《信号与系统》第二版课后答案_(郑君里)_高...

合集下载

《信号与系统引论》(第二版)郑君里_课后题答案_客观题(附答案)

《信号与系统引论》(第二版)郑君里_课后题答案_客观题(附答案)

《信号与系统》复习参考练习题一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为()A .400rad /sB 。

200 rad /sC 。

100 rad /sD 。

50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是()15、已知信号)(tf如下图所示,其表达式是()16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是()A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是()19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++=A 、因果不稳定系统B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差 2A 、1-eB 、3eC 、3-eD 、127.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为() A 。

《信号与系统引论》(第二版)郑君里_课后题答案_客观题(附答案)

《信号与系统引论》(第二版)郑君里_课后题答案_客观题(附答案)

《信号与系统》复习参考练习题一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为()A .400rad /sB 。

200 rad /sC 。

100 rad /sD 。

50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是()15、已知信号)(tf如下图所示,其表达式是()16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是()A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是()19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++=A 、因果不稳定系统B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差 2A 、1-eB 、3eC 、3-eD 、127.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为() A 。

信号与系统版课后答案_(郑君里)_高等教育出版社[1]

信号与系统版课后答案_(郑君里)_高等教育出版社[1]

(
−t
) u (t )
(2) f ( t ) = 3e + 2e
−t
(
−2 t
) u (t )
2
(3)f ( t ) = 5e − 5e
−t
(
−2 t
) u (t )
(4)f ( t ) = e cos (10π t ) ⎡ ⎣u ( t − 1) − u ( t − 2 ) ⎤ ⎦
−t
1-12 解题过程:
t0 ⎡ ⎛ t ⎞⎤ : f ⎢ a ⎜ t + 0 ⎟ ⎥ = f ( at + t0 ) ≠ f ( t0 − at ) a ⎣ ⎝ a ⎠⎦ t0 ⎡ ⎛ t ⎞⎤ : f ⎢ − a ⎜ t − 0 ⎟ ⎥ = f ( − at + t0 ) = f ( t0 − at ) a ⎣ ⎝ a ⎠⎦
解题过程:
(a-1)
(a-2)
(a-3)
4
(a-4)
(b) f ( t ) 为偶函数,故只有偶分量,为其本身
(c-1)
(c-2)
(c-3)
(c-4)
(d-1)
(d-2)
(d-3)
(d-4)
1-20 分析过程:本题为判断系统性质:线性、时不变性、因果性 (1)线性(Linearity) :基本含义为叠加性和均匀性
2
(t )
2
非线性:设 r1 ( t ) = e1
( t ) 、 r2 ( t ) = e2 2 ( t ) ,
2 2 2 2
则⎡ ⎣ c1e1 ( t ) + c2 e2 ( t ) ⎤ ⎦ = c1 e1 ( t ) + c2 e2
2
( t ) + 2c1c2e1 ( t ) e2 ( t ) ≠ c1r1 ( t ) + c2 r2 ( t )

信号与系统版课后答案 郑君里 高等教育出版社

信号与系统版课后答案 郑君里 高等教育出版社
1-4 分析过程:
(1)例 1-1 的方法: f (t ) → f (t − 2) → f (3t − 2) → f (−3t − 2)
(2)方法二:
f
(t) →
f
(3t ) →
f
⎡⎢⎣3⎛⎜⎝ t −
2 ⎞⎤ 3 ⎟⎠⎥⎦

f
(−3t − 2)
(3)方法三: f (t ) → f (−t ) → f ⎡⎣− (t + 2)⎤⎦ → f (−3t − 2)
(R2
+
2L) C
d2 dt 2
v0 (t)
+
2R C
d dt
v0 (t)
+
1 C2
v0 (t)
=
MR
d3 dt 3
e(t)
∫ v0 (t)
图(c)微分方程:
=
L1i
' 1
=
1 C1
i2 dt

d
dt d2 dt 2
i1 i1
= =
1 L1 1 L1
v0 (t) v '0 (t)

i1
=
1-18 分析过程:任何信号均可分解为奇分量与偶分量之和的形式,即
f (t) = fe (t) + fo (t)
(1)
其中, fe (t ) 为偶分量, fo (t ) 为奇分量,二者性质如下:
fe (t ) = fe (−t )
(2)
fo (t ) = − fo (−t )
(3)
(1) ∼ (3) 式联立得
5t −∞
e2

