果蔬产品采后生理和化学变化
果蔬采后生理
跃变型与非跃变型
表1 跃变型与非跃变型呼吸果蔬的特性比较 特性项目 后熟变化 体内淀粉含量 内源乙烯产生量 采收成熟度要求 跃变型果蔬 明显 富含淀粉 多 一定成熟度时采收 非跃变型果蔬 不明显 淀粉含量极少 极少 成熟时采收
第二节
影响呼吸强度的因素
果树和蔬菜的产品器官脱离了所着生的植株以后,它仍 是活着的有机体,继续着物质和能量的代谢过程,其中既有 物质原有的分解,也有新物质的合成,而以分解代谢为主。 对于果品、蔬菜的鲜度和品质关系极大。 采后的果品、蔬菜通过在细胞内进行的缓慢的生物氧 化反应─呼吸作用,把生长过程中积累的营养成分逐渐分解 为简单的化合物,同时释放能量,以维持采后正常的生理活 动。呼吸强度愈高,体内物质消耗量愈大。
第三章
果蔬采后生理
Postharvest Physiology of Fruits and Vegetables
采后生理(Postharvest Physiology) 是植物生理学的一个分支,它主要是研究农作物采后的生理代 谢变化及其调控的一门学科。
果蔬生命周期 生长(growth):果蔬产品细胞分裂和膨大的过程。 后熟(ripening):某些果实达到最佳食用品质的过程。 衰老(senescence):成熟或后熟后,果蔬组织崩溃,细胞死亡的过程。
呼吸作用并不一定伴随着氧的吸收和CO2的释 放。依据呼吸过程中是否有氧参与,可将呼吸作用 分为有氧呼吸和无氧呼吸两大类型。
依据呼吸过程中是否有氧参与,可将呼吸作用分
呼吸作用 respiration
有氧呼吸 (aerobic respiration)
无氧呼吸 anaerobic respiration
植物呼吸代谢集物质代谢与能量代谢为一体,是植物生长发育 得以顺利进行的物质、能量和信息的源泉,是代谢的中心枢纽。
我国果蔬采后生理学进展
我国果蔬采后生理学进展果蔬采后生理学研究对于提高果蔬的贮藏寿命、保持其营养价值和经济价值具有重要意义。
我国是果蔬生产大国,果蔬采后生理学研究不仅关系到农业经济的发展,还直接影响着人民群众的日常生活。
近年来,我国在果蔬采后生理学领域取得了显著进展,但仍面临一些挑战。
本文将对我国果蔬采后生理学的研究现状、热点、困境与挑战进行分析,并探讨未来的研究方向和重点。
我国果蔬采后生理学研究现状经过多年的发展,我国果蔬采后生理学研究已经形成了较为完善的研究体系。
目前,我国果蔬采后生理学研究主要涉及以下方面:果蔬采后生理生化机制:研究果蔬在采后过程中的生理生化变化,包括呼吸作用、蒸腾作用、成熟与衰老等过程。
果蔬采后病害控制:针对果蔬采后常见的病害问题,研究有效的防控措施,包括化学保鲜剂、生物保鲜剂等的应用。
我国果蔬采后生理学研究热点随着科学技术的发展,我国果蔬采后生理学研究不断深入,以下领域成为研究热点:基因组学在果蔬采后生理学中的应用:通过基因组学手段研究果蔬在采后过程中的基因表达变化,有助于深入了解果蔬的衰老机制,为贮藏保鲜提供理论支持。
代谢组学在果蔬采后生理学中的应用:代谢组学的是生物体受环境刺激或基因改变引起的代谢产物的动态变化,将其应用于果蔬采后生理学研究,有助于揭示果蔬贮藏过程中的代谢变化和营养价值的衰减过程。
我国果蔬采后生理学研究困境与挑战尽管我国果蔬采后生理学研究取得了显著进展,但仍存在一些问题和挑战:基础研究薄弱:与国际先进水平相比,我国在果蔬采后生理学的基础研究方面还存在不足,这限制了我们在该领域的进一步发展。
技术手段缺乏:虽然基因组学、代谢组学等新技术为果蔬采后生理学研究带来了新的机遇,但我国在相关技术手段的应用方面尚存在较大差距。
农业与科教结合不紧密:在农业生产和科教方面,我国果蔬产区和科教单位之间的不够紧密,导致部分研究成果难以转化为实际应用。
总体来看,我国果蔬采后生理学研究已经取得了显著进展,但仍面临诸多挑战。
果蔬采后生理
果蔬采后生理
表10-4 果蔬产品的乙烯生产量 单位μL C2H2/(Kg. h)(20℃)
类 型 乙烯生成量 产 品 名 称
非常低 〈0.1
低
0.1—1.0
朝鲜蓟,芦笋,菜花,樱桃,柑橘类,枣, 葡萄,草莓,石榴,甘蓝,结球甘蓝,菠菜, 芹菜,葱,洋葱,大蒜,胡萝卜,萝卜,甘 薯,石刁柏,豌豆,菜豆,甜玉米
(2)外源乙烯 ❖ 跃变型果实:外源乙烯处理能诱导和加速果实成熟,使跃 变型果实呼吸上升和内源乙烯大量生成,乙烯浓度的大小对 呼吸高峰的峰值无影响,但浓度大时,呼吸高峰出现的早。 乙烯对跃变型果实呼吸的影响只有一次,且只有在跃变前处 理起作用。
果蔬采后生理
非跃变型果实:外源乙烯在整个成熟期间都能促进非跃变型 果实呼吸上升,在很大的浓度范围内,乙烯浓度与呼吸强度 成正比,而且在果实整个发育过程中,呼吸强度对外源乙烯 都有反应,每施用一次,都会有一个呼吸高峰出现;当除去 外源乙烯后,呼吸下降,恢复到原有水平,也不会促进内源 乙烯增加 。
非常高 >l00.0
