小学六年级奥数知识点:几何初步认识二(平面图形)
小学数学学习认识和比较简单的平面几何
小学数学学习认识和比较简单的平面几何在小学数学中,平面几何是一个非常重要的学习内容。
它是指在二维空间中研究点、线、面及其相互关系的一门学科。
通过学习平面几何,学生可以培养几何思维,提高空间想象能力,并且为将来更深入的几何学习打下基础。
本文将介绍小学数学学习认识和比较简单的平面几何的内容。
一、点、线和面的基本概念在平面几何中,点、线和面是最基本的概念。
点是没有长度、宽度和高度的,只有位置的一个几何对象。
线是由一系列无数个点连起来的,没有宽度的几何对象。
而面是由很多直线无限延伸形成的,具有长度和宽度的几何对象。
二、点、线和面的关系在平面几何中,点、线和面之间有着密切的关系。
一条线上包含无数个点,而一个面上则包含无数条线和无数个点。
点、线和面之间既有包含的关系,也有相互分离的关系。
通过学习这些关系,可以帮助学生更好地理解几何形状。
三、认识基本图形学习平面几何的过程中,小学生需要认识一些基本图形,比如:三角形、正方形、长方形、圆形等。
通过比较这些基本图形的特点,可以帮助学生建立几何形状的认知和比较的能力。
例如,三角形有三条边,正方形的四条边相等并且相互垂直,长方形有四条边但不一定相等,圆形则没有边。
四、图形的分类除了认识基本图形,还要学习如何对图形进行分类。
在小学数学中,可以根据图形的边数、角的个数和边长等方面来进行分类。
例如,三角形、四边形、五边形等根据边数的不同进行分类;直角三角形、钝角三角形、锐角三角形根据角的大小进行分类。
通过分类学习,可以帮助学生深入理解图形的特点和属性。
五、图形的比较和运用在学习过程中,我们经常需要比较不同的图形。
比较可以从不同的角度进行,包括边数、角的大小、面积等。
例如,比较两个三角形的边长和角度,可以判断它们是否相似;比较两个长方形的面积,可以判断它们的大小关系。
通过图形的比较,可以培养学生的逻辑思维和推理能力。
总结:通过小学数学学习认识和比较简单的平面几何,可以培养学生的几何思维和空间想象能力。
图形几何六年级知识点
图形几何六年级知识点图形几何是小学数学中的重要内容,它涉及到形状、位置、大小、方向等概念的学习。
在六年级中,学生将进一步巩固和扩展他们关于图形几何的知识。
以下是六年级图形几何的主要知识点:一、平行线和垂直线平行线是指在同一个平面内永远不相交的两条直线,它们的斜率相等。
垂直线则是指与平行线相交的直线,它们之间的夹角为90度。
二、四边形的分类四边形是指有四条边的图形,常见的四边形有正方形、长方形、菱形、平行四边形等。
正方形的特点是四条边相等且内角均为90度,长方形的特点是对边相等且内角均为90度,菱形的特点是四条边相等,平行四边形的特点是对边平行且对角线相等。
三、三角形的分类三角形是指有三条边的图形,常见的三角形有等边三角形、等腰三角形和直角三角形等。
等边三角形的特点是三条边相等,等腰三角形的特点是两条边相等,直角三角形的特点是有一个内角为90度。
四、圆和圆的相关概念圆是指由一条曲线围成的图形,它的每个点到圆心的距离相等。
在六年级,学生需要学习圆的半径、直径、圆心和弧的概念,并且能够计算圆的面积和周长。
五、镜面对称图形镜面对称是指图形通过一条镜子对称后,两边完全一样。
在六年级,学生需要学习识别图形的镜面对称性,并且能够完成给定图形的镜像。
六、平移、旋转和翻转平移是指将图形按照一定的方向和距离进行移动,旋转是指将图形按照一定的中心和角度进行旋转,翻转是指将图形按照一条直线进行对称。
在六年级,学生需要学习如何完成给定图形的平移、旋转和翻转,并且能够利用这些变换关系解决问题。
七、图形的面积和周长面积是指图形所占的平方单位的大小,周长是指图形边界的长度。
在六年级,学生需要学习如何计算给定图形的面积和周长,包括正方形、长方形、三角形和圆等。
八、三维图形三维图形是指有长度、宽度和高度的图形,常见的三维图形有长方体、正方体、圆柱体和圆锥体等。
在六年级,学生需要学习三维图形的命名、特点以及计算表面积和体积的方法。
以上是六年级图形几何的主要知识点。
六年级第四章平面图形的初步知识
六年级第四章平面图形的初步知识六年级第四章平面图形的初步知识小升初数学是很多同学比较头疼的科目,小编为大家准备了六年级第四章平面图形的初步知识,希望同学们能够掌握。
1、长方形(1)特征对边相等,4个角都是直角的四边形。
有两条对称轴。
(2)计算公式 c=2(a+b) s=ab2、正方形(1)特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式:c=4a ;s=a??3、三角形(1)特征:由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式:s=ah/2(3)分类*按角分:锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
同一个圆里有无数条直径,所有的直径都相等。
同一个圆里,直径等于两个半径的长度,即d=2r。
圆的大小由半径决定。
圆有无数条对称轴。
(2)圆的画法把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。
(3) 圆的周长围成圆的曲线的长叫做圆的周长。
把圆的周长和直径的比值叫做圆周率。
用字母∏表示。
(4) 圆的面积圆所占平面的大小叫做圆的面积。
(5)计算公式d=2r r=d/2 c=∏d c=2∏r s=∏r7、扇形(1) 扇形的认识一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
圆上AB两点之间的部分叫做弧,读作“弧AB”。
顶点在圆心的角叫做圆心角。
在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。
扇形有一条对称轴。
(2) 计算公式s=n∏r??/3608、环形(1) 特征由两个半径不相等的同心圆相减而成,有无数条对称轴。
(2) 计算公式s=∏(R??-r??)9、轴对称图形特征:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
折痕所在的这条直线叫做对称轴。
六年级奥数平面几何部分
平面几何部分教学目标:1. 熟练掌握五大面积模型2. 掌握五大面积模型的各种变形 知识点拨一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCBA图⑴ 图⑵三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”): ①1243::S S S S =或者13S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =;ba S 2S 1DC BA S 4S 3S 2S 1O DCBA ABCDO ba S 3S 2S 1S 4③S 的对应份数为()2a b +.四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形. 五、燕尾定理在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=.上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径. 典型例题【例 1】 如图,正方形ABCD 的边长为6,AE =1.5,CF =2.长方形EFGH 的面积为.【巩固】如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽为几厘米?_H_G_ F_E_D_C_B_ A _A_B_C_D_E_ F_ G_HOFE DCBA【例 2】 长方形ABCD 的面积为362cm ,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?HGF EDCBA【巩固】在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P 点连接,求阴影部分面积.P DCBAA BCD(P )PDCBA【例 3】 如图所示,长方形ABCD 内的阴影部分的面积之和为70,8AB =,15AD =,四边形EFGO 的面积为 .O GFEDCBA【巩固】如图,长方形ABCD 的面积是36,E 是AD 的三等分点,2AE ED =,则阴影部分的面积为 .OABC DE_ A _ B_ G_ C _ E _ F_ D_ A_ B_ G_ C_ E_ F_ D【例 4】 已知ABC 为等边三角形,面积为400,D 、E 、F 分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC )丙乙甲H N MJ I FEDCBA【例 5】 如图,已知5CD =,7DE =,15EF =,6FG =,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面积是 .GFE DC BA【例 6】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBA【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?EDCBA【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?