小学奥数之裂项

合集下载

小学奥数教程之裂项综合

小学奥数教程之裂项综合

学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。

可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

学科培优数学“裂项综合”学生姓名授课日期教师姓名授课时长知识定位本讲知识点属于计算大板块内内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

知识梳理一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯-(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

小学奥数专题-整数裂项

小学奥数专题-整数裂项

整数裂项基本公式 (1) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+ (2) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+【例 1】 1223344950⨯+⨯+⨯++⨯=_________【考点】整数裂项 【难度】3星 【题型】计算【解析】 这是整数的裂项。

裂项思想是:瞻前顾后,相互抵消。

设S =1223344950⨯+⨯+⨯++⨯1×2×3=1×2×32×3×3=2×3×(4-1)=2×3×4-1×2×33×4×3=3×4×(5-2)=3×4×5-2×3×4……49×50×3=49×50×(51-48)=49×50×51-48×49×503S =1×2×3+2×3×3+3×4×3+…+49×50×3=49×50×51S =49×50×51÷3=41650【答案】41650【巩固】1223344556677889910⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=________ 【考点】整数裂项 【难度】3星 【题型】计算【解析】 本题项数较少,可以直接将每一项乘积都计算出来再计算它们的和,但是对于项数较多的情况显然不能这样进行计算.对于项数较多的情况,可以进行如下变形:()()()()()()()()()12111111211333n n n n n n n n n n n n n n ++--++==++--+, 所以原式1111112323412391011891033333⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭1910113303=⨯⨯⨯= 另解:由于()21n n n n +=+,所以原式()()()222112299=++++++()()222129129=+++++++119101991062=⨯⨯⨯+⨯⨯330= 采用此种方法也可以得到()()()112231123n n n n n ⨯+⨯++⨯+=++这一结论. 【答案】330【例 2】 14477104952⨯+⨯+⨯++⨯=_________【考点】整数裂项 【难度】3星 【题型】计算【解析】 设S =14477104952⨯+⨯+⨯++⨯ 例题精讲 知识点拨整数裂项1×4×9=1×4×7+1×4×24×7×9=4×7×(10-1)=4×7×10-1×4×77×10×9=7×10×(13-4)=7×10×13-4×7×10………….49×52×9=49×52×(55-46)=49×52×55-46×49×529S =49×52×55+1×4×2S =(49×52×55+1×4×2)÷9=15572【答案】15572【例 3】 12323434591011⨯⨯+⨯⨯+⨯⨯++⨯⨯=【考点】整数裂项 【难度】3星 【题型】计算【解析】 ()()()()()()()()111212311244n n n n n n n n n n n ++=+++--++,所以, 原式11111123423451234910111289101144444⎛⎫⎛⎫=⨯⨯⨯⨯+⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯⨯⨯-⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭191011124=⨯⨯⨯⨯2970= 从中还可以看出,()()()()()1123234345121234n n n n n n n ⨯⨯+⨯⨯+⨯⨯++⨯+⨯+=+++ 【答案】2970【例 4】 计算:135357171921⨯⨯+⨯⨯++⨯⨯= .【考点】整数裂项 【难度】3星 【题型】计算【解析】 可以进行整数裂项.357913573578⨯⨯⨯-⨯⨯⨯⨯⨯=, 5791135795798⨯⨯⨯-⨯⨯⨯⨯⨯=, 17192123151719211719218⨯⨯⨯-⨯⨯⨯⨯⨯=, 所以原式35791357171921231517192113588⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯=⨯⨯+++1719212313571358⨯⨯⨯-⨯⨯⨯=⨯⨯+171921231358⨯⨯⨯+⨯⨯=19503= 也可适用公式.原式()()()()()()323325255219219192=-⨯⨯++-⨯⨯+++-⨯⨯+()()()22222232352519219=-⨯+-⨯++-⨯ ()()333351943519=+++-⨯+++()()3333135194135193=++++-⨯+++++而()()333333333333135191232024620++++=++++-++++ 22221120218101144=⨯⨯-⨯⨯⨯19900=, 21351910100++++==,所以原式1990041003=-⨯+19503=.【答案】19503【巩固】 计算:101622162228707682768288⨯⨯+⨯⨯++⨯⨯+⨯⨯ 【考点】整数裂项 【难度】3星 【题型】计算【解析】 可进行整数裂项: 原式1016222841016221622283410162228=2424⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭707682886470768276828894707682882424⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭ 1016222841016221622283410162228=24242424⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯-+-++ 7076828864707682768288947076828824242424⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯-+- 768288944101622=2424⨯⨯⨯⨯⨯⨯- 768288944101622=24⨯⨯⨯-⨯⨯⨯ =2147376【答案】2147376【巩固】 计算:123434565678979899100⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯=【考点】整数裂项 【难度】3星 【题型】计算【解析】 一般的整数裂项各项之间都是连续的,本题中各项之间是断开的,为此可以将中间缺少的项补上,再进行计算.记原式为A ,再设23454567678996979899B =⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯,则123423453456979899100A B +=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯197989910010119010098805=⨯⨯⨯⨯⨯=, 现在知道A 与B 的和了,如果能再求出A 与B 的差,那么A 、B 的值就都可以求出来了.12342345345645675678979899100A B -=⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯⨯⨯++⨯⨯⨯4(123345567...979899)=⨯⨯⨯+⨯⨯+⨯⨯++⨯⨯222242(21)4(41)6(61)98(981)⎡⎤=⨯⨯-+⨯-+⨯-++⨯-⎣⎦33334(24698)4(24698)=⨯++++-⨯++++221148495041004942=⨯⨯⨯⨯-⨯⨯⨯48010200= 所以,()1901009880480102002974510040A =+÷=.【答案】974510040【例 5】 2004200320032002200220012001200021⨯-⨯+⨯-⨯++⨯【考点】整数裂项 【难度】3星 【题型】计算【解析】 原式20032200123212=⨯+⨯++⨯+⨯()213520012003=⨯+++++()21200310022=⨯+⨯÷2008008=其中也可以直接根据公式()2135721n n +++++-=得出2135200120031002+++++=【答案】2008008【例 6】 11!22!33!20082008!⨯+⨯+⨯++⨯=【考点】整数裂项 【难度】4星 【题型】计算【解析】 观察发现22!221(31)213!2!⨯=⨯⨯=-⨯⨯=-,33!3321(41)3214!3!⨯=⨯⨯⨯=-⨯⨯⨯=-,……20082008!20082008200721(20091)20082007212009!2008!⨯=⨯⨯⨯⨯⨯=-⨯⨯⨯⨯⨯=-, 可见,原式1!(2!1!)(3!2!)(2009!2008!)=+-+-++- 2009!=【答案】2009!【例 7】 计算:1234569910023459899⨯+⨯+⨯++⨯=⨯+⨯++⨯ 【考点】整数裂项 【难度】5星 【题型】计算【解析】 设原式=B A122334989999100A B +=⨯+⨯+⨯++⨯+⨯()()()11230122341239910010198991003=⨯⨯-⨯⨯+⨯⨯-⨯⨯++⨯⨯-⨯⨯⎡⎤⎣⎦1991001013333003=⨯⨯⨯= 1232992501005000B A -=⨯+⨯++⨯=⨯=3333005000338333330050003283B A +==- 【答案】33833283。

