动平衡与静平衡理论的方法及区别课件
动平衡和静平衡
动平衡和静平衡一. 静平衡在转子一个校正面上进行校正平衡,校正后的剩余不平衡量以保证转子在静态时是在许用不平衡量的规定范围内,称为静平衡又称单面平衡。
二. 动平衡在转子两个或者两个以上校正面上同时进行校正平衡,校正后的剩余不平衡量以保证转子在动态时是在许用不平衡量的规定范围内,称为动平衡又称双面或者多面平衡。
三、转子平衡的选择与确定如何选择转子的平衡方式只要满足于转子平衡后用途需要的前提下,能做静平衡的,则不要做动平衡,能做动平衡的,则不要做静动平衡。
原因很简单,静平衡要比动平衡容易做,省功、省力、省费用。
那么如何进行转子平衡型式的确定呢?需要从以下几个因素和依据来确定:1.转子的几何形状、结构尺寸,特别是转子的直径D与转子的两校正面间的距离尺寸b之比值,以及转子的支撑间距等。
2.转子的工作转速关转子平衡技术要求的技术标准,如GB3215、API610、GB9239和ISO1940等。
3.转子做静平衡的条件在GB9239平衡标准中,对刚性转子做静平衡的条件定义为:如果盘状转子的支撑间距足够大并且旋转时盘状部位的轴向跳动很小,从而可忽略偶不平衡(动平衡),这时可用一个校正面校正不平衡即单面(静)平衡,对具体转子必须验证这些条件是否满足。
在对大量的某种类型的转子在一个平面上平衡后,就可求得最大的剩余偶不平衡量,并除以支撑距离。
如果在最不利的情况下这个值不大于许用剩余不平衡量的一半,则采用单面(静)平衡就足够了。
从这个定义中不难看出转子只做单面(静)平衡的条件主要有三个方面:(1)一个是转子几何形状为盘状;(2)一个是转子在平衡机上做平衡时的支撑间距要大;(3)再一个是转子旋转时其校正面的端面跳动要很小。
对以上三个条件作如下说明:(1)何谓盘状转子主要用转子的直径D与转子的两校正面间的距离尺寸b之比值来确定。
在API610标准中规定D/b<6时,转子只做单面平衡就可以了;D/b≥6时可以作为转子是否为盘状转子的条件规定,但不能绝对化,因为转子做何种平衡还要考虑转子的工作转速。
动平衡与静平衡-7页
动平衡与静平衡————————————————————————————————作者: ————————————————————————————————日期:什么是动平衡?什么是静平衡?常用机械中包含着大量的作旋转运动的零部件,例如各种传动轴、主轴、电动机和汽轮机的转子等,统称为回转体。
在理想的情况下回转体旋转时与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。
但工程中的各种回转体,由于材质不均匀或毛坯缺陷、加工及装配中产生的误差,甚至设计时就具有非对称的几何形状等多种因素,使得回转体在旋转时,其上每个微小质点产生的离心惯性力不能相互抵消,离心惯性力通过轴承作用到机械及其基础上,引起振动,产生了噪音,加速轴承磨损,缩短了机械寿命,严重时能造成破坏性事故。
为此,必须对转子进行平衡,使其达到允许的平衡精度等级,或使因此产生的机械振动幅度降在允许的范围内。
1、定义:转子动平衡和静平衡的区别1)静平衡在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。
?2)动平衡(Dynamic Balancing )?在转子两个校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子在动态时是在许用不平衡量的规定范围内,为动平衡又称双面平衡。
2、转子平衡的选择与确定如何选择转子的平衡方式,是一个关键问题。
其选择有这样一个原则:只要满足于转子平衡后用途需要的前提下,能做静平衡的,则不要做动平衡,能做动平衡的,则不要做静动平衡。
原因很简单,静平衡要比动平衡容易做,省时、省力、省费用。
?现代,各类机器所使用的平衡方法较多,例如单面平衡(亦称静平衡[1])常使用平衡架,双面平衡(亦称动平衡)使用各类动平衡试验机。
静平衡精度太低,平衡效果差;动平衡试验机虽能较好地对转子本身进行平衡,但是对于转子尺寸相差较大时,往往需要不同规格尺寸的动平衡机,而且试验时仍需将转子从机器上拆下来,这样明显是既不经济,也十分费工(如大修后的汽轮机转子)。
风机动平衡及静平衡【共49张PPT】
弧线(间距5-6mm)
轴承
轴
图九
4)、做转子动平衡的记录图。在画弧线一侧的叶轮处画一配 重圆,在圆周上标出A点的位置。 A点位置的确定:延长A-A线与
配重圆相交,该交点即为A点,并将测得的振动值Soa按一定比例 沿OA向作出振动向量oa ,如图10所示:
按7)拆(除向原下试加箭重头量),将键求切出换的平输衡入块的重数量加位到;应加的位置上;
趋势,这种不平衡现象也称为静不平衡。 当根转据子转的子重质量量小分于布73的58不N时同,,转b=子10不m平m;衡情况可分为三种:
按并把(试向转子下开箭始头转子)开键始失切去换平输衡的入重的量数计下位来;。
在10画)弧拆线除一侧原的来叶的轮处试画加一重配重量圆;,将在1圆2周0g上的标平出A衡点重的位块置固。 定在230°的位置上.