南美番荔枝,曼密苹果,西番莲,番荔枝
果蔬采后生理
表10--5 几种果实成熟的乙烯阈值
果实
香蕉 油梨 柠檬 芒果
乙烯阈值/ (μg/g)
0.1—0.2 0.1 0.1
0.04—0.4
果实
梨 甜瓜 甜橙 番茄
乙烯阈值/ (μg/g)
0.46 0.1—1.0
0.1 0.5
果蔬采后生理
视频:香蕉滞销原因
果蔬采后生理
二、 乙烯的生物合成途径及其调控
1.乙烯生物合成途径 蛋氨酸(Met)→S-腺苷蛋氨酸(SAM) →l-氨基环丙烷-l-羧
果蔬采后生理
果蔬贮藏技术 “十二五”规划教材
必备知识一 果蔬的呼吸作用
呼吸作用与果蔬贮藏的关系 呼吸作用是采后果蔬的一个最基本的生理过程,它与果蔬的 成熟、品质的变化以及贮藏寿命有密切的关系。 呼吸强度与呼吸系数 ➢ 呼吸强度(Respiration Rate) 是评价呼吸强弱常用的生理指标,又称呼吸速率。是指 在一定的温度条件下,单位时间、单位重量的果蔬放出 的CO2量或吸收O2的量。 呼吸强度是评价果蔬新陈代谢快慢的重要指标之一。 产品的贮藏寿命与呼吸强度成反比,呼吸强度越大,表 明呼吸代谢越旺盛,营养物质消耗越快。呼吸强度大的 果蔬,一般其成熟衰老较快,贮藏寿命也较短。
CO2释放的相对值
0
5
10 15 20 25
氧含量%
图3-3 果蔬无氧呼吸的消失点
果蔬贮藏技术 “十二五”规划教材
必备知识一 果蔬的呼吸作用
➢ 根据果蔬种类和生理状态不同,无氧呼吸的消失点是不 同。对一般果蔬来讲,发生无氧呼吸O2浓度为1%~5%;
➢ 在贮藏过程中,应尽可能地维持适宜低的O2浓度(接近 无氧呼吸消失点,对一般果蔬为3%~5%),使有氧呼 吸降低到最低程度,但不激发无氧呼吸。
必备知识一 果蔬的呼吸作用
呼吸作用的概念 呼吸作用(Respiration)是指生活细胞内的有机物在酶的参 与下,经过某些代谢途径,使有机物逐步氧化分解并释放出 能量的过程。 呼吸作用分为有氧呼吸和无氧呼吸两大类型。
果蔬贮藏技术 “十二五”规划教材
必备知识一 果蔬的呼吸作用
有氧呼吸 ➢ 有氧呼吸(Aerobic Respiration)是指在有O2的参与下, 果蔬中的有机物质彻底氧化分解形成CO2和H2O,同时释 放出大量能量的过程。 ➢ 有氧呼吸是高等植物呼吸的主要形式。 ➢ 呼吸作用中被氧化的有机物称为呼吸底物,碳水化合物、 有机酸、蛋白质、脂肪都可以作为呼吸底物。 ➢ 一般来说,淀粉、葡萄糖、果糖、蔗糖等碳水化合物是最 常利用的呼吸底物。
果蔬产品采后采后生理失调
改变贮藏环境的气体成分,可以减少冷害的发生。 对于某些果蔬商品用低浓度02,和高浓度CO2进行气凋贮藏,能有效地减轻冷害,如油梨、葡萄柚、青梅
、黄秋葵、番木瓜,桃、菠萝和小西葫芦等。但气调贮藏也有加重冷害的报道:如黄瓜、石刁柏和灯笼辣椒 等。为此,气调贮藏能否减轻冷害的发生,受果蔬种类、O2和C02浓度、处理时间和贮藏温度等因素决定。
一、低温伤害
➢ 冷害 (chilling injury):植物组织置于低于标准的临界温度但高于其冰点的温度下出现的 生理失调的症状。
➢ 冻害 (freezing injury):冰点以下的低温引起的果蔬产品的伤害。
冷害症状及对冷害的敏感性
一些原产于热带或亚热带的植物,由于系统发育处于高温多湿的气候环境中,形成对低温有很敏感的特性, 在生长过程中遇到零上低温,则发生冷害,损失巨大。起源于热带、亚热带植物的果实、蔬菜或贮藏器官 (如甘薯的块根),在过低温度下贮藏也会引起冷害。甚至某些原产于温带的果蔬,如苹果中的一些品种,贮 藏不当,同样会遭受冷害。 一般果蔬产品在冷害温度下贮藏,并不立即表现出冷害症状,只有将这些在低温下贮藏的产品转移至20~ 25℃较温暖的环境中,二、三天后冷害症状才会被发展和察觉出来。
➢生理失调 (physiological disorder) ➢病理伤害 (pathological decay)
第一节 采后生理失调
➢ 温度失调 (temperature disorders) ➢ 营养失调 (nutritional disorders) ➢ 呼吸失调 (respiratory disorders) ➢ 其他失调 (miscellaneous disorders)
(五)冷害对其它物质代谢的影响
据报道有些果蔬商品在低温中贮藏,碳水化合物代谢发生了变化,如马铃薯块茎经低温贮藏后,还原糖含量 明显提高,在葡萄柚的果皮中还原糖的含量也随抗冷性的增强而提高.将番茄幼苗在较低夜温下假植,其抗冷性 要比在较高夜温下生长的要强,据分析低温降低了植物对碳水化合物的利用,但却加速了淀粉转向可溶性糖方向 的水解和诱导转化酶催化蔗糖向还原糖转化.因此,可以认为抗冷性强的品种,及在低温下能生成更多的可溶性 糖有关。
果蔬的采后生理
水分蒸腾(Transpiration) 第四节 水分蒸腾
水分在果蔬体内的作用
