全等三角形综合测试题(较难)
全等三角形综合测试题(含答案)
图12图A 'C AD B E21图4 C A D B E 图10 C A D B E F 图2 图6m nCAB图11 12CA DB EF M N O ABCD F图 5A B DC EF 图1 图3 45321DAOECB DAC B全等三角形综合复习测试题一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分) 1.已知等腰三角形的一个内角为50,则这个等腰三角形的顶角为【 】. (A )50(B )80(C )50或80(D )40或652. 如图1所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且ABC S △=4平方厘米,则BEF S △的值为 【 】.(A )2平方厘米 (B )1平方厘米 (C )12平方厘米 (D )14平方厘米3. 已知一个三角形的两边长分别是2厘米和9厘米,且第三边为奇数,则第三边长为【 】. (A )5厘米 (B )7厘米 (C )9厘米 (D )11厘米4. 工人师傅常用角尺平分一个任意角.做法如下:如图2所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是 【 】.(A )HL (B )SSS (C )SAS (D )ASA 5. 利用三角形全等所测距离叙述正确的是( )A.绝对准确B.误差很大,不可信C.可能有误差,但误差不大,结果可信D.如果有误差的话就想办法直接测量,不能用三角形全等的方法测距离 6. 在图3所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于 【 】. (A )145° (B )180° (C )225° (D )270° 7. 根据下列条件,能判定△ABC ≌△A ′B ′C ′的是 【 】. (A )AB =A ′B ′,BC =B ′C ′,∠A =∠A ′ (B )∠A =∠A ′,∠B =∠B ′,AC =B ′C ′(C )∠A =∠A ′,∠B =∠B ′,∠C =∠C ′(D )AB =A ′B ′,BC =B ′C ′,△ABC 的周长等于△A ′B ′C ′的周长 8. 如图4所示,△ABC 中,∠C =90°,点D 在AB 上,BC =BD ,DE ⊥AB 交AC 于点E .△ABC 的周长为12,△ADE 的周长为6.则BC 的长为 【 】. (A )3 (B )4 (C )5 (D )69. 将一副直角三角尺如图5所示放置,已知AE BC ∥,则AFD ∠的度数是 【 】.(A )45(B )50 (C )60(D )75图7 图810. 如图6所示,m ∥n ,点B ,C 是直线n 上两点,点A 是直线m 上一点,在直线m 上另找一点D ,使得以点D ,B ,C 为顶点的三角形和△ABC 全等,这样的点D 【 】.(A )不存在 (B )有1个 (C )有3个 (D )有无数个 二、填一填,要相信自己的能力!(每小题3分,共30分) 1.在ABC ∆中,若A ∠=1123B C =∠,则ABC ∆是 三角形.2. 如图7所示,BD 是ABC ∆的中线,2AD =,5AB BC +=,则ABC ∆的周长是 .3. 如图8所示所示,在ABC ∆中,BD ,CE 分别是AC 、AB 边上的高,且BD 与CE 相交于点O ,如果135BOC ∠=︒,那么A ∠的度数为 .4. 有5条线段,长度分别为1厘米、2厘米、3厘米、4厘米、5厘米,以其中三条线段为边长,共可以组成________个形状不同的三角形.5. 如图9所示,将纸片△ABC 沿DE 折叠,点A 落在点A ′处,已知∠1+∠2=100°,则∠A 的大小等于_____度.6. 如图10所示,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则△ABC ≌△DEF ,理由是______.7. 如图11所示,AD ∥BC ,AB ∥DC ,点O 为线段AC 的中点,过点O 作一条直线分别与AB 、CD 交于点M 、N .点E 、F 在直线MN 上,且OE =OF .图中全等的三角形共有____对.8. 如图12所示,要测量河两岸相对的两点A 、B 的距离,在AB 的垂线BF 上取两点C 、D ,使BC =CD ,过D 作BF 的垂线DE ,与AC 的延长线交于点E ,则∠ABC =∠CDE =90°,BC =DC ,∠1=______,△ABC ≌_________,若测得DE 的长为25 米,则河宽AB 长为_________. 9. 如图13所示,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .10. 如图14所示,三角形纸片ABC ,AB =10厘米,BC =7厘米,AC =6厘米.沿 过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长为______厘米.图14 C A DB E 图1335°D AEC B三、做一做,要注意认真审题呀!(本大题共38分) 1.(8分)如图15所示,在ABC ∆中,已知AD BC ⊥,64B ∠=︒,56C ∠=︒. (1)求BAD ∠和DAC ∠的度数;(2)若DE 平分ADB ∠,求AED ∠的度数.图15 2.(10分)已知:线段a ,b ,c (如图16所示),画△ABC ,使BC =a ,CA =b ,AB =c .(保留作图痕迹,不必写画法和证明)3.(10分)图17为人民公园的荷花池,现要测量此荷花池两旁A 、B 两棵树间的距离(不能直接测量),请你根据所学三角形全等的知识,设计一种测量方案求出AB 的长(要求画出草图,写出测量方案和理由). 4.(10分)如图18所示,△ADF 和△BCE 中,∠A =∠B ,点D ,E ,F ,C 在同—直线上,有如下三个关系式:①AD =BC ;②DE =CF ;③BE ∥AF .(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的结论. (2)选择(1)中你写出的—个正确结论,说明它正确的理由.四、拓广探索!(本大题共22分)1.(10分)如图19,在△ABC 中,点E 在AB 上,点D 在BC 上,BD =BE ,∠BAD =∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.2.(12分)两个大小不同的等腰直角三角形三角板如图20①所示放置,图20②是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .(1)请找出图20②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母); (2)试说明:DC BE ⊥.图16 b a c图17 图18 FE BDA C 图20①②DABBD FAE 图19参考答案一、1~10 CB C BC CD ADB. 二、1. 直角. 2.9. 3. 45°. 4.3. 5. 50. 6. HL. 7.4. 8. ∠2,△EDC ,25 m. 9. 125°. 10. 9.三、1. (1)90905634DAC C ∠=︒-∠=︒-︒=︒. (2)109AED ∠=︒. 2.画图略.3.方案不惟一,画图及理由略.4.(1)如果①、③,那么②或如果②、③,那么①; (2)选择“如果①、③,那么②”证明,过程略. 四、1. △AFC 是等腰三角形.理由略 . 2.(1)图2中ABE ACD △≌△.理由如下:ABC △与AED △均为等腰直角三角形AB AC ∴=,AE AD =,90BAC EAD ∠=∠=, BAC CAE EAD CAE ∴∠+∠=∠+∠, 即BAE CAD ∠=∠ , ABE ACD ∴△≌△.(2)说明:由(1)ABE ACD △≌△知45ACD ABE ∠=∠=, 又45ACB ∠=90BCD ACB ACD ∴∠=∠+∠=,DC BE ∴⊥。
七年级全等三角形测试题(卷)八套
全等三角形测试题一1.下图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ2.在△ABC和△A'B'C'中 , 要使△ABC≌△A'B'C' , 需满足条件()A.AB=A'B', AC=A'C', ∠B=∠B'B.AB =A'B', BC=B'C', ∠A=∠A'C.AC=A'C', BC=B'C', ∠C=∠C'D.AC=A'C', BC=B'C', ∠C=∠B'3.如图,AB∥CD,AC∥DB,AD与BC交于0,AE⊥BC.于E,DF⊥BC于F,那么图中全等的三角形有( )对A.5 B.6 C.7 D.84.如图,在△ABC中,AC=BC,∠ACB=90°.AD平分∠BAC,BE⊥AD交AC的延长线于F,E为垂足.则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE,其中正确结论的个数是( )A.1 B.2 C.3 D.45.如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.6.已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=__ ______.7.如图,0A=0B,OC=OD,∠O=60°,∠C=25°,则∠BED等于8.在△ABC中,高AD和BE交于H点,且BH=AC,则∠ABC=9.如图,已知AE平分∠BAC,BE上AE于E,ED∥AC,∠BAE=36°,那么∠BED=10.如图,把△ABC绕点C顺时针旋转35度,得到△A′B′C, A′B′交AC乎点D,已知∠A′DC=90°,求∠A的度数11.已知:如图AB=CD,AD=BC 求证:AD∥BC.12.已知:如图 , E, B, F, C四点在同一直线上, ∠A=∠D=90° , BE=FC, AB=DF.求证:∠E=∠C13.如图 , AB BC于B , AD DC于D , 且CB=CD , AC , BD相交于O.求证:∠ABD=∠ADB14.已知:如图 , AE , FC都垂直于BD , 垂足为E、F , AD=BC , BE=DF.求证:OA=OC.15.已知:如图 , AB=CD , D、B到AC的距离DE=BF.求证:AB∥CD.16.已知:如图,∠A=∠D=90°,AC,BD交于O,AC=BD.求证:OB=OC.全等三角形测试题二1.如图,已知AB=AD,要使△ABC≌△ADC,可增加条件,理由是定理。
八年级全等三角形单元综合测试(Word版 含答案)
八年级全等三角形单元综合测试(Word版含答案)一、八年级数学轴对称三角形填空题(难)1.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB6,∵AC=BC2AB=3∴BE=23﹣6;③若MA=ME 则∠MAE=∠AEM=45°∵∠BAC=90°,∴∠BAE=45°∴AE平分∠BAC∵AB=AC,∴BE=1BC=3.2故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.2.在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有_____个.【答案】4【解析】【分析】以O为圆心,OA为半径画弧交x轴于点P1、P3,以A为圆心,AO为半径画弧交x轴于点P4,作OA的垂直平分线交x轴于P2.【详解】解:如图,使△AOP是等腰三角形的点P有4个.故答案为4.【点睛】本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.3.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.【答案】80或100【解析】【分析】根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.【详解】由题意可分如下两种情况:(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠(等边对等角),两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,又12DAE BAC ∠+∠+∠=∠20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒,由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠+︒+∠=︒,80BAC ∴∠=︒;(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,3,4B C ∴∠=∠∠=∠(等边对等角),两式相加得34B C ∠+∠=∠+∠,又34DAE BAC ∠+∠+∠=∠,3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒,20B C BAC ∴∠+∠=∠-︒由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠-︒+∠=︒,100BAC ∴∠=︒.故答案为80或100.