)

= c1r1 (t ) + c2r2 (t )

《信号与系统引论》(第二版)郑君里 课后题答案 客观题(附答案)-推荐下载

《信号与系统引论》(第二版)郑君里 课后题答案 客观题(附答案)-推荐下载

2
14、已知连续时间信号 f (t) sin 50(t 2) , 则信号 f (t)·cos104 t 所占有的频带宽度为() 100(t 2)
A.400rad/s
B。200 rad/s C。100 rad/s
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

信号与系统 郑君里 习题答案

信号与系统 郑君里 习题答案
用冲激函数匹配法,设:
d h(t) = aδ ' (t) + bδ (t) + c∆u(t) dt h(t) = aδ (t) + b∆u(t)
则有: aδ ' (t) + bδ (t) + c∆u(t) + 3aδ (t) + 3b∆u(t) = 2δ ' (t)
∴ a = 2,b = −6, c = 18
h(t) = [ A1e 2 2 + A2e 2 2 ]u(t)
j 3 +1
j 3 −1
H ( p) =
p +1 p2 + p +1
=
p−
j2 3 −1+ j
2
+ j2 3 3 p − −1− j
2
3
h(t) = (1 +
1
−1+ j
)e 2
3t
+ (1 −
1
−1− j 3 t
)e 2

2 j2 3
(3) dt 2
dt
dt
试判断在起始点是否发生跳变,据此对(1)(2)分别写出其 r(0+)值,对(3)写出 r(0+)
和 r’(0+)值。
(1) (1) 由于方程右边没有冲激函数 δ (t) 及其导数,所以在起始点没有跳变。
∴ r(0+ ) = r(0- ) = 0
d r(t) + 2r(t) = 3 d e(t)

i2
(t)
1
∫ C1

C
i1dt + Li1' + Mi2' + Ri1 = e(t)

信号与系统作业答案郑君里版

信号与系统作业答案郑君里版

信号与系统作业答案郑君里版1.1 1.2 1.3画出信号f(t)sin a(t t0) 的波形。

a(t t0)已知信号f(t) (t 1) u(t 1) u(t 2) ,画出f( 2t 3)的波形。

已知信号f(t) (t 1) u(t 1) u(t 2) ,试求它的直流分量。

答案:01.4 已知信号f(t) (t 1) u(t 1) u(t 2) ,试求它的奇分量和偶分量。

答案:偶分量:0.5(1 t) u(t 2) u(t 1) u(t 1) u(t 1) 0.5(t 1) u(t 1) u(t 2)奇分量:0.5(t 1) u(t 2) u(t 1) t u(t 1) u(t 1) 0.5(t 1) u(t 1) u(t 2)1.5 信号f(t)2 tt 0是否是奇异信号。