8第)第二次三实次际启加动重转:机Q,=此1.时测得振幅应小到转机允许的范围内. 四这、就闪是光找法显测相著找静动不平平衡 衡所要加的平衡重量。
按按我计F们算F1(3用 加保返仪重存回器2)Q可测到=保A出测0存干/K有量扰=关0界力.的的面振最动。值大,振该幅值(作振为动加值重)后振及动相值位,(可角直度接)用变于平化衡,计就算可。以平衡它。 77))由由作作图法图求法出求的试出加的重试块所加产重生的块振所动产值O生A3的为振0. 动值OA3为0.
E——导轨材料的弹性模数,对于淬火钢 E=0.2*106Mpa;
[σ]——导轨和转轴材料的许用挤压应力,淬火钢可 采取700~800 Mpa;
d——转轴轴颈的直径,cm。
在实际应用中,导轨的平面宽度,常按转子 的重量近似的确定:当转子的重量小于4905N时, b=6~8mm;当转子的重量小于7358N时,b=10mm;当转 子的重量小于19620N时,b=30mm。
动平衡静平衡
动平衡静平衡动平衡与静平衡一. 静平衡静平衡在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。
二. 动平衡动平衡时,转子的两个或两个以上校正面同时平衡,校正后的剩余不平衡量在转子动态时允许不平衡量的规定范围内。
动平衡也叫双面或多面平衡。
三.转子平衡的选择与确定如何选择转子的平衡方式是一个关键问题。
它的选择有这样一个原则:只要满足于转子平衡后用途需要的前提下,能做静平衡的,则不要做动平衡,能做动平衡的,则不要做静动平衡。
原因很简单,静平衡要比动平衡容易做,省功、省力、省费用。
那么如何进行转子平衡型式的确定呢?需要从以下几个因素和依据来确定:1.转子的几何形状、结构尺寸,特别是转子的直径D与转子的两校正面间的距离尺寸b之比值,以及转子的支撑间距等。
2.转子的工作转速关转子平衡技术要求的技术标准,如GB3215、API610、GB9239和ISO1940等。
3.转子做静平衡的条件在GB9239平衡标准中,对刚性转子做静平衡的条件定义为:如果盘状转子的支撑间距足够大并且旋转时盘状部位的轴向跳动很小,从而可忽略偶不平衡(动平衡),这时可用一个校正面校正不平衡即单面(静)平衡,对具体转子必须验证这些条件是否满足。
在对大量的某种类型的转子在一个平面上平衡后,就可求得最大的剩余偶不平衡量,并除以支撑距离。
如果在最不利的情况下这个值不大于许用剩余不平衡量的一半,则采用单面(静)平衡就足够了。
从这个定义中不难看出转子只做单面(静)平衡的条件主要有三个方面:(1)一个是转子几何形状为盘状;(2)一个是转子在平衡机上做平衡时的支撑间距要大;(3)再一个是转子旋转时其校正面的端面跳动要很小。
对以上三个条件作如下说明:(1)何谓盘状转子主要用转子的直径D与转子的两校正面间的距离尺寸b之比值来确定。
在API610标准中规定D/b<6时,转子只做单面平衡就可以了;D/b≥6时可以作为转子是否为盘状转子的条件规定,但不能绝对化,因为转子做何种平衡还要考虑转子的工作转速。
动平衡和静平衡理论的方法和区别
动平衡和静平衡理论的方法和区别动平衡是指物体在外力作用下保持匀速直线运动或匀速圆周运动的状态。
动平衡可以从牛顿第一定律出发进行推导,即“一个物体如果受到合力为零的作用,将保持静止或匀速直线运动的状态”。
在实际问题中,可以通过分析物体所受合力的大小、方向和作用点来判断其动平衡的情况。
一般来说,如果物体所受合力的大小为零,则物体处于动平衡状态。
动平衡的方法包括力的合成和分解、牛顿第一定律和牛顿第二定律的应用等。
在力的合成和分解中,可以将合力分解为两个相互垂直的分力,其中一个分力与物体的运动方向相同,另一个分力与物体的运动方向垂直。
这样,在保持动平衡的情况下,物体可以分别受到这两个分力的作用,实现匀速直线运动或匀速圆周运动。