乙甲E DCBA【例 7】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCBA【例 8】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.HGAB CD EF【例 9】 如图所示的四边形的面积等于多少?DC131213131212【例 10】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC ∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.53OA BCDE【例 11】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.ABC DO E【例 12】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?FEABDC【例 13】 如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?x x ABFGGFE D CBA【例 14】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.ABCDO【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC =?A BCDG321【例 15】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE△的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积.OGFEDCBA【例 16】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.ABCD EF G【例 17】 如图,正方形ABCD 面积为3平方厘米,M 是AD 边上的中点.求图中阴影部分的面积.G MDCBA【巩固】在下图的正方形ABCD 中,E 是BC 边的中点,AE 与BD 相交于F 点,三角形BEF的面积为1平方厘米,那么正方形ABCD 面积是 平方厘米.A BCDEF【例 18】 已知ABCD 是平行四边形,:3:2BC CE ,三角形ODE 的面积为6平方厘米.则阴影部分的面积是 平方厘米.OEABC D【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.21ABCDE94【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.1682ABCDE【例 19】 如图,长方形ABCD 被CE 、DF 分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC 的面积为___________平方厘米.?852O A BCD EF【例 20】 如图,ABC ∆是等腰直角三角形,DEFG 是正方形,线段AB 与CD 相交于K 点.已知正方形DEFG 的面积48,:1:3AK KB =,则BKD ∆的面积是多少?KGF EDCBA【例 21】 下图中,四边形ABCD 都是边长为1的正方形,E 、F 、G 、H 分别是AB ,BC ,CD ,DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,()m n +的值等于 .ABCDE FG HHGFE DCBA【例 22】 如图, ABC △中,DE ,FG ,BC 互相平行,AD DF FB ==,则::ADEDEGF FGCB S S S =△四边形四边形 .EGF A D CB【巩固】如图,DE 平行BC ,且2AD =,5AB =,4AE =,求AC 的长.A ED CB【巩固】如图, ABC △中,DE ,FG ,MN ,PQ ,BC 互相平行,AD DF FM MP PB ====,则::::ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形 .【例 23】 如图,已知正方形ABCD 的边长为4,F 是BC 边的中点,E 是DC 边上的点,且:1:3DE EC =,AF 与BE 相交于点G ,求ABG S △GFAEDCB【例 24】 如图所示,已知平行四边形ABCD 的面积是1,E 、F 是AB 、AD 的中点, BF交EC 于M ,求BMG ∆的面积.MHGF E D CBA【例 25】 如图,ABCD 为正方形,1cm AM NB DE FC ====且2cm MN =,请问四边形PQRS 的面积为多少?Q E GNMF PADCBSR BCDAEQN M FP【例 26】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【例 27】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDCBA【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.IH G FEDCBA【巩固】如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.A BCDEFGHI【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBA【例 28】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFE D CBA【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?K JI HABD EF G【例 29】 右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EF【例 30】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.IGHF ED CBA【例 31】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.IGHF ED CBA课后练习:练习1. 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.FED CB练习2. 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.H GFED CB A练习3. 正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是 平方厘米.H GFEDC BA练习4. 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,则S ABC ACE CDE S S ∆∆∆++= 2cm .DCEBA练习5. 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.HGF EDCBA练习6. 如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC∆的面积为1,那么四边形CDMF 的面积是_________.FABCDE MN练习7. 如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI 的面积.IH G FEDCBA备选【备选1】 按照图中的样子,在一平行四边形纸片上割去了甲、乙两个直角三角形.已知甲三角形两条直角边分别为2cm 和4cm ,乙三角形两条直角边分别为3cm 和6cm ,求图中阴影部分的面积.乙甲6432【备选2】 如图所示,矩形ABCD 的面积为36平方厘米,四边形PMON 的面积是3平方厘米,则阴影部分的面积是 平方厘米.NOM P DCBA【备选3】 如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △ 面积的几分之几?OE DCBA【备选4】 如图,在ABC △中,延长AB 至D ,使BD AB =,延长BC 至E ,使12CE BC =,F 是AC 的中点,若ABC △的面积是2,则DEF △的面积是多少?A BCDEF【备选5】 如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【备选6】 如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBA。
小学六年级奥数几何的初步知识精解
小学六年级奥数几何的初步知识精解1、长方形(1)特征对边相等,4个角都是直角的四边形。
有两条对称轴。
(2)计算公式 c=2(a+b) s=ab2、正方形(1)特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式:c=4a ;s=a??3、三角形(1)特征:由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式:s=ah/2(3)分类*按角分:锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
*按边分:不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4、平行四边形(1)特征:两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180度。
