2006年广东省佛山市课改实验区

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

佛山市2006年高中阶段学校招生考试
数学试卷(课改实验区)
说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分130分,考试时间90分钟. 注意事项:
1. 试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上.
2. 要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹的钢笔或签
字笔描黑.
3. 其余注意事项,见答题卡.
第Ⅰ卷(选择题 共30分)
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的). 1.4的平方根是( )
A.2±
B.2
C.12± D.12
2.某天傍晚,北京的气温由中午的零上3℃下降了5℃,这天傍晚北京的气温是( ) A.零上8℃ B.零上2℃ C.零下8℃ D.零下2℃ 3.计算32()x x -·的结果是( )
A.5x B.6x C.5x - D.6x - 4.在下面4个图案中,为中心对称图形的是( )
A.①,② B.①,③ C.①,④ D.③,④ 5.如图,在平行四边形ABCD 中,AC BD ,相交于点O . 下列结论中正确的个数有( )
结论:①OA OC =,②BAD BCD ∠=∠,③AC BD ⊥, ④180BAD ABC ∠+∠=. A.1个 B.2个
C.3个 D.4个




A C
第5题图
6.函数y x =-和2
y x
=
在同一坐标系中的图象大致是( )
7.如图,是一个比例尺1:100000000的中国地 图,则北京、佛山两地之间的实际直线距离大 约是( )
A.31.810⨯km B.61.810⨯km C.31.610⨯km D.61.610⨯km
8.如图,平地上两棵不同高度、笔直的小树, 同一时刻在太阳光线照射下形成的影子分别 是AB DC ,,则( )
A.四边形ABCD 是平行四边形 B.四边形ABCD 是梯形 C.线段AB 与线段CD 相交
D.以上三个选项均有可能
9.某人在做掷硬币实验时,投掷m 次,正面朝上有n 次(即正面朝上的频率是n p m =).则下列说法中正确的是( ) A.p 一定等于
12
C.p 一定不等于
12
C.多投一次,p 更接近
12
D.投掷次数逐渐增加,p 稳定在
1
2
附近 10.如图,矩形草坪ABCD
中,10m AD AB ==,. 现需要修一条由两个扇环构成的便道HEFG ,扇环的圆心 分别是B D ,.若便道的宽为1m ,则这条便道的面积大约 是( )(精确到20.1m ). A.29.5m B.210.0m
C.210.5m D.211.0m
A
B
C
D
第8题图
A
第10题图
C
B
D G F
H E y y y y
x
x
x
x
A. B.
C. D.
O
O
O
O
第7题图
第Ⅱ卷(非选择题 共100分)
二、填空题(本大题共5小题,每小题3分,共15分.把答案填在答题卡中).
11
2cos45-= .
12.圆和圆有多种位置关系,与图中不同的 圆和圆的位置关系是 .
13.为了解佛山市老人的身体健康状况,在以下抽样调查中,你认为样本选择较好的是 (填序号).
①100位女性老人;
②公园内100位老人; ③在城市和乡镇选10个点,每个点任选10位老人.
14.如图,数轴上的两个点A B ,所表示的数分别 是a b ,,在a b a b ab a b +--,,,中,是正数的有 个.
15.如图,所有的四边形都是正方形,所有三角形都 是直角三角形,其中最大的正方形的边长是a ,则图 中四个小正方形A B C D ,,,的面积之和是 .
三、解答题(在答题卡上作答,写出必要的解题步骤.16~20题每小题6分,21~23题每小题10分,24题12分,25题13分,共85分)
16.化简:22
2xy x
x y x y +-+.
17.右图是一个正方体的展开图,标注了字母“a ”的 面是正方体的正面.如果正方体相对两个面上的代数式
第12题图 第14题图
B O A x
第17题图
第15题图 A
B
C
D
a
的值相等,求x y ,的值.
18.某初级中学为了解学生的身高状况,在1500名学生中抽取部分学生进行抽样统计,结果如下.
请你根据上面的图表,解答下列问题: (1)m = ,n = ; (2)补全频数分布直方图; (3)指出“众数”、“中位数”各在哪一组?(不要求说明理由)
19.小明、小华用牌面数字分别为1,2,3,4的4张扑克牌玩游戏.他俩将扑克牌洗匀后,背面朝上放置在桌面.若一次从中抽出两张牌的牌面数字之和为奇数,则小明获胜;反之,小华获胜.
这个游戏公平吗?请说明理由.
第19题图
) 第18题图
20.已知:如图,AB 是O 的直径,AC 是O 的弦,过点C 作O 的切线与AB 的延长线
交于点D .若30CAB ∠=,30AB =,求BD 的长.
21.如图,D E ,分别为ABC △的边AB AC ,上的点,BE 与CD 相交于O 点.现有四个条
件:①AB AC =,②OB OC =,③ABE ACD ∠=∠,④BE CD =.
(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确..的命题: 命题的条件是 和 ,命题的结论是 和 (均填序号). (2)证明你写出的命题. 已知: 求证: 证明:
22.已知:Rt OAB △在直角坐标系中的位置如图所示,(34)P ,为OB 的中点,点C 为折线OAB 上的动点,线段PC 把Rt OAB △分割成两部分.
问:点C 在什么位置时,分割得到的三角形与Rt OAB △相似?
(注:在图上画出所有符合要求的线段PC ,并求出相应的点C 的坐标).
第21题图
B C
第20题图
A D
第22题图
x
23.某工厂现有甲种原料226kg ,乙种原料250kg ,计划利用这两种原料生产A B ,两种产品共40件,生产A B ,两种产品用料情况如下表:
设生产A 产品x 件,请解答下列问题:
(1)求x 的值,并说明有哪几种符合题意的生产方案;
(2)若甲种原料50元/kg ,乙种原料40元/kg ,说明(1)中哪种方案较优?
24.已知:在四边形ABCD 中,1AB =,E F G H ,,,分别是AB BC CD DA ,,,上的点, 且AE BF CG DH ===.设四边形EFGH 的面积为S ,(01)AE x x =≤≤. (1)如图1,当四边形ABCD 为正方形时,
①求S 关于x 的函数解析式,并求S 的最小值0S ;
②在图2中画出①中函数的草图,并估计0.6S =时x 的近似值(精确到0.01);
(2)如图3,当四边形ABCD 为菱形,且30A ∠=时,四边形EFGH 的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
25.在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,提示研究对象的本质特征. 比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:235222⨯=,347222⨯=,268
222⨯=,⇒…222m n m n +⨯=, ⇒…m
n m n a a a +=·(m n ,都是正整数). 方格边长0.1 第24题图2 y x O A E
C G
D H 第24题图1 第24题图3 A B G D C
F
H E
我们亦知:
221331+<
+,222332+<+,223333+<+,224
334
+<+,…. (1)请你根据上面的材料归纳出(00)a b c a b c >>>,,,之间的一个数学关系式; (2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m 克糖水里含有
n 克糖,再加入k 克糖(仍不饱和)
,则糖水更甜了”; (3)如图,在Rt ABC △中,90()C CB a CA b AD BE c a b ∠=====>,,,.能否根据这个图形提炼出与(1)中同样的关系式?并给予证明.
佛山市2006年高中阶段学校招生考试数学试卷
参考答案及评分标准(课改实验区)
11.0 12.相切 13.③ 14.1 15.2a (注:12题填“外切”、“内切”、“外切或内切”、“外切和内切”均不扣分;13题填③给3分、填①或②均给1分)
三、解答题答案及评分标准:
16.解:原式2()
()()()()xy x x y x y x y x y x y -=++-+- ·····························································
··········· 2分
22()()()()()xy x xy x x y x x y x y x y x y x y
+-+===-+-+-.(1+2+1分) ······················································· 6分 A
B
E 第25题图
17.解:根据题意,得255 1.x y x y -=⎧⎨-=+⎩