使产品呈现坚挺,脆嫩的状态。 使产品具有光泽。 使产品具有一定的硬度和紧实度。 从内部角度上说,水分参与代谢过程。 水分是细胞中许多反应发生的媒介。 热容量大,防止体温剧烈变化。
水分蒸腾的途径
幼嫩组织水分蒸腾
通过角质层蒸腾 通过自然孔口(气孔,皮孔,表面裂纹)蒸腾。
增加产品体内钙水平的方法
采前喷钙Ca(NO3)2,CaCl2,Ca3(PO4)2溶液 果实浸钙: CaCl2 2~8%,浸泡30-60s
* 注意
采收以后尽快进行浸钙。(刚采收的表皮有较好的吸收活性)。 经浸钙处理的产品最好贮藏在高温度条件下(85-90%)有利于Ca向产 品体内转移。 浸钙过程中,有条件最好采用真空或压力渗透。 结合使用表面活性剂,钙液均匀分布,吐温20、40、60、80,常用 吐温80。
第二章 果蔬的采后生理
Postharvest Physiology
采后生理,是植物学的一个分支,它主要是研究农作物 采收以后体内生理代谢变化及其调控的一门理论学科。 果蔬生命周期 生长(growth):果蔬产品细胞分裂和膨大的过程。 成熟(maturation):果蔬产品生长发育的最后阶段,达到 可采收的程度。 后熟(ripening):某些果实达到最佳食用品质的过程。 衰老(senescence):成熟或后熟后,果蔬组织崩溃,细胞 死亡的过程。
呼吸作用(Respiration) 第一节 呼吸作用
呼吸作用的一般理论
呼吸作用是植物的生活组织在许多复杂的酶系统参与 下,经许多中间反应环节进行的生物氧化还原过程,把 复杂的有机物逐步分解为较简单的物质,同时释放能量obic respiration) 无氧呼吸(Anaerobic respiration)
果蔬采后生理
(三)味感的变化
➢ 随着果实的成熟,果实的甜度逐渐增加, 酸度减少。 ➢ 果实的可溶性糖主要是蔗糖、葡萄糖和果糖,这三
种糖的比例在成熟过程中经常发生变化。对于在生 长过程以积累淀粉为主的果实来说,在果实成熟时 碳水化合物成分发生明显的变化,果实变甜。
果蔬采后生理
甜味
酸味
果蔬采后生理
果蔬采后生理
第一节 果品蔬菜的成熟与衰老
果蔬采后生理
一、成熟与衰老的概念
➢ 成熟(maturation):是指果实生长的最后阶段, 在此阶段,果实充分长大,养分充分积累,已经 完成发育并达到生理成熟。
➢ 对某些果实如苹果、梨、柑橘、荔枝等来说,已 达到可以采收的阶段和可食用阶段;但对一些果 实如香蕉、菠萝、番茄等来说,尽管已完成发育 或达到生理成熟阶段,但不一定是食用的最佳时 期。
➢ 因此,控制采收后果蔬的呼吸作用,已成为果 蔬贮藏技术的中心问题。
果蔬采后生理
一、呼吸作用的类型及特点
➢有氧呼吸
➢通常是呼吸的主要方式,是在有氧气参与 的情况下,将本身复杂的有机物(如糖、淀 粉、有机酸等物质)逐步分解为简单物质(如 水和二氧化碳),并释放能量的过程。
➢指在无氧气参与的情况下将复杂有机物分解的 过程。一方面它提供的能量比有氧呼吸少,消耗 的呼吸底物更多,使产品更快失去生命力;另一 方面,无氧呼吸生成的有害物乙醛和其他有毒物 质会在细胞内积累,并且会输导到组织的其它部 分,造成细胞死亡或腐烂。因此,在贮藏期应防 止产生无氧呼吸。
果蔬采后生理
一、成熟与衰老的概念
➢ 完熟(ripening):是指果实达到成熟以后,即果 实成熟的后期,果实内发生一系列急剧的生理生 化变化,果实表现出特有的颜色、风味、质地, 达到最适于食用阶段。
果蔬采后生理
延长休眠期的措施:
同种类的产品休 眠期的长短不同。
产品 本身
低温、低氧、 低湿和适当提高 二氧化碳浓度等 改变环境条件可 延长休眠期。
控制贮 运环境 辐射 处理
药物 处理
利用外源提供抑 制生长的激素, 改变内源植物激 素的平衡,延长 休眠。如:抑芽 剂青鲜素(MA)
γ 射线可抑制马铃薯、洋 葱、大蒜、生姜等发芽。
5、低温伤害生理
• 从降低贮运中果蔬产品的呼吸强度、抑制各种营养损失 与水分蒸发、减缓成熟衰老过程等角度出发,低温有利 于果蔬保鲜。然而,在果蔬贮运期间,常常会出现因为 低温管理不适宜,使果蔬产品发生冷害或冻结等低温伤 害,造成重大的采后损失。 • 冷害:指在冰点以上不适宜温度引起果蔬生理代谢失调 的现象。 • 冷害症状:不正常成熟、有异味;表皮组织坏死,变色 或干缩;果皮出现凹点或凹陷的斑块;皮薄或组织柔软 的果蔬,出现水渍斑块;果皮、果肉或果心褐变等。
• 在果蔬贮藏过程中,有些处于休眠状态,有些则处 于生长状态。此期植物仍保持生命活力,但一切生 理活动都降到最低水平,营养物质的消耗和水分蒸 发都很少。对果蔬贮藏来说,休眠是一种十分有利 的生理作用。
• 生长指果蔬产品在采收以后出现的细胞、器官或整 个有机体在数目、大小或重量的不可逆增加。 • 生长会造成品质下降,缩短贮藏期,不利贮藏。
冷害对果蔬贮运的影响:
1)生理生化变化
