高考物理专题分析:一 滑块、子弹打木块模型
“子弹打木块”模型和“滑块—木板”模型-高考物理复习课件
B.子弹对木块做的功W=50 J
C.木块和子弹系统机械能守恒
D.子弹打入木块过程中产生的热量Q=350 J
图3
01 02 03 04 05 06 07 08
目录
提升素养能力
解析 根据动量守恒可得 mv0=(M+m)v,解得子弹打入木块后子弹和木块的 共同速度为 v=Mm+v0m=10 m/s,故 A 正确;根据动能定理可知,子弹对木块做 的功为 W=12Mv2-0=45 J,故 B 错误;根据能量守恒可知,子弹打入木块过 程中产生的热量为 Q=21mv20-21(M+m)v2=450 J,可知木块和子弹系统机械能 不守恒,故 C、D 错误。
(A)
图4
01 02 03 04 05 06 07 08
目录
提升素养能力
解析 木板碰到挡板前,物块与木板一直做匀速运动,速度为 v0;木板碰到挡 板后,物块向右做匀减速运动,速度减至零后向左做匀加速运动,木板向左做 匀减速运动,最终两者速度相同,设为 v1。设木板的质量为 M,物块的质量为 m,取向左为正方向,则由动量守恒定律得 Mv0-mv0=(M+m)v1,解得 v1= MM- +mmv0<v0,故 A 正确,B、C、D 错误。
01 02 03 04 05 06 07 08
目录
提升素养能力
4.如图4所示,光滑水平面上有一矩形长木板,木板左端放一小物块,已知木板 质量大于物块质量,t=0时两者从图中位置以相同的水平速度v0向右运动,碰 到右面的竖直挡板后木板以与原来等大反向的速度被反弹回来,运动过程中物 块一直未离开木板,则关于物块运动的速度v随时间t变化的图像可能正确的是
“子弹打木块”模型和“滑块—木板”模型
学习目标
1.会用动量观点和能量观点分析计算子弹打木块模型。 2.会用动量观点和能量观点分析计算滑块—木板模型。
动量专题复习滑块子弹打木块模型
滑块、子弹打木块模型之一子弹打木块模型:包括一物块在木板上滑动等。
μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
一 模型理解质量为m 的子弹,以速度V 0水平射入光滑水平面上质量为M 的木块中未穿出。
子弹深入木块时所受的阻力大小恒为f符合规律:动量守恒定律:mV 。
=(M+m )V动能定理:子弹-f S m = mV 2/2-mV 02/2木块-f S M = MV 2/2-0功能关系:fd= mV 02/2-(M+m)V 2/2能量转化:子弹动能减少:f S m = mV 02/2- mV 2/2木块动能增加:f S M = MV 2/2系统机械能减少:f S m -f S M =mV 02/22内能增量:f S m -f S M = mV 02/2- 产生热量:f d=f S m -f S M =mV 02/2- 二 典型例题1 如图所示,质量为M 小铁块,小铁块与平板车之间的动摩擦因数为μ其获得大小为v 0的初速度而在小车上向右滑动,车上的滑行时间是多少?2如图所示,质量m=2kg 的物体,以水平速度小车,小车质量M=8kg 设小车足够长,求:(1)(2)物体相对小车滑行的时间距离是多少?(3)3.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度(如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
以地面为参照系。
v 0A B v 0 AB v 0 l A 2v 0 v 0B C A v 05m B L v 0 m v ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向;⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。