t 0答案:二阶以上导数不连续,是奇异信号。

1.6 已知f(t)是有界信号,且当t 时f(t) 0,试问f(t)是否是能量有限信号。

答案:不一定。

1.7 对一连续三角信号进行抽样,每周期抽样8点,求抽样所得离散三角序列的离散角频率。

答案:/41.8 以Ts 0.5s的抽样间隔对下列两个三角信号抽样,写出抽样所得离散序列的表达式,画出它们的波形。

比较和说明两波形的差别,为什么?(1)f1(t) cos4t (2)f2(t) cos15t 4答案:两个离散序列是相同的。

1.9 判断下列信号是否是周期信号。

如果是周期信号,试确定其周期。

(1)f(t) Asin4t Bcos7t Ccos9t 答案:是周期函数,周期T 2 。

(2)fd(n) ejn8答案:是周期信号,周期N 161.10 求下列表达式的函数值(1)(2)(3)(4)(5)(6)(7)f(t t0) (t)dt;答案:f( t0)f(t0 t) (t)dt;答案:f(t0)(t t0)u(t t02)dt;答案:当t0 0时为1;当t0 0时为0 (t t0)u(t 2t0)dt;答案:当t0 0时为1;当t0 0时为0(e t t) (t 2)dt;答案:e2 2 (t sint) (t 6)dt;答案:/6 1/2e j t (2t) (t t0) dt;答案:1/2 e j t01.11 判断下列系统是否线性、时不变和因果de(t);答案:线性,时不变,因果dt(2)r(t) e(t)u(t);答案:线性,时变,因果(1)r(t)(3)r(t) sin e(t) u(t);答案:非线性,时变,因果(4)r(t) e(1 t);答案:线性,时变,非因果(5)r(t) e(2t);答案:线性,时变,非因果(6)r(r) e2(t);答案:非线性,时不变,因果1.12 试证明:f(t) '(t) f(0) '(t) f'(0) (t)。

信号与系统(郑君里)课后答案 第一章习题解答

信号与系统(郑君里)课后答案  第一章习题解答

1-4 分析过程:(1)例1-1的方法:()()()()23232f t f t f t f t →−→−→−− (2)方法二:()()()233323f t f t f t f t ⎡⎤⎛⎞→→−→−−⎜⎟⎢⎥⎝⎠⎣⎦(3)方法三:()()()()232f t f t f t f t →−→−+→−−⎡⎤⎣⎦ 解题过程:(1)方法一:方法二:(1)()−f at 左移0t :()()()000−+=−−≠−⎡⎤⎣⎦f a t t f at at f t at (2)()f at 右移0t :()()()000−=−≠−⎡⎤⎣⎦f a t t f at at f t at (3)()f at 左移0t a :()()000⎡⎤⎛⎞+=+≠−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a (4)()f at 右移0t a :()()000⎡⎤⎛⎞−−=−+=−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a 故(4)运算可以得到正确结果。

注:1-4、1-5题考察信号时域运算:1-4题说明采用不同的运算次序可以得到一致的结果;1-5题提醒所有的运算是针对自变量t 进行的。

如果先进行尺度变换或者反转变换,再进行移位变换,一定要注意移位量和移位的方向。

1-9 解题过程: (1)()()()2tf t eu t −=− (2)()()()232tt f t ee u t −−=+(3)()()()255ttf t e eu t −−=− (4)()()()()cos 1012tf t et u t u t π−=−−−⎡⎤⎣⎦1-12 解题过程:((((注:1-9、1-12题中的时域信号均为实因果信号,即()()()=f t f t u t 1-18 分析过程:任何信号均可分解为奇分量与偶分量之和的形式,即()()()()1e o f t f t f t =+其中,()e f t 为偶分量,()o f t 为奇分量,二者性质如下:()()()()()()23e e o o f t f t f t f t =−=−−()()13∼式联立得()()()12e f t f t f t =+−⎡⎤⎣⎦ ()()()12o f t f t f t =−−⎡⎤⎣⎦ 解题过程:(a-1) (a-2)(a-3)(a-4)f t为偶函数,故只有偶分量,为其本身(b) ()(c-1)(c-2)(c-3)(c-4)(d-1)(d-2)(d-3)(d-4)1-20 分析过程:本题为判断系统性质:线性、时不变性、因果性(1)线性(Linearity):基本含义为叠加性和均匀性即输入()1x t ,()2x t 得到的输出分别为()1y t ,()2y t ,()()11T x t y t =⎡⎤⎣⎦,()()22T x t y t =⎡⎤⎣⎦,则()()()()11221122T c x t c x t c y t c y t +=+⎡⎤⎣⎦(1c ,2c 为常数)。