组织结构改变,如细胞膜由柔软的液晶态转变为固态胶体,细 胞膜透性增加,电解质外渗,汁液流失;促进了酶的活性,如果胶 酶、淀粉酶,使果胶及淀粉发生水解,多酚氧化酶活性也大大加强 了,组织迅速褐变;加强了呼吸作用,刺激了乙烯的生成,加速了 组织成熟和衰老;积累有毒物质乙醇、乙醛、丙二醛等,使组织受 伤致死。
果蔬采后生理特性
有氧呼吸和无氧呼吸的区别(见表)二、呼吸强度和呼吸系数1、呼吸强度是衡量果蔬呼吸作用水平的重要指标,是直接关系到贮藏能力大小的主要生理因素。
1公斤新鲜果蔬在1小时内放出CO2的毫克数或吸入O2的毫克数。
单位(mgCO2/公斤.小时)2、呼吸系数(呼吸商)(呼吸率)RQ指呼吸过程中放出的CO2和吸入O2的容积比。
RQ=V CO2/V O2三、影响呼吸的因素(一)果蔬自身的状况1、果蔬种类和品种浆果类>核果类>柑桔类>仁果类叶菜类>果菜类>根茎菜类热带、亚热带果实Q值比温带果实大,遗传特性:晚熟品种>早熟品种2、成熟度在整个发育过程中,幼龄时期呼吸强度最大,因为:处于生长最旺盛阶段,各种代谢过程都最活跃。
表层保护组织尚未发育或结构不完全,气体进入较多,Q大。
蜡质,角质发育完成后,Q下降。
3、不同部位不同部位Q值不同:果皮>果肉蒂端>果顶(例如柿子)果蒂、果梗>果实(例如茄子青椒)(二)外界因素1、贮藏温度酶的活性随温度的增加而增加,呼吸也加强。
温度升高,酶活性继续上升,达到高峰,呼吸也达到高峰。
当温度超过了限度,酶逐渐失活,而呼吸作用也随之下降,因此呼吸出现了“钟”型曲线。
2、气体成分(1)氧气(2)二氧化碳3、湿度(水分)四、呼吸跃变1、呼吸跃变:果实在定型之后的成熟过程中,呼吸强度突然上升达到成熟后趋于下降,呈一明显的峰型变化,这个峰叫呼吸高峰。
这种变化称为呼吸跃变。
2、呼吸跃变的特性:(1)经过跃变的果实,食用品质达到最佳。
(2)呼吸跃变是果实达到成熟的标志,更重要的是果实衰老的开始,经过跃变的果实,贮藏品质迅速下降。
(3)呼吸跃变的果实能够产生内源乙烯,对果实呼吸跃变最重要的是乙烯,具有催熟作用。
3、呼吸跃变分类:A:呼吸跃变型果实(高峰型果实)苹果、油梨、桃、李。
B:非跃变型果实(非高峰型果实)樱桃、黄瓜、葡萄、柠檬、菠萝。
五、呼吸与贮藏的关系(一)有利:降低氧气的浓度,进行自然密闭缺氧储藏;促进后熟;保持活力.(二)不利1、呼吸消耗营养物质。
植物采后影响原因
影响原因1.生理生化反应的加剧新鲜果蔬经过整理清洗去皮和切分等处理后,组织产生机械损伤,细胞的完整性及酶与底物的区域化结构被破坏,酶与底物直接接触,加之机械损伤产生的伤信号在很短的时间内(如几秒钟)迅速传递给邻近细胞,从而导致果蔬组织中伤乙烯的大量产生和发生错综复杂的生理生化反应,并扩散影响远离伤害部位的细胞2. 营养成分流失新鲜果蔬在加工处理与贮藏过程中,由于切割造成机械损伤并使果蔬汁液直接暴露于空气中,不仅导致了部分营养成分流失(如水分和),而且促使果蔬组织的呼吸速率提高,自身代谢加快,进一步加快了营养物质的流失3. 微生物的侵染新鲜果蔬经去皮去核切分等加工处理后,细胞组织结构受损,原来的完整性被破坏,致使果蔬汁液外溢,营养丰富的果蔬汁液为微生物提供了良好的营养基质,因而,鲜切果蔬极易受到外界微生物的侵染而腐败变质物理保鲜技术.1临界低温高湿保鲜技术控制在物料冷害点温度(0.5~1℃)以上左右和相对湿度为90%~98% 左右的环境中保鲜果蔬。
临界点低温高湿贮藏的保鲜作用体现在两个方面:1 果蔬在不发生冷害的前提下采用尽量低的温度可以有效地控制果蔬在保鲜期内的呼吸强度使某些易腐烂的果蔬品种达到休眠状态2采用高相对湿度的环境可以有效降低果蔬水分蒸发减少失重。
2.超声波处理主要是利用低频高能量的超声波空穴效应在液体中产生瞬间高温高压造成温度和压力的变化而使某些细菌致死病毒失活超声波杀菌能温度基本上不上升营养损失减少有利于保持品质。
3.真空预冷是在真空条件下使食品中的自由水以较低的温度迅速蒸发水蒸发吸热从而在没有外界热源的情况下食品自身温度降低而产生制冷效果真空预冷不受果蔬形状限制操作方便能耗低清洁冷却速率快且均匀。
化学保鲜技术1.细胞间水结构化气调保鲜结构化水技术是指利用一些非极性分子如某些惰性气体在一定的温度和压力条件下与游离水结合而形成笼形水合物结构的技术. 为植物的短期保鲜贮藏提供了一种全新的原理和方法2.可食用膜保鲜可食性保鲜膜具有保鲜效果好使用方便实用性好等特点且制作工艺简单成本低易降解对环境不产生污染是一种极具开发潜势的食品包装材料3.纳米保鲜技术使用这种纳米复合包装材料微生物的生长率显著减少生物保鲜技术1.生物拮抗菌采用复合技术可增强防腐剂对食品中污染菌的抑制性同其它抗菌素配合利用配料中各个组分的互补增效作用可以获得满意的抑菌和杀菌效果2.植物源防腐剂植物源防腐剂在人体消化道内可降解, 不影响消化道菌群和药用抗菌素的使用而且安全无毒具有一定的生理活性.3.基因工程技术保鲜主要通过减少果蔬生理成熟期内源乙烯的生成以及延缓果蔬在后期成熟过程中的软化来达到保鲜的目的.。