【点睛】本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.4.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B , ∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,∴∠CA 2A 1= 108022BA A ︒∠= =40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴第n个等腰三角形的底角∠A n= 11()802n-︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键.5.如图,线段AB,DE的垂直平分线交于点C,且72ABC EDC∠=∠=︒,92AEB∠=︒,则EBD∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE,由线段AB,DE的垂直平分线交于点C,得CA=CB,CE=CD,ACB=∠ECD=36°,进而得∠ACE=∠BCD,易证∆ACE≅∆BCD,设∠AEC=∠BDC=x,得则∠BDE=72°-x,∠CEB=92°-x,BDE中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE,∵线段AB,DE的垂直平分线交于点C,∴CA=CB,CE=CD,∵72ABC EDC∠=∠=︒=∠DEC,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD,在∆ACE与∆BCD中,∵CA CBACE BCDCE CD=⎧⎪∠=∠⎨⎪=⎩,∴∆ACE≅∆BCD(SAS),∴∠AEC=∠BDC,设∠AEC=∠BDC=x,则∠BDE=72°-x,∠CEB=92°-x,∴∠BED=∠DEC-∠CEB=72°-(92°-x)=x-20°,∴在∆BDE中,∠EBD=180°-(72°-x)-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.6.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.【答案】30°【解析】【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.【详解】解:∵AB AC =,82BAC ∠=︒,∴180492BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∴∠EBC=11°+11°+38°=60°,∵BD=BC,∴BE=BC,∴△EBC是等边三角形,∴∠BEC=60°,EB=EC,又∵AB=AC,EA=EA,∴△AEB≌△AEC(SSS),∴∠BEA=∠CEA=1302BEC∠=︒,∴∠ADB=30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D关于直线AB的对称点E,构造等边三角形和全等三角形的模型是解题的关键.7.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC上一点,DA⊥AC,AD=24 cm,则BC 的长________cm.【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC,∠BAC=120°∴∠B=∠C=30°∵DA⊥AC,AD=24 cm∴DC=2AD=48cm,∵∠BAC=120°,DA⊥AC∴∠BAD=∠BAC-90°=30°∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.8.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AE平分∠BAC,∠D=∠DBC=60°,若BD=5cm,DE=3cm,则BC的长是 ______cm.【答案】8.【解析】【分析】作出辅助线后根据等边三角形的判定得出△BDM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【详解】解:延长DE交BC于M,延长AE交BC于N,作EF∥BC于F,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴△EFD为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm),故答案为8.【点睛】本题考查等边三角形的判定与性质;等腰三角形的性质.9.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.【详解】∵CD 平分∠ACE ,∴∠ACE=2∠ACD=2∠ECD ,∴∠ECB=∠ACB -∠ACE=∠ACB -2∠ACD ,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB -2∠ACD=100°,∵AB=AC ,∴∠ABC=∠ACB,∴2∠ACB -2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.10.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO时,△POQ是等腰三角形,如图2所示当点P在BO上时∵PO=AP-AO=2t-10,OQ=t当PO=QO时,210t t-=解得10t=故答案为:103或10【点睛】本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.二、八年级数学轴对称三角形选择题(难)11.如图,平面直角坐标系中存在点A(3,2),点B(1,0),以线段AB为边作等腰三角形ABP,使得点P在坐标轴上.则这样的P点有()A.4个B.5个C.6个D.7个【答案】D【解析】【分析】本题是开放性试题,由题意知A、B是定点,P是动点,所以要分情况讨论:以AP、AB为腰、以AP 、BP 为腰或以BP 、AB 为腰.则满足条件的点P 可求.【详解】由题意可知:以AP 、AB 为腰的三角形有3个;以AP 、BP 为腰的三角形有2个;以BP 、AB 为腰的三角形有2个.所以,这样的点P 共有7个.故选D .【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;分类别寻找是正确解答本题的关键.12.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )A .90α+B .1902α+C .180α-D .1802α-【答案】D【解析】【分析】 过P 点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.【详解】解:过P 点作OB 的对称点1P ,过P 作OA 的对称点2P ,连接12PP ,交点为M,N ,则此时PMN 的周长最小,且△1P NP 和△2PMP 为等腰三角形.此时∠12P PP =180°-α;设∠NPM=x°,则180°-x°=2(∠12P PP -x°)所以 x°=180°-2α【点睛】求出M,N在什么位子△PMN周长最小是解此题的关键.13.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.245C.5 D.6【答案】C【解析】试题解析:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴12×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故选C.14.如图,点D,E是等边三角形ABC的边BC,AC上的点,且CD=AE,AD交BE于点P,BQ⊥AD于点Q,已知PE=2,PQ=6,则AD等于( )A.10 B.12 C.14 D.16【答案】C【解析】【分析】由题中条件可得△ABE≌△CAD,得出AD=BE,∠ABE=∠CAD,进而得出∠BPD=60°.在Rt△BPQ中,根据30度角所对直角边等于斜边的一半,求出BP的长,进而可得结论.【详解】∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°.又∵AE=CD,∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,AD=BE,∴∠BPD=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°.∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ=2×6=12,∴AD=BE=BP+PE=12+2=14.故选C.【点睛】本题考查了含30度角的直角三角形的性质、等边三角形的性质以及全等三角形的判定和性质,证明∠BPD=60°是解答本题的关键.15.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC是特异三角形,∠A=30°,∠B为钝角,则符合条件的∠B有()个.A.1 B.2 C.3 D.4【答案】B【解析】【分析】【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A为圆心,AB长为半径画弧,交AC于点D,构成等腰△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.16.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△A CI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是( )A.①②③B.②③④C.①③④D.①②④【答案】C【解析】【分析】根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】①∵IB平分∠ABC,∴∠DBI=∠CBI.∵DE∥BC,∴∠DIB=∠CBI,∴∠DBI=∠DIB,∴BD=DI,∴△DBI是等腰三角形.故本选项正确;②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形.故本选项错误;③∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC.故本选项正确;④∵BD=DI,同理可得EI=EC,∴△ADE的周长=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.故本选项正确;其中正确的是①③④.故选C.【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.17.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为()A.12 B.16 C.24 D.32【答案】A【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,再根据三角形的周长求出AD的长,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∵△CDM周长的最小值为8,∴AD=8-12BC=8-2=6∴S△ABC=12BC•AD=12×4×6=12,【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.18.如图,已知长方形ABCD,AB=1,BC=2,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为( )A.1 B.1+3C.2+3D.3【答案】B【解析】【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E 也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE的值.【详解】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+33,∴MA+MD+ME的最小值为4+33.故选B.本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题.19.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0 ),C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为()A.(3,4),(2,4)B.(3,4),(2,4),(8,4)C.(2,4),(8,4)D.(3,4),(2,4),(8,4),(2.5,4)【答案】B【解析】试题解析:有两种情况:①以O为圆心,以5为半径画弧交BC于P点,此时OP=OD=5,在Rt△OPC中,OC=4,OP=5,由勾股定理得PC=3,则P的坐标是(3,4);②以D为圆心,以5为半径画弧交BC于P′和P″点,此时DP′=DP″=OD=5,过P′作P′N⊥OA于N,在Rt△OP′N中,设CP′=x,则DN=5-x,P′N=4,OP=5,由勾股定理得:42+(5-x)2=52,x=2,则P′的坐标是(2,4);过P″作P″M⊥OA于M,设BP″=a,则DM=5-a,P″M=4,DP″=5,在Rt△DP″M中,由勾股定理得:(5-a)2+42=52,解得:a=2,∴BP″=2,CP″=10-2=8,即P ″的坐标是(8,4);假设0P=PD ,则由P 点向0D 边作垂线,交点为Q 则有PQ 2十QD 2=PD 2,∵0P=PD=5=0D ,∴此时的△0PD 为正三角形,于是PQ=4,QD=120D=2.5,PD=5,代入①式,等式不成立.所以排除此种可能.故选B .20.如图,在平面直角坐标系中,A(1,2),B(3,2),连接AB ,点P 是x 轴上的一个动点,连接AP 、BP ,当△ABP 的周长最小时,对应的点P 的坐标和△ABP 的最小周长分别为( )A .(1,0),224+B .(3,0),224+C .(2,0), 25D .(2,0),252+【答案】D【解析】 作A 关于x 轴的对称点N (1,-2),连接BN 与x 轴的交点即为点P 的位置,此时△ABP 的周长最小.设直线BN 的解析式为y kx b =+,∵N (1,-2),B (3,2),∴232k b k b +=-⎧⎨+=⎩, 解得24k b =⎧⎨=-⎩, ∴24y x =-,当0y =时,240x -=,解得,2x=,∴点P的坐标为(2,0);∵A(1,2),B(3,2),∴AB//x轴,∵AN⊥x轴,∴AB⊥x轴,在Rt△ABC中,AB=2,AN=4,由勾股定理得,BN==∵AP=NP,∴△ABP的周长最小值为:AB+BP+AP=AB+BP+PN=AB+BN故选D.点睛:本题考查最短路径问题.利用轴对称作出点P的位置是解题的关键.。