平行四边形容易变形。
(2)计算公式 s=ah5、梯形(1)特征:只有一组对边平行的四边形。
中位线等于上下底和的一半。
等腰梯形有一条对称轴。
(2)公式s=(a+b)h/2=mh6、圆(1)圆的认识平面上的一种曲线图形。
圆中心的一点叫做圆心。
一般用字母o表示。
半径:连接圆心和圆上任意一点的线段叫做半径。
一般用r表示。
在同一个圆里,有无数条半径,每条半径的长度都相等。
通过圆心并且两端都在圆上的线段叫做直径。
一般用d表示。
同一个圆里有无数条直径,所有的直径都相等。
同一个圆里,直径等于两个半径的长度,即d=2r。
圆的大小由半径决定。
圆有无数条对称轴。
(2)圆的画法把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。
(3) 圆的周长围成圆的曲线的长叫做圆的周长。
把圆的周长和直径的比值叫做圆周率。
用字母∏表示。
(4) 圆的面积圆所占平面的大小叫做圆的面积。
(完整)第二章几何图形的初步认识
七年级数学·上新课标[冀教]第二章几何图形的初步认识1.通过对丰富的实物和实例的抽象,进一步认识几何图形,尤其是点、线段、射线、直线和角,并会表示它们.2.经历观察、测量、画图、折纸等活动,了解上述图形的有关性质,发展空间观念.3.会比较线段的长短和角的大小,能估计线段的长短和角的大小.4.认识角的度量单位,会进行角的换算.5.会计算线段和角的和与差,能使用直尺和圆规作线段和角.6.与角的认识相结合认识平面图形的旋转.7.了解一些数学基本事实,掌握相关的图形关系,增强空间观念和几何直观.1.通过各种几何图形的抽象过程和图形性质及图形关系的发现和确认,进一步发展学生的数学基本思想,并在这样的活动过程中,使学生积累数学活动经验.2.通过本章的数学活动过程,培养学生发现问题、提出问题、分析问题、解决问题的能力.1.培养学生观察、操作、探究图形性质等合作意识.2.培养学生在发现问题、解决问题过程中的创新精神.本章的基本知识是:认识几何图形,了解线与角、线段与角的有关性质并学会计算,认识平面图形的旋转.本章的基本技能是:画一条线段等于已知线段,画出两条线段的和或差,作一个角等于已知角,作两个角的和或差,能进行角的度数和线段长度的计算.本章的基本数学思想是:几何图形生成过程中运用的抽象思想,图形关系发现和确认过程中运用的推理思想等.本章内容的呈现方式及特点:在本章,空间观念、几何直观、推理能力、应用意识和创新意识这些核心概念的培养与发展,是教材设计的主导思想.加强发现和提出问题、分析和解决问题的能力的培养,是本章教材设计的又一重要指导思想.【重点】1.点、线段、射线、直线和角的有关性质.2.比较线段和角的大小,按照相关要求作简单的线段和角.【难点】1.角的定义和计算.2.利用直尺和圆规按要求作线段和角.1.现实中的几何实例与教学中的几何对象是具体和抽象、特殊和一般的关系,在实际教学中,如何引导学生从具体的实例中抽象出事物的一般性,是教学中的一个难点,这方面的处理是否得当直接关系到学生能否准确地理解数学中的各种几何概念.2.几何量的度量是几何中基础而重要的问题,是培养学生准确的几何观念的重要内容.教师通过让学生使用直尺、三角板、量角器和圆规等常用的数学工具,培养学生严谨的科学态度和基本的使用工具的能力,对于学生在日常生活中使用其他工具解决实际问题也很有帮助.3.几何知识应该在几何的实际背景中讲授.本章内容包含了大量的生活实例,有利于学生克服数学中抽象而形式化的困难,对学生准确理解并掌握几何概念以及它们的一些简单性质十分有利.2.1从生活中认识几何图形1课时2.2点和线1课时2.3线段的长短1课时2.4线段的和与差1课时2.5角以及角的度量1课时2.6角的大小1课时2.7角的和与差1课时2.8平面图形的旋转1课时回顾与反思1课时2.1从生活中认识几何图形1.进一步认识常见的几何图形,并能用自己的语言描述它们的特征.2.体会点、线、面是几何图形的基本要素.进一步经历几何图形的抽象过程.培养学生从具体到抽象的思想方法.【重点】从实物背景中得到几何图形的特征.【难点】在小学的基础上进一步增强对几何图形的抽象认识.【教师准备】多媒体课件.【学生准备】立体图形的实物.导入一:从北京天坛主体建筑物的外观上看,它是由不同形状和大小的几何体构成的吗?[设计意图]主题图是北京天坛的照片,它可以看作是由不同形状、不同大小、不同位置的几何体组成的.用此图导入可以比较好地帮助学生从生活中去认识几何图形的特征.导入二:物体的构成包含多种元素,几何图形也是如此.以长方体为例,我们来分析一下几何图形的构成元素.(1)观察长方体模型,如图所示,它有几个面?面与面相交的地方形成了几条线?棱与棱相交形成了几个顶点?(2)拿出三棱柱模型让学生思考以上问题.(3)你能说出构成几何图形的元素包含哪些吗?学生思考交流,师生共同总结:几何图形的构成元素包括点、线、面.[设计意图]引导学生在已有知识的基础上,通过主动地观察、思考,体会几何图形是由点、线、面构成的,从构成元素的角度把握几何体的特征,从而引入点、线、面的概念.1.观察图片,思考下列问题:(1)如果用一个“形状”来描述地球或月球,你会用什么图形来概括?预设:圆、椭圆等.(2)如果用一个“形状”来描述上图中的学具,你会用什么图形来概括?预设:长方形、正方形、六边形等.[设计意图]本问题不要求学生给出比较准确的答案,主要通过情境问题帮助学生体验从几何图形的角度观察生活中的物体.2.几何图形对于各种物体,如果不考虑它们的颜色、材料和质量等,而只关注它们的形状(如方的、圆的等)、大小(如长度、面积、体积等)和它们之间的位置关系(如垂直、平行、相交等),就得到几何图形.图形的形状、大小和它们之间的位置关系是几何研究的主要内容.活动2做一做——深化对几何图形的认识1.出示教材第63页问题及图片,让学生自主尝试连线.[设计意图]帮助学生体会实物与几何图形之间的对应关系,为下一步学习做铺垫.2.如图所示,请你把每个平面图形的名称写在它的下面.[处理方式](1)让学生自主填写.(2)思考:几何图形包括哪两种?总结:几何图形包括立体图形(几何体)和平面图形.像正方体、长方体、棱柱、圆柱、圆锥、球等,它们都是立体图形.像线段、直线、三角形、长方形、梯形、六边形、圆等,它们都是平面图形.活动3几何体的基本要素观察以下几何体:1.几何体的面:可以看到,几何体都是由面围成的.如:长方体有六个面,这些面都是平的;圆柱有三个面,两个底面是平的,一个侧面是曲的;球有一个面,是曲的.2.几何体的线:(1)长方体中,面与面交接(相交)的地方形成线.这样的线有几条?是直的还是曲的?(12条直线)(2)在圆柱中,两个底面与侧面交接(相交)的地方形成线.这样的线有几条?是直的还是曲的?(2条曲线)3.几何体的点:在长方体中,线与线交接(相交)的地方形成点.这样的点有几个?(8个)总结:包围着几何体的是面,面与面相交形成线,线与线相交形成点.点、线、面是几何图形的基本要素.[知识拓展]立体图形与平面图形是两类不同的图形,但它们相互联系,立体图形上的某部分就是平面图形,立体图形是由平面图形组成的.几何图形{立体图形:一个图形的各个部分不都在同一个平面上平面图形:一个图形的各部分都在同一个平面上1.下面各组图形都是平面图形的是()A.三角形、圆、球、圆锥B.点、线、面、体C.角、三角形、长方形、圆D.点、相交线、线段、正方体解析:A中球和圆锥是立体图形;B中体是立体图形;D中正方体是立体图形.故选C.2.如图所示,把梯形绕虚线旋转一周形成一个几何体,与它相似的物体是()A.课桌B.灯泡C.篮球D.水桶解析:一个直角梯形绕垂直于底边的腰所在直线旋转一周后成为圆台.答案合适的为D.故选D.3.下列四种说法:①平面上的线都是直线;②曲面上的线都是曲线;③两条直线相交只能得到一个交点;④两个平面相交只能得到一条交线.其中不正确的有()A.4个B.3个C.2个D.1个解析:解答本题时注意:不可认为曲面上的线都是曲线,如圆柱的母线就是曲面上的直线,故②错误;平面上也有曲线,故①错误;③④正确.故选C.2.1从生活中认识几何图形活动1观察与思考——认识几何图形活动2做一做——深化对几何图形的认识活动3几何体的基本要素一、教材作业【必做题】教材第64页练习第1,2题.【选做题】教材第65页习题A组第2题.二、课后作业【基础巩固】1.下列物体中与足球形状类似的是()A.易拉罐B.电脑显示器C.烟囱D.西瓜2.下列有六个面的几何体的个数是()①长方体;②圆柱;③四棱柱;④正方体;⑤三棱柱.A.1B.2C.3D.43.天空中的流星划过后留下的光线,给我们以什么样的形象()A.点B.线C.面D.体4.对于棱柱与圆柱,围成的面中有曲面的是,有平面的是,面与面相交的线中有曲线的是,只有直线的是.5.由生活中的物体抽象出几何图形,在后面的横线上填出对应的几何体的名称.(1)足球;(2)电视机;(3)漏斗;(4)砖块;(5)纸箱;(6)铁棒.【能力提升】6.如图所示的陀螺是由下列哪两个几何体组合而成的()A.长方体和圆锥B.长方体和三棱锥C.圆柱和三棱锥D.圆柱和圆锥7.在如图所示的几何体中,由三个面围成的几何体有()A.1个B.2个C.3个D.4个8.下列判断正确的有()①正方体是棱柱,长方体不是棱柱;②正方体是棱柱,长方体也是棱柱;③正方体是柱体,圆柱也是柱体;④正方体不是柱体,圆柱是柱体.A.1个B.2个C.3个D.4个9.滚动的保龄球的轨迹是一条直线,说明了;雨刷滑过汽车的车窗得到一个扇面,说明了;将一个长方形绕一边旋转得到圆柱,说明了.10.