静平衡是指物体在外力作用下保持静止的状态。
从动平衡的概念可以推导出静平衡的条件,即“一个物体如果受到合力为零的作用,并且所受合力的力矩也为零,则物体将保持静止的状态”。
静平衡的条件可以通过分析物体所受合力的大小、方向和作用点以及力矩的大小、方向和作用点来判断。
静平衡的方法包括力和力矩的平衡、杆和支点的平衡等。
在力和力矩的平衡中,可以通过平衡条件分析物体所受合力和合力矩的大小、方向和作用点。
只有当合力和合力矩都为零时,物体才能处于静平衡状态。
在杆和支点的平衡中,可以通过分析杆的受力情况、支点的约束条件以及转动平衡方程来判断物体是否处于静平衡状态。
1.运动状态:动平衡是指物体在外力作用下保持匀速直线运动或匀速圆周运动的状态,而静平衡是指物体在外力作用下保持静止的状态。
2.力的平衡条件:动平衡的力平衡条件是合力为零,即物体所受合力的大小为零;静平衡的力平衡条件是合力为零,即物体所受合力的大小为零,并且合力的力矩也为零。
3.运动轨迹:动平衡的运动轨迹可以是直线或圆周,具体取决于物体所受合力的方向;静平衡的运动轨迹为静止,即物体不发生位移。
4.分析方法:动平衡的分析方法主要涉及力的合成和分解、牛顿第一定律和牛顿第二定律的应用等;静平衡的分析方法主要涉及力和力矩的平衡、杆和支点的平衡等。
动平衡与静平衡
什么是动平衡?什么是静平衡?常用机械中包含着大量的作旋转运动的零部件,例如各种传动轴、主轴、电动机和汽轮机的转子等,统称为回转体。
在理想的情况下回转体旋转时与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。
但工程中的各种回转体,由于材质不均匀或毛坯缺陷、加工及装配中产生的误差,甚至设计时就具有非对称的几何形状等多种因素,使得回转体在旋转时,其上每个微小质点产生的离心惯性力不能相互抵消,离心惯性力通过轴承作用到机械及其基础上,引起振动,产生了噪音,加速轴承磨损,缩短了机械寿命,严重时能造成破坏性事故。
为此,必须对转子进行平衡,使其达到允许的平衡精度等级,或使因此产生的机械振动幅度降在允许的围。
1、定义:转子动平衡和静平衡的区别1)静平衡在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定围,为静平衡又称单面平衡。
2)动平衡(Dynamic Balancing )在转子两个校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子在动态时是在许用不平衡量的规定围,为动平衡又称双面平衡。
2、转子平衡的选择与确定如何选择转子的平衡方式,是一个关键问题。
其选择有这样一个原则:只要满足于转子平衡后用途需要的前提下,能做静平衡的,则不要做动平衡,能做动平衡的,则不要做静动平衡。
原因很简单,静平衡要比动平衡容易做,省时、省力、省费用。
现代,各类机器所使用的平衡方法较多,例如单面平衡(亦称静平衡[1])常使用平衡架,双面平衡(亦称动平衡)使用各类动平衡试验机。
静平衡精度太低,平衡效果差;动平衡试验机虽能较好地对转子本身进行平衡,但是对于转子尺寸相差较大时,往往需要不同规格尺寸的动平衡机,而且试验时仍需将转子从机器上拆下来,这样明显是既不经济,也十分费工(如大修后的汽轮机转子)。
特别是动平衡机无法消除由于装配或其它随动元件引发的系统振动。
使转子在正常安装与运转条件下进行平衡通常称为“现场平衡”。
动平衡与静平衡理论的方法及区别
(将3Ⅰ) 、分Ⅱ解平为面对内称的及反A 、对B称力不同平时衡平力移(到图某3任-一8)个
点0上,由矢量三角形 、可以看出:;
A As AD
B Bs BD
As
Bs
1
(
A
2
B)
1
AD
BD