初中数学八年级上册第12章《全等三角形》单元同步检测试题 考卷形式稍难(Word版附答案)
第12章 《全等三角形》单元同步检测试题考生注意: 1.考试时间90分钟.2. 全卷共三大题,满分120分. 题号 一 二 三总分 21 22 23 24 25 26 27 28 分数一、选择题(每题3分,共30分)1.下列说法中不正确的是 ( )A .全等三角形的对应高相等B .全等三角形的面积相等 C.全等三角形的周长相等D .周长相等的两个三角形全等2.如图所示,在Rt △ABC 中,AD 是斜边上的高,∠ABC 的平分线分别交AD 、AC 于点F 、E ,EG ⊥BC 于G ,下列结论正确的是( ) A .∠C=∠ABCB .BA=BGC .AE=CED . AF=FD3.P 是∠AOB平分线上一点,CD ⊥OP 于F ,并分别交OA .OB 于CD ,则P 点到∠AOB 两边距离之和.( ) A .小于 B .大于 C .等于D .不能确定4.如果两个三角形全等,则不正确的是 ( )A .它们的最小角相等B .它们的对应外角相等 C.它们是直角三角形D .它们的最长边相等5.下列条件中,不能判定三角形全等的是 ( )A .三条边对应相等B .两边和一角对应相等C.两角的其中一角的对边对应相等 D .两角和它们的夹边对应相等6.如图,已知AD=AE ,BE=CD ,∠1=∠2=110°,∠BAC=80°,则∠CAE 的度数是( ) A .20° B .30° C .40° D .50°7.如图,在△ABC 中,AB =AC ,BE 、CF 是中线,则由( )可得△AFC ≌△AEB .A . SSSB . SASC . AASD . ASA8.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( ) A . SSS B . SAS C . AAS D . ASA9.平面上有△ACD 与△BCE ,其中AD 与BE 相交于P 点,如图.若AC=BC ,AD=BE ,CD=CE ,∠ACE=55°,∠BCD=155°,则∠BPD 的度数为( ) A .110°B .125°C .130°D .155°10.如图,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CA =∠B ′CB ,④AB =A ′B ′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( ) A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.如图,在△ABC 与△ADC 中,已知AD =AB ,在不添加任何辅助线的前提下,要使△ABC ≌△ADC ,只需再添加的一个条件可以是________.12.如图,在直角△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,若CD =4,则点DA B CE D G FC DBA21EABCEF 第2题图第3题图 第6题图 第7题图第8题图 第9题图第10题图到斜边AB的距离为________.13.如图,若△AOB≌△A′OB′,∠B=30°,∠AOA′=52°,则∠A′CO=________.14.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________对全等三角形.15.如图,已知AB∥CF,E为AC的中点,若FC=6cm,DB=3cm,则AB=________.16.如图,在△ABC中,∠B=∠C=50°,BD=CF,BE=CD,则∠EDF的度数是________.17.我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是________时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是________时,它们一定不全等.18.如图,在平面直角坐标系中,已知点A(0,3),B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为________.三、解答题(共66分)19.(8分)如图,点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.20.(8分)如图,点D在BC上,∠1=∠2,AE=AC,下面有三个条件:①AB=AD;②BC=DE;③∠E=∠C,请你从所给条件①②③中选一个条件,使△ABC≌△ADE,并证明两三角形全等.21.(8分)如图,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,E在BC的延长线上,且AE=BD,BD的延长线与AE交于点F.试通过观察、测量、猜想等方法来探索BF与AE有何特殊的位置关系,并说明你猜想的正确性.22.(10分)如图,在△ABC中,点O是∠ABC、∠ACB平分线的交点,AB+BC+AC=12,过O作OD⊥BC于D点,且OD=2,求△ABC的面积.23.(10分)如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3),求点B的坐标.24.(10分)如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC 于F.(1)求证:BE=CF;(2)如果AB=8,AC=6,求AE,BE的长.25.(12分)在直角△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC和∠BCA的平分线,AD,CE相交于点F.(1)求∠EFD的度数;(2)判断FE与FD之间的数量关系,并证明你的结论.参 考 答 案:一.选择题 1.D 2.B 3.B 4.C 5.B 6.A 7.B 8.D 9.C . 10.B二、填空题11.DC =BC 或∠DAC =∠BAC 12.4 13.82° 14.3 15.9 16.50°17.钝角三角形或直角三角形 钝角三角形18.(6,6) 解析:如图,过点C 作CE ⊥OA ,CF ⊥OB ,垂足分别为E ,F .则∠OEC =∠OFC =90°.∵∠AOB =90°,∴∠ECF =90°.∵∠ACB =90°,∴∠ACE =∠BCF .在△ACE 和△BCF 中,⎩⎪⎨⎪⎧∠AEC =∠BFC =90°,∠ACE =∠BCF ,AC =BC ,∴△ACE ≌△BCF (AAS),∴AE =BF ,CE =CF ,∴点C 的横纵坐标相等,∴OE =OF .∵AE =OE -OA =OE -3,BF =OB -OF =9-OF ,∴OE =OF =6,∴C (6,6).三、解答题19.证明:∵点C 是AE 的中点,∴AC =CE .(2分)在△ABC 和△CDE 中,⎩⎪⎨⎪⎧AC =CE ,∠A =∠ECD ,AB =CD ,∴△ABC ≌△CDE (SAS),(7分)∴∠B =∠D .(8分)20.解:选②BC =DE .(1分)∵∠1=∠2,∠3=∠4,∴∠E =∠C .(3分)在△ADE 和△ABC 中,⎩⎪⎨⎪⎧AE =AC ,∠E =∠C ,DE =BC ,∴△ADE ≌△ABC (SAS).(8分)21.解:猜想:BF ⊥AE .(2分)理由如下:∵∠ACB =90°,∴∠ACE =∠BCD =90°.又BC =AC ,BD =AE ,∴△BDC ≌△AEC (HL).∴∠CBD =∠CAE .(5分)又∵∠CAE +∠E =90°,∴∠EBF +∠E =90°.∴∠BFE =90°,即BF ⊥AE .(8分)22.解:如图,过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA .(2分)∵点O 是∠ABC ,∠ACB 平分线的交点,∴OE =OD ,OF =OD ,即OE =OF =OD =2.(5分)∴S △ABC =S △ABO +S △BCO +S △ACO =12AB ·OE +12BC ·OD +12AC ·OF =12×2×(AB +BC +AC )=12×2×12=12.(10分)23.解:如图,过A 和B 分别作AD ⊥x 轴于D ,BE ⊥x 轴于E ,(1分)∴∠ADC =∠CEB =90°,∴∠ACD +∠CAD =90°.∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE .(3分)在△ADC 和△CEB 中,∠ADC =∠CEB =90°,∠CAD =∠BCE ,AC =BC ,∴△ADC ≌△CEB (AAS),∴CD =BE ,AD =CE .(6分)∵点C 的坐标为(-2,0),点A 的坐标为(-6,3),∴OC =2,CE =AD =3,OD =6,∴CD =OD -OC =4,OE =CE -OC =3-2=1,∴BE =4,∴点B 的坐标是(1,4).(10分)24.(1)证明:连接DB ,DC ,∵DG ⊥BC 且平分BC ,∴∠DGB =∠DGC =90°,BG =CG .又DG =DG ,∴△DGB ≌△DGC ,∴DB =DC .∵AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∠BED =∠AED =∠DFC =90°.(3分)在Rt △DBE 和Rt △DCF 中,⎩⎪⎨⎪⎧DB =DC ,DE =DF ,∴Rt △DBE ≌Rt △DCF (HL),∴BE =CF .(5分)(2)解:在Rt △ADE 和Rt △ADF 中,⎩⎪⎨⎪⎧AD =AD ,DE =DF ,∴Rt △ADE ≌Rt △ADF (HL),∴AE =AF .(7分)∵AC +CF =AF ,∴AE =AC +CF .∵AE =AB -BE ,∴AC +CF =AB -BE ,即6+BE =8-BE ,∴BE =1,∴AE =8-1=7.(10分)25.解:(1)∵△ABC 中,∠ACB =90°,∠B =60°,∴∠BAC =30°.(1分)∵AD ,CE 分别是∠BAC 和∠BCA 的平分线,∴∠F AC =12∠BAC =15°,∠FCA =12∠ACB =45°.∴∠AFC=180°-∠F AC -∠FCA =120°,∴∠EFD =∠AFC =120°.(4分)(2)结论:FE =FD .(5分)证明:如图,在AC 上截取AG =AE ,连接FG ,∵AD 是∠BAC 的平分线,∴∠EAF =∠GAF .在△F AE 和△F AG 中,⎩⎪⎨⎪⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,∴△AEF ≌△AGF (SAS),∴FE =FG ,∠AFE =∠AFG .(8分)∵∠EFD =120°,∴∠DFC =60°,∠AFG =∠AFE =60°,∴∠CFG =60°=∠DFC .∵EC 平分∠BCA ,∴∠DCF =∠FCG =45°.在△FGC 和△FDC 中,∵⎩⎪⎨⎪⎧∠GFC =∠DFC ,FC =FC ,∠FCG =∠FCD ,∴△FGC ≌△FDC (ASA),∴FG =FD ,∴FE=FD .(12分)。
各类型中高难度全等三角形125题(答案版)
