
51
ˆ lim E θ 如果 n+ X1 ,
, X n θ
一、无偏性
52
例1
试求 1 3 2
解
(1)由矩估计定义可知
一、无偏性
53
故
一、无偏性
54
一、无偏性 例2
55
一、无偏性
56
解
一、无偏性 定理 1
57
则有
因此, 样本均值是总体均值的无偏估计, 样本
二、极大似然估计
48
极大似然估计求解
似然函数 对数似然求导法
直接法
49
目录/Contents
7.1 7.2
点估计 点估计的优良性评判标 准 置信区间 单正态总体下未知参数的置信区间 两个正态总体下未知参数的置信区间
7.3
7.4 7.5
50
目录/Contents
7.2
点估计的优良性评判标准 一、无偏性 二、有效性 三、相合性
置信区间
69
置信区间
70
置信区间
概率论与数理统计第7章参数估计习题及答案
概率论与数理统计第7章参数估计习题及答案第7章参数估计 ----点估计⼀、填空题1、设总体X 服从⼆项分布),(p N B ,10<计量=pXN. 2、设总体)p ,1(B ~X,其中未知参数 01<则 p 的矩估计为_∑=n 1i i X n 1_,样本的似然函数为_ii X 1n1i X )p 1(p -=-∏__。
3、设 12,,,n X X X 是来⾃总体 ),(N ~X 2σµ的样本,则有关于 µ及σ2的似然函数212(,,;,)n L X X X µσ=_2i 2)X (21n1i e21µ-σ-=∏σπ__。
⼆、计算题1、设总体X 具有分布密度(;)(1),01f x x x ααα=+<<,其中1->α是未知参数,n X X X ,,21为⼀个样本,试求参数α的矩估计和极⼤似然估计.解:因?++=+=101α2α1α102++=++=+|a x 令2α1α++==??)(X X EXX --=∴112α为α的矩估计因似然函数1212(,,;)(1)()n n n L x x x x x x ααα=+∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=??ni i X nL 101ααln ln 得,α的极⼤似量估计量为)ln (?∑=+-=ni iXn11α2、设总体X 服从指数分布 ,0()0,x e x f x λλ-?>=??其他,n X X X ,,21是来⾃X 的样本,(1)求未知参数λ的矩估计;(2)求λ的极⼤似然估计.解:(1)由于1()E X λ=,令11X Xλλ=?=i x nn L x x x eλλ=-∑=111ln ln ln 0nii ni ni ii L n x d L n n x d xλλλλλ====-=-=?=∑∑∑故λ的极⼤似然估计仍为1X。
概率论与数理统计(叶慈南 刘锡平 科学出版社)第7章 参数估计教程
估计 θ ,故称这种估计为点估计.
5 6
,σ 2未知,
… 随机抽查100个婴儿 得100个体重数据 10,7,6,6.5,5,5.2, …
而全部信息就由这100个数组成. 据此,我们应如何估计 和 σ 呢?
我们知道,服从正态分布N ( , σ 2 )的r.v. X , E ( X ) = , 由大数定律, 样本体重的平均值 1 → ∑ X i P n i =1 自然想到把样本体重的平均值作为总体平均 体重的一个估计. X= 用样本体重的均值 X估计 , 类似地,用样本体重的方差 S 2估计 σ 2 . 1 n 1 n 2 X = ∑ Xi, S = ∑ ( X i X )2 n 1 i =1 n i =1
(一)矩估计法
基本思想:用样本矩估计总体矩
(二)最大似然估计法
基本思想:
15
16
最大似然估计法 (最大似然法)
它首先是由德国数学家 高斯在1821年提出的 , 然而,这个方法常归功于 英国统计学家费希尔(Fisher) . 费希尔在1922年重新发现了 这一方法,并首先研究了这 种 方法的一些性质 . Fisher
1. 矩估计法 2. 最大似然法 3. 最小二乘法 4. 贝叶斯方法 ……
(一) 矩估计法(简称"矩法")
它是基于一种简单的"替换"思想 建立起来的一种估计方法 . 英国统计学家 K. 皮尔逊 最早提出的 . 基本思想: 用样本矩估计总体矩 . 理论依据: 大数定律
Ak = 1 n k P ∑ X i → k = E ( X k ) n i =1
4
在参数估计问题中,假定总体分布 形式已知,未知的仅仅是一个或几个 参数.