小学 奥数裂项法(含答案)

小学 奥数裂项法(含答案)

奥数裂项法同学们知道:在计算分数加减法时,两个分母不同的分数相加减,要先通分化成同分母分数后再计算。

(一)阅读思考例如,这里分母3、4是相邻的两个自然数,公分母正好是它们的乘积,把这个例题推广到一般情况,就有一个很有用的等式:即或下面利用这个等式,巧妙地计算一些分数求和的问题。

【典型例题】例1. 计算:分析与解答:上面12个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了。

像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以相互抵消,从而使计算简化的方法,我们称为裂项法。

例2. 计算:公式的变式当分别取1,2,3,……,100时,就有例3. 设符号()、< >代表不同的自然数,问算式中这两个符号所代表的数的数的积是多少?分析与解:减法是加法的逆运算,就变成,与前面提到的等式相联系,便可找到一组解,即另外一种方法设都是自然数,且,当时,利用上面的变加为减的想法,得算式。

这里是个单位分数,所以一定大于零,假定,则,代入上式得,即。

又因为是自然数,所以一定能整除,即是的约数,有个就有个,这一来我们便得到一个比更广泛的等式,即当,,是的约数时,一定有,即上面指出当,,是的约数时,一定有,这里,36共有1,2,3,4,6,9,12,18,36九个约数。