1.已知:如图,AB ∥DE ,AC ∥DF ,BE =CF .求证:AB =DE .A DB EC F 【答案】∵ AB ∥ DE ,∴ ∠B =∠DEF∵AC ∥DF ,∴∠F =∠ACB∵ BE =CF ,∴ BE +EC =CF +EC 即 BC =EF∴∆ABC ≌∆DEF ,∴AB =DE .2.图中是一副三角板,45︒的三角板Rt ∆DEF 的直角顶点D 恰好在30︒的三角板Rt ∆ABC 斜边AB 的中点处,∠A = 30︒,∠E = 45︒,∠EDF =∠ACB = 90︒,DE 交AC 于点G ,GM ⊥AB 于M .(1)如图1,当DF 经过点C 时,作CN ⊥AB 于N ,求证:AM =DN .(2)如图2,当DF ∥AC 时,DF 交BC 于H ,作HN ⊥AB 于N ,(1)的结论仍然成立,请你说明理由.FCEGAM D N B图1ECFG HA B图2【答案】⑴ ∵ ∠A = 30︒,∠ACB = 90︒, D 是 AB 的中点,∴ BC =BD , ∠B = 60︒ ∴△BCD 是等边三角形.又∵CN ⊥DB ,∴DN =1DB ,2∵∠EDF = 90︒,∆BCD 是等边三角形.∴∠ADG = 30︒,而∠A = 30︒,∴GA =GD .∵ GM ⊥AB ,∴AM =1 AD 2又∵AD =DB ,∴AM =DN .⑵∵DF ∥AC ,∴∠BDF =∠A = 30︒,∠AGD =∠GDH = 90︒,∴∠ADG = 60︒.∵∠B = 60︒,AD =DB ,∴∆ADG ≌∆DBH ,∴AG =DH ,又∵∠BDF =∠A ,GM ⊥AB ,HN ⊥AB ,∴∆AMG ≌∆DNH .∴AM =DN .3.在正方形ABCD 中,AB 、BC 、CD 三边上分别有点E 、G 、F ,且EF ⊥DG .求证:EF =DG .⎨ ⎩ADA DEEM FFB G CBGC【答案】过点C 作 EF 的平行线,交 AB 于 M .易知CM = EF .从而证的∆BCM ≌ ∆CDG ,从而有 DG = CM ,故 EF = DG .4.在正方形 ABCD 中, E 、 F 、G 、 H 分别是 AB 、 BC 、CD 、 DA 边上的点,且 EG ⊥ FH ,求证: EG = FH .A HD A H N DGGEEMBF CBF C【答案】过点 E 作 EM ⊥ CD ,过点 F 作 FN ⊥ AD ,垂足分别为 M 、N . 由 EM ⊥ CD , FN ⊥ AD , EG ⊥ FH ,易得∠MEG = ∠NFH 因为 EM = BC , BC = CD , CD = NF ,所以 EM = NF 故∆EMG ≌ ∆NFH ,所以 EG = FH .5.∆ABC 中, ∠B = 90︒ , M 为 AB 上一点,使得 AM = BC , N 为 BC 上一点,使得CN = BM ,连 AN 、CM 交于 P 点.试求∠APM 的度数,并写出你的推理证明的过程.AMBN C【答案】∠APM 的度数为45︒证明过程如下:如图过点 M 作 AB 的垂线 MD ,使 MD = CN ,连接 DA 、 DN , 于是因为 MD ∥ CN 且 MD = CN ,所以四边形 MDNC 是平行四边形. 从而∠MDN = ∠MCN ,又因为CN = BM ,得到 DM = BM ,进而在∆MDA 与∆MBC 中, ⎧DM = BM ⎪∠DMA = ∠MBC = 90︒ , ⎪MA = BC PFP⎨ ⎩所以∆DMA ≌ ∆MBC ,这样 DA = MC ,而 MC = DN , 所以 DN = DA .又因为∠ADN = ∠ADM + ∠MDN= ∠ADM + ∠DAM = 90︒ , 所以得到∆ADN 是一个等腰直角三角形,所以∠AND = 45︒ ,利用 MC ∥ DN ,从而得到∠APM = ∠AND = 45︒ .ADB NC6.如图,在Rt ∆ABC 中, AB = AC ,AD ⊥ BC ,垂足为 D . E 、F 分别是CD 、AD 上的点,且CE = AF .如果∠AED = 62︒ ,那么∠DBF = .A【答案】28︒BDE7.E 、F 分别是正方形 ABCD 的 BC 、CD 边上的点,且 BE = CF .求证:AE ⊥ BF .ADF【答案】在∆ABE 和∆BCF 中⎧ AB = BC ⎪∠ABE = ∠BCF⎪BE = CF∴ ∆ABE ≌ ∆BCF BEC∴ ∠BAE = ∠CBF ∵ ∠BAE + ∠AEB = 90︒ ∴ ∠CBF + ∠AEB = 90︒ ∴ AE ⊥ BF8.E 、F 、G 分别是正方形 ABCD 的 BC 、CD 、AB 边上的点,GE ⊥ EF ,GE = EF .求证: BG + CF = BC .AD【答案】显然, ∆BEG ≌ ∆CFE ,GFBECM PC∴ BG = CE , BE = CF ∴ BG + CF = BC9.如图,矩形 ABCD 中, E 是 AD 上一点, CE ⊥ EF 交 AB 于 F 点,若 DE = 2 ,矩形周长为16 ,且CE = EF ,求 AE 的长.AEDFBC【答案】∵ FE ⊥ EC ,∴ ∠AEF + ∠DEC = 90︒ .∵ ∠AEF + ∠AFE = 90︒ , ∴ ∠AFE = ∠DEC .在三角形 AFE 与∆DEC 中, FE = CE , ∠A = ∠D = 90︒ , ∠AFE = ∠DEC , ∴ ∆AFE ≌ ∆DEC . ∴ AE = DC . ∵矩形周长为16 , ∴ AD + DC = 8 . ∵ AD = AE + DE ,∴且 DE = 2 .∴ 2 AE = 8 - DE . 即 AE = 3 .10.如图,已知∆ABC 中,∠ABC = 90︒,AB = BC ,三角形的顶点在相互平行的三条直线l 1 ,l 2 ,l 3 上,且l 1 ,l 2 之间的距离为2 ,l 2 ,l 3 之间的距离为3 ,则 AC 的长是 .Al 1 l 2【答案】2 Bl 311.两个全等的30︒ 、60︒ 的三角板 ADE 、 BAC ,如右下图所示摆放, E 、 A 、C 在一条直线上,连结 BD .取 BD 的中点 M ,连结 ME 、MC ,试判断∆EMC 的形状, 并说明理由.BMDEA C【解析】判断∆EMC 是等腰直角三角形.理由:如图,连结 AM .17MBA C∵ ∠DAE = 30︒ , ∠BAC = 60︒ ,∴ ∠DAB = 90︒ ∵ ∆ADE ≌ ∆BAC ,∴ AD = AB又∵ M 是 BD 的中点,∴ AM = DM = BM ∴ ∠ADM = ∠MAB = 45︒ ∴ ∠EDM = ∠EDA + ∠ADM = 60︒ + 45︒ = 105︒ ∴ ∠MAC = ∠MAB + ∠BAC = 45︒ + 60︒ = 105︒ ∴ ∠EDM = ∠MAC ∵ ED = CA ,∴ ∆EDM ≌ ∆CAM ∴ EM = CM , ∠DME = ∠AMC而∠DME + ∠EMA = 90︒ ,∴ ∠AMC + ∠EMA = 90︒ 即∠EMC = 90︒ ,∴ ∆EMC 是等腰直角三角形.12.已知等腰直角三角形 ABC , ∠C 为直角, M 为 BC 的中点. CD ⊥ AM .求证: ∠AMC = ∠DMB .求证: ∠AMC = ∠DMB .CA DB【答案】法一:如图,过 B 作 EB ⊥ BC ,交CD 延长线于 E .CE∵ ∠3 + ∠1 = 90︒ , ∠4 + ∠1 = 90︒ ,∴ ∠3 = ∠4 .又 AC = CB ,∴ Rt ∆CBE ≌ Rt ∆AMC ,∴ BE = CM , ∠5 = ∠1 . 又 BM = CM ,∴ BE = BM .∴ ∠MBD + ∠EBD = 90︒ ,而∠MBD = 45︒ ,∴ ∠EBD =∠MBD . 又 BD 为公共边,∴ ∆BED ≌ ∆BMD .∴ ∠5 = ∠2 .解法二:如图,作底边 AB 的高CE 交 AM 于 F ,则CE 亦为中线和角平分线,3 1 M4 2 ADB5 MDC ∴AE =CE =BE .又∠3 +∠CDE =∠4 +∠CDE = 90︒.∴∠3 =∠4 ,∴Rt∆DCE = Rt∆FAE ,∴AMA E D B=CE=2,∴∠EDF = 45︒=∠B ,故CM AC 1DF ∥BC .又 E 、M 为AB 、BC 的中点,∴连接EM ,则EM ∥AC .∴AC ⊥BC ,∴EM ⊥BC ,故EM ⊥DF .∴EM 为DF 的中垂线.∴∠FME =∠DME .而∠FME +∠1 =∠DME +∠2 = 90︒,∴∠1 =∠2 .解法三:如图,作CG =AG 的平分线CF 交AM 于F ,CA DB 则∠ACF =∠MCF = 45︒,即ACF =∠CBD = 45︒.∵AC ⊥BC ,C D ⊥AM ,∴∠CAF +∠CMF =∠BCD +∠CMF = 90︒.∴BM=1.AC 2又∠B =∠CAD ,∴∆ACF ≌∆CBD .∴CF =BD .又CM =BM ,∠MCF =∠MBD .∴∆CFM ≌∆BDM .∴∠FMC =∠DMB .解法四:如图,过D 作DG ⊥CB .CA∵∠B = 45︒,∴DG =BG .∵∠DCG +∠AMC =∠FAC +∠AMC = 90︒,∴∠DCG =∠FAC .∴∆DCG ∽∆MAC .∴DG∶CG =CM∶AC = 1∶2 ,则BG∶CG = 1∶2 .∵DG ∥AC ,∴BD∶AD = 1∶2 ,而BM∶AC = 1∶2 , B =∠CAD .∴∆BMD ∽∆ACD ,∴∠BMD =∠ACD .而∠ACD =MGM F3 1FM24AMC ,解法五:如图,延长CB 到 E ,使 BE = BC .连接 AE ,延长CD 交 AE 于G ,则 AC = BC = BE ,CE∴AM = CE = 2 .CM AC 1 ∴ Rt ∆ACM ∽ Rt ∆ECA .∴ ∠CAM = ∠E . ∵ ∠CAM + ∠ACF = 90︒ , ∠GCE + ∠ACF = 90︒ , ∴ ∠CAM = ∠GCE .即∠GCE = ∠E .∴ CG = GE . ∵ ∠CAE + ∠E = 90︒ , ∠ACG + ∠GCE = 90︒ ,∴ ∠CAE = ∠ACG ,∴ CG = AG ,从而 AG = GE .又∵ BC = BE ,所以 D 为∆AEC 的重心,∴ BD = 1.而 BM = 1 , ∠B = ∠CAD . AD 2AC 2∴ ∆BMD ∽ ∆ACD ,∴ ∠BMD =∠ACD . 而 ∠AMC = ∠ACF ,∴ ∠BMD = ∠AMC .解法六:如图,过 A 作 AH ⊥ AM ,与 BC 的延长交于 H .HD B∵ ∠1 + ∠2 = 90︒ , ∠1 + ∠AMC = 90︒ , ∴ ∠2 = ∠AMC , ∴ Rt ∆AHC ∽ Rt ∆MAC ,∴ HC = AC= 2 . AC MC而 AC = BC ,∴HC= 2 .BC∵ HA ∥ C D ,∴ AD = HC= 2 .BD BC又∵ AC BM = 2 , ∠CAD = ∠B ,∴ ∆ADC ∽ ∆BDM ,C MFFMAD BG而∠AMC = ∠ACD ,∴ ∠AMC = ∠BMD .解法七:如图,过 D 作 DE ⊥ BM ,垂足为 E .CA∵ ∠CAM + ∠CMA = 90︒ , ∠ECD + ∠CMA = 90︒ , ∴ ∠CAM = ∠ECD , ∴ Rt ∆CAM ∽ Rt ECD ,∴ DE = MC = 1 .CEAC2∵ ∠B = 45︒ , ∠DEB = 90︒ ,∴ DE = BE ,∴ BE = 1. CE 2设 ME = x ,CM = BE = a ,∴a - x = 1 ,∴ x = a. a + x 2 3∴ DE = BE = a - a = 2a ,∴ ME = 1 = MC,3 3 ∴ Rt ∆CAM ∽ Rt ∆EDM , ∴ ∠AMC = ∠BMD .DE 2 AC13.如图所示,已知在等腰直角三角形 ABC 中, ∠BAC 是直角, D 是 AC 上一点, AE ⊥ BD ,AE 的延长线交 BC 于 F ,若∠ADB = ∠FDC ,求证:D 是 AC 的中点.AFC【答案】过C 作CH 垂直于 AC 交 AF 延长线于 H 点;易证∆ABD ≌∆AHC , HC = AD ;进而证明∆FHC ≌∆FDC ,得到 HC = CD ,则 D 为 AC 中点.A14.如图所示,在等边∆ABC 中, DE ∥ BC , O 为∆ADE 的中心, M 为 BE 的中点, 求证OM ⊥ CM .M EDE【答案】如图所示,延长OM 至点 N ,使OM = MN ,连接OA 、OE 、OC 、 BN 、CN .AAD OEO N D EMMBCNB C因为OM = NM , BM = ME , ∠OME = ∠NMB , 故∆BMN ≌ ∆EMO ,则 BN = EO , ∠OEM =∠NBM . 因为 DE ∥ BC ,则∠DEB = ∠CBE , ∠OED = ∠CBN .因为O 为∆ADE 的中心,则OA = OE = BN , ∠OAE = ∠OED = 30︒ = ∠CBN . 因为 AC = BC ,故∆AOC ≌ ∆BNC ,从而OC = CN . 因为OM = MN ,故OM ⊥ CM .【点评】如果具备三角形相似的知识,我们就可以采取下面的解法. 如图所示,取 AE 的中点 N ,连接 MN 、OA 、ON 、OC . 因为O 为∆ADE 的中心,故∠OAN = 30︒ , OA =2ON . 因为 AN = NE , BM = EM ,故 AB = 2MN = AC .因为ON ⊥ AC , MN ∥ AB ,故∠MNE = 60︒ ,因为∠ONM = 30︒ ,故∆OAC ∽ ∆ONM ,∠OMN = ∠OCN ,则O 、M 、C 、N 四点共圆.因为ON ⊥ AC ,故OM ⊥ CM .15.