概率论与数理统计(理工类-第四版)吴赣昌主编课后习题答案第六章【范本模板】
第六章参数估计6.1 点估计问题概述习题1总体X在区间[0,θ]上均匀分布,X1,X2,⋯,Xn是它的样本,则下列估计量θ是θ的一致估计是().(A)θ=Xn;(B)θ=2Xn;(C)θ=X¯=1n∑i=1nXi;(D)θ=Max{X1,X2,⋯,Xn}。
解答:应选(D).由一致估计的定义,对任意ɛ>0,P(∣Max{X1,X2,⋯,Xn}—θ∣〈ɛ)=P(-ɛ+θ〈Max{X1,X2,⋯,Xn}<ɛ+θ)=F(ɛ+θ)—F(-ɛ+θ).因为FX(x)={0,x〈0xθ,0≤x≤θ1,x〉θ,及F(x)=FMax{X1,X2,⋯,Xn}(x)=FX1(x)FX2(x)⋯FXn(x),所以F(ɛ+θ)=1,F(-ɛ+θ)=P(Max{X1,X2,⋯,Xn}〈—ɛ+θ)=(1—xθ)n,故P(∣Max{X1,X2,⋯,Xn}-θ∣〈ɛ)=1-(1-xθ)n→1(n→+∞).习题2设σ是总体X的标准差,X1,X2,⋯,Xn是它的样本,则样本标准差S是总体标准差σ的()。
(A)矩估计量;(B)最大似然估计量;(C)无偏估计量; (D)相合估计量。
解答:应选(D).因为,总体标准差σ的矩估计量和最大似然估计量都是未修正的样本标准差;样本方差是总体方差的无偏估计,但是样本标准差不是总体标准差的无偏估计.可见,样本标准差S是总体标准差σ的相合估计量.习题3设总体X的数学期望为μ,X1,X2,⋯,Xn是来自X的样本,a1,a2,⋯,an是任意常数,验证(∑i=1naiXi)/∑i=1nai(∑i=1nai≠0)是μ的无偏估计量。
解答:E(X)=μ,E(∑i=1naiXi∑i=1nai)=1∑i=1nai⋅∑i=1naiE(Xi) (E(Xi)=E(X)=μ)=μ∑i=1nai∑i=1n=μ,综上所证,可知∑i=1naiXi∑i=1nai是μ的无偏估计量。
习题4设θ是参数θ的无偏估计,且有D(θ)〉0, 试证θ2=(θ)2不是θ2的无偏估计.解答:因为D(θ)=E(θ2)-[E(θ)]2,所以E(θ2)=D(θ)+[E(θ)]2=θ2+D(θ)〉θ2,故(θ)2不是θ2的无偏估计。
《概率论与数理统计》课件第七章 参数估计
03
若存在, 是否惟一?
添加标题
1
2
3
4
5
6
对于同一个未知参数,不同的方法得到的估计量可能不同,于是提出问题
应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
常用标准
(1)无偏性
(3)一致性
(2)有效性
7.2 估计量的评选标准
无偏性
一致性
有效性
一 、无偏性
定义1 设 是未知参数θ的估计量
09
则称 有效.
10
比
11
例4 设 X1, X2, …, Xn 是X 的一个样本,
添加标题
问那个估计量最有效?
添加标题
解 ⑴
添加标题
由于
添加标题
验证
添加标题
都是
添加标题
的无偏估计.
都是总体均值
的无偏估计量.