当时,,当时,,当时,,当时,,当时,,当时,,当时,,当时,,当时,,故()和< >所代表的两数和分别为49,32,27,25。

【模拟试题】二.尝试体验:1. 计算:2. 计算:3. 已知是互不相等的自然数,当时,求。

【试题答案】1. 计算:2. 计算:3. 已知是互不相等的自然数,当时,求。

的值为:75,81,96,121,147,200,361。

因为18的约数有1,2,3,6,9,18,共6个,所以有还有别的解法。

裂项法(二)前一节我们已经讲过,利用等式,采用“裂项法”能很快求出这类问题的结果来,把这一等式略加推广便得到另一等式:,现利用这一等式来解一些分数的计算问题。

小学奥数裂项公式汇总

小学奥数裂项公式汇总

裂项运算常用公式 一、分数“裂差”型运算 (1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n特殊数列求和公式2)1(321+=++n n n 212311321n n n n =++++-++-++++ )()(2127531n n =-++++)(6)12)(1(21222++=+++n n n n 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )( ()()412121222333+=++=+++n n n n平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。

小学奥数教程-分数裂项计算 (含答案)

小学奥数教程-分数裂项计算 (含答案)

教师版
page 2 of 17
【考点】分数裂项
【难度】2 星
【题型】计算
【解析】 1 + 1 + 1 + + 1 = 1 × (1 − 1 + 1 − 1 + … + 1 − 1 )= 50
1×3 3×5 5× 7
99 ×101 2 3 3 5
99 101 101
【答案】 50 101
【巩固】 计算:
【考点】分数裂项
【难度】3 星
【题型】计算
【解析】原式 =1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 = 1 2 5 5 7 7 11 11 16 16 22 22 29 29 2
【答案】 1 2
【例 4】 计算: (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 ) ×128 = 8 24 48 80 120 168 224 288
【答案】12
【巩固】 251 + 251 + 251 + + 251 + 251
4 × 8 8 ×12 12 ×16
2000 × 2004 2004 × 2008
【考点】分数裂项
【难度】2 星
【题型】计算
【关键词】台湾,小学数学竞赛,初赛
【解析】 原式
=251 16
×

1 1×
2
+
2
1 ×
裂差型裂项的三大关键特征:
(1)分子全部相同,最简单形式为都是 1 的,复杂形式可为都是 x(x 为任意自然数)的,但是只要将 x 提取出来即可转化为分子都是 1 的运算。

小学奥数专题--分数裂项

小学奥数专题--分数裂项
解析:原式
答案
变式训练2计算:
解析:原式= + +…+ + +…+
= ( - )+ ( - )
= + = +

答案
变式训练3
解析:原式
答案
变式训练4
解析: = = - = -
= = - = -
= = - = - ……
= = -
= -
原式
答案
例9
解析:原式
答案
变式训练1
解析:原式
答案
例10计算: .
解析:如果式子中每一项的分子都相同,那么就是一道很常见的分数裂项的题目.但是本题中分子不相同,而是成等差数列,且等差数列的公差为2.相比较于2,4,6,……这一公差为2的等差数列(该数列的第 个数恰好为 的2倍),原式中分子所成的等差数列每一项都比其大3,所以可以先把原式中每一项的分子都分成3与另一个的和再进行计算.
观察可知 , ,……即每一项的分子都等于分母中前两个乘数的和,所以
所以原式 .
(法二)
上面的方法是最直观的转化方法,但不是唯一的转化方法.由于分子成等差数列,而等差数列的通项公式为 ,其中 为公差.如果能把分子变成这样的形式,再将 与 分开,每一项都变成两个分数,接下来就可以裂项了.

所以原式 .
(法三)
解析:原式
答案
例19 计算:
解析:
所以原式
答案
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”
(3)分母上几个因数间的差是一个定值。
2、“裂和”型运算:
常见的裂和型运算主要有以下两种形式:
(1) (2)
裂和型运算与裂差型运算的对比:

小学奥数--分数裂项-精选练习例题-含答案解析(附知识点拨及考点)

小学奥数--分数裂项-精选练习例题-含答案解析(附知识点拨及考点)

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

,本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-⨯- 、(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