已知 P 为等腰直角∆ABC 的斜边 AB 上任意一点, PE 、PF 分别为 AC 、BC 之垂线,垂足为 E 、 F . M 为 AB 之中点.则 E 、 M 、 F 组成等腰直角三角形.A ECF B【答案】解法一:如图,连接CM ,则CM 为 AB 之中线,亦为 AB 之高.P MAECFB∴ ∠CMA = 90︒ . ∵ ∠PEC = ∠PFC = ∠ECF = 90︒ , ∴ ECFP 为矩形,故 PE = CF . 又∵ ∠A = 45︒ ,∴ ∆AEP 为等腰直角三角形,∴ AE = PE .∴ AE = CF . 又∵ CM = AM , ∠MCF = ∠A = 45︒ , ∴ ∆AEM ≌ ∆CFM ,∴ ∠AME = ∠CMF , EM = FM . ∵ ∠CME + ∠AME = 90︒ ,∴ ∠CME + ∠CMF = 90︒ ,即∠EMF = 90︒ . ∴ ∆EMF 为等腰直角三角形. 解法二:如图,由 M 作 ME ' ⊥ AC , MF ' ⊥ BC ,则显然由于 M 为 AB 之中点, AC = BC , AC ⊥ BC ,AE E'CF F'B∴ ME 'CF ' 为正方形,故 ME ' = MF ' . 又设 ME ' 交 PF 于Q , 则∵ PE ⊥ AC , PF ⊥ BC ,∴ ∠EPF = ∠C = 90︒ .而∠PEE ' = ∠EE 'Q = 90︒ . ∴ EE 'QP 为矩形,故 EE ' = PQ . 同理 FF ' = QM .又∵ PF ∥ AC ,∴ ∠QPM = ∠A = 45︒ . ∴ ∆PQM 为等腰直角三角形, ∴ PQ = QM ,故 EE ' = FF ' .又 ME ' = MF ' , ∠EE 'M = ∠FF 'M = 90︒ . ∴ ∆EE 'M ≌ ∆FF 'M ,∴ ∠EME ' = ∠FMF ' , EM =FM . 又∠E 'MF + ∠FMF ' = 90︒ , ∴ ∠E 'MF + ∠EME ' = 90︒ .即∠EMF = 90︒ ,故∆MEF 为等腰直角三角形.解法三:如图,延长 FM 到Q ,使 MQ = FM ,连接 AQ .PMPMQ2 2 2 A QECFB∵ AM = BM ,∴ A 、 F 、 B 、Q 4 点组成平行四边形. ∴ AQ = FB , AQ ∥ FB .又∵ BC ⊥ AC ,∴ AQ ⊥ AC , ∴ ∠QAE = ∠FCE = 90︒ .又∵ PF ⊥ BC , ∠B = 45︒ ,∴ FP = FB .同理 EP = AE . ∵ ECFP 为矩形,∴ FP = CE , EP = CF ,故 AB .而CM ⊥ AB , ∴ AQ = CE , A E = CF . ∴ Rt ∆AEQ ≌ Rt ∆CFE . ∴ EQ = FE , ∠AQE = ∠CEF , ∠QEA = ∠EFC . ∵ ∠AQE + ∠QEA = 90︒ ,∴ ∠CEF + ∠QEA = 90︒ .故 PF= .QF∴ ∆FEQ 为等腰直角三角形.而 M 为底边之中点,所以∆EMF 亦为等腰直角三角形.解法四:如图,连接CM ,则因为 M 为 AB 之中点,所以CM ⊥ AB ,CM 平分∠ACB , 即∠MCB = 45︒ .由 F 向 MB 引垂线 FQ ,向CM 引垂线 FF ' ,显然 F 'FQM 为矩形.则 FF ' = MQ .AECFB又∵ ∆CF 'F 为等腰直角三角形, CF = 2FF ' = 2MQ . 又∵ PE ⊥ AC , PF ⊥ BC , AC ⊥ BC , ∴ ECFP 为矩形,故 EP = CF = 2MQ . 于是在Rt ∆EPF 和Rt ∆MQF 中, PF = FB =2QF , PF = , EP= ,∴ PF = EP ,QF MQQF MQ∴ ∆EPF ∽ ∆MQF ,故∠EFP =∠MFQ . 又∵ ∠PFM + ∠MFQ = 45︒ , ∵ ∠PFM + ∠EFP = 45︒ ,即 PF = BF .同理∠FEM = 45︒ , ∆EMF 为等腰直角三角形.PMPM QF'E解法五:如图,连接CP 、CM .AECFB∵ PF = BF , ∆ABC 为等腰直角三角形, ∴ ∠BPF = ∠BCM = 45︒ .∴ P 、C 、 F 、 M 4 点共圆.∴ ∠CMF = ∠CPF .又∵ ∠CPF = ∠CEF ,∴ ∠CEF = ∠CMF ,∴ E 、C 、 F 、 M 4 点共圆.∴ ∠MEF = ∠MCF = 45︒ , ∠MFE = ∠MCE = 45︒ ,∴ iEMF 是等腰直角三角形.16.长方形 ABCD 中, AB = 4 , BC = 7 , ∠BAD 的角平分线交 BC 于点 E , EF ⊥ ED 交 AB 于 F ,则 EF = .ADFBEC【解析】由 AB = 4 ,AE 平分∠BAD 可知 BE = AB = CD = 4 .由基本图可知∆BEF ≌∆CDE , 故 EF = DE又 BC = 7 , BE = 4 ,故CE = 3 .由勾股定理可知, DE = 5 . 从而可知 EF = 5 .【答案】517.如图,设∆ABC 和∆CDE 都是正三角形,且∠EBD = 62︒ ,则∠AEB A .124︒ B .122︒ C .120︒ D .118︒的度数是( )ABCD【答案】分析 既然题目这样问,说明这两个角之间必然能找到一定的联系. 解 易知∠ACE = ∠BCD , ∆AEC ≌ ∆BDC ,于是∠EAC = ∠DBC ,从而∠EBD = ∠CBD + ∠CBE = ∠EAC + ∠CBE ,在考虑到∠EAC + ∠AEC + ∠ACE + ∠CEB + ∠ECB + ∠EBD = 360,有:∠BEC + ∠AEC = 360 - 60 - 62 = 360 - ∠AEB 从而∠AEB = 122 ,选B 。
全等三角形难的题目集锦超级好
1.如图,等边△ABC ,P 在AC 延长线上一点,以PA 为边作等边△APE,EC 延长线交BP 于M ,连接AM,求证:〔1〕BP=CE ; 〔2〕试证明:EM-PM=AM.2.,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. 〔1〕求证:①BE CD =;②AN AM =;〔2〕在图①的根底上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图3.:如图,ABC △是等边三角形,过AB 边上的点D 作DG BC ∥,交AC 于点G ,在GD 的延长线上取点E ,使DE DB =,连接AE CD ,.〔1〕求证:AGE DAC △≌△;〔2〕过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.4、在ABC △中,2120AB BC ABC ==∠=,°,将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A BC AB 111△,交AC 于点E ,11AC 分别交AC BC 、于D F 、两点.如图1,观察并猜测,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论;ADBECF 1A1CADBECF 1A1C C GA E DB F5. 如下图,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .6Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB 〔或它们的延长线〕于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时〔如图1〕,易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?假设成立,请给予证明;假设不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜测,不需证明.A B CD E FA E C F BD图1图3ADFECBADBCE 图2F7、AC//BD,∠CAB 和∠DBA 的平分线EA 、EB 与CD 相交于点E. 求证:AB=AC+BD.边△ABC ,D 为△ABC 外一点,∠BDC=120°,BD=DC .∠MDN=60°射线DM 与直线AB 相交于点M ,射线DN 与直线AC 相交于点N ,①当点M 、N 在边AB 、AC 上,且DM=DN 时,直接写出BM 、NC 、MN 之间的数量关系.②当点M 、N 在边AB 、AC 上,且DM ≠DN 时,猜测①中的结论还成立吗?假设成立,请证明. ③当点M 、N 在边AB 、CA 的延长线上时,请画出图形,并写出BM 、NC 、MN 之间的数量关系.9.如图1,BD 是等腰ABC Rt Δ的角平分线, 90=∠BAC .〔1〕求证BC =AB +AD ;〔2〕如图2,BD AF ⊥于F ,BD CE ⊥交延长线于E ,求证:BD =2CE ;ABCD FE 图2图十一CB10、如图,四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,AD+AB=2AE ,那么∠B 与∠ADC 互补.为什么?11如图,在△ABC 中∠ABC,∠ACB 的外角平分线交P.求证:AP 是∠BAC 的角平分线12、如图在四边形ABCD 中,AC 平分∠BAD ,∠ADC +∠ABC =180度,CE ⊥AD 于E ,猜测AD 、AE 、AB 之间的数量关系,并证明你的猜测,13如图,在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD14如下图,在△AEC 中,∠E=90°,AD 平分∠EAC ,DF ⊥AC ,垂足为F ,DB=DC ,求证:BE=CFD BE A C EB A C图2 D15如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。
(完整版)全等三角形判定综合练习题
全等三角形判定练习题1、如图(1):AD ⊥BC ,垂足为D ,BD =CD 。
求证:△ABD ≌△ACD2、如图(2):AC ∥EF ,AC =EF ,AE =BD 。
求证:△ABC ≌△EDF 。
3、 如图(3):DF =CE ,AD =BC ,∠D =∠C .求证:△AED ≌△BFC 。
4、 如图(4):AB =AC ,AD =AE ,AB ⊥AC ,AD ⊥AE 。
求证:(1)∠B =∠C ,(2)BD =CEFE (图2)DCBAFE(图3)DCB A E(图4)DCBA(图1)DCBA5、如图(5):AB ⊥BD ,ED ⊥BD ,AB =CD ,BC =DE 。
求证:AC ⊥CE .6、如图(6):CG =CF ,BC =DC ,AB =ED ,点A 、B 、C 、D 、E 在同一直线上。
求证:(1)AF =EG ,(2)BF ∥DG 。
7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN =BC 。
求证:(1)MN 平分∠AMB ,(2)∠A =∠CBM .8、如图(8):A 、B 、C 、D 四点在同一直线上,AC =DB ,BE ∥CF ,AE ∥DF 。
求证:△ABE ≌△DCF 。
GFE(图6)DC BANM(图7)CBAFE(图8)DC B A E(图5)D BA(完整版)全等三角形判定综合练习题9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE =CF 。
求证:AM 是△ABC 的中线。
10、如图(10)∠BAC =∠DAE ,∠ABD =∠ACE ,BD =CE 。
求证:AB =AC 。
11、如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC 上任一点. 求证:PA =PD 。
12、如图(12)AB ∥CD ,OA =OD ,点F 、D 、O 、A 、E 在同一直线上,AE =DF 。
(完整)全等三角形难题及答案
1、 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
求证:AE CF =.2、 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =.3、 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。
求证:AB AC PB PC ->-。
4、如图,BD 、CE 分别是ABC ∆的边AC 、AB 上的高,F 、G 分别是线段DE 、BC 的中点求证:DE FG ⊥5、如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E,交AD 于点F ,求证:∠ADC=∠BDE6、如图,在锐角ABC ∆中,已知C ABC ∠=∠2,ABC ∠的平分线BE 与AD 垂直,垂足为D ,若cm BD 4=,求AC 的长参考答案1、 思路分析:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形.以线段AE 为边的ABE ∆绕点B 顺时针旋转90到CBF ∆的位置,而线段CF 正好是CBF ∆的边,故只要证明它们全等即可。