果蔬采后生理
果蔬贮藏是当代园艺学的重要问题之一,世界各国学者正在致力于研究解决这个问题的方法。
近年来,人们通过两个相互联系的途经来探讨果蔬贮藏问题。
一些学者研究了果蔬采后生理生化作用和微生物作用过程,试图破译果蔬采后生命活动机制密码,为果蔬长期贮藏提供可靠的理论依据;一些学者从大量的贮藏果蔬的实践中,逐步总结出一些经济有效、简单实用的贮藏方法。
另外也有一些学者在果蔬贮藏生理学、生物化学研究的基础上,运用现代科学技术,又提出了一些新的方法和技术。
本文简要综述我国现行的采后生理研究的最新进展。
一、果蔬成熟进程中的生化作用在整个采后期间,水果保持其活体固有性质:与周围介质之间的代谢、细胞和组织结构的完整性、组织成分的常规更新。
此外,果蔬采后期间的物质代谢还具有许多特点,因为在发育阶段贮备的有机物质是唯一的营养源,从这种源内吸入保持水果生命活动所必须的代谢产物和能量;而气体交换则是同周围介质交换的唯一形式。
成熟果蔬的特点是果实软化,它与果胶物质、半纤维素和细胞壁其他成分性质的重大变化有关。
在成熟期内不仅发生多聚半乳糖醛酸酶、半纤维素酶、木聚糖酸酶、B-半乳糖苷酶及其他分解细胞壁的各种酶的活化作用,而且发生这些酶的生物合成。
对于呼吸跃变型果蔬,呼吸跃变即为成熟的终止,此后开始后熟过程。
为了延迟成熟过程,应尽可能较长时间推迟呼吸跃变高峰的到来,延长跃变始期与高峰期之间的时间间隔,进而拖延过熟过程的发生。
氧化酶的活力线粒体氧化活力在成熟期间发生重大变化。
⑴脂氧合酶LOX 首次报道于1932年,是一种含非血红素铁的蛋白质,专一催化顺,顺一1,4 —戊二烯结构的多元不饱和脂肪酸加氧反应,生成过氧化氢物。
植物细胞膜的降解是组织衰老的主要特征之一,由于细胞内膜系统遭破坏,导致组织结构和细胞区隔化的丧失,最后致使细胞内部平衡失调和功能丧失。
LOX调节果实衰老的可能机理有①启动膜脂过氧化作用,导致细胞膜透性增加,促进胞内钙的积累,激活了磷酸脂酶的活性,加速了游离脂肪酸进一步从膜脂释放,加剧了细胞膜的降解;②膜脂过氧化产物和膜脂过氧化过程产生的游离基,进而毒害细胞膜系统、蛋白质和DNA导致了细胞膜的降解和功能丧失;LOX的脂质过氧化作用产物可进一步生成茉莉酸和脱落酸等衰老调节因子,并参与了乙烯的生物合成,促使组织衰老[38][39]。
第三章果蔬采收后的生理失调
四、蒸发失水
在贮藏期间小果实因呼吸和蒸发失水而 呈现萎蔫是很普遍的,但其萎蔫的程度 随品种而有差异。蒸发失水不但引起外 观品质下降,有时会引起生理病。例如 缓慢而过度失水会引起宽皮桔萎缩型枯 水病。
二氧化碳浓度过高、氧浓度过低; NH3泄漏; SO2熏蒸,当其浓度过高时,会引起毒 害; 乙烯浓度过高时,会引起生菜叶片褐斑; 果蔬本身的代谢产物(乙醛、乙醇、а— 法呢烯氧化物等) 积累。例如苹果虎皮 病(褐烫病)。
苹果虎皮病(S淋处理机械
三、果蔬的成熟度不适
第三节 果蔬组织褐变的机理
一、乙醛毒害假说:正常组织仅含微量的乙醛和乙 乙醛毒害假说: 醇,但在进行“无氧发酵”或“CO2发酵”的组织中, 二者均大量产生。乙醛和乙醇都能导致苹果组织的褐 变,乙醛毒害作用更强。 醌酶假说: 二、酚—醌酶假说:在有氧条件下,酚类物质经PPO 醌酶假说 催化被氧化为醌,醌通过聚合反应产生有色物质,导 致组织褐变。 维生素C保护假说 保护假说: 三、维生素 保护假说:正常Vc含量较高,可将醌类 还原为酚类物质,而在低温贮藏或低湿情况下Vc遭到 破坏,使醌还原为酚的过程受到抑制,醌的积累导致 组织褐变。
五、冷害的控制
(一)、温度调节: 1、低温预贮 2、逐渐降温法:只对呼吸高峰型果实有效 3、间歇升温 4、热处理 (二)、湿度调节:塑料袋包装,或打蜡。 高湿降低了产品的水分蒸散,从而减轻了冷 害的某些症状。
(三)、气体调节:气调能否减轻冷害还没 有一致的结论。葡萄柚、西葫芦、油梨、日 本杏、桃、菠萝等在气调中冷害症状都得以 减轻,但黄瓜、石刁柏和柿子椒则反而加重。 (四)、化学物质处理:氯化钙,乙氧基喹, 苯甲酸,红花油,矿物油。此外有ABA、乙 烯和外源多胺处理减轻冷害症状的报道。
第五章 果蔬采后生理-冷害与冻害
3、对物质代谢产生的影响
( 1 )碳水化合物:据报道有些果蔬商品在低温中贮藏,
碳水化合物代谢发生了变化,如马铃薯块茎经低温贮藏
后,还原糖含量明显提高;在葡萄柚的果皮中还原糖的 含量也随抗冷性的增强而提高.将番茄幼苗在较低夜温
下假植,其抗冷性要比在较高夜温下生长的要强,据分
析低温降低了植物对碳水化合物的利用,但却加速了淀 粉转向可溶性糖方向的水解和诱导转化酶催化蔗糖向还 原糖转化.因此,可以认为抗冷性强的品种,与在低温 下能生成更多的可溶性糖有关。
增加。
蛋白质变性。 PAL 和绿原酸氧化酶活性上升,导致组织褐变, SOD 活性下