$知识点拨教学目标分数裂项计算二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

小学奥数裂项公式汇总

小学奥数裂项公式汇总

小学奥数裂项公式汇总1. 一元二次方程:一元二次方程是来自于“二次”,即指二次多项式的方程,此方程只有一个未知变量,解决的时候通常是找出它的两个实数根。

一般的一元二次方程的形式如下:ax2+bx+c=0,其中a、b、c都是实数,而且a不等于0,x表示未知变量,a、b、c用来确定任意的一个一元二次方程。

此方程的解可以用裂项公式来求,公式由x=(-b±√(b2-4ac))/2a两个解式组成,其中b2-4ac为判别式,若判别式大于0,则此一元二次方程有两个不同的实数根,若判别式等于0,则有两个重根,若判别式小于0,则没有有理数根。

2. 二次不等式:二次不等式是以“二次”为特征的不等式,是指一个二次多项式在单一或双边限制范围内的取值,其一般形式为ax2+bx+c>0或ax2+bx+c<0 。

其中a、b、c都是实数,a不等于0,x表示未知变量。

此不等式的解可以用裂项公式来求,公式由-b-√(b2-4ac)/2a<x<-b+√(b2-4ac)/2a两个解式组成,其中b2-4ac为判别式,若判别式大于0,则满足此二次不等式的解为一个区间,若判别式等于0,则此不等式的解为一个端点,若判别式小于0,则此不等式没有有理数根,是一个无解事件。

3. 一元三次方程:一元三次方程的形式为:ax3+bx2+cx+d=0,其中a、b、c、d为实数,a不等于0,x为未知变量。

这是一个由三次多项式形成的方程,解法有三种:秦九韶算法、降次法和Vieta公式,其中秦九韶算法是求根最经典的方法;而Vieta公式是起到检验求根方法的作用,也可以求出根等信息;降次法是尝试将方程按次数降低,从而将一元三次方程分解成一元二次方程,乘以常数所形成的一个等式组,这样就可以使用上面的一元二次方程的裂项公式来求解。

4. 平方:平方是指某个数字被提取,且其乘方为2的结果数,常用三角形表示。

其求根可以用裂项公式来求,公式由x=±√b两个解式组成,此实数根依然是以b为参数,且包含正数解和负数解,而结果有可能是实数根也有可能是复数根,要从b的正负来判断其结果是什么样。

小学奥数裂项公式汇总

小学奥数裂项公式汇总

裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即ba ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有:(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a bb a ab a ba 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或 凑整三、整数裂项基本公式 (1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n (4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1 (541)431321211+=+++⨯+⨯+⨯+⨯=n nn n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n nn n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n nn n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n nn n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n 证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n 5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , 特殊数列求和公式平方差公式 ))((22b a b a b a -+=- 完全平方和(/差)公式 2222)(b ab a b a +±=±。