解答过程:90ABC ∠=,F 为AB 延长线上一点∴90ABC CBF ∠=∠=在ABE ∆与CBF ∆中AB BC ABC CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴ABE CBF ∆≅∆(SAS)∴AE CF =。
解题后的思考:利用旋转的观点,不但有利于寻找全等三角形,而且有利于找对应边和对应角。
小结:利用三角形全等证明线段或角相等是重要的方法,但有时不容易找到需证明的三角形。
这时我们就可以根据需要利用平移、翻折和旋转等图形变换的观点来寻找或利用辅助线构造全等三角形。
2、 思路分析:要证明“2AC AE =”,不妨构造出一条等于2AE 的线段,然后证其等于AC 。
人教版八年级上册数学 第十二章 全等三角形 章末综合测试(含解析)
第十二章全等三角形章末综合测试一.选择题1.如图,已知两个三角形全等,那么∠1的度数是()A.72°B.60°C.58°D.50°2.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3.下列条件中不能判定两个直角三角形全等的是()A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等4.如图,在△ABC中,点D、E分别在边AB、AC上,BE与CD相交于点O,如果已知∠ABC=∠ACB,那么还不能判定△ABE≌△ACD,补充下列一个条件后,仍无法判定△ABE ≌△ACD的是()A.AD=AE B.BE=CD C.OB=OC D.∠BDC=∠CEB 5.如图,AD=AE,BD=CE,∠ADB=∠AEC=100°,∠BAE=70°,下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACE C.∠DAE=40°D.∠C=30°6.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后,仍不一定能保证△ABC≌△A′B′C′,这个补充条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′7.在Rt△ABC中,∠ACB=90°,E是AB上一点,且BE=BC,过D作DE⊥AB交AC 于E,如果AC=5cm,则AD+DE为()A.3cm B.4cm C.5cm D.6cm8.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∠CAB和∠ABC的平分线交于点O,OM⊥BC于点M,则OM的长为()A.1B.2C.3D.49.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,若S△ABC=7,DE=2,AB=4,则AC的长为()A.3B.4C.5D.610.如图,AE是△ABC的角平分线,AD⊥BC于点D,点F为BC的中点,若∠BAC=104°,∠C=40°.则有下列结论:①∠BAE=52°;②∠DAE=2°;③EF=ED;④S△ABF=S△ABC.其中正确的有()A.1个B.2个C.3个D.4个二.填空题11.如果△ABC≌△DEF,AB=2,AC=4,△DEF的周长为偶数,则EF的长为.12.如图,△ABC≌△DCB,若AB=4cm,BC=6cm,AC=5cm,则DC=cm.13.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.14.如图,已知∠CAE=∠DAB,AC=AD.给出下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件为.(注:把你认为正确的答案序号都填上)15.如图,在正方形组成的网格中,△ABC的三个顶点在格点上,现以△ABC的一边再作一个三角形,使所得的三角形与△ABC全等,且其顶点也在格点上,则这样的三角形有个.16.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店.17.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于.18.△ABC中,∠B,∠C的平分线交于点O,如果点O到BC边的距离为5,则点O到AB 边的距离为.19.如图,点P是∠AOB的角平分线上的一点,过点P作PC∥OA交OB于点C,PD⊥OA,若∠AOB=60°,OC=6,则PD=.20.如图已知,∠BAC=30°,D为∠BAC平分线上一点,DF∥AC交AB于F,DE⊥AC 于E,若DE=2,则DF=.三.解答题21.已知:如图,AB=CD,AC=BD,AC、BD交于点E,过点E作EF⊥BC于点F.求证:BF=CF.22.如图,在线段BC上有两点E,F,在线段CB的异侧有两点A,D,且满足AB=CD,AE=DF,CE=BF,连接AF;(1)∠B与∠C相等吗?请说明理由.(2)若∠B=40°,∠DFC=20°,若AF平分∠BAE时,求∠BAF的度数.23.在△ABC中,∠ABC和∠ACB的平分线相交于点O,(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度数;(2)若∠ABC=60°,OB=4,且△ABC的周长为16,求△ABC的面积.24.已知:如图,AD∥BC,DB平分∠ADC,CE平分∠BCD,交AB于点E,BD于点O.求证:点O到EB与ED的距离相等.参考答案1.解:∵两个三角形全等,∴∠2=∠1=180°﹣58°﹣72°=50°,故选:D.2.解:∵△ADB≌△EDB≌△EDC∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C∵∠BED+∠CED=180°∴∠A=∠BED=∠CED=90°在△ABC中,∠C+2∠C+90°=180°∴∠C=30°故选:D.3.解:A、两个锐角对应相等,不能说明两三角形能够完全重合,符合题意;B、可以利用边角边判定两三角形全等,不符合题意;C、可以利用边角边或HL判定两三角形全等,不符合题意;D、可以利用角角边判定两三角形全等,不符合题意.故选:A.4.解:添加A选项中条件可用SAS判定两个三角形全等;添加B选项以后是SSA,无法证明三角形全等;添加C选项中条件首先根据等边对等角得到∠OBC=∠OCB,再由等式的性质得到∠ABE =∠ACD,最后运用ASA判定两个三角形全等;添加D选项中条件首先根据等角的补角相等可得∠ADC=∠AEB,再由AAS判定两个三角形全等;故选:B.5.解:A、正确.∵AD=AE∴∠ADE=∠AED∵BD=CE∴BD+DE=CE+DE,即BE=CD∴△ABE≌△ACD(SAS)B、正确.∵△ABE≌△ACD∴AB=AC,∠B=∠C∵BD=CE∴△ABD≌△ACE(SAS)C、错误.∵∠ADB=∠AEC=100°∴∠ADE=∠AED=80°∴∠DAE=20°D、正确.∵∠BAE=70°∴∠BAD=50°∵∠ADB=∠AEC=100°∴∠B=∠C=30°故选:C.6.解:A中两边夹一角,满足条件;B中两角夹一边,也可证全等;C中∠B并不是两条边的夹角,C不对;D中两角及其中一角的对边对应相等,所以D也正确,故选:C.7.解:∵DE⊥AB,AC⊥BC,BE=BC,BD=BD ∴△DEB≌△DCB∴DE=DC∴AD+DE=AD+DC=AC∵AC=5cm∴AD+DE=5cm故选:C.8.解:过O作OD⊥AC于D,OE⊥AB于E,∵AO平分∠CAB,OB平分∠ABC,∴OD=OE=OM,∵在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∴S△ABC=AC•BC=×AB•OE+AC•OD+BC•OM,∴=+•OM+,∴OM=2,故选:B.9.解:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE=2,∵S△ABD+S△ACD=S△ABC,∴×2×4+×2×AC=7,∴AC=3.故选:A.10.解:AE是△ABC的角平分线,∠BAC=104°,∴∠BAE=∠CAE=52°,∴①正确;∵∠C=40°,AD⊥BC,∴∠CAD=50°,∴∠DAE=∠CAE﹣∠CAD=52°﹣50°=2°,∴②正确;∵△AEF是斜三角形,△AED是直角三角形,∴△AEF和△AED不全等,∴EF≠ED,∴③错误;∵点F为BC的中点,∴BF=BC,∴S△ABF=S△ABC,∴④正确;故选:C.11.解:4﹣2<BC<4+22<BC<6.若周长为偶数,BC也要取偶数所以为4.又因为△ABC≌△DEF,所以BC=EF.所以EF的长也是4.故答案是:4.12.解:∵△ABC≌△DCB,∴AB=DC=4cm.故填4.13.解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.14.解:∵∠CAE=∠DAB,∴∠CAE+∠EAB=∠DAB+∠EAB,即∠CAB=∠DAE;又AC=AD;所以要判定△ABC≌△AED,需添加的条件为:①AB=AE(SAS);③∠C=∠D(ASA);④∠B=∠E(AAS).故填①、③、④.15.解:如图所示:以AB为边的有3个,以BC为边的有1个,以AC为边的有1个,共有5个,故答案为:5.16.解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故答案为:③.17.解:过E作EF⊥BC于点F,∵CD是AB边上的高,BE平分∠ABC,∴BE=DE=5,∴S△BCE=BC•EF=×5×1=5,故答案为:5.18.解:∵△ABC中,∠B,∠C的平分线交于点O,∴点O到AB边的距离=点O到BC边的距离=5,故答案为:519.解:如图,过点P作PE⊥OB于E,∵OP是∠AOB的角平分线,PD⊥OA∴PE=PD,∵OP是∠AOB的角平分线,∠AOB=60°,∴∠AOP=∠BOP=30°,∵PC∥OA,∴∠OPC=∠AOP,∴∠BOP=∠OPC=30°,∴PC=OC=6,∠PCE=60°.∴PE=OC•sin60°=3.∴PE=PD=3故答案为:3.20.解:如图,过点D作DG⊥AB于G,∵AD是∠BAC的平分线,DE⊥AC∴DG=DE,∵DF∥AC,∴∠DFG=∠BAC=30°,在Rt△DFG中,DF=2DG=2×2=4.故答案为:4.21.证明:在△ABC和△DCB中,,∴△ABC≌△DCB(SSS),∴∠ACB=∠DBC,∴EB=EC,∵EF⊥BC,∴BF=CF.22.解:(1)∠B=∠C,理由如下:∵CE=BF,∴BE=CF,在△AEB和△DFC中,,∴△AEB≌△DFC(SSS),∴∠B=∠C;(2)∵△AEB≌△DFC,∴∠AEB=∠DFC=20°,∴∠EAB=180°﹣∠B﹣∠AEB=120°,∵AF平分∠BAE,∴∠BAF=∠BAE=60°.23.解:(1)∵BO、CO分别平分∠ABC和∠ACB,∵∠ABC=60°,∠ACB=40°∴∠OBC=30°,∠OCB=20°,∴∠COB=180°﹣(30°+20°)=130°;(2)过O作OD⊥AB于D点,OE⊥AC于E,OF⊥BC于F,连接AO,如图,∵∠ABC=60°,OB=4∴∠OBD=30°,∴OD=OB=2,∵∠ABC和∠ACB的平分线相交于点O,∴OE=OF=2,∵S△ABC=S△AOB+S△AOC+S△BOC=×2×AB+×2×AC+×2×BC =AB+BC+AC,又∵△ABC的周长为16,∴S△ABC=16.24.证明:∵AD∥BC,∴∠ADC+∠BCD=180°,∵DB平分∠ADC,CE平分∠BCD,∴∠ODC+∠OCD=90°,∴∠DOC=90°,∴∠DOC=∠BOC,又∵CO=CO,∠DCO=∠BCO,∴△DCO≌△BCO(ASA)∴CB=CD,∴OB=OD,∴CE是BD的垂直平分线,∴EB=ED,又∠DOC=90°,∴EC平分∠BED,∴点O到EB与ED的距离相等.。
全等三角形综合测试题(难)
全等三角形综合测试题一、填空题1、如图 1,在△ ABC中,AC>BC>AB,且△ ABC≌△ DEF,则在△ DEF中 ___<____<____( 填边 ) 。
2、已知:△ ABC≌△ A′ B′ C′,∠ A=∠ A′,∠ B=∠ B′,∠ C=70°,AB=15cm,则∠ C′ =_________, A′B′ =__________。
3、如图 2,△ ABD≌△ BAC,若 AD=BC,则∠ BAD的对应角是 ________。
4、如图3,在△ ABC 和△ FED, AD=FC, AB=FE,当增添条件__________ 时,便可获得△ABC≌△ FED。
( 只要填写一个你以为正确的条件)5、如图 4,在△ ABC中, AB=AC,AD⊥ BC于 D 点, E、F 分别为 DB、 DC的中点,则图中共有全等三角形 ________对。
6、如图 5,若 BD⊥ AE于 B,DC⊥ AF于 C,且 DC=DB,∠ BAC=40°,∠ ADG=130°,则∠ DGF=________。