信与系统版课后答案郑君里高等教育出版社

信与系统版课后答案郑君里高等教育出版社
1-5 题提醒所有的运算是针对自变量 t 进行的。如果先进行尺度变换或者反转变换,再进行
移位变换,一定要注意移位量和移位的方向。 1-9 解题过程:
(1) f (t ) = (2 − e−t )u (t )
( ) (2) f (t ) = 3e−t + 2e−2t u (t )
2
( ) (3)f (t ) = 5e−t − 5e−2t u (t )
现。若有则非因果系统,否则为因果系统; ② 对于时间连续系统
冲激响应
h
(t
)
⎧⎪= ⎨⎪⎩ ≠
h h
(t (t
) )
u u
(t (t
) )
因果系统 非因果系统
③ 对于时间离散系统
解题过程:
单位冲激响应
h
(
n)
⎧⎪= ⎨⎪⎩ ≠
h h
(n) (n)
u u
(n) (n)
因果系统 非因果系统
(1) r (t ) = de(t )
线性系统是指系统的全响应可以分解为零输入响应和零状态响应,并且二者均分别具有 线性性质。
本题未说明初始条件,可认为系统起始状态为零(“松弛”的),故零输入响应为零,只 需判断系统的输入——输出是否满足线性。
(2)时不变性(Time-Invariblity):是指当激励延迟一段时间 t0 时,其响应也同样延迟 t0 ,
(R2
+
2L) C
d2 dt 2
v0 (t)
+
2R C
d dt
v0 (t)
+
1 C2
v0 (t)
=
MR
d3 dt 3
e(t)
∫ v0 (t)

信号与系统第二版课后答案

信号与系统第二版课后答案
系数
所以三角级数为
3-2求周期冲激序列信号
的指数形式的傅里叶级数表示式,它是否具有收敛性?
解冲激串信号的复系数为
所以
因Fn为常数,故无收敛性。
3-3设有周期方波信号f(t),其脉冲宽度= 1ms,问该信号的频带宽度(带宽)为多少?若压缩为0.2ms,其带宽又为多少?
解对方波信号,其带宽为 Hz,
当1= 1ms时,则
(2)
(3)
(4)
解(1)t(t1 )=(t1 )
(2)
(3)
(4)
2-6设有题2-6图示信号f(t),对(a)写出f(t)的表达式,对(b)写出f(t)的表达式,并分别画出它们的波形。
题2-6图
解(a)
f(t) =(t2 ),t= 2
2(t4 ),t= 4
(b)f(t) =2(t)2(t1)2(t3)+ 2(t4)
图p2-6
2-7如题2-7图一阶系统,对(a)求冲激响应i和uL,对(b)求冲激响应uC和iC,并画出它们的波形。
题2-7图
解由图(a)有

当uS(t) =(t),则冲激响应
则电压冲激响应
对于图(b)RC电路,有方程

当iS=(t)时,则
同时,电流
2-8设有一阶系统方程
试求其冲激响应h(t)和阶跃响应s(t)。
故对应的变换
所以
5-4用部分分式法求下列象函数的拉氏反变换。
(1)
(2)
(3)
(4)
解(1)
故有
所以
(2)
可得

可得
B= 0,C= 1
所以
证明不失一般性,设输入有两个分量,且
则有
相加得

郑君里信号与系统习题解答第二章

郑君里信号与系统习题解答第二章

第二章 连续时间系统的时域分析经典法:双零法卷积积分法:求零状态响应求解系统响应→定初始条件满足换路定则起始点有跳变:求跳变量零输入响应:用经典法求解零状态响应:卷积积分法求解()()()()⎩⎨⎧==-+-+0000L L c c i i u u例题•例题1:连续时间系统求解(经典法,双零法) •例题2:求冲激响应(n >m ) •例题3:求冲激响应(n <m ) •例题4:求系统的零状态响应 •例题5:卷积 •例题6:系统互联例2-1分析在求解系统的完全响应时,要用到有关的三个量是: :起始状态,它决定零输入响应;()()()()()()()()()强迫响应。

状态响应,自由响应,并指出零输入响应,零,求系统的全响应,已知 系统的微分方程为描述某t u t e r r t e t t e t r t t r t t r =='=+=++--,00,206d d 22d d 3d d LTI 22()-0)(k r ⎩⎨⎧状态变量描述法输出描述法—输入建立系统的数学模型:跳变量,它决定零状态响应; :初始条件,它决定完全响应;这三个量之间的关系是 分别利用 求零状态响应和完全响应,需先确定微分方程的特解。