小学奥数裂项公式大全

小学奥数裂项公式大全

小学奥数裂项公式大全裂项公式是指将多项式分解为各个因式之积的一种数学方法,它是数学中最为常用的一种公式之一。

在小学数学中,裂项公式被广泛用于解方程问题,是小学数学学习的重要组成部分。

裂项公式有许多种,小学奥数裂项公式大全是学习小学奥数的重要参考资料,务必要好好掌握。

下面将介绍小学奥数裂项公式大全中的内容。

1、一元二次方程裂项公式。

一元二次方程的裂项公式是 x2 + bx + c = (x + a1)(x + a2),其中,a1和a2是方程的根,可以通过求解一元二次方程来获得。

2、二元一次方程组裂项公式。

二元一次方程组的裂项公式有两种:一是求解二元一次方程组的代数式,即 x y = a b;二是计算等价式的方法,即 xy = (x + c)(y + d)。

3、三元一次方程组裂项公式。

三元一次方程组的裂项公式如下:x + y + z = a b c,其中a、b、c可以通过求解三元一次方程组来获得。

4、三次方程的裂项公式。

三次方程的裂项公式是 x3 + bx2 + cx + d = (x + a1)(x + a2)(x + a3),其中a1、a2、a3可以通过求解三次方程来获得。

以上就是小学奥数裂项公式大全内容的简要介绍,希望我们能够真正掌握这些公式,从而做好小学奥数的学习。

从小学开始,学习数学就要掌握公式,其中除了裂项公式外,还有平方公式、立方公式、二次求根公式、二次型方程公式等。

而要想掌握这些公式,就需要我们记住这些公式,并熟练掌握它们的运用。

所以,如果我们想要学好小学数学,就要认真的研究这些公式,将它们仔细记住,并形成自己的思维模式,调整自己的学习思维,从而找到最有效的解题方法。

另外,在解题过程中,我们还要注意遵循一定的解题步骤,遵循具体的解题技巧,这样才能够顺利完成解题,没有遗漏任何内容。

综上所述,小学奥数裂项公式大全是学习小学奥数的重要参考资料,要掌握这些公式,就要认真的研究,将它们记住,并熟练掌握它们的应用。

小学奥数裂项公式汇总

小学奥数裂项公式汇总

裂项运算常用公式
一、分数“裂差”型运算
(1) 对于分母可以写作两个因数乘积的分数,即形式的,这里我们把较小的数写在前面,即 a<
b,那么有:
(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:
二、分数“裂和”型运算
常见的裂和型运算主要有以下两种形式:
(1)
(2)
裂和型运算与裂差型运算的对比:
裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”
分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或凑整
三、整数裂项基本公式
(1)
(2)
(3)
(4)
(5)
裂项求和部分基本公式1.求和:
证:
2.求和:
证:
3.求和:
证:
4.求和:
证:
5.求和:
证:因为,特殊数列求和公式
平方差公式
完全平方和(/差)公式。

小学奥数裂项公式汇总资料

小学奥数裂项公式汇总资料

裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n特殊数列求和公式2)1(321+=++n n n 212311321n n n n =++++-++-++++ )()(2127531n n =-++++)(6)12)(1(21222++=+++n n n n 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )( ()()412121222333+=++=+++n n n n平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。

小学奥数裂项公式汇总知识分享

小学奥数裂项公式汇总知识分享

⼩学奥数裂项公式汇总知识分享裂项运算常⽤公式⼀、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即b a ?1形式的,这⾥我们把较⼩的数写在前⾯,即 a <b ,那么有: )11(11b a ab b a --=?(2) 对于分母上为 3 个或 4 个连续⾃然数乘积形式的分数,即有:+?+-+?=+?+?)2()1(1)1(121)2()1(1n n n n n n n+?+?+-+?+?=+?+?+?)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n⼆、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=?+?=?+(2)a bb ab a b b a a b a b a +=?+?=?+2222裂和型运算与裂差型运算的对⽐:裂差型运算的核⼼环节是“两两抵消达到简化的⽬的”,“先裂再碎,掐头去尾”分数裂和型运算的题⽬不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化⽬的。

裂和:抵消,或凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=?-++?+?+?n n n n n(2) )1()1)(2(41)1()2(......543432321+--=?-?-++??+??+??n n n n n n n(3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n nn n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n (5) !)!1(!n n n n -+=?裂项求和部分基本公式1.求和: 1)1(1(541)431321211+=+++?+?+?+?=n nn n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n nn n n S n Λ2.求和:12)12)(12(1971751531311+=+-++?+?+?+?=n nn n S n Λ证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n Λ3.求和:13)13)(23(1 1071741411+=+-++?+?+?=n nn n S n Λ证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n Λ13)1311(31+=+-=n nn。

小学奥数-裂项求和(一)

小学奥数-裂项求和(一)

分数裂项求和裂项求和就是是分解与组合思想在数列求和中的具体应用.裂项求和法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)。

裂项求和法的具体方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

例1裂项1 1 1 16 1 1 1 12 × 3= 2 -3 = 3 × 4= 3 -4 = 121 1 1 1 1 1 1 14 × 5= 4 -5 = 20 5 × 6= 5 -6 = 301 1 1 16 × 7= 6 -7 =42你发现了什么?对于分母可以写作两个连续自然数的乘积,分子都是1的这种1×形式的分数,即,这里我们把较小的数a写在前面,即a <1 1 1×b,那么有= -。

19 × 10 = -练1199 × 100 = -2 2 2 2练2 2 × 3 = - = (提示:分子不是1的,注意)3 3 3 34 ×5 = - =2练3 11 × 12 = - =(提示:分子空缺,自己填写)399 × 100 = - =例2深度讲解1 1 12 ×3 + 3 ×4 + …… +1 ×2 +1 198 × 99 + 99 ×1001 1 1 1 1 1 1 1= (1 - 2) + (2 - 3) + (3 - 4)+ …… +(98 - 99)1 1+ (99 - 100) [此处为基础训练中的裂项]1 1 1 1 1 1 1 1 1= 1 - 2 + 2 - 3 + 3 - 4+……+98 -99 + 99 -1100 [去括号,括号外面是加号,去括号不变号]1= 1 - 100 [一加一减正好抵消,两两消去,只剩头尾]99= 100 [头减尾,既得最后答案]11 ×2 +1 1× 4 + …… + + 32 × 3练41 18 × 9 + 9 ×1021 ×2 +2 2× 4 + …… + + 32 × 3练52 2 18 × 19 + 19 ×201 11× 13 + ……+ + 12 10 × 11 + 11 × 12 练6 1 99 × 1003 3 3 × 6 + …… + 35 ×36 35 + 5 练7 3 × 4 + 4 ×。