动量定理、动能定理专题-子弹打木块模型
动量定理、动能定理专题-⼦弹打⽊块模型动量定理、动能定理专题----⼦弹打⽊块模型⼀、模型描述:此模型主要是指⼦弹击中未固定的光滑⽊块的物理场景,如图所⽰。
其本质是⼦弹和⽊块在⼀对⼒和反作⽤⼒(系统内⼒)的作⽤下,实现系统内物体动量和能量的转移或转化。
⼆、⽅法策略:(1) 运动性质:在该模型中,默认⼦弹撞击⽊块过程中的相互作⽤⼒是恒恒⼒,则⼦弹在阻⼒的作⽤下会做匀减速直线性运动;⽊块将在动⼒的作⽤下做匀加速直线运动。
这会存在两种情况:(1)最终⼦弹尚未穿透⽊块,(2)⼦弹穿透⽊块。
(2) 基本规律:如图所⽰,研究⼦弹未穿透⽊块的情况:三、图象描述:在同⼀个v-t坐标中,两者的速度图线如图甲所⽰。
图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分⾯积则对应了两者间的相对位移:d=s1-s2。
如果打穿图象如图⼄所⽰。
点评:由此可见图象可以直观形象反映两者的速度的变化规律,也可以直接对⽐出物块的对地位移和⼦弹的相对位移,从⽽从能量的⾓度快速分析出系统产⽣的热量⼀定⼤于物块动能的⼤⼩。
四、模型迁移⼦弹打⽊块模型的本质特征是物体在⼀对作⽤⼒与反作⽤⼒(系统内⼒)的冲量作⽤下,实现系统内物体的动量、能量的转移或转化。
故物块在粗糙⽊板上滑动、⼀静⼀动的同种电荷追碰运动,⼀静⼀动的导体棒在光滑导轨上切割磁感线运动、⼩球从光滑⽔平⾯上的竖直平⾯内弧形光滑轨道最低点上滑等等,如图所⽰。
(1)典型例题:例1.如图所⽰,质量为M的⽊块静⽌于光滑的⽔平⾯上,⼀质量为m、速度为的⼦弹⽔平射⼊⽊块且未穿出,设⽊块对⼦弹的阻⼒恒为F,求:(1)⼦弹与⽊块相对静⽌时⼆者共同速度为多⼤?(2)射⼊过程中产⽣的内能和⼦弹对⽊块所做的功分别为多少?(3)⽊块⾄少为多长时⼦弹才不会穿出?1. ⼀颗速度较⼤的⼦弹,以速度v ⽔平击穿原来静⽌在光滑⽔平⾯上的⽊块,设⽊块对⼦弹的阻⼒恒定,则当⼦弹⼊射速度增⼤为2v 时,下列说法正确的是( )A. ⼦弹对⽊块做的功不变B. ⼦弹对⽊块做的功变⼤C. 系统损耗的机械能不变D. 系统损耗的机械能增加解析:⼦弹的⼊射速度越⼤,⼦弹击中⽊块所⽤的时间越短,⽊块相对地⾯的位移越⼩,⼦弹对⽊块做的功W =fs 变⼩,选项AB 错误;⼦弹相对⽊块的位移不变,由Q =f s 相对知Q 不变,系统损失的机械能等于产⽣的热量,则系统损耗的机械能不变,选项C 正确,D 错误。
关于高中物理“子弹打木块”模型的分析
关于高中物理“子弹打木块”模型的分析发布时间:2021-07-06T09:54:37.905Z 来源:《教育学》2021年5月总第249期作者:高虎林[导读] 此过程木块前进S,二者相对位移为L,设此过程中子弹和木块的之间作用力大小不变。
陕西省绥德中学718000摘要:“子弹打木块”模型是高中物理中的经典问题,许多物理专业性刊物、教辅资料和高考试题都会引用此类题目或变型题。
下面,笔者分别从牛顿运动定律、动量和功能关系三个角度来对“子弹打木块”模型挖掘剖析,适度拓展,探究本质,并分析修订“子弹打木块”模型的插图。
关键词:子弹打木块分析过程探究题目:光滑水平面上静止着一质量为M的木块,一质量为m的子弹以v0射击木块,恰未击穿,此过程木块前进S,二者相对位移为L,设此过程中子弹和木块的之间作用力大小不变。
一、用牛顿运动定律分析过程在子弹打木块的过程中,子弹对木块的作用力,使木块做初速为零的匀加速直线运动,而子弹在木块的反作用力下,做匀减速直线运动,当二者速度相同时,相对静止,共同运动。
子弹做初速为v0的匀减速直线运动,相对地的位移为S+L。
木块做初速为零的匀加速直线运动,相对地的位移为S。