二、选择题7、以下命题中:⑴形状同样的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角均分线分别相等,此中真命题的个数有( )A 、3个B、2个C、1个D、0个8、以下条件中,不可以判断△ABC≌△ A′ B′ C′的是 ( )A、AB=A′ B′,∠ A=∠ A′, AC=A′ C′B、AB=A′ B′,∠ A=∠A′,∠ B=∠ B′C、AB=A′ B′,∠ A=∠A′,∠ C=∠ C′D、∠ A=∠ A′,∠ B=∠B′,∠ C=∠ C′9、如图, A,B,C,D,E,F 是平面上的 6 个点,则∠A+∠ B+∠ C+∠ D+∠ E+∠ F 的度数是()A. 180 °B.360°C.540°D.720°10、全等三角形又叫做合同三角形,平面内的合同三角形分为真实合同三角形与镜面合同三角形,假定△ ABC和△ A1B1C1是全等 ( 合同 ) 三角形,点 A 与点 A1对应,点 B 与点 B1对应,点 C 与点 C1对应,当沿周界A→ B→ C→ A,及 A1→B1→ A1围绕时,若运动方向同样,则称它们是真实合同三角形( 如图 11) ,若运动方向相反,则称它们是镜面合同三角形( 如图12),两个真实合同三角形都能够在平面内经过平移或旋转使它们重合,两个镜面合同三角形要重合,则一定将此中一个翻转 180° ( 如图 13) ,以下各组合同三角形中,是镜面合同三角形的是 ( )- 1 -11、如图 14,在△ ABC中,∠ C=90°, AD均分∠ BAC交 BC于 D,若 BC=64,且 BD: CD=9:7,则点 D 到 AB边的距离为 ( )A 、18B、32C、28D、24AC D B图 14三、解答以下各题12、如图 16,AE是∠ BAC的均分线, AB=AC。
人教版初中数学八年级上册第12章《全等三角形》综合测试题
人教版初中数学八年级上册第12章《全等三角形》综合测试题一、选择题(每小题3分,共36分)1.如图1所示,△ABC ≌△AEF ,AC 与AF 是对应边,那么∠EAF 等于( ).D A .∠ACB B .∠CAF C .∠BAF D .∠BAC 图1 图2 图32.如图2所示,已知AB =CD ,BC =AD ,∠B =23°,则∠D 为( ).B A .67° B .46° C .23° D .无法确定 3.下列说法正确的是( ).CA .两边及一角对应相等的两个三角形全等B .两角及一边对应相等的两个三角形全等C .面积相等的两个三角形全等D .对应角相等的两个三角形全等4.在△ABC 和△DEF 中,AB =DE ,∠A =∠D ,若证△ABC ≌△DEF ,还要补充一个条件,错误的补充方法是( ).CA .∠B =∠E B .∠C =∠F C .BC =EFD .AC =DF 5.如图3所示,在Rt △ABC 中,∠C =90°,过点D 作DE ⊥AB 于点E ,DC =DE ,DE 恰好平分∠ADB ,则∠B 的度数为( ).AA .30°B .60°C .45°D .20°6.数学课上,老师要求同学们只选择一种工具来判断已经给出的两个三角形是否全等,同学们有以下几种方案:甲:直尺(带刻度);乙:圆规;丙:量角器.你认为以上方案中不可行的是( ).CA .甲B .乙C .丙D .均不可以7.如图4所示,有三条道路围成Rt △ABC ,其中BC =1000m ,一个人从B 处出发沿BC行走了800m ,到达D 处,AD 恰为∠CAB 的平分线,则此时这个人到AB 的最短距离为( ).C图4 图5A .1000mB .800mC .200mD .1800m8.如图5所示是跷跷板的示意图,支柱OC 与地面垂直,点O 是横板AB 的中点,AB 可以绕着点O 上下转动,当A 端落地时,∠OAC =20°,横板上下可转动的最大角度(即∠A ′OA )是( ).BA .80°B .60°C .40°D .20°9.如图6,已知两个全等直角三角形(△ACB 和△ACD )的直角顶点及一条直角边重合,将△ACB 绕点C 顺时针方向旋转到△A ′CB ′的位置,A ′C 交直线AD 于点E ,A ′B ′分别交直线AD ,AC 于点F ,G .则旋转后的图中,全等三角形共有( ).C A .2对 B .3对 C .4对 D .5对图6 图710.在如图7所示,△ABC 中,AB =AC ,AD 是角平分线,DE 、DF 分别是高,点G 是AD 上任意一点.下列4个结论中:①BD =CD ;②DE =DF ;③∠BDE =∠CDF ;④BG =CG .其中正确的有( )DA .1个B .2个C .3个D .4个11.AD 、BE 是锐角△ABC 的高,AD 、BE 相交于F ,若BF=AC ,BC=7,CD=2,则AF 是的长度是( )BA .2B .3C .4D .5ACBB 'O A '12、如图5,Rt △ABC 中,∠BAC =90°,AB =AC ,BF 平分∠ABC ,过点C 作CF ⊥BF 于F 点,过A 作AD ⊥BF 于D 点.AC 与BF 交于E 点,下列四个结论:①BE =2CF ;②AD =DF ;③AD +DE =12BE ;④AB +BC =2AE .其中正确结论的序号是( ) A A .只有①②③ B .只有②③④ C .只有①②④ D .只有①④二、填空题(每小题3分,共12分)13、如图8所示,△ABC ≌△AED ,若AB =AE ,∠1=27°,则∠2____.27°图8 图914、如图9所示,两个三角形全等,根据图中所给条件,可得∠α=_____.60° 15、如图14所示,△ABC 为直角三角形,∠C =90°,CA =CB ,AD 平分∠BAC ,DE ⊥AB 于点E ,若AB =10cm ,则△BDE 的周长为___________cm .1016、如图15所示,在直角坐标系中,点A 的坐标为(0,6),点B 的坐标为(8,0),过点B 作BF 垂直于x 轴,如果点C ,D 分别在OB ,BF 上运动,并且始终保持CD =AB ,且点D 在第一象限,那么,当点D 的坐标为_______时,△ABC 与△DCE 全等.(8,6),(8,8),(8,-6)三、解答题(共9题,共72分)17(6分)如图17所示,已知AD =AE ,AB =AC .求证:∠B =∠C .17.证明:在△AEB 与△ADC 中,AB =AC ,∠A =∠A ,AE =AD ,∴△AEB ≌△ADC ,∴∠B =∠C .18.(7分)如图,已知CE ⊥AB ,DF ⊥AB ,AF =BE ,AC =BD ,求证:AC ∥BD .18、Rt △ACE ≌Rt △BDF (HL ),∠A=∠B ,∴AC ∥BD 。
全等三角形综合测试题
全等三角形综合测试题(100分)1、已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()【单选题】(3分)A.50°B.80°C.50°或80°D.40°或65°正确答案: C2、已知一个三角形的两边长分别是2厘米和9厘米,且第三边为奇数,则第三边长为()【单选题】(3分)A.5cmB.7cmC.9cmD.11cm正确答案: C3、下列可使两个直角三角形全等的条件是()【单选题】(3分)A.A、一条边对应相等B.B、两条直角边对应相等C.C、一个锐角对应相等D.D、两个锐角对应相等正确答案: B4、如图,D是BC的中点,E.F分别是AD和AD延长线上的点且DE=DF,连结BF,CE.下列说法:①CE=BF;②ΔABD和ΔACD面积相等;③BF//CE;△BDF≌ΔCDE其中正确的有()【单选题】(3分)A.1个B.2个C.3个D.4个正确答案: D5、用两个全等的直角三角形,拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,其中不一定能拼成的图形是()【单选题】(3分)A.①②③B.②③C.③④⑤D.③④⑥正确答案: D6、如图,平行四边形ABCD中,AC、BD相交于点0过点O,过点O作直线分别交于AD、BC于点E、F.那么图中全等的三角形共有()【单选题】(3分)A.2对B.4对C.6对D.8对正确答案: C7、根据下列条件,能判定△ABC≌△A’B’C’的是()【单选题】(3分)A.)AB=A’B’,BC=B’C‘,∠A=∠A’B.∠A=∠A’,∠B=∠B‘,AC=BCC.∠A=∠A’,∠B=∠B‘,∠C=∠C’D.AB=A‘B’,BC=B’C’,ABC的周长等于△A’B’C’的周长正确答案: D8、【单选题】(3分)A.HLB.SSSC.SASD.ASA正确答案: B9、【填空题】(4分)________________________答案解析: AC=AD(答案不唯一)10、【填空题】(4分)________________________正确答案: CE=DF(回答与答案完全相同才得分)11、如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于D,垂足为E,若CA=30°,DE=2,∠DBC的度数为____CD的长为____【填空题】(4分)________________________正确答案: 30° 2(回答包含答案即可得分)12、如图,ΔABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC.则∠ABC的度数是____【填空题】(4分)________________________正确答案: 45°(回答与答案完全相同才得分)13、【填空题】(8分)________________________正确答案: 证明:(1)∵BF=DE,∴BF+FE=DE+FE,即BE=DF …… 1 分又∵AB=CD,∠B=∠D,∴△ABE≌△CDF(SAS) ……3 分∴AE=CF ……4 分 (2) 先证明△AFE≌△CEF ……6分得∠AFE=∠CEF ……7分∴AF//CE……8 分 (方法不唯一,其他证明方法酌情给分)(回答包含答案即可得分)答案解析: 证明:(1)∵BF=DE,∴BF+FE=DE+FE,即BE=DF …… 1 分又∵AB=CD,∠B=∠D,∴△ABE≌△CDF(SAS) ……3 分∴AE=CF……4 分(2) 先证明△AFE≌△CEF ……6分得∠AFE=∠CEF ……7分∴AF//CE……8 分(方法不唯一,其他证明方法酌情给分)14、【填空题】(6分)________________________正确答案: 证明:(1)·∵∠BHD=∠AHE,∠BDH=∠AEH=90°∴∠DBH+∠BHD=∠HAE+∠AHE=90° ......2分.∴∠DBH=∠HAE......3分∵∠HAE=∠DAC ,∴∠DBH=∠DAC;......4分(2)∵AD⊥BC ∴∠ADB=∠ADC.....5分在△BDH与△ADC中,{∠ADB=∠ADC AD=BD ∠DBH=∠DAC} ∴.△BDH≌△ADC.......6分(回答包含答案即可得分)答案解析: 证明:(1).∵∠BHD=∠AHE,∠BDH=∠AEH=90°∴∠DBH+∠BHD=∠HAE+∠AHE=90° (2)分.∴∠DBH=∠HAE......3分∵∠HAE=∠DAC,∴∠DBH=∠DAC;......4分(2)∵AD⊥BC∴∠ADB=∠ADC.....5分在△BDH与△ADC中,{∠ADB=∠ADCAD=BD∠DBH=∠DAC}∴.△BDH≌△ADC.......6分15、【填空题】(6分)________________________正确答案: 证明:(1)∵BE、CF分别是AC、 AB两边上的高,∴∠AFC=∠AEB=90°(垂直定义), (1)分∴∠ACG=∠DBA(同角的余角相等 ),......2分又∵BD=CA,AB=GC,∴△ABD≌△GCA; (4)分(2)连接DG,则△ADG是等腰三角形. 证明如下: .∵△ABD≌AGCA .∴AG=AD,......5分∴△ADG 是等腰三角形.......6分(回答包含答案即可得分)答案解析: 证明:(1)∵BE、CF分别是AC、 AB两边上的高,∴∠AFC=∠AEB=90°(垂直定义), (1)分∴∠ACG=∠DBA(同角的余角相等),......2分又∵BD=CA,AB=GC,∴△ABD≌△GCA;......4分(2)连接DG,则△ADG是等腰三角形.证明如下:.∵△ABD≌AGCA.∴AG=AD,......5分∴△ADG是等腰三角形.......6分16、【填空题】(7分)________________________正确答案: DF//BC.......2分证明:∵BE⊥AC,.∴∠BEC=90,......3分∴∠C+∠CBE=90° (4)分∵∠AB C=90°,.∴∠ABF+∠CBE=90°,∴∠C=∠ABF (5)分.∵DF//BC,.∴∠C=∠ADF,.∴∠ABF=∠ADF,......6分在△AFD和△AFB中∠1=∠2 ∠ABF=∠ADF AF=AF .∴△AF D≌AAFB(AAS)......7分(回答包含答案即可得分)答案解析: DF//BC.......2分证明:∵BE⊥AC,.∴∠BEC=90,......3分∴∠C+∠CBE=90° (4)分∵∠AB C=90°,.∴∠ABF+∠CBE=90°,∴∠C=∠ABF (5)分.∵DF//BC,.∴∠C=∠ADF,.∴∠ABF=∠ADF,......6分在△AFD和△AFB中∠1=∠2 ∠ABF=∠ADF AF=AF.∴△AF D≌AAFB(AAS)......7分17、【填空题】(7分)________________________正确答案: ①DF//BC.......1分证明:∵BE⊥AC,.∴∠BEC=90,∴∠C+∠CBE=90°,......3分∵∠AB C=90°,.∴∠ABF+∠CBE=90°,∴∠C=∠ABF, (5)分.