故
D
C
A
B
因为
所以
更有效.
例5 设总体 X 的概率密度为
关于一致性的两个常用结论
1. 样本 k 阶矩是总体 k 阶矩的一致性估计量.
是 的一致估计量.
由大数定律证明
用切比雪夫不 等式证明
似然函数为
其中
解得参数θ和μ的矩估计量为
2
时
3
令
1
当
6
,故
5
,表明L是μ的严格递增函数,又
4
第二个似然方程求不出θ的估计值,观察
添加标题
所以当
01
添加标题
从而参数θ和μ的最大似然估计值分别为
03
添加标题
时L 取到最大值
02
添加标题
概率论与数理统计-参数估计
E(ˆ) 则称 ˆ为 的无偏估计 .
数理统计
无偏性是对估计量的一个常见而重要的要求 .
无偏性的实际意义是指没有系统性的偏差 .
例如,用样本均值作为总体均值的估计时, 虽无法说明一次估计所产生的偏差,但这种偏差随 机地在0的周围波动,对同一统计问题大量重复使 用不会产生系统偏差 .
都是参数 的无偏估计量,若对任意 θ ,
D(ˆ1 ) ≤D( ˆ)2
是“极大似然”这四个字在字面上的意思)的那个值,
因此,一个自然的想法就是用ˆ(x1, x2 ,, xn ) 作为 的
估计值.
数理统计
L( )看作参数 的函数,它可作为 将以多大可
能产生样本值 x1, x2,… ,xn 的一种度量 .
最大似然估计法就是用使 L( )达到最大值的 ˆ去估计 .
数理统计
最大似然估计原理:
当给定样本X1,X2,…Xn时,定义似然函数为:
L( ) P(; x1, , xn ) P(; X1 x1, X 2 x2, , X n xn P(X1 x1; )P(X2 x2; ) P(X n xn; )
L( ) f (; x1, , xn ) f (x1; ) f (x2; ) f (xn; )
续型时就是密度).
数理统计
现在,因为试验结果 (x1, x2 ,, xn ) 确实出现了,因此 依据上面提到的极大似然原理,导致该结果出现的原
因应该是使 L( ; x1, x2 ,, xn ) 达到最大值的 .于是当 固定样本观察值 (x1, x2 ,, xn ) 时,在 取值的可能范围 ○H 内,找一个使似然函数 L( ) L( ; x1, x2 ,, xn ) 达到 最大值的点ˆ(x1, x2 ,, xn ) ,则这个ˆ(x1, x2 ,, xn ) 是 取值的可能范围○H 内与 的真值“看起来最像”(这正
概率论与数理统计教案参数估计
概率论与数理统计教学教案第6章参数估计二.最大似然估计法1 .最大似然估计的步骤:若总体X 的分布中含有k 个未知待估参数0 1, 0 2,…,0 k ,则似然函数为a L .一 . a ln L 一一 .解似然方程组10- = 0, i = 1,2<..,k ,或者对数似然方程组焉一=0,i = 1,2,・・・,k ,即可得到参数的最大似然 i i八 八 八 估计0 ,0, 012 k2.定理:若0为参数0的最大似然估计,g (®)为参数0的函数,则g (®)是g (0)的最大似然估计. 三.点估计的评价标准1 .无偏性:设=(X1,X2,…,X)是未知参数。
的估计量,若E (0 )=0,则称为0的无偏估计。
八 八八八八 八2 .有效性:设0 ,0均为参数0的无偏估计量,若D (0 )< D (0 ),则称0比0有效。