降。 ( 3 )游离氨基酸和氨大量积累,脯氨酸含量显著增加(细 胞膜结构破坏的结果)。脯氨酸的积累既反映了细胞结构和 功能受损的程度;同时,也有其适应的意义,采取一定的措 施提高其含量,又能起到保护作用
(4)多胺(Polyamines,Pas.)含量增加。
相对湿度
对于某些果蔬商品,贮藏期间提高相对湿度,可以减轻 冷害。 据研究将黄瓜和辣椒贮藏在相对湿度接近 100 %的 环境中,在 0 ℃下果实表皮出现的冷害陷斑,较在相对 湿度为 90%的为少。有人将辣椒在 0 ℃及相对湿度为 88 %~90%中贮藏12天,有67%出现陷斑;而在同样时间 和温度下,贮藏在相对湿度为96%~98%,只有33%出 现陷斑。显然,对这类蔬菜说来,调节贮藏湿度接近 100%,冷害减少,而低湿则促进冷害症状的出现。
在热区采收的果实,0℃储藏无法后熟。
2、外界环境因素
温度
在环境因素中,影响冷害的主要因素是温度。在导致发生 冷害的温度下,温度高低和持续时间的长短乃是果蔬产品
是否受害和受害程度的决定因素。
低于冷害临界温度:时间越长,冷害发生率越高 低于冷害临界温度,温度越低,冷害发生率严重程度越大
第四讲:果蔬采后的生理变化
教学重点
1、理解果蔬贮藏的实质。
2、影响果蔬贮藏保鲜的因素。
3、掌握果蔬的贮藏保鲜方法。
教学难点
采前因素和采收过程对果实的影响,及遵循三大原则。
课堂小结
果蔬贮藏的实质,就是创造一定的外部环境条件,使果蔬最低限度地消耗自身能量,以维持正常生命活动的过程。
(7)化学物质一些化学物质,如赤霉素、青鲜素、一氧化碳、1-MCP (1-甲
基环丙烯)等,对果实呼吸强度均有不同程度影响,其中有些常作为果蔬产品的保鲜剂。比如,1-MCP,一种乙烯抑制剂可应用于苹果和花卉等园艺产品的贮运与保鲜。
(8)钙素对呼吸的影响一些果实如苹果、梨、鲜枣等采前喷施钙肥(氯化钙
或硝酸钙),或采后浸钙处理,可在一定程度上降低果实的呼吸强度,延缓果实硬度下降,减少贮藏期间生理病害。
总之,要采取各种措施抑制果品呼吸强度,推迟衰老,提高其耐贮性和抗病性。
(二)蒸腾作用
果蔬在采收后失去供给水分的来源,但水分的蒸发仍在继续。随着贮藏期的
以班日果蔬食品加工技术延长,失水达到一定程度就会造成果实萎病、失重、鲜度下降,大大降低商品价值,此现象称为果蔬的蒸腾作用。失重程度通常是衡量果蔬保鲜效果的一个重要指标。蒸腾作用除了影响果蔬的鲜度和口感外,严重时还会使其生理代谢活动增强,贮藏期缩短。但是,如宽皮柑橘类和哈密瓜等采后适度失水对其贮藏和运输是有好处的。影响果蔬蒸腾作用的主要因素如下:
(1)果蔬种类与成熟度一般来说,表面积与重量比值大的果实,水分蒸
腾量大。水分蒸腾量也与果实表面的表皮结构有关,果皮厚、表皮结构致密且
具有蜡质层的果实水分不易蒸腾。未成熟或成熟度低的果实,因表皮角质层
果蔬采后生理生化实验指导
果蔬采后生理生化实验指导果蔬采后的生理生化实验是果蔬质量科学研究中非常重要的内容,它可以为我们提供合理的科学依据,为果蔬质量控制提供科学和客观的标准。
本文以写一篇介绍果蔬采后生理生化实验指导的文章为例,总结一些通用的果蔬采后生理生化实验的指导原则和方法。
首先,果蔬采后生理生化实验包括以下几个阶段:果蔬采摘阶段、运输到仓馆阶段、储藏阶段、加工分拣阶段。
在采摘阶段,果蔬的生理生化特性会受到外界环境的影响,有时候果蔬的采摘技术是衡量果蔬质量的重要指标,所以在果蔬采摘时应该严格按照采摘标准进行采摘。
运输到仓馆阶段,运输环境应该合理调节,及时补充冷却措施,以减缓果蔬的衰老过程,并且加快果蔬的贮藏。
在储藏阶段,果蔬需要在适当的环境下进行储藏,不能擅自更改温度,否则可能会导致果蔬质量受损。
而加工分拣阶段则是指果蔬加工过程中的重要部分,包括采摘后的处理、落叶、清洗和检查等环节,在这一环节中需要加以把握,以免影响果蔬存储和加工的质量。
其次,为了正确检测果蔬采后的生理生化参数,需要使用专业的果蔬生化检测仪器。
例如,气相色谱仪可以快速准确地检测果蔬中的气体成分;颜色检测仪可以检测果蔬的外观颜色;组织检测仪可以检测果蔬的组织构造;紫外光谱仪可以检测植物组织营养成分;热重分析仪等则可以检测植物组织膨胀性能。
最后,果蔬采后生理生化实验必须依据标准进行,以确保数据准确可靠。
例如,在果蔬采摘和加工分拣中,应该按照国家标准进行操作,以保证果蔬质量符合科学标准;在果蔬储藏阶段,应遵守果蔬储藏品种的储藏条件,以保持果蔬的质量;在果蔬采后生理生化检测中,应采用正确的检测方法和仪器,以便准确地检测果蔬的质量。
总之,果蔬采后生理生化实验是果蔬质量科学研究中一个不可缺少的内容,它可以有效检测果蔬质量,帮助我们更好地掌握果蔬质量变化的规律。
上述内容仅供参考,以便及时了解果蔬质量变化的规律,为我们的健康生活提供可靠的科学依据。
果蔬产品采后生理
果蔬产品采后生理1. 引言采后生理是指果蔬产品采摘后发生的各种生理变化。
这些变化包括呼吸、蒸散、转化和成熟等过程,会直接影响果蔬产品的质量、口感和营养价值。