解:方法一:利用 先来求完全响应,再求零输入响应,零状态响应等于完全响应减去零输入响应。

方法二:用方法一求零输入响应后,利用跳变量 来求零状态响应,零状态响应加上零输入响应等于完全响应。

本题也可以用卷积积分求系统的零状态响应。

方法一1. 完全响应 该完全响应是方程 (1)方程(1)的特征方程为 特征根为 方程(1)的齐次解为因为方程(1)在t >0时,可写为 (2)显然,方程(1)的特解可设为常数D ,把D 代入方程(2)求得 所以方程(1)的解为下面由冲激函数匹配法定初始条件 由冲激函数匹配法定初始条件 据方程(1)可设代入方程(1),得匹配方程两端的 ,及其各阶导数项,得 所以,所以系统的完全响应为()+0)(k zsr ()+0)(k r ()()()+-+=-000)()()(k zs k k r r r ()()++00)()(k k zs r r ,()()代入原方程有将t u t e =()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()++'0,0r r ()()++''0,0zs zs r r ()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()的解且满足00,20='=--r r 0232=++αα2121-=-=αα,()t t e A e A t r 221--+=()()()()t u t r t t r tt r 62d d 3d d 22=++3=D ()3221++=--tt e A e A t r ()()()t u b t a t t r ∆+=δ22d d ()()t u a t t r ∆=d d ()无跳变t r ()()()()()()t u t t r t u a t u b t a 6223+=+∆+∆+δδ2=a ()t δ()()22000=+=+'='-+a r r ()()200==-+r r ()()代入把20,20=='++r r ()3221++=--t t e A e A t r 1,021-==A A 得()0 32≥+-=-t e t r t ()t r zi 再求零输入响应2.求零输入响应 (3)(3)式的特征根为 方程(3)的齐次解即系统的零输入响应为所以,系统的零输入响应为 下面求零状态响应零状态响应=完全响应—零输入响应,即 因为特解为3,所以强迫响应是3,自由响应是方法二(5)以上分析可用下面的数学过程描述 代入(5)式 根据在t =0时刻,微分方程两端的 及其各阶导数应该平衡相等,得 于是t >0时,方程为 齐次解为 ,特解为3,于是有所以,系统的零状态响应为方法一求出系统的零输入响应为()是方程响应因为激励为零,零输入t r zi ()()()02d 3d d 22=++t r dt t r t t r ()()()()()()的解.,且满足 0000 2000='='='===--+--+r r r r r r zi zi zi zi 2121-=-=αα,()t t zi e B e B t r 221--+=()()式解得,代入,由)4(0020='=++zi zi r r 2,421-==B B ()0 242≥-=--t e e t r t t zi ()0 342≥++-=--t e e t r t t zs t t e e 24--+-()是方程零状态响应t r zs ()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()的解且满足000='=--zs zs r r ()项由于上式等号右边有t δ()应含有冲激函数,,故t r zs "()将发生跳变,即从而t r zs '()()-+'≠'00zs zs r r ()处是连续的.在而0=t t r zs ()()()()()t u a t r t t u b t a t r tzs zs∆=+∆+=+d d ,d d 22δ()()()()()()t u t t r t u a t u b t a 6223+=+∆+∆+δδ()t δ2=a ()()()()002000===+'='-+-+zs zs zs zs r r a r r ()()()()t u t r t t r t t r 62d d 3d d 22=++ 221t t e D e D --+()3221++=--t t zi e D e D t r ()()得由初始条件0,200=='++zs zs r r 1,421=-=D D ()0) ( 342≥++-=--t e e t r t t zs ()0 242≥-=--t e e t r t t zi完全响应=零状态响应+零输入响应,即例2-2冲激响应是系统对单位冲激信号激励时的零状态响应。

《信号与系统》第二版课后答案_(郑君里)_高等教育出版社

《信号与系统》第二版课后答案_(郑君里)_高等教育出版社

5t −∞
e2

)

= c1r1 (t ) + c2r2 (t )
∫ ∫ ∫ ( ) ( ) ( ) ( ) ( ) 时变:输入 e t − t0
,输出
5t
e
−∞
τ
− t0
τ −t0 = x
dτ =
e 5t −t0
−∞
x
dx ≠
e 5(t−t0 )
−∞
x
dx = r
t − t0
非因果: t
= 1时,
解题过程: (1)方法一:
f (t)
1
f (t − 2)
1