········ 4分
解方程组,得3x =,1y =. ····················· 6分
18.解:(1)9m =,0.45n =; (2)如图;
(3)“众数”、“中位数”都在第3组.
(每个小题2分)
19.解:这个游戏不公平. ··································································································· 1分
理由:因为一次抽出两张牌的组合共有(1
2)(13)(14)(23)(24)(34),,,,,,,,,,,,六种情况,其中有4组中的两数和是奇数. ··········································································································· 4分 所以421
()()633
P P =
==小明获胜小华获胜,. ······························································· 6分 因此,这个游戏不公平.
20.解:连结OC . ··············································································································· 1分 CD 是O 的切线,
OC CD ∴⊥,且1
152
OC OA OB AB ===
=. ·
······································································ 3分 30CAB ∠=,
260COD CAB ∴∠=∠=,即30D ∠=. ················· 4分
∴在Rt OCD △中,230OD OC ==. ·
······················ 5分 15BD OD OB ∴=-=. ············································· 6分
(注:其他解法相应给分)
21.解:(1)①,③;②,④. ······························· 4分 (注:①④为题设,②③为结论的命题不给分, 其他组合构成的命题均给4分)
(2)已知:D E ,分别为ABC △的边AB ,AC 上的点, 且AB AC =,ABE ACD ∠=∠. 求证:OB OC BE CD ==,. ···································· 5分 证明:
AB AC =,ABE ACD ∠=∠,
ABC ACB ∴∠=∠,且ABE ACD △≌△.
BE CD ∴=. ··························································································································· 8分
第21题图
B C
第20题图
A D
) 第18题图
又BCD ACB ACD ABC ABE CBE ∠=∠-∠=∠-∠=∠, BOC ∴△是等腰三角形. OB OC ∴=. ························································································································ 10分 22.解:过P 作1PC OA ⊥,垂足是1C , 则1OC P OAB △∽△.
点1C 坐标是(30),. ···················································· 2分
过P 作2PC AB ⊥,垂足是2C , 则2PC B OAB △∽△.
点2C 坐标是(64),. ··················································· 4分
过P 作3PC OB ⊥,垂足是P (如图),
则3C PB OAB △∽△,3BC BP
BO BA