了解果蔬产品的采后生理过程对于农民、生产商和消费者都非常重要。
本文将探讨果蔬产品采后生理的相关知识,包括采后生理的影响因素、常见的采后生理变化以及如何延长果蔬产品的保鲜期。
2. 采后生理的影响因素果蔬产品的采后生理变化受到多种因素的影响,主要包括以下几个方面:2.1 温度温度是影响果蔬产品采后生理的重要因素之一。
较低的温度可以减缓果蔬产品的新陈代谢和呼吸速率,延缓其衰老和腐烂过程。
因此,在采摘后尽快将果蔬产品放入合适的冷藏环境中可以延长其保鲜期。
2.2 湿度湿度也是影响果蔬产品采后生理的重要因素之一。
较高的湿度可以降低果蔬产品的蒸散速率,减少水分的流失。
同时,适度的湿度还可以减缓果蔬产品的衰老速度。
因此,在保鲜过程中,要根据果蔬产品的特点调节湿度,以延长其保鲜期。
2.3 氧气和二氧化碳浓度果蔬产品采后的呼吸作用会消耗氧气产生二氧化碳。
较高的氧气浓度可以促进果蔬产品的呼吸和成熟过程,但过高的氧气浓度会导致果蔬产品的腐烂。
因此,在果蔬产品的采后处理中,需要控制氧气和二氧化碳的浓度,以延缓果蔬产品的衰老速度。
3. 常见的采后生理变化果蔬产品采后会发生多种生理变化,下面将介绍一些常见的采后生理变化:3.1 呼吸果蔬产品采后仍然进行呼吸作用,消耗氧气产生二氧化碳。
呼吸速率受温度、氧气浓度和湿度等因素的影响。
呼吸作用会导致果蔬产品的营养物质和味道的改变,同时也是果蔬产品衰老的一个重要标志。
3.2 色泽果蔬产品的色泽在采后会发生一些变化。
一些果蔬产品在成熟过程中会发生色素合成的变化,导致它们的颜色变得更加鲜艳。
然而,一些果蔬产品在采后处理过程中会失去色泽,失去光泽。
3.3 组织结构果蔬产品的组织结构也会发生变化。
在采摘后,果实的细胞会继续分裂和伸长,但同时也会有细胞的老化和膨松现象。
果蔬采后生理代谢变化及调控机制研究进展
目录
01 摘要
03
果蔬采后生理代谢变 化
02 引言 04 调控机制
05 研究进展
07 参考内容
目录
06 结论
摘要
本次演示主要探讨果蔬采后生理代谢变化及调控机制的研究进展。在果蔬采摘 后,其内部生理代谢过程发生了一系列改变,这些变化包括维生素含量的变化、 呼吸代谢的变化和自由基代谢的变化等。本次演示详细阐述了这些变化以及调 控机制,并提出了今后研究方向。关键词:果蔬,采后生理,代谢变化,调控 机制,维生素,呼吸代谢,自由基代谢
果蔬采后生理代谢变化
1.维生素含量的变化
果蔬中的维生素含量在采后会发生一定变化。一些研究发现,水果中的维生素 C和蔬菜中的维生素E在储存过程中会逐渐减少。此外,不同类型的果蔬维生素 含量变化也有所不同。例如,柑橘类水果在储存过程中,维生素C含量会逐渐 降低,而香蕉中维生素C含量则相对稳定。这些变化对果蔬的品质和营养价值 产生了一定的影响。
6、数据处理与分析:使用Excel和SPSS软件进行数据分析和图ห้องสมุดไป่ตู้制作。
结果与讨论
本研究发现,蓝莓果实的呼吸速率在采后初期迅速下降,然后逐渐趋于平稳。 硬度在采后初期逐渐增加,但在贮藏过程中逐渐降低。色泽在采后初期没有明 显变化,但在贮藏过程中逐渐加深。基因表达分析发现,在贮藏过程中某些基 因的表达量发生变化,这些基因涉及到果实的糖分代谢、色泽形成和抗病性等 方面。这些发现有助于更深入地了解蓝莓果实采后的生理生化代谢及调控机制。
环境因素对蓝莓果实的生理生化代谢具有重要影响。其中,温度是最重要的因 素之一。高温会加速果实的呼吸作用和代谢速度,导致果实品质下降。湿度也 会影响果实的代谢和品质,过于干燥或潮湿的环境都不利于果实的储存。此外, 气体成分也会对果实的生理生化代谢产生影响,如低氧和高二氧化碳浓度会导 致果实无氧呼吸和有机酸代谢加强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完整版课件ppt
20
(一)颜色的变化
➢ 果蔬内的色素可分为脂溶性色素和水溶性色 素两大类:
1. 脂溶性色素包括叶绿素和类胡萝卜素。叶绿 素使果蔬呈现绿色,类胡萝卜素呈现黄、橙、 红等颜色。
2. 水溶性色素主要是花色素苷。
完整版课件ppt
21
(二)香气的变化
完整版课件ppt
22
(三)味感的变化
➢ 随着果实的成熟,果实的甜度逐渐增加, 酸度减 少。
(一)、叶柄和果柄的脱落 (二)、颜色的变化 (三)、组织变软、发糠 (四)、种子及休眠芽的长大 (五)、风味变化 (六)、萎蔫 (七)、果实软化 (八)、病菌感染
完整版课件ppt
19
产品独特的色香味质地及营养成分的变 化都是其内部所含化学成分及含量决定 的。
化学成分的性质、含量及其采后的变化 与园产品的品质和贮藏寿命密切相关。 我们在贮藏和运输过程中要最大限度地 保存这些化学成分,使其接近新鲜产品。
完整版课件ppt
9
四、抑制失水的方法
(一)、增加产品外部小环境的湿度
(二)、采用低温贮藏是防止失水的重要 措施