意(垂直于轴线)平面上的相应位置加二
个对称的共面平衡重量平衡静不平衡量,
在另一相应位置加上二个反对称的共面平
衡重量平衡动不平衡量,这样转子亦可获
得平衡。
5. 不ห้องสมุดไป่ตู้衡振动的初步分析
平衡转子前对振动(振幅和相位)进行初步分 析十分必要。
刚性转子的任一不平衡离心力均可分解为任 选二平面上的一对对称力及一对反对称力.同理, 振动也可分解为一对对称分振动及一对反对称分 振动。
、F12
为
A
;迭加
F12
、F22
为
B 显而易见,作用在Ⅰ、Ⅱ平面上的 A 、B
两力与不平衡离心力
F1
、F2 等效。
如果转子上有多个不平衡离心力存在,亦可同样 分 都解只到有该两选个定不的平衡Ⅰ合、力Ⅱ(平面A 上、再B 合)成(,Ⅰ最、终Ⅱ结平果 面 单上了各,一即个仅)分。别到在此Ⅰ校、正Ⅱ转平子面不不平平衡衡的合任力务A就、B简 的对侧(反方向)加重(或去重),使其产生的
去重),使转子获得平衡
(二)动不平衡 假设有一个具有两个平 面的转子的重心位于同一转轴 平面的两侧,且m1r1=m2r2, 整个转子的质心Mc仍恰好位于 轴线上(图3-3),显然,此 时转子是静平衡的。但当转子 旋转时,二离心力大小相等、 方向相反,组成一对力偶,此 力偶矩将引起二端轴承产生周 期性变化的动反力,其数值为:
静平衡与动平衡理论与方法及区别_图文
然后在l平衡平面内加试重P,再将转子启动升速至
平衡试验转速,同样测取诸测点处的振幅AiI、相位aiI, 其次将试重P依次移加到第Ⅱ、Ⅲ直到第(q—1)平衡
平面上,逐次将转子启动升速至平衡试验转速,每次在P
个测点处测取不平衡振动振幅Aij和相位角aij,对于平衡 平面j而言,它对各测点的影响系数为:
(一)根据经验公式求得试加重量大小
上式对n=3000r/min机组较为合适,
式中
A0—原始振幅(μm); R—加重半径(mm); W—转子重量 (Kg)
(二) 试加重量位置(方位)选择的原则
到目前为止,试加重量的方位选择主要依靠 经验
• 一般其不平衡重量超前测振点130~150º。
•刚性转子可以盘动几次,以静止位置来试加重 量。
静平衡与动平衡理论与方法及区别_图文.ppt
(二)动不平衡 假设有一个具有两个平 面的转子的重心位于同一转轴 平面的两侧,且m1r1=m2r2, 整个转子的质心Mc仍恰好位于 轴线上(图3-3),显然,此 时转子是静平衡的。但当转子 旋转时,二离心力大小相等、 方向相反,组成一对力偶,此 力偶矩将引起二端轴承产生周 期性变化的动反力,其数值为:
刚性转子的任一不平衡离心力均可分解为任 选二平面上的一对对称力及一对反对称力.同理, 振动也可分解为一对对称分振动及一对反对称分 振动。
若在二支承转子两端测得A侧振动值为 、B侧振
动值为 。将二振动矢量移动交于一点0,再
将 、 顶点连线的中点与0点相联,即得:
则
初步分析 、 及 、 的数值及相位,就能判断
由以上讨论可知,与在二个平面内加
二个平衡重量的结果相同,亦可在二个任
意(垂直于轴线)平面上的相应位置加二
动平衡与静平衡
什么是动平衡?什么是静平衡?常用机械中包含着大量的作旋转运动的零部件,例如各种传动轴、主轴、电动机和汽轮机的转子等,统称为回转体。
在理想的情况下回转体旋转时与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。
但工程中的各种回转体,由于材质不均匀或毛坯缺陷、加工与装配中产生的误差,甚至设计时就具有非对称的几何形状等多种因素,使得回转体在旋转时,其上每个微小质点产生的离心惯性力不能相互抵消,离心惯性力通过轴承作用到机械与其根底上,引起振动,产生了噪音,加速轴承磨损,缩短了机械寿命,严重时能造成破坏性事故。
为此,必须对转子进展平衡,使其到达允许的平衡精度等级,或使因此产生的机械振动幅度降在允许的围。