如图所示,至少找出下列几何体的四个共同点.【拓展探究】11.一个多面体,若顶点数是4,面数为4,则棱数应为.12.用6根相同长度的木棒在空间中最多可搭成个正三角形.【答案与解析】1.D(解析:西瓜和足球都类似于球.故选D.)2.C(解析:长方体有6个面,圆柱有3个面,四棱柱有6个面,正方体有6个面,三棱柱有5个面,故有六个面的有3个.)3.B(解析:天空中的流星划过后留下的光线,给我们以线的形象.)4.圆柱棱柱和圆柱圆柱棱柱(解析:圆柱由两个平面和一个曲面围成,相交的线为两条曲线;棱柱由几个长方形与两个多边形围成,相交的线均为直线.)5.(1)球(2)长方体(3)圆锥(4)长方体(5)长方体(6)圆柱6.D(解析:上面是圆柱,下面是圆锥.)7.C(解析:除三棱锥外都是由三个面围成的.)8.B(解析:正方体和长方体都是四棱柱,棱柱和圆柱都是柱体,所以本题中②③正确.)9.点动成线线动成面面动成体10.解:(1)侧面都有长方形;(2)底面都是多边形;(3)每个面都是平的;(4)都是柱体;(5)经过每个顶点都有三条棱等.11.6(解析:这是一个四面体,即三棱锥,棱数为6.)12.4(解析:用6根火柴棒搭成正四面体,四个面都是正三角形,一共有4个.)认识几何体和认识几何图形不是一个难点,难点是从几何图形中抽象出几何体.为了突破这个教学难点,本课时在教学的过程中,遵循学生的认知规律,采取了步步诱导的教学策略,帮助学生在思考过程中,从点、线、面三个层次加深了对几何体的认识.在教学的过程中,过于依赖教材的素材,没有对课内的教材进行适度拓展.在探讨几何体的组成时,可以选取学生身边熟悉的事物,比如黑板、课桌等,这样更能形象地帮助学生认识几何体的组成.练习(教材第64页)1.解:这个几何体有8个面,18条棱,12个顶点.2.球六棱柱圆锥三棱柱圆柱习题(教材第64页)A组1.解:第一个几何体是三棱柱,平面图形有三角形(2个)、长方形(3个);第二个几何体是圆柱,平面图形有圆(2个);第三个几何体是圆锥,平面图形有圆(1个);第四个几何体是长方体,平面图形有长方形(6个).(画图略)3.解:第一个几何体有4个面,6条线,4个点;第二个几何体有6个面,12条线,8个点;第三个几何体有9个面,16条线,9个点.B组1.解:第一个物体可以看做是由几个圆柱构成的;第二个物体可以看做是球;第三个物体可以看做是由圆柱和圆锥构成的;第四个物体可以看做是圆锥.2.解:第一个图片表示点动成线,第二个图片表示线动成面,第三个图片表示面动成体.常见的立体图形我们生活在三维的世界中,身边有各种各样的物体.我们要善于观察身边的事物,认识立体图形.生活中的立体图形有柱体、锥体、球体.柱体分为圆柱和棱柱,其中圆柱是由两个底面和一个侧面围成的,如图(2)所示,它的底面是两个大小相等且互相平行的圆面,侧面是一个曲面.棱柱是由两个底面和几个侧面围成的,它的底面是两个大小和形状都相同且互相平行的多边形,侧面是n个长方形,一个棱柱的底面是几边形,这个棱柱就是几棱柱.如:底面是三角形的棱柱叫做三棱柱,如图(6)所示;底面是四边形的棱柱叫做四棱柱,如图(1)所示.锥体分为圆锥和棱锥,其中圆锥是由一个底面和一个侧面围成的,它的底面是一个圆,侧面是一个曲面,如图(4)所示;棱锥是由一个底面和几个侧面围成的,它的底面是一个多边形,侧面是有一个公共顶点的三角形,一个棱锥的底面是几边形,这个棱锥就叫做几棱锥,如图(7)所示的棱锥是三棱锥,如图(5)所示的棱锥是四棱锥.球体是由一个曲面围成的封闭的几何体.球体的特征是球体表面上任意一点到球心的距离都相等,如图(3)所示的立体图形是球体.2.2点和线1.了解点、线段、射线、直线的概念.2.掌握点、线段、射线和直线的表示方法.3.理解并掌握“两点可以确定一条直线”这个基本事实.1.通过实际情境感知点和线,认识点、线段、射线和直线这些几何图形.2.通过观察和画图了解线段、射线和直线的关系及其表示方法.3.通过观察和操作,理解并掌握“两点可以确定一条直线”这个基本事实.1.培养学生乐于思考,敢于创新的精神.2.通过多姿多彩的活动,培养学生的创新意识和发散思维.【重点】点、线段、射线、直线的概念和表示方法.【难点】“两点可以确定一条直线”的基本事实.【教师准备】多媒体课件.【学生准备】复习上一节的知识.导入一:同学们见过这种电子显示屏吧?你知道显示屏上的数字和图形是由什么基本要素构成的吗?[设计意图]通过生活情境,帮助学生感受“点”在几何图形中的作用.导入二:如图所示,用7根火柴棒可以摆出图中的“8”.你能去掉其中的若干根火柴棒,摆出0~9中其他的9个数字吗?这种用7条线段构成的数字称为“7画字”,它可以用在计算器或电梯的楼层显示屏上.[设计意图]教师组织学生交流各自的答案.本题呈现了点、线段在生活和科技中的应用,使学生体会数学与现实世界的密切联系.1.出示课本图2 - 2 - 1,请在图上找出表示石刻园、展览中心、花卉园、茶餐厅和健身区的点,并用笔加重描出这个公园的边界线.[设计意图]体会和感受点和线的关系,为深入理解几何上的点和线做认知准备.2.请指出图中平面图形的顶点和边,立体图形的顶点和棱.[处理方式]先让学生说出两个平面图形的顶点和边,初步让学生从几何的角度认识点和线的关系,随后让学生说出两个立体图形中点和棱的关系,可以让学生用笔描的方式画出一些点和棱.3.点和线的关系的初步描述点的形象随处可见,如地图上用来表示城市位置的点,绘画中表示天空中星星的点,几何图形中表示顶点的点等等.点运动的轨迹是线.活动2线段、射线和直线思路一1.线段及其表示方法线段的直观形象是拉直的一段线.如跳高的横杆、直尺的边沿、一段铁轨等,都给我们以线段的形象.点和线段的表示方法如图所示.位于线段AB两端的点A,B,叫做这条线段的端点.2.射线及其表示如图所示,将线段AB沿AB方向(或BA方向)无限延伸所形成的图形叫做射线.点A(或点B)叫做射线的端点.3.直线及其表示方法如图所示,将线段AB沿这条线段向两方无限延伸所形成的图形叫做直线.[知识拓展]直线、射线、线段的联系和区别:名称图形表示方法端点延伸性度量线段线段a线段AB线段BA2个不能延伸可度量射线射线OA1个向一方无限延伸不可度量直线直线l直线AB直线BA无端点向两个方向无限延伸不可度量思路二问题:在数学里,我们常用字母表示图形.一个点可以用一个大写字母表示,如“·”这个点可以表示成点A,那么一条线段、一条射线、一条直线又该怎样表示呢?请同学们自主学习线段、射线、直线的表述方法.(阅读教材第66,67页)[处理方式]学生自主学习,用自己的语言总结叙述线段、射线、直线的表示方法,教师补充并借助多媒体讲解.(1)线段的图形及表示方法:用两个端点的大写字母来表示,或用一个小写字母表示,可以写成:线段AB;线段BA;线段a.(2)射线的图形及表示方法:用它的端点和射线上的另一点来表示,可以写成:射线AB.注意:这两个字母的排列顺序不能互相交换,表示端点的字母必须写在另一个字母的前面,同时也不能用一个小写字母表示.(3)直线的图形及表示方法:用直线上的两个点来表示或用一个小写字母来表示,可以写成:直线AB;直线BA;直线l.提问:生活中有哪些物体可以近似地看作线段、射线、直线?学生讨论后举例,如:吃饭的筷子、铅笔给我们线段的形象;手电筒、激光笔射出的光线都给我们以射线的形象;高速路上的白色实线等给我们直线的形象.[设计意图]让学生充分交流,丰富线段、射线、直线的生活背景,进一步巩固所学的线段、射线、直线的知识,使学生感受现实生活中含有大量的数学信息,提高学习兴趣,培养学生分析问题、解决问题的能力.活动3两点确定一条直线1.点与直线的关系平面内的一点P与直线l可能有怎样的位置关系?请画出图形,并用相应的语言说明.在同一个平面内,给定一个点与一条直线,它们的位置关系有两种情况.(1)第一种情况:点P在直线l上(直线l经过点P)(2)第二种情况:点P在直线l外(直线l不经过点P)[处理方式]可以交给学生交流完成,然后强调:因为直线具有无限延长性,所以已知一个点在直线上,就可以断定不存在另一种情况.也就是说,一个点在平面内,要么在直线上,要么不在直线上,二者必居其一.2.过直线外一点的直线提问:(1)过一个点A可以画几条直线?(2)过两点A,B可以画几条直线?(3)如果将一个细木条固定在墙上,至少需要几个钉子?它的依据是什么?提示:过一个已知点可画无数条直线,过两个已知点可以画出直线,但只能画一条直线.[处理方式]引导学生动手画图,自主思考,相互讨论,描述从操作中所发现的结论,与学生共同总结直线的性质,并板书“经过两点有且只有一条直线”.注意:(1)“有”表示存在性,“仅有”表示唯一性.(2)这个性质还可以说成“两点确定一条直线”.[设计意图]学生通过动手画图,培养几何作图能力,并在作图过程中发现直线的某些性质.[知识拓展](1)线段无粗细之分,有两个端点.理解线段的概念要掌握它的三个特征:直的、有两个端点、可以度量.(2)射线:将线段向一个方向无限延长就形成了射线.手电筒、探照灯等射出来的光线可以近似地看做射线.(3)射线的特点:直的、有一个端点、向一方无限延伸.(4)直线的特点:直的、没有端点、向两方无限延伸.将线段向两个方向无限延伸就形成了直线.(5)经过两点有且只有一条直线可以简述为:两点确定一条直线.“有且只有”中的“有”表示存在性,“只有”表示唯一性,“确定”与“有且只有”的意义相同.1.线段、射线、直线的概念.2.线段、射线、直线的表示方法.3.直线的性质:经过两点有且只有一条直线,可以简述为两点确定一条直线.1.图中直线PQ、射线AB、线段MN能相交的是()解析:根据直线可向两方无限延伸,射线可向一方无限延伸,线段有两个端点解答.只有D 选项射线AB与直线PQ能够相交.故选D.2.