也可用如下速度——时间图象来描述其的运动情况,图中A表示子弹的速度——时间图象,图中B表示木块的速度——时间图象,图中C 表示二者共同运动的速度——时间图象。
从图象可知,木块做匀加速直线运动,相对地的位移为S,也就是图中B与横轴围成面积的数值。
子弹做匀减速直线运动,相对地的位移为S+L,也就是图中A与纵、横轴围成面积的数值。
子弹相对于木块的位移L,就是图中A、B与纵轴围成面积的数值。
由图明显可知,B 与横轴围成面积的数值小于A、B与纵轴围成面积的数值,即S小于L。
而原题的插图中明显S大于L,故原题中的插图不符合物理情景,是错误的,应改为下图:二、用动量观点分析过程设二者相互作用力大小为F(也可认为相互作用力的摩擦力大小为F),此过程中需时间t,共同运动的速度为v,规定v0为正方向,分别对子弹和木块应用动量定理。
动量专题复习滑块子弹打木块模型练习参考答案
参考答案 1.M m mv +0()gM m Mv μ+0 2.3.⑴A 恰未滑离B 板,则A 达B 最左端时具有相同速度v ,有 Mv 0-mv 0=(M+m)v ∴0v m M m M v +-= M >m, ∴ v >0,即与B 板原速同向。
⑵A 的速度减为零时,离出发点最远,设A 的初速为v 0,A 、B 摩擦力为f ,向左运动对地最远位移为S ,则02120-=mv fS 而v 0最大应满足 Mv 0-mv 0=(M+m)v 220)(21)(21v m M v m M fl +-+= 解得:l M m M s 4+=4.子弹射入木块时,可认为木块未动。
子弹与木块构成一个子系统,当此系统获共同速度v 1时,小车速度不变,有 m 0v 0-mv=(m 0+m)v 1① 此后木块(含子弹)以v 1向左滑,不滑出小车的条件是:到达小车左端与小车有共同速度v 2,则 (m 0+m)v 1-Mv=(m 0+m+M)v 2②22022100)(2121)(21)(v M m m Mv v m m gL m m ++-++=+μ③ 联立化简得: v 02+0.8v 0-22500=0 解得 v 0=149.6m/s 为最大值, ∴v 0≤149.6m/s5.金属块在板上滑动过程中,统动量守恒。
金属块最终停在什么位置要进行判断。
假设金属块最终停在A 上。
三者有相同速度v ,相对位移为x ,则有⎪⎩⎪⎨⎧⋅-==2200321213mv mv mgx mv mv μ 解得:L m x 34=,因此假定不合理,金属块一定会滑上B 。
设x 为金属块相对B 的位移,v 1、v 2表示A 、B 最后的速度,v 0′为金属块离开A 滑上B 瞬间的速度。
有:在A 上 ⎪⎩⎪⎨⎧⋅-'-=+'=21201010022121212mv v m mv mgL mv v m mv μ 全过程 ⎪⎩⎪⎨⎧⋅--=++=2221202102212121)(2mv mv mv x L mg mv mv mv μ 联立解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=='='=s m s m v s m v v s m s m v /65/21/34)(0/31/12001或或舍或∴⎪⎪⎪⎩⎪⎪⎪⎨⎧===m x s m v s m v 25.0/65/3121 *解中,整个物理过程可分为金属块分别在A 、B 上滑动两个子过程,对应的子系统为整体和金属块与B 。
动量守恒定理应用之滑块子弹打木块模型
动量守恒定理应用之滑块子弹打木块模型动量守恒定理应用之滑块、子弹打木块模型动量守恒定理应用的几种模型分析动量守恒定律中常常涉及这样几种模型:人船模型,子弹打木块模型,滑块模型,弹簧模型等1人船模型:这是一种通过平均动量守恒来解决的问题。
解决问题时,画一个物体位移关系的草图,找出物体之间的位移关系。