小学奥数教程-整数裂项 (4) (含答案)

小学奥数教程-整数裂项 (4) (含答案)

【答案】 41650
【巩固】 1× 2 + 2 × 3 + 3× 4 + 4 × 5 + 5 × 6 + 6 × 7 + 7 × 8 + 8 × 9 + 9 ×10 =________
【考点】整数裂项
【难度】3 星
【题型】计算
【解析】 本题项数较少,可以直接将每一项乘积都计算出来再计算它们的和,但是对于项数较多的情况显然
4
4
原式 =
1 4
×

2
×
3
×
4
+

1 4
×
2
×
3
×
4
×
5

1 4
×1×
2
×
3
×
4

+

+

1 4
×
9
×10
×11×12

1 4
×
8
×
9
×10
×11
= 1 × 9 ×10 ×11×12 = 2970 4
从中还可以看出,1× 2 × 3 + 2 × 3× 4 + 3× 4 × 5 + + n × (n + 1) × (n += 2) 1 n(n + 1)(n + 2)(n + 3)
整数裂项
知识点拨
整数裂项基本公式 (1) 1× 2 + 2 × 3 + 3× 4 + ... + (n −1) × n= 1 (n −1) × n × (n + 1)
3 (2) 1× 2 × 3 + 2 × 3× 4 + 3× 4 × 5 + ... + (n − 2) × (n −1) × n= 1 (n − 2)(n −1)n(n + 1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5)n·n!=(n+1)!-n!
公式法、裂项相消法、错位相减法、倒序相加法等。

(关键是找数列的通项结构)
1、分组法求数列的和:如an=2n+3n
2、错位相减法求和:如an=n·2^n
3、裂项法求和:如an=1/n(n+1)
4、倒序相加法求和:如an=n
5、求数列的最大、最小项的方法:
①an+1-an=……如an=-2n2+29n-3
②(an>0)如an=
③an=f(n)研究函数f(n)的增减性如an=an^2+bn+c(a≠0)
6、在等差数列中,有关Sn的最值问题——常用邻项变号法求解:
(1)当a1>0,d<0时,满足{an}的项数m使得Sm取最大值.
(2)当a1<0,d>0时,满足{an}的项数m使得Sm取最小值.
在解含绝对值的数列最值问题时,注意转化思想的应用。

对于较长的复杂算式,单单靠一般的运算顺序和计算方法是很难求出结果的。

如果算式中每一项的排列都是有规律的,那么我们就要利用这个规律进行巧算和简算。

而裂项法就是一种行之有效的巧算和简算方法。

通常的做法是:把算式中的每一项裂变成两项的差,而且是每个裂变的后项(或前项)恰好与上个裂变的前项(或后项)相互抵消,从而达到“以短制长”的目的。

下面我们以整数裂项为例,谈谈裂项法的运用,并为整数裂项法编制一个易用易记的口诀。

例1、计算1×2+2×3+3×4+4×5+……+98×99+99×100
分析:这个算式实际上可以看作是:等差数列1、2、3、4、5……98、99、100,先将所有的相邻两项分别相乘,再求所有乘积的和。

算式的特点概括为:数列公差为1,因数个数为2。

1×2=(1×2×3-0×1×2)÷(1×3)
2×3=(2×3×4-1×2×3)÷(1×3)
3×4=(3×4×5-2×3×4)÷(1×3)
4×5=(4×5×6-3×4×5)÷(1×3)
……
98×99=(98×99×100-97×98×99)÷(1×3)
99×100=(99×100×101-98×99×100)÷(1×3)
将以上算式的等号左边和右边分别累加,左边即为所求的算式,右边括号里面诸多项相互抵消,可以简化为(99×100×101-0×1×2)÷3。

解:1×2+2×3+3×4+4×5+……+98×99+99×100
=(99×100×101-0×1×2)÷3
=333300
计算之裂项习题1
计算之裂项习题2。

相关文档
最新文档