用一个钉子把一根细木条钉在墙上,木条能绕着钉子转动,这表明;用两个钉子把细木条钉在墙上,就能固定细木条,这表明.解析:用一个钉子把一根细木条钉在墙上,木条能绕着钉子转动,说明过一点有无数条直线;用两个钉子把细木条钉在墙上,就能固定细木条,说明两点确定一条直线.答案:过一点有无数条直线两点确定一条直线3.如图所示,四点A,B,C,D,按照下列语句画出图形:(1)画直线AB;(2)画射线BD;(3)线段AC和线段DB相交于点O.解:如图所示.2.2点和线活动1点与线活动2线段、射线和直线活动3两点确定一条直线经过两点有且只有一条直线一、教材作业【必做题】教材第68页练习.【选做题】教材第68页习题A组第3题.二、课后作业【基础巩固】1.下列说法正确的是()A.直线CD和直线DC是一条直线B.射线CD和射线DC是一条射线C.线段CD和线段DC是两条线段D.直线CD和直线a不能是同一条直线2.下列说法正确的有();④直线、射线、①直线是射线长度的2倍;②线段为直线的一部分;③射线为直线长度的12线段中,线段最短.A.4个B.3个C.2个D.1个3.同一平面内三条直线最多有m个交点,最少有n个交点,则m+n等于()A.2B.3C.4D.54.已知平面内的四个点A,B,C,D,过其中两个点画直线可以画出几条?画图说明.【能力提升】5.如图所示,能读出的线段共有()A.8条B.10条C.6条D.以上都错6.下列说法中错误的是()A.经过一点的直线可以有无数条B.经过两点的直线只有一条C.一条直线只能用一个字母表示D.线段CD和线段DC是同一条线段7.如图所示,点A,B,C,D在同一直线上,那么这条直线上共有线段()A.3条B.4条C.5条D.6条【拓展探究】8.一根绳子弯曲成如图(1)所示的形状.当用剪刀像图(2)那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图(3)那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再继续剪(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1B.4n+2C.4n+3D.4n+59.一条直线将平面分成两部分,两条直线最多将平面分成四个部分,那么三条直线将平面最多分成几部分?四条直线将平面最多分成几部分?n条直线呢?10.如图所示.(1)点A,B,C在直线l上,则直线l上共有几条线段?(2)如果直线l上有5个点,则直线l上共有几条线段?(3)如果直线l上有100个点,则直线l上共有几条线段?(4)如果直线l上有n个点,则直线l上共有几条线段?【答案与解析】1.A(解析:直线CD和直线DC都是由C,D这两点确定的,根据两点确定一条直线可知,这两条直线是同一条直线.故选A.)2.D(解析:没有真正体会直线、射线的延伸性,这种延伸性决定了直线、射线无长度,不能比较长短,所以①③④是错误的.故选D.)3.B(解析:三条直线的位置关系有三种情况:三条直线互相平行,此时没有交点;三条直线交于一点;三条直线交于两点;三条直线交于三点.所以m=3,n=0,所以m+n=3.故选B.)4.解:由于题目没有说明已知的四个点是否在一条直线上,所以应分类讨论.(1)当四个点A,B,C,D在同一直线上时,只可以画出一条直线,如图(1)所示;(2)当四个点A,B,C,D中有三个点在同一直线上时,可以画出4条直线,如图(2)所示;(3)当四个点A,B,C,D中任意的三个点都不在同一直线上时,可以画出6条直线,如图(3)所示.5.A(解析:以A为顶点的线段有4条,以B为顶点的线段有4条,以C为顶点的线段有4条,以D 为顶点的线段有4条,共16条,由于每条线段都被统计了2次,所以线段共有8条.)6.C(解析:一条直线可以用一个小写字母表示,也可以用两个大写字母表示.)7.D(解析:这条直线上有线段AB,AC,AD,BC,BD,CD,共六条.)8.A(解析:每剪一刀,相当于在一条直线上增加了4个点,剪n次就相当于在这个绳子上增加4n 个点.故选A.)9.解:三条直线将平面最多分成7个部分,四条直线将平面最多分成11个部分,n条直线将平面+1]个部分.最多分成[n(n+1)2条.10.解:(1)3条.(2)10条.(3)4950条.(4)n(n - 1)2。
六年级的几何知识点
六年级的几何知识点在小学六年级的数学学习中,几何知识点是非常重要的一部分。
通过学习几何,孩子们可以培养空间想象力和逻辑思维能力,提高解决问题的能力。
下面是六年级学习的几何知识点的整理:1.图形的分类在几何学中,图形是一个重要的概念。
六年级学生需要学会识别和分类各种图形。
常见的图形包括三角形、四边形、五边形、六边形等。
他们需要了解这些图形的定义和特点,如三角形有三条边、三个角等。
2.平面和立体图形除了学习分类不同形状的图形外,六年级学生还需要了解平面和立体图形的概念。
平面图形是指只有长、宽两个维度的图形,如正方形、圆形等,而立体图形是有长度、宽度和高度三个维度的图形,如立方体、正金字塔等。
3.对称和相似在六年级学习几何时,对称和相似两个概念也是需要重点掌握的。
对称是指一个图形可以通过某个轴线对折后完全重合,如正方形和长方形都具有对称性。
相似则是指两个图形形状相似,但大小不一样,其中一个是另一个的缩放。
学生需要学会判断图形是否对称和相似,并能够找到相似的图形对应的边和角。
4.三角形的性质六年级学生在几何学习中还需要熟悉三角形的性质。
三角形包括等腰三角形、等边三角形等,学生需要了解它们的定义和特点。
例如,等腰三角形具有两边相等,等边三角形的三边都相等。
5.四边形的性质学生还需要了解四边形的性质。
常见的四边形包括正方形、长方形、菱形等。
学生需要掌握它们的特点,如正方形的四条边相等、长方形的对角线相等等。
6.角的概念和性质角是几何学中另一个重要的概念。
六年级学生需要了解角的定义和性质。
他们需要知道角由两条射线构成,可以通过角度的大小来分类,如锐角、直角和钝角。
7.平移、旋转和翻转在几何学中,平移、旋转和翻转是一些基本的变换方式。
学生需要学会通过平移、旋转和翻转改变图形的位置和方向。
这些变换有助于他们理解空间关系和几何图形的属性。
通过学习以上几何知识点,六年级的学生可以培养良好的观察和思维能力,提高解决几何问题的能力。
六年级图形类知识点总结
六年级图形类知识点总结在六年级学习数学的过程中,图形类知识点是一个非常重要的内容。
它涉及到了几何形状、图形的属性、构造以及计算等方面的知识。
下面就让我们来总结一下六年级图形类知识点。
一、图形的分类在数学中,图形可以分为平面图形和立体图形两大类。
平面图形包括了点、线、多边形等,而立体图形则是指立体空间中的物体,如长方体、圆柱体等。
1. 平面图形平面图形是只有两个维度的图形,常见的平面图形有点、线、折线、多边形等。
它们的特点是具有明确的形状和边界,并且可以通过几何性质来描述和计算。
- 点:点是最基本的平面图形,它没有任何大小和形状,只有位置和坐标。
- 线:线是由无数个点连成的,没有宽度和粗细,可以延伸到无穷远,分为直线和曲线。
- 折线:折线是由多个线段按照一定规则连接而成,每个连接点称为折点。
- 多边形:多边形是由多条线段连接成的封闭图形,常见的有三角形、四边形、五边形等。
2. 立体图形立体图形是具有三个维度的图形,常见的立体图形包括了球体、圆柱体、长方体等。
立体图形不仅有形状和边界,还具有体积和表面积等属性。
- 球体:球体是由无数个点到一个固定点的距离相等而成的图形,它的表面是由无数个相等的正圆组成。
- 圆柱体:圆柱体由一个圆和与它平行的轴线上的线段相连而成,它的侧面是一个矩形,底面和顶面是两个相同的圆。
- 长方体:长方体是由六个矩形面围成的立体图形,它的相对面积和相对边长相等。
二、图形的性质与特点每个图形都有其独特的性质和特点,这些性质和特点不仅能够帮助我们识别和描述图形,还能够用于计算和解决问题。
1. 平面图形的性质- 点:点没有大小和形状,只有位置和坐标。
- 线:线由无数个点连成,没有宽度和粗细,可以延伸到无穷远。
- 折线:折线由多个线段连接而成,每个连接点称为折点。
- 多边形:多边形有明确的形状和边界,可以通过边长和角度等属性进行计算。
2. 立体图形的性质- 球体:球体的表面由无数个相等的正圆组成,它的体积和表面积可以通过相应的公式进行计算。
几何六年级知识点复习步知识(2)——平面图形
课题:几何初步知识(2)——平面图形
复习内容知识要点
三角形 1、三角形是由三条线段围成的图形。
从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高。
一个三角形有三条高。
2、三角形的内角和是180度3、三角形按角分,可以分为:锐角三角形、直角三角形、钝角三角形4、三角形按边分,可以分为:等腰三角形、等边三角形、不等边三角形
四边形 1、四边形是由四条线段围成德望图形。
2、任意四边形的内角和是360度。
3、四边形的特征(略)4、长方形、正方形是特殊的平行四边形;正方形是特殊的长方形。
圆圆是平面上的一种曲线图形。
同圆或等圆的直径都相等,直径等于半径的2倍。
圆有无数条对称轴。
圆心确定圆的位置,半径确定圆的大小。
扇形由圆心角的两条半径和它所对的弧围成的图形。
扇形是轴对称图形。
轴对称图形 1、如果一个图形沿着一条直线对折,两边的图形能够完全重合,这个图形叫做轴对称图形;这条窒息那叫做对称轴。
2、线段、角、等腰三角形、长方形、正方形等都是轴对称图形,他们的对称轴条数不等。
周长和面积 1、平面图形一周的长度叫做周长。
2、平面图形或物体表面的大小叫做面积。