【例1】质量为m的小船长为l浮在静水中。
开始时质量为m的人站在船头,人和船均处于静止状态。
若此人从船头走到船尾,不计水的阻力,则船将前进的距离为a、 ml/(m+m)b、ml/(m+m)c、ml/(m-m)d、ml/(m-m)【解析】以人和船组成的系统为研究对象,由于人从船头走向船尾,系统在水平方向上不受外力作用,所以水平方向动量守恒,人起步前人和船均静止系统的总动量为零。
以河岸为参考系有0=mv船→岸+mv人→岸人走船走人停船停。
整个过程中,每一时刻系统都满足动量守恒定律,位移x=v平均t,所以0=ml船→岸+ml人→岸,根据位移关系可知l=l 船→岸+l人→岸,解得l船→岸=ml/(m+m)【答案】a人船模型通常涉及速度。
在求解对象时,我们必须分析它与哪个参考系有关。
如果给定的速度不是相同的参考系,则必须将其转换为相同的参考系。
2.子弹击中木块模型:这类问题以系统为研究对象,水平方向满足动量守恒条件。
然而,由于摩擦,系统的机械能不守恒,损失的机械能等于摩擦和相对位移的乘积。
解决问题时最好画一个运动草图,物体位移之间的关系非常直观。
【例题2】:质量为m、长为l的木块静止在光滑水平面上,现有一质量为m的子弹以水平初速v0射入木块,穿出时子弹速度为v,求子弹与木块作用过程中系统损失的机械能。
【分析】:如图所示,子弹穿过木块的阻力为f,木块的速度为V,位移为为s,则子弹位移为(s+l)以子弹木块为系统,由动量守恒定律得:mv0=mv+mv(1)动能定理中的2L,对于子弹-f(s+L)=1mv2?1mv0(2)22v0vs对于木块FS=1mv2?0(3)2m2m2由①式得v=m(v0?v)代入③式有fs=1m?m2(v0?v)2④11111 M22② + ④ 得到FL=1mv0?mv2?mv2?mv0?{mv2?m[(v0?v)]2}222222m注意:这类问题存在临界条件,即子弹射出和留在滑块中。
专题21子弹打木块模型和板块模型(精讲)
专题21子弹打木块模型和板块模型1.子弹打木块模型分类模型特点示例子弹嵌入木块中(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.两者速度相等,机械能损失最多(完全非弹性碰撞) 动量守恒:m v0=(m+M)v能量守恒:Q=F f·s=12m v02-12(M+m)v2子弹穿透木块(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.动量守恒:m v0=m v1+M v2能量守恒:Q=F f·d=12m v02-(12M v22+12m v12)2.子板块模型分类模型特点示例滑块未滑离木板木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹打木块模型中子弹未穿出的情况。
①系统动量守恒:mv0=(M+m)v;②系统能量守恒:Q=f·x=12m v02-12(M+m)v2。
滑块滑离木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
模型归纳木板 ①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹穿出的情况。
①系统动量守恒:mv 0=mv 1+Mv 2; ②系统能量守恒:Q =fl =12m v 02-(12mv 12+12Mv 22)。
1.三个角度求解子弹打木块过程中损失的机械能 (1)利用系统前、后的机械能之差求解; (2)利用Q =f ·x 相对求解;(3)利用打击过程中子弹克服阻力做的功与阻力对木块做的功的差值进行求解。