121212,3 .相合性(一致性):设0为未知参数0的估计量,若对任意的s > 0,都有lim P 卜-0 <£ n fsn fs四.例题讲解4 1.设X 为某零配件供应商每周的发货批次,其分布律为X 0 1 23P 0 2 20 (1-0) 0 2 1-20其中0是未知参数,假设收集了该供应商8周的发货批次如下:3, 1, 3,0, 3, 1, 2, 3,求0的矩估计值.—^―, X > 1,例2.设某种钛金属制品的技术指标为X 其概率密度为f (X )=《X B+1其中未知参数P > 1,0, X V 上X ,X ,…,X 为来自总体X 的简单随机样本,求P 的矩估计量.12n例3.已知某种金属板的厚度X 在(a , b)上服从均匀分布,其中a , b 未知,设抽查了 口片金属板,厚 度分别为X 1,X 之,…,r 试用矩估计法估计a , b .例4.设袋中放有很多的白球和黑球,已知两种球的比例为1:9,但不知道哪种颜色的球多,现从中有放 回地抽取三次,每次一球,发现前两次为黑球,第三次为白球,试判断哪种颜色的球多。
概率论与数理统计第七章参数估计
例1. 设总体X的数学期望和方差分别是μ,
σ2 ,求μ , σ2的矩估计量。
E(X )
E( X 2 ) D( X ) [EX ]2 2 2
(3) 写出方程 ln L 0
i1
若方程有解,
求出L(θ)的最大值点 ˆ(x1,x2,..x.n,)
于 是 ˆ ˆ ( X 1 , X 2 , . . . , X n ) 即 为 的 极 大 似 然 估 计 量
例2. 设总体X服从参数λ>0的泊松分布,求 参数λ的极大似然估计量。
例3. 已知某产品的不合格率为p,有简单随机样本 X1 ,X2 ,…, Xn,求p的极大似然估计量。 若抽取100件产品,发现10件次品,试估计p.
ˆ(x1,x2,..x.n,),使得
L (ˆ) m a x L (), (或 L (ˆ) s u p L ())
则 称 ˆ ( x 1 ,x 2 , . . . ,x n ) 为 的 极 大 似 然 估 计 值
称 ˆ ( X 1 ,X 2 ,...,X n ) 为 极 大 似 然 估 计 量
第7章 参数估计
总体所服从的分布类型已知/未知
抽样
参数 估计
估计总体中未知的参数
参数估计 参数估计问题是利用从总体抽样得到的信息
来估计总体的某些参数. 估计新生儿的体重
估计废品率
估计湖中鱼数
§7.1
点估计
设有一个统计总体,总体的分布函数
为 F(x, ),其中为未知参数 (可以是向量) .
概率论与数理统计第七章
估计 为1.68,这是点估计.
估计在区间[1.57, 1.84]内,这是区间估计.
一、点估计概念及讨论的问题
例1 已知某地区新生婴儿的体重X~ N(,2),
, 2未知,
…
随机抽查100个婴儿
得100个体重数据
9, 7, 6, 6.5, 5, 5.2, … 而全部信息就由这100个数组成.
求:两个参数a,b的矩估计
解: 写出方 V E 程 (X a(X )r组 ) ˆˆ2
其 中uˆˆ2Xn1in1(Xi X)2
但是
E
(
X
)
Var ( X )
a
b 2 (b a)2
12
即有
(ab2ba)2 12
X
ˆ
2
由方程组求解出a,b的矩估计:
a ˆX 3 ˆ b ˆX 3 ˆ
其中 ˆ:ˆ2 n 1i n1 ( XiX)2
(4) 在最大值点的表达式中, 用样本值代入 就得参数的极大似然估计值 .