3、常见图形的周长和面积计算公式如下:(略)
组合图形的面积 1、由两个或两个以上的简单图形组合而成的比较复杂的图形,叫做组合图形。
2、解题方法:合并求和法,去空求差法。
六年级奥数教案第11讲:平面图形
二、探索发现授课〈42分〉〈一〉例题3:〈10分〉如图,平行四边形ABCD的对角线AC被E、F两点三等分,已知三角形ABE的面积是5平方厘米,求平行四边形ABCD的面积。
【讲解重点:等底等高的三角形面积相等,找到面积相等的三角形。
】师:题目中有哪个你认为比较重要的信息?生:对角线AC被E、F两点三等分。
师:由此我们可以得出什么信息?生:AE=EF=FC。
师:这三段线段都在同一直线上,所以它们与点B构成的三角形有什么特点?生:高相等。
师:等底等高的三角形有什么特点?生:面积相等。
师:非常好,也就是说三角形BAE、BEF、BFC的面积相等。
那么同理,我们可可以推出另一边的三个小三角形的面积?生:相等。
师:那么这6个三角形面积相等吗?生:相等。
师:为什么?生:因为平行四边形BEDF中三角形ABC等于三角形ADC。
师:对了,现在我们知道三角形ABE的面积是5平方厘米,那么平行四边形ABCD 的面积是多少呢?生:5×3×2=30〈平方厘米〉板书:5×3×2=30〈平方厘米〉答:平行四边形ABCD的面积是30平方厘米。
练习3:〈5分〉如图,梯形ABCD的对角线AC和BD交于E点,已知E、F两点三等分AC,三角形ADE的面积是3平方厘米,求梯形ABCD的面积。
分析:E、F三等分AC,AE=EF=FC。
高相等的三角形面积之比等于底边之比,因此三角形ADE的面积是三角形DEC和三角形ABE的一半,是三角形EBC的四分之一。
板书:3×〈1+2+2+4〉=27〈平方厘米〉答:梯形ABCD的面积是27平方厘米。
〈二〉例题4:〈12分〉求下图阴影部分的面积。
〈单位:厘米〉【讲解重点:利用翻折的方法,把复杂的图形转化为简单的图形】师:阴影部分有哪些?生:四分之一圆中去掉一个三角形,正方形中去掉一个四分之一圆。
师:那么我们在计算面积的时候是不是也是用这种分解的方法呢?生:是。
六年级几何图形知识点
六年级几何图形知识点几何图形是数学中重要的一部分,它研究了平面和空间中的各种形状和结构。
在学习几何图形的过程中,我们需要了解一些重要的知识点。
本文将为您介绍六年级几何图形的知识点,帮助您更好地理解和应用这些概念。
一、点、线和面几何图形的基本元素包括点、线和面。
点是没有长度、宽度和高度的,用大写字母表示,如点A、点B等。
线由无数相邻的点组成,没有宽度,用小写字母表示,如线ab、线cd等。
面是由无数条线围成的平坦的区域,没有厚度,用大写字母表示,如平面P、平面Q等。
二、基本几何图形1. 直线和射线:直线是由无数点组成的,无论延伸多远都不会弯曲或改变方向;射线是一条起点在一点的直线,只有一个端点。
2. 线段和线段的中点:线段是直线上两个点之间的部分,有起点和终点;线段的中点是线段上距离起点和终点相等的点。
3. 平行线和垂直线:平行线是永远不会相交的线;垂直线是相交于90度角的线。
4. 角和角的类型:角是由两条射线共享一个端点形成的,分为锐角(小于90度)、直角(等于90度)和钝角(大于90度)。
5. 三角形和三角形的分类:三角形是由三条线段连接而成的图形,可以根据三边的长度和角度的大小来分类,如等边三角形、等腰三角形等。
6. 矩形、正方形和长方形:矩形是四边都是直角的四边形,正方形是四边都相等且都是直角的四边形,长方形有两对相等的边且都是直角的四边形。
7. 圆和圆的部分:圆是由一个固定点到平面上所有距离不超过固定距离的点组成的,圆的部分有弧和扇形。
三、几何图形的性质和关系1. 三角形内角和外角的性质:三角形的内角之和等于180度,外角等于它所对的内角的两个角度之和。
2. 平行线和交线之间的关系:如果两条平行线被一条交线切割,那么对应角、内错角、同旁内角相等。
3. 等腰三角形的性质:等腰三角形的两个底角相等,两边边长相等。
4. 相似三角形的性质:相似的三角形对应角相等,对应边成比例。
5. 直角三角形的性质:直角三角形的两个锐角之和等于90度,勾股定理成立。
小学六年级奥数知识:几何初步认识(平面图形)
小学六年级奥数知识:几何初步认识(平面图形)这篇关于小学六年级奥数知识:几何初步认识(平面图形),是特地为大家整理的,希望对大家有所帮助!二、平面图形1、长方形(1)特征对边相等,4个角都是直角的四边形。
有两条对称轴。
(2)计算公式c=2(a+b)s=ab2、正方形(1)特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式c=4as=a23、三角形(1)特征由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式s=ah/2(3)分类按角分锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4、平行四边形(1)特征两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180度。
平行四边形容易变形。
(2)计算公式s=ah5、梯形(1)特征只有一组对边平行的四边形。
中位线等于上下底和的一半。
等腰梯形有一条对称轴。
(2)公式s=(a+b)h/2=mh6、圆(1)圆的认识平面上的一种曲线图形。
圆中心的一点叫做圆心。
一般用字母o 表示。
半径:连接圆心和圆上任意一点的线段叫做半径。
一般用r表示。
在同一个圆里,有无数条半径,每条半径的长度都相等。
直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用d表示。
同一个圆里有无数条直径,所有的直径都相等。
同一个圆里,直径等于两个半径的长度,即d=2r。
圆的大小由半径决定。
圆有无数条对称轴。
(2)圆的画法把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。
(3)圆的周长围成圆的曲线的长叫做圆的周长。
小学六年级数学思维训练复习知识整理:几何初步认识二(平面图形)
小学六年级数学思维训练复习知识整理:几何初步认识二(平面图形)"奥数'是奥林匹克数学竞赛的简称。
奥数几何题一向是师生家长特别关注的一类题型,要做好奥数几何题需要学生多思索多做练习。
我在这里为大家提供了"小学六年级奥数复习学问整理几何初步认识二'的材料。
二、平面图形1、长方形〔1〕特征对边相等,4个角都是直角的四边形。
有两条对称轴。
〔2〕计算公式c=2(a+b)s=ab2、正方形〔1〕特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
〔2〕计算公式c=4as=a23、三角形〔1〕特征由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
〔2〕计算公式 s=ah/2〔3〕分类按角分锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4、平行四边形〔1〕特征两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180度。
平行四边形简单变形。
〔2〕计算公式s=ah5、梯形〔1〕特征只有一组对边平行的四边形。
中位线等于上下底和的一半。
等腰梯形有一条对称轴。
〔2〕公式s=(a+b)h/2=mh6、圆〔1〕圆的认识平面上的一种曲线图形。
圆中心的一点叫做圆心。
一般用字母o表示。
半径:连接圆心和圆上任意一点的线段叫做半径。
一般用r表示。
在同一个圆里,有很多条半径,每条半径的长度都相等。
直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用d表示。
同一个圆里有很多条直径,全部的直径都相等。
同一个圆里,直径等于两个半径的长度,即d=2r。
圆的大小由半径确定。
圆有很多条对称轴。
〔2〕圆的画法把圆规的两脚分开,定好两脚间的距离〔即半径〕;把有针尖的一只脚固定在一点〔即圆心〕上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。
六年级奥数知识点汇总
六年级奥数知识点汇总在六年级的学习中,奥数(奥林匹克数学)是一门旨在培养学生的逻辑思维和问题求解能力的学科。
它涵盖了许多不同的知识点和技巧。
本文将为大家汇总六年级奥数的知识点,帮助大家更好地理解和掌握这门学科。
1. 数论数论是数学中研究整数性质的学科。
在奥数中,数论常见的知识点包括最大公约数、最小公倍数、质数与合数、因数分解等。
了解这些基本概念和运算规律,能够帮助学生解决在奥数中常见的整数问题。
2. 几何几何是研究图形和空间的学科。
在六年级的奥数中,常见的几何知识点包括平面图形的性质、图形的分类、图形的相似与全等、三角形、四边形等。
学生需要熟悉不同几何图形的特征及其性质,能够将问题与几何图形联系起来,并灵活运用几何知识解决问题。
3. 代数代数是一门研究数与符号关系的学科。
在奥数中,代数常见的知识点包括线性方程组、平方与开方运算、整式的运算、代数式的因式分解等。
学生需要理解代数式的含义和运算规则,能够通过代数的方法解决问题。
4. 图论图论是研究图的性质和图的应用的学科。
在六年级的奥数中,图论常见的知识点包括路径、回路、树、平面图等。
学生需要掌握图的基本概念和性质,能够利用图论的方法解决问题。
5. 概率与统计概率与统计是研究随机事件和数据分析的学科。