2.板块模型求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统; (2)求时间:根据动量定理求解,研究对象为一个物体;(3)求系统产生的内能或相对位移:根据能量守恒定律Q =F f Δx 或Q =E 初-E 末,研究对象为一个系统.模型1 子弹击木块模型【例1】(2023秋•渝中区校级月考)如图所示,木块静止在光滑水平面上,子弹A 、B 从两侧同时水平射入木块,木块始终保持静止,子弹A 射入木块的深度是B 的3倍。
高考物理一轮复习课件:动量守恒定律的应用(子弹、滑块模型)
16.如图,上侧足够长的水平传送带始终以大小为v=3m/s的速度向左运动,传送带上有一质 量为M=2kg的小木盒B,B与传送带之间的动摩擦因数为μ=0.3.开始时,B与传送带之间保持 相对静止.先后相隔Δt=3 s有两个质量为m=1kg的光滑小球A自传送带的左端出发,以 v对0静=1止5m,/第s的2个速球度出在发传后送历带时上Δ向t右1=运2s动而.与第木1个盒球相与遇木(取盒g相=1遇0后m,/球s2立).即求进: 入盒中与盒保持相
10.静止在水平地面上的两小物块A、B,质量分别为mA=1.0 kg,mB=4.0 kg;两者之间有一被压缩的微型弹簧,A与其右侧的竖直墙壁距离L=1.0 m, 如图6所示。某时刻,将压缩的微型弹簧释放,使A、B瞬间分离,两物块获得 的动能之和为Ek=10.0 J。释放后,A沿着与墙壁垂直的方向向右运动。A、 B与地面之间的动摩擦因数均为μ=0.20。重力加速度取g=10 m/s2。A、B运
(1)在涉及滑块或滑板的时间时,优先考虑用动量定理. (2)在涉及滑块或滑板的位移时,优先考虑用动能定理. (3)在涉及滑块相对位移时,优先考虑用系统的能量守恒. (4)滑块恰好不相对滑动时,滑块与滑板达到共同速度.
1.如图所示,一质量m=2kg的长木板静止在水平光滑地面上,某时 刻一质量M=1kg的小铁块以水平向左v0=9m/s的速度从木板的右端 滑上木板.已知铁块与木板间的动摩擦因数μ=0.4,取重力加速 度g=10 m/s2,木板足够长,求:铁块与木板摩擦所产生的热量Q, 相对位移(木板至少多长才不滑下来)?
4.如图所示,一质量m=2kg的长木板静止在水平地面上,某时刻一 质量M=1kg的小铁块以水平向左v0=9m/s的速度从木板的右端滑 上的动木摩板.擦已因知数木μ板2=与0.地1,面取间重的力动加摩速擦度因g=数10μm1=/0s.2,4木.铁板块足与够木长板,求间: 铁块与木板摩擦所产生的热量Q
2024年人教版高中物理选择性必修第一册专题突破课二 子弹打木块模型和板块模型中的动量守恒
专题突破课二 子弹打木块模型和板块模型中的动量守恒任务一 子弹打木块模型【核心归纳】1.模型图示2.模型特点(1)子弹水平打进木块的过程中,系统的动量守恒。
(2)系统的机械能有损失。
3.两种情景(1)子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞) 动量守恒:mv 0=(m +M )v能量守恒:Q =F f ·s =12m v 02-12(M +m )v 2(2)子弹穿透木块 动量守恒:mv 0=mv 1+Mv 2能量守恒:Q =F f ·d =12m v 02-(12M v 22+12m v 12)【典题例析】角度1 子弹嵌入木块中【典例1】(多选)如图所示,两个质量和速度均相同的子弹分别水平射入静止在光滑水平地面上质量相等、材料不同的两矩形滑块A 、B 中,射入A 中的深度是射入B 中深度的两倍。
已知A 、B 足够长,两种射入过程相比较( )A.射入滑块A 的子弹速度变化大B.整个射入过程中两滑块受到的冲量一样大C.射入滑块A 中时阻力对子弹做功是射入滑块B 中时的两倍D.两个过程中系统产生的热量相等【解析】选B 、D 。