两点说明:
1、求似然函数L( ) 的最大值点,可以应
用微积分中的技巧。由于ln(x)是x的增函
数,lnL( )与L( )在 的同一值处达到 它的最大值,假定是一实数,且lnL( ) 是 的一个可微函数。通过求解所谓“似 然方程”: dlnL() 0
E(X1m)=E(X2m)==E(Xnm)= E(Xm)=am . 根据大数定律,样本原点矩Am作为 X1m,X2m, ,Xnm的算术平均值依概率收敛到均 值am=E(Xm).即:
n 1i n1Xim pE(Xm)am
例1 设总体X的概率密度为
f(x)(1)x,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
107
一、均值差的置信区间
108
1
2
一、均值差的置信区间
109
1
一、均值差的置信区间
110
相应的单侧置信区间:
一、均值差的置信区间
111
例1
解
一、均值差的置信区间
112
一、均值差的置信区间
113
2
一、均值差的置信区间
114
一、均值差的置信区间
115
相应的单侧置信区间:
一、均值差的置信区间
一、无偏性
58
补例
解 由统计量性质知 ᵅᵅ + ᵅᵅᵅ (1 − ᵅ ) = ᵅ ᵅ 2
二、有效性
59
定义2
例1续
二、有效性
60
又
进一步可得
二、有效性
61
补例
试求解下列问题:
01
OPTION
02 试比较这两个估计的有效性.
OPTION
二、有效性
62
故 因此
可见这两个估计都是无偏的 ;
二、有效性
一、矩估计
4
A B
一、矩估计
5
例1
01
OPTION
02
OPTION
一、矩估计
6
解
一、矩估计
7
一、矩估计
8
解(1)
一、矩估计
9
解(2)
一、矩估计
10
例3
一、矩估计
11
解
一、矩估计
12
关于矩估计量有下列结论:
一、矩估计
13
例4
解
一、矩估计
14
01
OPTION
02
OPTION
03
OPTION
一、无偏性
51
定义1
如果
一、无偏性
52
例1
试求 1
2
3
解 (1)由矩估计定义可知
一、无偏性
53
故
一、无偏性
54
一、无偏性
55
例2
一、无偏性
56
解
一、无偏性
57
定理 1
则有
因此, 样本均值是总体均值的无偏估计, 样本 方差是总体方差的无偏估计, 而样本的二阶中心矩 是总体方差的渐近无偏估计。
82
7.1 点估计 7.2 点估计的优良性评判标准 7.3 置信区间 7.4 单正态总体下未知参数的置信区间 7.5 两个正态总体下未知参数的置信区间
目录/Contents
83
7.4 单正态总体下未知参数的置信区间
一、均值的置信区间 二、方差的置信区间
一、均值的置信区间
84
1 2
一、均值的置信区间
二、极大似然估计
42
④写出未知参数的极大似然估计量:
性质
二、极大似然估计
43
二、极大似然估计
44
解 样本观测值的似然函数为
二、极大似然估计
45
二、极大似然估计
46
取对数:
二、极大似然估计
47
建立并求解似然方程组:
一般说来, 极大似然估计值可由解对数似然方 程得到.似然函数不可微时, 也可直接寻求使得似然 函数达到最大的解来得到极大似然估计值和估计量.
一、矩估计
15
补例
解
一、矩估计
16
补例
解 由已知条件可求得
二、极大似然估计
17
例5 设一箱子中装有黑和白两种颜色的球,其中 一种颜色的球有99个,另一种颜色的球只有1个.但 是不知道那个颜色的球是只有1个.我们随机地从这 个箱子里有放回地取2个球,结果取得的都是白球, 问这个箱子中那个颜色的球只有1个?