在奥数中,概率与统计常见的知识点包括概率、频数与频率、平均数、中位数、众数、范围、方差等。
学生需要理解概率和统计的基本概念和计算方法,能够应用概率与统计知识解决问题。
6. 容斥原理容斥原理是概率与组合数学中常用的计数方法。
它能够帮助学生求解多个集合的交集、并集及其大小。
掌握容斥原理能够使学生更好地解决组合数学和概率问题。
7. 数列与递推数列与递推是数学中研究数值序列和递推关系的学科。
在六年级的奥数中,数列与递推常见的知识点包括等差数列、等比数列、斐波那契数列等。
学生需要了解数列的特征和递推关系,能够求解数列中的未知项或递推关系中的常数。
通过对六年级奥数知识点的汇总,我们可以看到这门学科的内容十分广泛。
小升初六年级奥数——几何(平面图形)
⼩升初六年级奥数——⼏何(平⾯图形)⼀、分数百分数问题,⽐和⽐例这是六年级的重点内容,在历年各个学校测试中所占⽐例⾮常⾼,重点应该掌握好以下内容:对单位1的正确理解,知道甲⽐⼄多百分之⼏和⼄⽐甲少百分之⼏的区别;求单位1的正确⽅法,⽤具体的量去除以对应的分率,找到对应关系是重点;分数⽐和整数⽐的转化,了解正⽐和反⽐关系;通过对“份数”的理解结合⽐例解决和倍(按⽐例分配)和差倍问题;⼆、⾏程问题应⽤题⾥最重要的内容,因为综合考察了学⽣⽐例,⽅程的运⽤以及分析复杂问题的能⼒,所以常常作为压轴题出现,重点应该掌握以下内容:路程速度时间三个量之间的⽐例关系,即当路程⼀定时,速度与时间成反⽐;速度⼀定时,路程与时间成正⽐;时间⼀定时,速度与路程成正⽐。
特别需要强调的是在很多题⽬中⼀定要先去找到这个“⼀定”的量;当三个量均不相等时,学会通过其中两个量的⽐例关系求第三个量的⽐;学会⽤⽐例的⽅法分析解决⼀般的⾏程问题;有了以上基础,进⼀步加强多次相遇追及问题及⽕车过桥流⽔⾏船等特殊⾏程问题的理解,重点是学会如何去分析⼀个复杂的题⽬,⽽不是⼀味的做题;三、⼏何问题⼏何问题是各个学校考察的重点内容,分为平⾯⼏何和⽴体⼏何两⼤块,具体的平⾯⼏何⾥分为直线形问题和圆与扇形;⽴体⼏何⾥分为表⾯积和体积两⼤部分内容。
学⽣应重点掌握以下内容:等积变换及⾯积中⽐例的应⽤;与圆和扇形的周长⾯积相关的⼏何问题,处理不规则图形问题的相关⽅法;⽴体图形⾯积:染⾊问题、切⾯问题、投影法、切挖问题;⽴体图形体积:简单体积求解、体积变换、浸泡问题;四、数论问题常考内容,⽽且可以应⽤于策略问题,数字谜问题,计算问题等其他专题中,相当重要,应重点掌握以下内容:掌握被特殊整数整除的性质,如数字和能被9整除的整数⼀定是9的倍数等;最好了解其中的道理,因为这个⽅法可以⽤在许多题⽬中,包括⼀些数字谜问题;掌握约数倍数的性质,会⽤分解质因数法,短除法,辗转相除法求两个数的最⼤公因数和最⼩公倍数;学会求约数个数的⽅法,为了提⾼灵活运⽤的能⼒,需了解这个⽅法的原理;了解同余的概念,学会把余数问题转化成整除问题,下⾯的这个性质是⾮常有⽤的:两个数被第三个数去除,如果所得的余数相同,那么这两个数的差就能被这个数整除;能够解决求⼀个多位数除以⼀个较⼩的⾃然数所得的余数问题,例如求1011121314 (9)899除以11的余数,以及求20082008除以13的余数这类问题;五、计算问题计算问题通常在前⼏个题⽬中出现概率较⾼,主要考察两个⽅⾯,⼀个是基本的四则运算能⼒,同时,⼀些速算巧算及裂项换元等技巧也经常成为考察的重点。
平面图形知识点总结
平面图形知识点总结一、基本概念1.平面图形的定义平面图形是指在平面上用点、线段、直线和其他图形基本元素构成的图形,是二维的图形。
平面图形包括:点、线段、直线、封闭图形(如多边形、圆等)以及特殊图形(如梯形、平行四边形等)。
2.平面图形的分类根据性质和形状,平面图形可分为几何图形和非几何图形。
几何图形包括:点、线段、直线、封闭图形(如三角形、四边形、多边形、圆等)以及特殊图形(如梯形、平行四边形等)。
非几何图形包括:曲线、不封闭图形等。
3.平面图形的性质平面图形有很多性质,比如:面积、周长、直角、等边、相似等。
4.平面图形的运动平面图形有平移、旋转、倒影等运动,这些运动可以使图形产生对称、相似等关系。
二、常见几何图形1.点点是最简单的几何图形,没有长度、宽度、面积等概念。
2.线段线段是由两个端点和连接这两个端点的线段组成的,是有限长的直线。
3.直线直线是一条没有端点的直线,是无限延伸的。
4.封闭图形封闭图形是由若干条线段所组成的平面图形,这些线段首尾相接,围成一个封闭的图形。
5.三角形三角形是一种封闭图形,由三条线段组成的图形,三条线段两两相交,围成一个封闭图形。
6.四边形四边形是一种封闭图形,由四条线段组成的图形,四条线段两两相邻,围成一个封闭图形。
7.多边形多边形是一种封闭图形,由若干条线段组成的图形,所有的线段首尾相接,围成一个封闭图形。
8.圆圆是一个平面上所有到圆心的距离都相等的点的集合,它由一个固定的点(圆心)和到这个固定点的距离(半径)确定。
9.特殊图形特殊图形包括:梯形、平行四边形等,它们都有特定的性质和特点。
三、几何图形的性质1.面积平面图形的面积是指该图形所占有的面积大小,是一个表示二维图形大小的量。
2.周长平面图形的周长是指该图形外部边界的长度之和,是一个表示二维图形边界长度的量。
3.直角直角是指两条线段或两条直线相互垂直相交的位置关系。
4.等边等边是指具有相等边长的图形,比如等边三角形、正方形等。
六年级下期末复习(几何的初步知识-平面几何)
几何的初步知识平面图形知识网络:1.直线、线段、射线直线上两点之间的一段叫做线段.把线段的一端无限延长,就得到一条射线.2.垂线和平行线垂线两条直线相交成直角时,这两条直线叫做互相垂直.其中一条叫做另一条的垂线. 平行线在同一平面内不相交的两条直线叫做平行线.3.角从一点引出的两条射线所围成的图形叫做角.(要了解:锐角、直角、钝角、平角)4.长方形对边相等,四个角都是直角的四边形叫做长方形.长方形的周长和面积公式:5.正方形四条边都相等,四个角都是直角的四边形,叫做正方形.正方形的周长和面积公式:6.平行四边形两组对边分别平行的四边形叫做平行四边形.平行四边形的周长和面积公式:7.三角形由三条线段围成的图形叫做三角形.(能区分锐角三角形、钝角三角形、直角三角形) 三角形的周长和面积公式:8.梯形只有一组对边平行的四边形叫做梯形.(要知道直角梯形、等腰梯形的性质)梯形的面积公式:9.圆以固定的一点,取定长旋转一周,所围成的封闭图形叫做圆.圆的周长和面积公式:10.扇形由圆周角的两条半径和它所对的弧围成的图形叫做扇形。
扇形的面积公式:应用举例:1.通过放大10倍的放大镜来看一个60°的角,这个角是多少度?2.王小明家把一块长15米,宽12米5分米的长方形草场围上篱笆,求篱笆有多长?3.有一块正方形实验田,周长24米,它的面积是多少平方米?4.用10.28厘米的铁丝围成一个半圆形,半圆形的面积是多少平方厘米?5.一个长方形和一个三角形等底等高,已知三角形的面积是30平方厘米,长方形的面积是多少?6.一块梯形棉田,上底长85米,下底长160米,高70米;在这块棉田里共收籽棉1845千克,每平方米产籽棉多少千克?基础练习:填空:1.在同一平面内不相交的两条直线叫( ).2.12个正方形可以摆成( )种不同形式的长方形.3.在等腰三角形中,如果顶角为124°,底角各是( ),这个三角形是( )角三角形.4.把两个边长都是2厘米的正方形拼成一个长方形,这个长方形的周长是( ),面积是( ).5.一个平行四边形,底是24厘米,高2分米,面积是( ).6.一个等边三角形,周长是12.6厘米,它的边长是( )厘米.7.周长是28厘米的长方形,长是10厘米,面积是( ).8.一个梯形的面积是10平方分米,高是4分米,上底是2.2分米,下底是( )分米.9.一个圆,周长是6.28分米,它的面积是( ).10.圆心角是1°的扇形的面积是( ).判断:1.小明画了一条25厘米长的直线.2.等边三角形和等腰三角形都是锐角三角形.3.两个面积相等的三角形一定可以拼成一个平行四边形.4.平行四边形和长方形的周长相等,它们的面积也相等.5.半径是2厘米的圆,它的周长和面积相等.6.半圆的周长是和它等半径的圆周长的一半.7.平行四边形不是对称图形,没有对称轴.8.一个四边形,四个角相等,四条边也相等,这个四边形是正方形.9.钝角三角形只有一组底和高.10.一个三角形中,不可能有两个钝角.选择:1.从一点引出两条( )就组成一个角.A直线 B线段 C射线2.一个四边形只有一组对边平行,这个四边形是( ).A平行四边形B任意四边形C梯形3.把长方形拉成一个四条边长度保持不变的平行四边形后,它的面积( ).A比原来大B比原来小C与原来相等4.下列图形中,( )的对称轴有无数条.A 正方形B 等边三角形C 圆5.用两根同样长的铁丝,分别围成一个正方形和一个圆.正方形的面积和圆的面积相比较,( ). A 正方形的面积大 B 同样大 C 圆的面积大操作题:1. 过一条直线外一点,画出这条直线的垂线和平行线.2. 分别画出下列三角形的三条高.计算下面图形的周长和面积:(单位:厘米)应用题:a)一个运动场(如图),两头是半圆形,中间是长方形,这个运动场的周长是多少米?面积是多少平方米?b)一个长方形养鸡场,一条长边利用原有墙,其余三面是竹篱笆,已知篱笆共长24米,宽是长的21,鸡场的面积是多少平方米?c)抗日战争时期王庄民兵自制一种土雷,爆炸时,有效杀伤距离是15米,它的有效杀伤面积是多少平方米?d)张村有一块边长是56米的正方形苹果园,苹果树的株距是4米,行距7米,这块地共有苹果树多少棵?如果每棵平均可以收苹果165千克,这个果园一年共收苹果多少千克?e)一块长1米20厘米,宽90厘米的铝皮,剪成直径是30厘米的铝锅底,最多可以剪几块?提高练习:一、填空:1.一个等腰三角形的顶角是一个底角的4倍,这个底角是()。