子弹射入滑块过程中,子弹与滑块构成的系统动量守恒,有mv 0=(m +M )v ,两个子弹的末速度相等,所以子弹速度的变化量相等,A 错误;滑块A 、B 动量变化量相等,受到的冲量相等,B 正确;对子弹运用动能定理,有W f =12mv 2-12m v 02,由于末速度v 相等,所以阻力对子弹做功相等,C 错误;对系统,由能量守恒可知,产生的热量满足Q =12m v 02-12(m +M )v 2,所以系统产生的热量相等,D 正确。
角度2 子弹穿透木块【典例2】(多选)(2023·成都高二检测)水平飞行的子弹打穿固定在水平面上的木块,经历时间为t 1,子弹损失的动能为ΔE k1损,系统机械能的损失为E 1损 ,穿透后系统的总动量为p 1;同样的子弹以同样的速度打穿放在光滑水平面上的同样的木块,经历时间为t 2,子弹损失的动能为ΔE k2损,系统机械能的损失为E 2损,穿透后系统的总动量为p 2。
动量守恒之滑块子弹打木块模型
模型:质量为M 长为I 的木块静止在光滑水平面上,现有一质量为 m 的子弹以水平初速 v o 射入木块,穿出时子弹速度为 v ,求子弹与木块作用过程中系统损失的机械能。
水平方向不受外力,—mv 2{=mv 2=M[ — (v o v)]2}2 2 2 M结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即Q=AE 系统=fS 相②作出作用过程中二者的速度 -时间图像,你会有什么规律发现?例题:一木块置于光滑水平地面上,一子弹以初速 v o 射入静止的木块,子弹的质量为 m,打入木块的深度为d ,木块向前移动 S 后以速度v 与子弹一起匀速运动,此过程中转化为内能的能量为A1 , 2、m(v o v)vd m(v o v)A •匚m (v 2v o v)B. mv o (v o v)C.D.vd2v'2sS动量守恒定律的应用1子弹打木块模型解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为 V,位移为S,则子弹位移为(S+I)。
由动量守恒定律得: mv o =mv+MV ①由动能定理,对子弹心l)=^-v 21 2 2 mV 0对木块 fs= -MV 22由①式得v=辭"0v)代入③式有fs= 2M ?5(V o V)2 ④②+④得f |=-—v 2问题:①若要子弹刚好能(或刚好不能)穿出木块, 试讨论需满足什么条件?滑块、子弹打木块模型练习1在光滑水平面上并排放两个相同的木板,长度均为L=1.00m,一质量与木板相同的金属块,.. . _ 2 以v o=2.OOm/s的初速度向右滑上木板A,金属块与木板间动摩擦因数为卩=0.1 , g取10m/s。
求两木板的最后速度。
L v°_ ,__________,I A...... I.... B …二2.如图示,一质量为M长为I的长方形木块B放在光滑水平面上,在其右端放一质量为m的小木块A, m< M,现以地面为参照物,给A和B以大小相等、方向相反的初速度使A开始向左运动,B 开始向右运动,但最后A刚好没有滑离B板。
2025年高中物理复习配套课件含答案解析 专题九 “子弹打木块”模型和“滑块—木板”模型
第七单元动量2025年高中物理复习配套课件含答案解析专题九“子弹打木块”模型和“滑块—木板”模型热点题型探究教师备用习题作业手册题型一“子弹打木块”模型1.模型图示2.模型特点(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.3.两种情景(1)子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞)动量守恒:B0=+能量守恒:=f⋅=12B02−12+2(2)子弹穿透木块动量守恒:B0=B1+B2能量守恒:=f⋅=12B02−12B22+12B12例1 [2023·湖南株洲模拟] 质量为的子弹以某一初速度0击中静止在光滑水平地面上质量为的木块,并陷入木块一定深度后与C A.