85
取
一、均值的置信区间
86
相应的置信区间观测值为:
一、均值的置信区间
87
一、均值的置信区间
88
例1
故期望的双侧0.95置信区间为
一、均值的置信区间
89
一、均值的置信区间
90
相应的置信区间观测值为
一、均值的置信区间
91
一、均值的置信区间
92
一、均值的置信区间 93
一、均值的置信区间
94
单侧下限
单侧上限
二、方差的置信区间
95
1 2
二、方差的置信区间
96
二、方差的置信区间
97
二、方差的置信区间
98
二、方差的置信区间
99
而标准差的置信区间为
二、方差的置信区间
100
例2续
二、方差的置信区间
101
补例
二、方差的置信区间
102
二、方差的置信区间
103
二、方差的置信区间
104
105
目录/Contents
7.1 点估计 7.2 点估计的优良性评判标准 7.3 置信区间 7.4 单正态总体下未知参数的置信区间 7.5 两个正态总体下未知参数的置信区间
106
目录/Contents
7.5 两个正态总体下未知参数的置信区间
一、均值差的置信区间 二、方差比的置信区间
一、均值差的置信区间
点估计的定义 点估计的方法
参数估计 区间估计
评判标准
置信区间定义 正态总体参数 的置信区间
126
矩估计 极大似然估计 无偏性 有效性 相合性 单正态总体情形 两个正态总体情形
127
谢谢观赏
《概率论与数理统计》 社
置信区间
70
置信区间
71
6
置信区间
72
6
置信区间
73
置信水平95%的几何解释
6
置信区间
74
置信水平50%的几何解释
6
置信区间
75
定义2
置信区间
76
定义3
置信区间
77
求参数置信区间的一般步骤:
1
2
置信区间
78
3
4
置信区间
79
置信区间
80
ᵄ1
ᵄᵅ ᵄ2
置信区间
81
目录/Contents
二、极大似然估计
18
二、极大似然估计
19
二、极大似然估计
20
二、极大似然估计
21
分析:
二、极大似然估计
22
二、极大似然估计
23
极大似然估计的定义:
二、极大似然估计
24
二、极大似然估计
25
可微函数时, 则将似然函数取对数:
二、极大似然估计
26
建立并求解似然方程组:
一般说来, 极大似然估计值可由解对数似然方 程得到. 当似然函数不可微时, 也可直接寻求使得 似然函数达到最大的解来得到极大似然估计值和估 计量.
二、极大似然估计
48
极大似然估计求解
似然函数
对数似然求导法 直接法
49
目录/Contents
7.1 点估计 7.2 点估计的优良性评判标 7.3 准置信区间 7.4 单正态总体下未知参数的置信区间 7.5 两个正态总体下未知参数的置信区间
50
目录/Contents
7.2 点估计的优良性评判标准 一、无偏性 二、有效性 三、相合性
63
解⑵ 又因为
因此
三、相合性
64
定义3
三、相合性
65
定理 2
三、相合性
66
例3
证明
三、相合性
67
补例
证明
68
目录/Contents
7.1 点估计 7.2 点估计的优良性评判标准 7.3 置信区间 7.4 单正态总体下未知参数的置信区间 7.5 两个正态总体下未知参数的置信区间
置信区间
69
二、极大似然估计
27
例7
二、极大似然估计
28
二、极大似然估计
29
例8
解(1) ①写出似然函数 ②对似然函数取对数:
二、极大似然估计
30
③建立似然方程组 :
解方程组得
二、极大似然估计
31
④由此即得未知参数的极大似然估计量为
二、极大似然估计
32
二、极大似然估计
33
二、极大似然估计
34
解 样本的似然函数为
二、极大似然估计
35
二、极大似然估计
36
于是从原始定义出发讨论, 发现
二、极大似然估计
37
二、极大似然估计
38
二、极大似然估计
39
补例
解 总体分布为
二、极大似然估计
40
②对似然函数取对数
二、极大似然估计
41
③对未知参数求导并令其为零, 即建立似然方程:
这就是使似然函数达到最大的参数取值, 即极大似 然估计值.
1
07
参数估计
《概率论与数理统计》
2
目录/Contents
7.1 点估计 7.2 点估计的优良性评判标准 7.3 置信区间 7.4 单正态总体下未知参数的置信区间 7.5 两个正态总体下未知参数的置信区间
3
目录/Contents
7.1 点估计 一、矩估计 二、极大似然估计
两个常用方法: 矩估计法和极大似然估计法. 所求 出的估计量则分别称为矩估计量和极大似然估计量.
116
一、均值差的置信区间
117
一、均值差的置信区间
118
二、方差比的置信区间
119
1 2
二、方差比的置信区间
120
1
二、方差比的置信区间
121