∵DF//BC,.∴∠C=∠ADF,.∴∠ABF=∠ADF......6分在△AFD和△AFB中{∠1=∠2 ∠ABF=∠ADF AF=AF} .∴△AF D≌△AFB(AAS)......7分(回答包含答案即可得分)答案解析: ①DF//BC.......1分证明:∵BE⊥AC,.∴∠BEC=90,∴∠C+∠CBE=90°,......3分∵∠AB C=90°,.∴∠ABF+∠CBE=90°,∴∠C=∠ABF, (5)分.∵DF//BC,.∴∠C=∠ADF,.∴∠ABF=∠ADF......6分在△AFD和△AFB中{∠1=∠2 ∠ABF=∠ADF AF=AF}.∴△AF D≌△AFB(AAS)......7分18、【填空题】(7分)________________________正确答案: 证明:当动点P运动到AC边上中点位置时,AAPE≌AEDB......1分∵DE//CA,∴△BED∽△BAC,......2分∴BE/AB=DB/CB ∴D是BC的中点......3分∵E是AB中点,.∴BD/CB=1/2 ∴BE/AB=1/2 ∴E是AB中点∴DE=1/2AC,BE=AE,......5分∵DE// AC,∴∠A=∠BED,要使△APE≌△EDB,还缺少一个条件DE=AP,又有DE=1/2AC,∴P 必须是AC 中点......7分(回答包含答案即可得分)答案解析: 证明:当动点P运动到AC边上中点位置时,AAPE≌AEDB......1分∵DE//CA,∴△BED∽△BAC,......2分∴BE/AB=DB/CB∴D是BC的中点......3分∵E是AB中点,.∴BD/CB=1/2∴BE/AB=1/2∴E是AB中点∴DE=1/2AC,BE=AE,......5分∵DE// AC,∴∠A=∠BED,要使△APE≌△EDB,还缺少一个条件DE=AP,又有DE=1/2AC,∴P 必须是AC 中点......7分19、【填空题】(7分)________________________正确答案: 解:连接CD,∵∠ACB=90°,D是AB边的中点∴CD=AD,∠DAC=∠DCF ......2分∵DE 与CF 平行且相等.∴∠EDA=∠DAC......4分.∴∠EDA=∠DCF......5分在AAED和ACFD中 {CD=AD,∠EDA=∠DCF,DE=CF} ∴△AED≌△CFD ∴AE=DF......7分(回答包含答案即可得分)答案解析: 解:连接CD,∵∠ACB=90°,D是AB边的中点∴CD=AD,∠DAC=∠DCF ......2分∵DE与CF 平行且相等.∴∠EDA=∠DAC......4分.∴∠EDA=∠DCF......5分在AAED和ACFD中{CD=AD,∠EDA=∠DCF,DE=CF}∴△AED≌△CFD∴AE=DF......7分20、如图,山脚下有A、B两点,要测出A、B两点的距离,请说说你的解决方案。
全等三角形综合测试经典题
B c D E 1234图2A 图1Dc B A 43F B c D E 图3A 第8题全等三角形综合检测题——经典一、填空题:1、如图,已知∠3=∠4,要说明△ABC ≌△DCB ,(1)若以“SAS ”为依据,则需添加一个条件是 ;(2)若以“AAS ”为依据,则需添加一个条件是 ;(3)若以“ASA"为依据,则需添加一个条件是 。
2、如图,若∠1=∠2,,3=∠4,则图中共有全等三角形 对,它们分别是3F 在一条直线上,AB ∥DE,AC ∥DF ,AC =DE ,若BE =3cm,则CF =4、若DEF ABC ∆≅∆,△DEF 周长为28 cm,DE=9 cm ,EF=12 cm ,则AB= ,BC=5、已知DEF ABC ∆≅∆,∠A=52°,∠B=31°,ED=10,那么∠F= ,AB=6、如图,在△ABC 和△DEF 中,AB ∥DE ,可以推出 = ,然后加上条件AB=DE 和 可得到DEF ABC ∆≅∆,根据是7、如图,△ABD ≌△ACD ,AD 、BC 交于点D,则∠ABD= 。
8、如图,若∠1=∠2,∠3=∠4,则△ ≌△ ,根据是9、如图,∠xoy,分别在ox ,oy 上截取OA =OB ,OC =OD 。
连AD 、BC 相交于E 点。
则射线OE 与∠xoy 的关系为 。
10、如图,AB =CD ,AD =CB,O 为AC 上一点,过O 任作直线EF 分别交AD 、BC 于E 、F,要使BE =FD ,则应满足的条件是 .11、等边△ABC 中,D 、E 为BC 、AC 上两点,且BD =CE,连AD 、BE 交于O ,则∠DOE = 。
二、选择题:12、已知△ABC ≌△DEF ,若∠A =500,∠C =300,则∠E 的度数为 ( )A 、300B 、500C 、600D 、100013、如图,若AC =BD ,AB =DC ,则图中全等三角形的对数是( )A 、1对B 、2对C 、3对D 、4对14、小颖同学不小心把一块三角形的玻璃打碎(如图),现在他要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去配A 、(1)B 、(2)C 、(3)D 、(1)和(2)第6题 C D E 第7题 A B C D 第11题 第10题 第9题 第1题 第2题 第3题O 6题Dc B A (1)(2)(3) E F D B C A 15、如图,在△ABC 中,AD 是△BAC 的角平分线,DE ⊥AB,DF ⊥AC,垂足分别为E 、F,下面给出四个结论:①DA 平分∠EDF ;②AE =AF ;③AD ⊥BC ;④BD =CD ,其中正确的结论有( )A 、1个B 、2个C 、3个D 、4个16、下列说法正确的是( )⑴ 形状相同的两个图形是全等形 ⑵ 对应角相等的两个三角形是全等形⑶ 全等三角形的面积相等 ⑷ 若DEF ABC ∆≅∆,MNP DEF ∆≅∆,则MNP ABC ∆≅∆A 、0个B 、1个C 、2个D 、3个17、若BCD ABC ∆≅∆, AB=6cm,BD=7cm ,AD=4cm,那么BC 的长为( )A 、6 cmB 、5 cmC 、4cmD 、不能确定18、若AD=BC ,∠A=∠B ,直接能利用“SAS ”证得△ADF ≌ △BCE 的条件是( )A 、AE=BFB 、DF=CEC 、AF=BED 、∠CEB=∠DFA19、下列能够确定△ABC 的形状和大小的是( )A 、AB=4,BC=5,∠C=60°B 、AB=6,∠C=60°,∠B=70°C 、∠C=60°,∠B=70°,∠A=50°D 、AB=4,BC=5,CA=1020、如图所示,已知OA=OB ,则再加上下列哪个条件后,不能..判断△AOC ≌△BOD 的是( ) A 、∠A=∠B B 、∠C=∠DC 、AC=BD D 、OC=OD 21、如图所示,已知AB=AC,BD=CE ,则图中共有( )组全等三角形A 、4B 、5C 、6D 、7 22、以下能够判定两个直角三角形全等的情况有( )⑴ 两个锐角和一个锐角的对边对应相等 ⑵ ⑶ 一个锐角和它的对边对应相等 ⑷ 两条直角边对应相等⑸ 两边对应相等 ⑹ 斜边和一条直角边相等A 、3B 、4C 、5D 、623、如图:AB =CD ,BC =DA ,O 为AC 中点,过O 的直线BA 、DC 的延长线于E 、F 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章全等三角形综合测试题
一、选择题
1.如图,△ABC≌△BAD,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是( )
A. 4cm B. 4cm C. 4cm D.无法确定
2.到三角形三边距离相等的点是( )
A.三条中线的交点 B.三条高的交点 C.三条角平分线的交点 D.不能确定3.下列条件中,能判定△ABC≌△DEF的是( )
A.∠B=∠E,∠A=∠D,AB=ED B.∠A=∠D,∠C=∠F,AC=EF
C.∠B=∠E,∠A=∠D,AC=EF D.AB=DE,BC=ED,∠A=∠D
4.如图,△ABC中,∠B=∠C,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75° B.70° C.65° D.60°
D C
B
A F E
D
C
B
A
第1题第4题第5题第6题第7题
5. 如图,在四边形ABCD中,AD∥BC,若∠DAB的角平分线AE交CD于E,连接BE,且BE边平分∠ABC,则以下命题不
正确的个数是①BC+AD=AB;②E为CD中点;③∠AEB=90°;④S△ABE=S四边形ABCD;⑤BC=CE.()A.0个 B.1个C.2个 D.3个
6.如图,BC、AE是锐角△ABF的高,相交于点D,若AD=BF,AF=7,CF=2,则BD的长为( ) A.2 B.3 C.4 D.5
7.如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7
8. 下列命题:①全等三角形的对应边上的中线、高、对应角的平分线对应等;②两边和其中一边上的中线(或第三边
上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等:④两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等.其中正确命题的个数有.
A.1 B.2 C.3 D.4
9.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是( )
A. AB-AD>CB-CD B.AB-AD=CB-CD C. AB-AD<CB-CD D.AB-AD与CB-CD的大小关系不确定
D C B A G F
E D C B A E D C
B
A
第9题 第10题 第12题 第13题 第14题
10.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为51和39,则△EDF 的面
积为( )
A .12
B .6
C .3
D .1.5
二、填空题
11.已知,在△ABC 和△DEF 中,∠A=∠D ,∠C=∠F ,需要增加条件①AC=DF ;②BC=EF ;③∠B=∠E ;④AB=DE .上述增加的条件中不能使△ABC ≌△DEF 的是 .
12.如图,点D ,C ,A 在同一直线上,∠A :∠ABC :∠ACB=3:5:10,若△EDC ≌△ABC ,则∠BCE 的度数为 .
13.如图,△ABC 三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC=BC ,若∠D=20°,则∠ABC 的度数为 .
14.如图,AC 平分∠BAD ,∠B+∠D=180°,CE ⊥AD 于点E ,AD=10cm ,AB=7cm ,那么DE = .
15.如图,直角坐标系中A (2,-1),B (-1,1),∠BAC=90°,AB=AC ,则C 点坐标为 .
16.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 中点,DE ⊥AB 于F ,且AB=DE .若BD=8cm ,则AC = .
17.如图,∠B=∠C=90°,E 是BC 的中点,AD=AB+CD ,∠CED=35°,则∠EAB= .
D A y
x N
M Q O B
A
45°D A
第15题 第16题图 第17题图 第18题图 第20题图
18.如图,直线AB 、ON 交干点Q .且OA=OB ,过A 、B 两点分别作AM ⊥OQ 于点M ,BN ⊥OQ 于点N ,若AM=9,BN=4,则MN 的长为 .
19.在△ABC 中,AB =10,AC =6,AD 是BC 边上的中线,则AD 的取值范围是 .
20.如图,G 、H 分别是四边形ABCD 的边AD 、AB 上的点.CD=CB=2.∠D=∠DCB=∠B=90°,∠GCH=45°,则△AGH 的周长为 .
三、解答题
21.如图,点B 、F 、C 、E 在一条直线上,FB=CE ,AB ∥ED ,AC ∥FD ,AD 交BE 于O .求证:AD 与BE 互相平分.
22.已知点D、E分别在AB、AC上,AB=AC,,BE和CD相交于点F,∠B=∠C.求证AF平分角BAC
23.如图,BE、CF是△ABC的高,且BP=AC,CQ=AB.试说明AP与AQ的数量关系和位置关系.
24.(1)如图1,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由。
(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米。
25. 如图所示,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足(a+b)2+(a−4)2=0
(1)如图1,若C的坐标为(-1,0),且AH⊥BC于点H,AH交OB于点P,试求点P的坐标;
(2)如图2,连接OH,求证:∠OHP=45°;
(3)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连接MD,过D作DN⊥DM交x轴于N点,当M点在y 轴正半轴上运动的过程中,式子S△BDM-S△ADN的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.。