越大,子弹射入木块的时间越短B.越大,子弹射入木块的深度越浅C.无论、、0的大小如何,都只可能是甲图所示的情形D.若0较小,则可能是甲图所示情形;若0较大,则可能是乙图所示情形木块相对静止,甲、乙两图表示了这一过程开始和结束时子弹和木块可能的相对位置,设木块对子弹的阻力大小恒定,下列说法正确的是( )[解析]由动量守恒定律得B0=+,则对木块由动量定理得f=B,解得=B0r f=B0 1+f,则越大,越大,选项A错误;由功能关系得f=12B02−12+2,解得=B022r f=B022 1+f,则越大,越大,选项B错误;对木块由动能定理得f=12B2,解得=2B022r2f,则=r,>,即无论、、0的大小如何,都只可能是甲图所示的情形,选项C正确,D错误.例2如图所示,在光滑的水平桌面上静止放置一个质量为980g的长方形匀质木块,现有一颗质量为20g的子弹以大小为300m/s的水平速度沿木块的中心轴线射向木块,最终留在木块中没有射出,和木块一起以共同的速度运动.已知木块沿子弹运动方向的长度为10cm,子弹打进木块的深度为6cm.设木块对子弹的阻力保持不变.(1)求子弹和木块的共同速度以及它们在此过程中所产生的内能.[答案]6m/s;882J[解析]设子弹射入木块后与木块的共同速度为,对子弹和木块组成的系统,由动量守恒定律得B0=+解得=6m/s此过程系统所增加的内能Δ=12B02−12+2=882J.(2)若子弹是以大小为400m/s的水平速度从同一方向水平射向该木块,则在射中木块后能否射穿该木块?[答案]能[解析]假设子弹以y0=400m/s的速度入射时没有射穿木块,则对以子弹和木块组成的系统,由动量守恒定律得B′0=+y解得y=8m/s此过程系统所损耗的机械能为Δ′=12B0′2−12+′2=1568J由功能关系有Δ=阻相=阻Δy=阻相′=阻y则ΔΔy=阻阻y=y解得y=1568147cm Array因为y>10cm,所以能射穿木块.变式如图所示,木块静止在光滑水平面上,两颗不同的子弹、从木块两侧同时射入木块,最终都停在木块内,这一过程中木块始终保持静止.若子弹射入D的深度大于子弹射入的深度,则()A.子弹的质量一定比子弹的质量大B.入射过程中子弹受到的阻力比子弹受到的阻力大C.子弹在木块中运动的时间比子弹在木块中运动的时间长D.子弹射入木块时的初动能一定比子弹射入木块时的初动能大[解析] 由于木块始终保持静止状态,则两子弹对木块的推力大小相等,即两子弹所受的阻力大小相等,设为f ,根据动能定理,对子弹有−f =0−k ,得k =f ;对子弹有−f =0−k ,得k =f ,由于>,则有子弹入射时的初动能k >k ,故B 错误,D 正确.两子弹和木块组成的系统动量守恒,则有2k =2k ,而k >k,则<,故A 错误.子弹、从木块两侧同时射入木块,木块始终保持静止,分析得知,两子弹在木块中运动的时间必定相等,否则木块就会运动,故C 错误.题型二“滑块—木板”模型1.模型图示2.模型特点(1)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统减少的机械能.(2)若滑块未从木板上滑下,当两者速度相同时,木板速度最大,相对位移最大.3.求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统;(2)求时间:根据动量定理求解,研究对象为一个物体;(3)求系统产生的内能或相对位移:根据能量守恒定律=fΔ或=初−末,研究对象为一个系统.