用给果蔬打蜡或涂膜的方法在一定程度 上,有阻隔水分从表皮向大气中蒸散作 用。
完整版课件ppt
10
保鲜膜
保鲜主要是保水、保质和保护营养,在 这方面,保鲜膜的功效最好。合格的保 鲜膜透气性强,内外氧气可以流通,有 效阻止厌氧菌的繁殖,在一定时间内, 能保证果蔬新鲜。
完整版课件ppt
25
果实中和麻味的来源:糖苷 鲜味来自含氮物质
完整版课件ppt
完整版课件ppt
16
瓜果后熟作用的利用
果农和菜农掌握时令和市场契机,同 时考虑运输和储存,在瓜果七、八分熟 的时候就开始采摘了。
喜欢吃瓜果的人在购买时不一定要买 过熟的,如果选择尚未熟好,可能会节 约开支,并且储存时间更长一些。
完整版课件ppt
17
完整版课件ppt
18
五、采后的生理生化变化
果蔬产品采后生理变化
完整版课件ppt
1
呼吸作用
一、呼吸作用 (一)、有氧呼吸和无氧呼吸 1.有氧呼吸
C6H12O6+6O2→6CO2+6H2O+1544kJ
2.无氧呼吸
C6H12O6 → 2C2H5OH+2CO2+87.9kJ 果蔬采后在贮藏过程中应防止产生无氧呼吸。
完整版课件ppt
2
(二)、与呼吸有关的几个概念
损失。 失鲜:产品质量的损失,表面光泽消失,
形态萎蔫,失去外观饱满、新鲜和脆嫩 的质地,甚至失去商品价值。 二、失水对代谢和贮藏的影响 一般是不利影响,但某些果蔬产品采后 适度失水可抑制代谢,延长贮藏期。
完整版课件ppt
8
三、水分散失的影响因素 (一)、内部因素: 1、表面积比 2、表面保护结构 3、细胞持水力 (二)、贮藏环境因素: 1、空气湿度 2、温度 3、空气流动
13
(三)、延长休眠期的措施
1、温度、湿度的控制 2、气体成分 3、药物处理 4、射线处理
完整版课件ppt
14
二、采后生长与控制
(一)、采后生长现象及其对品质的影响 (二)、延缓采后生长的方法 低温、气调、去掉生长点 个别情况下,利用采后生长延长储藏期:
花椰菜采时保留2-3个叶片,养分可以向 花球中转移。
➢ 果实的可溶性糖主要是蔗糖、葡萄糖和果糖, 这三种糖的比例在成熟过程中经常发生变化。
完整版课件ppt
23
酸味
完整版课件ppt
24
涩味
➢ 涩味是一些果实风味的重要组成部分,如有些柿 子或未熟苹果的涩味很明显。涩味来源于可溶性 单宁,单宁与口腔粘膜上的蛋白质作用,当口腔 粘膜蛋白凝固时,会引起收敛的感觉,也就是涩 味,使人产生强烈的麻木感和苦涩感。
(1)内源乙烯的增加; (2)ATP增加或细胞能荷的增加; (3)果糖—2,6—二磷酸浓度增高和
糖酵解的产物流出加大。
完整版课件ppt
4
常见果蔬产品的乙烯生成量20℃
类
乙烯
产品名称
型 产量
非
≤0.1
芦笋、花菜、樱桃、柑桔、枣、葡萄、石榴、
常
甘蓝、菠菜、芹菜、葱、洋葱、大蒜、胡萝
低
卜、萝卜、甘薯、豌豆、菜豆、甜玉米
以及辐照
完整版课件ppt
6
(四)、呼吸与耐藏性和抗病 性的关系
生命消失,新陈代谢停止,耐藏性和抗 病性也就不复存在。
适当的呼吸作用可以维持果蔬的耐藏性 和抗病性,但若发生呼吸保卫反应则呼 吸过于旺盛会造成耐藏性和抗病性下降。
完整版课件ppt
7
第二节 失水
一、失重和失鲜 失重:自然损耗,包括水分和干物质的
完整版课件ppt
11
三、 采后休眠与生长
一、果蔬采后休眠 二、采后生长与控制
完整版课件ppt
12
一、果蔬采后休眠
(一)、休眠现象 植物在生长发育过程中遇到不良的条件
时(高温、干燥、严寒等),为了保持 生存能力,有的器官会暂时停止生长, 这种现象称作“休眠”(dormancy)。
完整版课件ppt
1、呼吸强度 :也称呼吸速率,它指一 定温度下,一定量的产品进行呼吸时所 吸入的氧气或释放二氧化碳的量,一般 单位用O2或CO2mg(ml)/kg *h (鲜重)来 表示。
2、呼吸热 :呼吸热是呼吸过程中产生 的,除了维持生命活动以外而散发到环 境中的那部分热量。
完整版课件ppt
3
呼吸作用增加的原因
低
0.1~1. 橄榄、柿子、菠萝、黄瓜、绿花菜、茄子、
0
秋葵、青椒、南瓜、西瓜、马铃薯
中
1.0~10 香蕉、无花果、荔枝、番茄、甜瓜
等
高
10~10 苹果、杏、油梨、猕猴桃、榴莲、桃、梨、
0
番木瓜、甜瓜
非
≥100 番荔枝、西番莲、蔓密苹果
常
高
完整版课件ppt
5
(三)影响呼吸强度的因素
1、内部因素 (1)种类与品种 (2)成熟度 (3)激素 2、外部因素 (1)温度 (2)气体的成分 (3)含水量 (4)机械损伤 (5)其他:对果蔬采取涂膜、包装、避光等措施,
完整版课件ppt
15
四、后熟
大多瓜果具有后熟作用。瓜果的后熟作用是 指瓜果、蔬菜类食物脱离母株以后继续成熟 的现象。并且,经过后熟过程,能改变瓜果 的色、香、味,使口感更加甘美香甜。
不过,不是所有的瓜果都具有后熟作用。 比方西瓜、葡萄、柑橘、黄瓜、草莓等,都 不具有后熟作用。它们可以在成熟的时候, 在园里、田头采摘即食。