-2
-1
f (3t − 2)
0
1

1
2
f (−3t − 2)
1

3
2/3 1
-1 -2/3
方法二:
f (t)
f (3t )
1
1


-2
-1
f (3t − 2)
0
1
-2/3

1/3
f (−3t − 2)
2/3 1 方法三:
-1 -2/3
1
f (t)
(2) r (t ) = e(t )u (t )
线性:设 r1 (t ) = e1 (t )u (t ) 、 r2 (t ) = e2 (t )u (t ) , 则 ⎡⎣c1e1 (t ) + c2e2 (t )⎤⎦ u (t ) = c1r1 (t ) + c2r2 (t )
6
时变:输入 e (t − t0 ) ,输出 e (t − t0 )u (t ) ≠ e (t − t0 )u (t − t0 ) = r (t − t0 ) 因果: r (t ) 仅与此时刻 e (t ) 有关 (3) r (t ) = sin ⎡⎣e(t )⎤⎦ u (t ) 非线性:设 r1 (t ) = sin ⎡⎣e1 (t )⎤⎦ u (t ) 、 r2 (t ) = sin ⎡⎣e2 (t )⎤⎦ u (t ) , 则 sin ⎡⎣c1e1 (t ) + c2e2 (t )⎤⎦ u (t ) ≠ sin ⎡⎣c1e1 (t )⎤⎦ u (t ) + sin ⎡⎣c2e2 (t )⎤⎦ u (t ) 时变:输入 e (t − t0 ) ,输出 sin ⎡⎣e (t − t0 )⎤⎦ u (t ) ≠ sin ⎡⎣e(t − t0 )⎤⎦ u (t − t0 ) = r (t − t0 ) 因果: r (t ) 仅与此时刻 e (t ) 有关 (4) r (t ) = e (1− t ) 线性:设 r1 (t ) = e1 (1− t ) 、 r2 (t ) = e2 (1− t ) ,则 c1e1 (1− t ) + c2e2 (1− t ) = c1r1 (t ) + c2r2 (t ) 时变:设 e1 (t ) = u (t ) − u (t −1.5) ,则 r1 (t ) = u (t + 0.5) − u (t ) e2 (t ) = e1 (t − 0.5) = u (t − 0.5) − u (t − 2) ,则 r2 (t ) = u (t +1) − u (t − 0.5) ≠ r1 (t − 0.5) 非因果:取 t = 0 ,则 r (0) = e (1) ,即 t = 0 时刻输出与 t = 1时刻输入有关。 (5) r (t ) = e(2t ) 线性:设 r1 (t ) = e1 (2t ) 、 r2 (t ) = e2 (2t ) ,则 c1e1 (2t ) + c2e2 (2t ) = c1r1 (t ) + c2r2 (t ) 时变:设 e1 (t ) = u (t ) − u (t − 2) ,则 r1 (t ) = u (t ) − u (t −1) e2 (t ) = e1 (t − 2) = u (t − 2) − u (t − 4) ,则 r2 (t ) = u (t −1) − u (t − 2) ≠ r1 (t − 2) 非因果:取 t = 1,则 r (1) = e (2) ,即 t = 1时刻输出与 t = 2 时刻输入有关。 (6) r (t ) = e2 (t ) 非线性:设 r1 (t ) = e12 (t ) 、 r2 (t ) = e22 (t ) , 则 ⎡⎣c1e1 (t ) + c2e2 (t )⎤⎦2 = c12e12 (t ) + c22e22 (t ) + 2c1c2e1 (t ) e2 (t ) ≠ c1r1 (t ) + c2r2 (t ) 时不变:输入 e (t − t0 ) ,输出 e2 (t − t0 ) = r (t − t0 ) 因果: r (t ) 仅与此时刻 e (t ) 有关