=
. ······················· 6分 易知1058OB BP BA ===,,, 3254BC ∴=
,3257844
AC =-=. ······························ 8分 37
(6)4
C ∴,. ···························································································································· 9分 符合要求的点C 有三个,其连线段分别是123PC PC PC ,,(如图). ······························· 10分 23.解:(1)根据题意,得73(40)226410(40)250.
x x x x +-⎧⎨+-⎩,≤≤ ······························································ 3分
这个不等式组的解集为2526.5x ≤≤. 又x 为整数,所以25x =或26. ···························································································· 5分 所以符合题意的生产方案有两种:
①生产A 种产品25件,B 种产品15件; ②生产A 种产品26件,B 种产品14件. ············································································ 7分 (2)一件A 种产品的材料价钱是:750440510⨯+⨯=元. 一件B 种产品的材料价钱是:3501040550⨯+⨯=元. 方案①的总价钱是:2551015550⨯+⨯元. 方案②的总价钱是:2651014550⨯+⨯元.
2551015550(2651014550)55051040⨯+⨯-⨯+⨯=-=元. ··············································· 9分 由此可知:方案②的总价钱比方案①的总价钱少,所以方案②较优. ····························· 10分 24.(1)①解:在Rt AEH △中,AE x =, 1AH x =-,
则2222(1)221S HE x x x x ==+-=-+ 2
11222x ⎛
⎫=-+ ⎪⎝⎭
. ················ 3分
∴当12x =
时,01
2
S =. ······ 4分 ②列表:
第24题图2
方格边长0.1
O
y x 1
1x
在直角坐标系中描点、画图(图2中粗线). ······································································· 6分 (注:作图时,不列对应值表不扣分)
观察函数的图象,可知当0.6S =时,0.27x ≈和0.73x ≈. ················································ 7分 验证:当0.27x =时,0.6029S =;当0.28x =时,0.5984S =. 从而取0.28x ≈.同理取0.72x ≈. ······················································································· 8分 (2)四边形EFGH 的面积存在最小值. 理由如下:
由条件,易证AEH CGF △≌△,EBF GDH △≌△. ························································· 9分 作H M AE ⊥于M ,作FN EB ⊥且FN 交EB 的延长
线于N .
AE x =,则1AH x =-,又在Rt AMH △中, 30HAM ∠=,
11(1)22HM AH x ∴==-.同理得11
22FN BF x ==. 11(1)24
AEH
S AE HM x x ∴==-△·, 11
(1)24EBF S EB FN x x ==-△·. ·
······························ 11分 又1
2
ABCD
S =,2
2111114(1)24224S x x x x x ⎛⎫∴=--=-+=-+ ⎪⎝⎭·. ∴当12
x =
时,四边形EFGH 的面积存在最小值1
4. ························································ 12分
25.(1)解:a b c ,,的数学关系式是b b c a a c
+<
+. ······························································· 4分 (2)解:因为n n k m m k +<
+,说明原来糖水中糖的质量分数n
m
小于加入k 克糖后糖水中糖的 质量分数
n k
m k
++,所以糖水更甜了. ····················································································· 6分 (3)证法一:在Rt ABC △和Rt DEC △中, tan tan b b c
ABC DEC a a c
+∠=∠=
+,. ··························· 8分 过A 点作AF CE ∥,交ED 于F 点,则DAF DCE △∽△. DC DA
EC FA

=
. ···························································· 9分 DC DA AC EB BC EC =+<+=,
DA AF ∴<.
··············· ············································ 10分 而DA EB =,
AF EB ∴>.
···························································· 11分 如图1,过A 点作AG ED ∥,则AG 必与EB 的延长线交于G 点,
DEC AGC ABC ∴∠=∠>∠. ··································· 12分 tan tan DEC ABC ∴∠>∠. ······································ 13分 A
B
E
图1
A
B
E
图2
第24题图3
A
B
F
C G
D H
E M
N
b c b a c a
+∴>+. 另证一:用图2与上面同理说明,对应给分. 另证二:同证法一,知AF AD BE >=,且AF BE ∥,
故AB 与FE 的延长线的交点G 必 在BE 的下方(图3).
DEC EBG ABC ∴∠>∠=∠. ··········································· ···················································· 12分 tan tan DEC ABC ∴∠>∠. ··································································································· 13分 b c b a c a +∴
>+.
A
G。

相关文档
最新文档