1、定义:转子动平衡和静平衡的区别1〕静平衡在转子一个校正面上进展校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定围,为静平衡又称单面平衡。
2〕动平衡〔Dynamic Balancing 〕在转子两个校正面上同时进展校正平衡,校正后的剩余不平衡量,以保证转子在动态时是在许用不平衡量的规定围,为动平衡又称双面平衡。
2、转子平衡的选择与确定如何选择转子的平衡方式,是一个关键问题。
其选择有这样一个原那么:只要满足于转子平衡后用途需要的前提下,能做静平衡的,那么不要做动平衡,能做动平衡的,那么不要做静动平衡。
原因很简单,静平衡要比动平衡容易做,省时、省力、省费用。
现代,各类机器所使用的平衡方法较多,例如单面平衡(亦称静平衡[1])常使用平衡架,双面平衡(亦称动平衡)使用各类动平衡试验机。
静平衡精度太低,平衡效果差;动平衡试验机虽能较好地对转子本身进展平衡,但是对于转子尺寸相差较大时,往往需要不同规格尺寸的动平衡机,而且试验时仍需将转子从机器上拆下来,这样明显是既不经济,也十分费工(如大修后的汽轮机转子)。
特别是动平衡机无法消除由于装配或其它随动元件引发的系统振动。
使转子在正常安装与运转条件下进展平衡通常称为“现场平衡〞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 刚性转子的平衡
检查和调整转子质量分布的工艺过程(或改善 转子质量分布的工艺方法),称为转子平衡。
3.1.1 刚性转子的平衡原理 一、转子不平衡类型
(一)静不平衡:如果不平衡质量矩存在于质心 所在的径向平面上,且无任何力偶矩存在时称为 静不平衡。它可在通过质心的径向平面加重(或
混合不平衡问题归结为一个合力
F1,
2
和一个力偶矩F2·l的作用。前者
是静不平衡,后者为动不平衡。
F1 1
-
动平衡与静平衡理论的方法及区别
5
(2)向任意二平面进行分解(图3-7)
将不平衡离心力 、 分别对任选(径
向)二平面Ⅰ、Ⅱ进行分解。将 分解为Ⅰ、
Ⅱ平面上的平行力 、 力 F2同1、理F2,2将,F2 分解为Ⅰ、Ⅱ平面上的平行
置于Ⅰ、Ⅱ平面上。若在Ⅰ平面0点上加一对大小相等、
方向相反的力
F2
、 F2
,则
F1
、F2 、F2 、F2
四个力组成
的力系与原、力系完全等价。
图3-6二平面转子受力分析
动平衡与静平衡理论的方法及区别
4
在0点求 F1 、F2 的合力 F1,2 ,Ⅰ平面中剩下的F2 与Ⅱ平面中的F2
正好组成力偶。经这样分解,得到了一般的不平衡状况,即将动静
去重),使转子获得平衡
动平衡与静平衡理论的方法及区别
1
(二)动不平衡 假设有一个具有两个平 面的转子的重心位于同一转轴 平面的两侧,且m1r1=m2r2, 整个转子的质心Mc仍恰好位于 轴线上(图3-3),显然,此 时转子是静平衡的。但当转子 旋转时,二离心力大小相等、 方向相反,组成一对力偶,此 力偶矩将引起二端轴承产生周 期性变化的动反力,其数值为:
14
(4) A 0 、B 0 之间夹角不大,但振幅相差很大(图 3-15)。在A端加平衡质量(动.静) (5) A 0 、B 0 之间夹角很大(≈180º),振幅相
量(在Ⅰ、Ⅱ平面内),在 A D 、 B D 的相反方向 加一对反方向的对称平衡重量(亦在Ⅰ、Ⅱ平面 内),就可使整个转子达到平衡。
动平衡与静平衡理论的方法及区别
9
显然,同方向对称力 A s 、B s 可以认为是由 于静不平衡分量产生的,反方向对称 力 A D 、B D ,可以认为是由动不平衡分量 产生的。所以,对刚性转子而言,可用同
将 A 0 、B 0 顶点连线的中点与0点相联,即得:
A0 As AD
B0 Bs BD