六年级第四章平面图形的初步知识
六年级第四章平面图形的初步知识小升初数学是很多同学比较头疼的科目,小编为大家准备了六年级第四章平面图形的初步知识,希望同学们能够掌握。
1、长方形(1)特征对边相等,4个角都是直角的四边形。
有两条对称轴。
(2)计算公式 c=2(a+b) s=ab2、正方形(1)特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式:c=4a ;s=a??3、三角形(1)特征:由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式:s=ah/2(3)分类*按角分:锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
*按边分:不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4、平行四边形(1)特征:两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180度。
平行四边形容易变形。
(2)计算公式 s=ah5、梯形(1)特征:只有一组对边平行的四边形。
中位线等于上下底和的一半。
等腰梯形有一条对称轴。
(2)公式 s=(a+b)h/2=mh6、圆(1)圆的认识平面上的一种曲线图形。
圆中心的一点叫做圆心。
一般用字母o表示。
半径:连接圆心和圆上任意一点的线段叫做半径。
一般用r 表示。
在同一个圆里,有无数条半径,每条半径的长度都相等。
通过圆心并且两端都在圆上的线段叫做直径。
一般用d表示。
同一个圆里有无数条直径,所有的直径都相等。
同一个圆里,直径等于两个半径的长度,即d=2r。
圆的大小由半径决定。
圆有无数条对称轴。
(2)圆的画法把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。
(3) 圆的周长围成圆的曲线的长叫做圆的周长。
六年级平面与几何知识点
六年级平面与几何知识点在六年级的数学学习中,平面与几何是一个重要的知识点。
通过学习平面与几何,我们可以了解到线段、角、平行线等基本概念,掌握一些几何图形的性质和计算方法。
现在,就让我们一起来深入探讨一下这些知识点吧!一、线段线段是平面几何中最基础的概念之一。
它是由两个端点确定的,具有长度的直线部分。
我们可以通过两点间的距离来表示线段的长度,记作AB。
线段还有一个重要的性质是可以用尺子进行量度。
当我们测量一条线段的长度时,需要将一个端点对准尺子的零刻度,然后读出另一个端点在尺子上的刻度数,就可以得到线段的长度。
二、角角是两条线段的夹角部分,通常由两个端点和夹在中间的顶点组成。
角的大小通常用度数来表示,使用角度符号°,例如:30°、60°等。
我们可以通过量角器来测量角的大小,将量角器的一个端点对准角的顶点,然后读出量角器上与另一条线段相交的刻度数,就可以得到角的度数。
三、平行线平行线是在同一个平面内永远不会相交的两条直线。
我们可以通过观察直线之间的关系来判断它们是否平行。
当两条直线的方向完全相同或者存在一个与两直线均垂直的第三条直线时,这两条直线就是平行线。
平行线的性质很重要,它在许多几何证明和计算中被广泛应用。
四、等腰三角形等腰三角形是指具有两边相等的三角形。
在等腰三角形中,两个底角的大小相等,而顶角的大小则可以根据具体情况来确定。
对于等腰三角形,我们可以利用一些性质进行计算。
例如,如果我们知道了等腰三角形底边的长度和底角的度数,就可以通过计算来确定等腰三角形的面积和周长。
五、矩形矩形是一种特殊的四边形,它的四个内角都是直角(90°)。
矩形的对边相等且平行,对角线相等,而且矩形还有一个重要的性质是面积计算简单。
要计算矩形的面积,只需要将矩形的长和宽相乘即可。
六、圆圆是一个非常重要和常见的几何图形。
圆由一个固定点(圆心)和到圆心距离相等的所有点组成。
我们可以用圆的直径、半径和周长来描述圆的性质。
小学数学平面形知识点总结
小学数学平面形知识点总结平面形是小学数学中的重要概念,它涉及到了几何形状的基本属性和性质。
在小学数学学习中,我们通常会学习到的平面形包括:点、线段、直线、射线、角、三角形、四边形、圆等。
1. 点:点是平面形的最基本单位,没有长度、宽度和高度。
我们用大写字母表示点,比如A、B、C等。
通过点可以构成线段、直线、射线等。
2. 线段:线段是由两个端点确定的一段连续直线,可以用大写字母表示两个端点,用小写字母表示线段,例如AB表示线段AB。
线段的长度可以通过直尺或尺规进行测量。
3. 直线:直线是由无数个点连在一起而成,它没有端点,可以一直延伸。
我们用小写字母表示直线,例如l、m、n等。
4. 射线:射线是由一个端点和一个方向确定的一段连续直线,它可以无限延伸。
我们通常用一个点加上一个箭头来表示射线,例如AB→表示由点A出发的射线。
5. 角:角是由两条射线的公共端点以及这两条射线的两个侧边所夹的部分组成。
我们通常用大写字母表示角的顶点,用这个字母的旁边再加一个小角符号来表示角,例如∠ABC表示由射线AB和射线BC所夹的角。
6. 三角形:三角形是由三条线段组成的平面形,它的内部有一个闭合的区域。
三角形的名称通常是根据其三个顶点来确定的,例如△ABC表示三角形ABC。
根据三角形的边长和角度的不同,我们可以将三角形分为等边三角形、等腰三角形、直角三角形等。
7. 四边形:四边形是由四条线段组成的平面形,它的内部有一个闭合的区域。
四边形的名称通常是根据其四个顶点来确定的,例如ABCD表示四边形ABCD。
根据四边形的边长和角度的不同,我们可以将四边形分为正方形、长方形、菱形、梯形等。
8. 圆:圆是由平面上距离一个固定点距离相等的所有点组成的图形。
其中,距离固定点最远的点称为圆的半径,而连接圆心和任意一点的线段称为半径,通过圆心的线段称为直径。
总之,小学数学中的平面形知识点是我们学习几何形状的基础。
通过深入了解和掌握平面形的基本概念和性质,我们可以更好地理解和解决与平面形相关的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级奥数知识点:几何初步认识二(平面图形)★这篇《小学六年级奥数知识点:几何初步认识二(平面图形)》,是特地为大家整理的,希望对大家有所帮助!
二、平面图形
1、长方形
(1)特征
对边相等,4个角都是直角的四边形。
有两条对称轴。
(2)计算公式
c=2(a+b)
s=ab
2、正方形
(1)特征:
四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式
c=4a
s=a2
3、三角形
(1)特征
由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式
s=ah/2
(3)分类
按角分
锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分
不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4、平行四边形
(1)特征
两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180度。
平行四边形容易变形。
(2)计算公式
s=ah
5、梯形
(1)特征
只有一组对边平行的四边形。
中位线等于上下底和的一半。
等腰梯形有一条对称轴。
(2)公式
s=(a+b)h/2=mh
6、圆
(1)圆的认识
平面上的一种曲线图形。
圆中心的一点叫做圆心。
一般用字母o 表示。
半径:连接圆心和圆上任意一点的线段叫做半径。
一般用r表示。
在同一个圆里,有无数条半径,每条半径的长度都相等。
直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用d表示。
同一个圆里有无数条直径,所有的直径都相等。
同一个圆里,直径等于两个半径的长度,即d=2r。
圆的大小由半径决定。
圆有无数条对称轴。
(2)圆的画法
把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。
(3)圆的周长
围成圆的曲线的长叫做圆的周长。
把圆的周长和直径的比值叫做圆周率。
用字母∏表示。
(4)圆的面积
圆所占平面的大小叫做圆的面积。
(5)计算公式
d=2r
r=d/2
c=∏d
c=2∏r
s=∏r2
7、扇形
(1)扇形的认识
一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
圆上AB两点之间的部分叫做弧,读作“弧AB”。
顶点在圆心的角叫做圆心角。
在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。
扇形有一条对称轴。
(2) 计算公式
s=n∏r2/360
8、环形
(1) 特征
由两个半径不相等的同心圆相减而成,有无数条对称轴。
(2) 计算公式
s=∏(R2-r2)
9、轴对称图形
(1) 特征
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
折痕所在的这条直线叫做对称轴。
正方形有4条对称轴,长方形有2条对称轴。
等腰三角形有2条对称轴,等
边三角形有3条对称轴。
等腰梯形有一条对称轴,圆有无数条对称轴。
菱形有4条对称轴,扇形有一条对称轴。