信号与系统(郑君里)课后答案 第二章习题解答

信号与系统(郑君里)课后答案  第二章习题解答

( p + 5) h(t ) = 1 δ (t ) + 2δ (t )
p +1
3

h(t) =
1⋅ p+5
1δ p +1
(t ) +
2δ p+5
(t) =
⎛ ⎜ ⎜ ⎜
−1 4+
p+5
1⎞
4 p +1
⎟ ⎟δ ⎟
(t ) +
2δ p+5
(t)



h(t)
=
⎛ ⎜⎝
7 4
e−5t
+
1 4
e−t
⎞ ⎟⎠
卷积的微分与积分;与冲激函数或阶跃函数的卷积)对表达式进一步的化简,甚至直接得到
结果。
解题过程:
(1) f (t ) = u (t ) − u (t −1) = u (t )∗ ⎡⎣δ (t ) − δ (t −1)⎤⎦
∴s (t ) = f (t ) ∗ f (t ) = u (t ) ∗ ⎡⎣δ (t ) −δ (t −1)⎤⎦ ∗u (t )∗ ⎡⎣δ (t ) − δ (t −1)⎤⎦ = ⎡⎣u (t ) ∗u (t )⎤⎦ ∗ ⎡⎣δ (t ) − 2δ (t −1) + δ (t − 2)⎤⎦ = tu (t ) ∗ ⎡⎣δ (t ) − 2δ (t −1) + δ (t − 2)⎤⎦ = tu (t ) − 2(t −1)u (t −1) + (t − 2)u (t − 2)
⎞ ⎟⎠
u
(t)
受迫响应: 3 u (t )
2 综观以上两种方法可发现 p 算子法更简洁,准确性也更高

信号与系统版课后答案 郑君里 高等教育出版社

信号与系统版课后答案 郑君里 高等教育出版社
波形形状不变。
(3)因果性(Causality):是指系统在 t0 时刻的响应只与 t = t0 和 t < t0 的时刻有关,与未来
的时刻无关。 满足因果性的系统又称为物理可实现系统。 判断因果性的方法:
① 通过时域关系式: y (t ) = T ⎡⎣x (t )⎤⎦ 判断是否可能有 y (t1 ) = T ⎡⎣x (t2 )⎤⎦ ,t1 < t2 的时刻出
f (−t )
1
1


-2
-1
0
1
-1
f (−t − 2)
1

0
1
2
f (−3t − 2)
-3
-2
-1
0
-1 -2/3
1-5 解题过程:
(1) f (−at ) 左移 t0 : f ⎡⎣−a (t + t0 )⎤⎦ = f (−at − at0 ) ≠ f (t0 − at )
(2) f (at ) 右移 t0 : f ⎡⎣a (t − t0 )⎤⎦ = f (at − at0 ) ≠ f (t0 − at )
(3) 可逆。逆系统为 r (t ) = d e (t )
dt
C 为任意常数
(4)
可逆。逆系统为
r
(t
)
=
e
⎛ ⎜⎝
1 2
t
⎞ ⎟⎠
1-23 解题过程:
利用线性时不变系统得微分特性
因为
e2
(t
)
=
d dt
e1
(t
)
,所以,
r2
(t)
=
d dt
r1
(t)
=
d dt
⎡⎣e−αtu

信号与系统版课后答案 郑君里 高等教育出版社

信号与系统版课后答案 郑君里 高等教育出版社


duc
(t
)
dt
=
i1 (t )

i2
(t)
1
∫ C1

C
i1dt + Li1' + Mi2' + Ri1 = e(t)
i2 dt
+
Li '2
+
Mi
' 1
+
Ri2
=
0
v0 (t) = −Ri2
图(b):微分方程:

(L2

M
2)
d4 dt 4
v0 (t)
+
2RL
d3 dt 3
v0 (t)
+
(3) 可逆。逆系统为 r (t ) = d e (t )
dt
C 为任意常数
(4)
可逆。逆系统为
r
(t
)
=
e
⎛ ⎜⎝
1 2
t
⎞ ⎟⎠
1-23 解题过程:
利用线性时不变系统得微分特性
因为
e2
(t
)
=
d dt
e1
(t
)
,所以,
r2
(t)
=
d dt
r1
(t)
=
d dt
⎡⎣e−αtu
(t )⎤⎦
=
−α e−αt
现。若有则非因果系统,否则为因果系统; ② 对于时间连续系统
冲激响应
h
(t
)
⎧⎪= ⎨⎪⎩ ≠
h h
(t (t
) )
u u
(t (t
) )
因果系统 非因果系统
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档