动平衡与静平衡理论的方法及区别
11
动平衡与静平衡理论的方法及区别
12
则
As Bs 12(A0B0)
As Bs 12(A0B0)
初步分析 A s 、B s 及 A D 、B 0 的数值及相位,就能判断 引起振动的主要原因(是静不平衡还是动不平衡造成) 以及不平衡质量主要位于哪一侧。 (1) A 0 、B 0 之间相位差不大(<=45º)、振幅值也相差 不大(图3-12)。由于 As AD ; Bs BD ,说明 振动主要由静不平衡引起、加减(或减)对称(同相) 平衡质量即可消除或减小振动。
(2) A 0 、B 0 之间夹角很大(≈180º),且振幅值相接近 (图3-13)。应加(或减)反对称平衡质量。
(3) A 0 、B 0 之间夹角接近90º,振幅值相差不大
动平衡与静平衡理论的方法及区别
13
(图3-14)。应在两侧加对称和反对称平衡质量。
振动初步分析
动平衡与静平衡理论的方法及区别
10
5. 不平衡振动的初步分析
平衡转子前对振动(振幅和相位)进行初步分 析十分必要。
刚性转子的任一不平衡离心力均可分解为任 选二平面上的一对对称力及一对反对称力.同理, 振动也可分解为一对对称分振动及一对反对称分 振动。
若在二支承转子两端测得A侧振动值为 A 0 、B侧振
动值为 B 0 。将二振动矢量移动交于一点0,再
迭加
F1 1
、F12
为
A ;迭加
F1 2
、F2
2
为
B 显而易见,作用在Ⅰ、Ⅱ平面上的 A、B
两力与不平衡离心力
F1
、F2 等效。
动平衡与静平衡理论的方法及区别
6
如果转子上有多个不平衡离心力存在,亦可同样 分解到该选定的Ⅰ、Ⅱ平面上再合成,最终结果 都只有两个不平衡合力( A 、B )(Ⅰ、Ⅱ平 面 单上了各,一即个仅)分。别到在此Ⅰ校、正Ⅱ转平子面不不平平衡衡的合任力务A 就、B 简 的对侧(反方向)加重(或去重),使其产生的
二、刚性转子的平衡原理
1.不平衡离心力的分解
图3-4三种不平衡
(1)分解为一个合力及一个力偶
矩,以两平面转子为例。由理论力(任意力系)可以分解为一个径向力和一个 力偶。
动平衡与静平衡理论的方法及区别
3
如图3-6所示二平面转子,不平衡离心力 F1 、F2 , 分别
A DBD1 2(A B )
由此可见,已将 A 、B 分解为大小相等,方向相同
的力等对效A D 称,B、力即D B与AD s 了不、。平B s 由衡及F 于离大1心小A s力相,等B s 即、、 、F 方A2D向、等相B效D反与。的如反A 果对、在称B :
A s B s 的相反方向加一对同方向的对称平衡重
附加离心力与上述不平衡合力相等,这样转子就 达到了平衡。
(将3Ⅰ) 、分Ⅱ解平为面对内称的及反A 、对B称力不同平时衡平力移(到图某3任-一8)个
点0上,由矢量三角形、可以看出:;
AAsAD
BBsBD
动平衡与静平衡理论的方法及区别
7
动平衡与静平衡理论的方法及区别
8
As Bs 1 2(A B )
方向平衡重量平衡静不平衡分量,用反方 向平衡重量平衡动不平衡分量。
由以上讨论可知,与在二个平面内加
二个平衡重量的结果相同,亦可在二个任
意(垂直于轴线)平面上的相应位置加二
个对称的共面平衡重量平衡静不平衡量,
在另一相应位置加上二个反对称的共面平
衡重量平衡动不平衡量,这样转子亦可获
得平衡。
动平衡与静平衡理论的方法及区别
。
ABFlm1lr LL
w2 g
这种由力偶矩引起的转子及
轴承的振动的不平衡叫做动不
动平衡与静平衡理论的方法及区别
2
平衡。
(三)动静混合不平衡 实际转子往往都是动静混合不平 衡。转子诸截面上的不平衡离心力 形成的偏心距不相等,质心也不在 旋转轴线上。转动时离心力合成成 为一个合力(主向量)和一个力偶 (主力矩),即构成一静不平衡力 和一动不平衡力偶。(图3-4)。