例3[2023·山东青岛模拟]如图所示,质量=2kg的平板小车静止在竖直弹性墙壁左侧的光滑水平地面上,质量=3kg的铁块(视为质点)以大小0=5m/s的初速度向右滑上平板小车上表面左端,小车第一次与墙壁碰撞前瞬间恰好与铁块达到共同速度,之后小车与墙壁发生多次正碰(每次碰撞前小车与铁块已达到共同速度),碰撞中无机械能损失,碰撞时间极短,最终铁块恰好静止在小车的右端.铁块与小车上表面间的动摩擦因数=0.5,重力加速度大小取10m/s2.求:(1)从铁块滑上小车上表面至小车与墙壁第一次碰撞的时间1;[答案]0.4s[解析]设小车第一次与墙壁碰撞前瞬间的速度大小为1,根据动量守恒定律有B0=+1解得1=3m/s对小车,根据动量定理有BB1=B1解得1=0.4s(2)全过程中铁块相对小车滑动的总时间以及小车的长度;[答案]1s;2.5m[解析]小车第一次与墙壁碰撞后的一段时间内,铁块向右做匀减速直线运动,小车向左做匀减速直线运动,小车的速度先减为零,然后小车在摩擦力的作用下向右做匀加速直线运动,直到小车与铁块第二次达到共同速度,此后铁块与小车一起向右做匀速直线运动直到小车与墙壁发生第二次碰撞,小车不断与墙壁碰撞,铁块在小车上滑行,系统的机械能不断减少,直到铁块与小车均静止且铁块恰好在小车的右端,对铁块,根据动量定理有−BB=0−B0解得=1s根据功能关系有BB=12B02解得=2.5m(3)从小车与墙壁第一次碰撞至小车静止,小车运动的总路程.[答案]1.25m[解析]经分析可知,小车每一次与墙壁碰撞后都先向左做匀减速直线运动至静止,再向右做匀加速直线运动至与铁块达到共同速度后再与墙壁碰撞,在两次碰撞间的运动过程中,系统动量守恒,有−=+r1=1,2,3,⋯解得r1=15=1,2,3,⋯设第一次碰撞后小车向左运动的最大距离为1,对小车,根据动能定理有−BB1=0−12B12解得1=0.6m设第次碰撞后小车向左运动的最大距离为,对小车根据动能定理有−BB=0−12B2同理有−BB r1=0−12B r12可得r1=125根据对称性,结合数学知识可得=21+2+3+⋯=2×11−其中=125解得=1.25m例4[2023·山西朔州模拟]如图所示,光滑水平地面上放置着质量为=2kg 的长木板和质量为=2kg的滑块,长木板的左端放有质量为=1kg的滑块(可看成质点).现给、组成的整体施加水平向右的瞬时冲量=15N⋅s,此后、一起向右运动,经过一段时间后与发生碰撞(时间极短),再经过一段时间后、再次一起向右运动,且此后、之间的距离保持不变.已知、间的动摩擦因数为=0.2,重力加速度取10m/s2,求:(1)获得冲量后瞬间、的速度;[答案]5m/s,方向水平向右[解析]以、为整体,由动量定理可得=+0解得获得冲量后瞬间、的速度为0=5m/s,方向水平向右(2)、碰撞时损失的机械能;[答案]12J[解析]、碰撞瞬间,由动量守恒定律可得0=+在、碰撞后到、再次共速的过程中,、组成的系统由动量守恒可得+0=+共根据题意有共=联立解得共==3m/s,=2m/s、碰撞时损失的机械能为Δ=1202−122+122=12J(3)要保证滑块不脱离长木板,长木板的最小长度.[答案]1.5m[解析]在、碰撞后到、再次共速的过程中,、相互作用的时间为=0−共B=1s长木板的长度至少为=−=0+共2−+共2代入数据解得=1.5m教师备用习题题型一 “子弹打木块”模型1.如图所示,一质量m1=0.45 kg的平顶小车静止在光滑的水平轨道上.质量m2=0.5 kg的小物块(可视为质点)静止在车顶的右端.一质量为m0=0.05 kg的子弹、以水平速度v0=100 m/s射中小车左端并留在车中,最终小物块相对地面以2 m/s的速度滑离小车.已知子弹与车的作用时间极短,物块与车顶面的动摩擦因数μ=0.8,认为最大静摩擦力等于滑动摩擦力.g取10 m/s2,求:(1)子弹相对小车静止时小车速度的大小;[答案] 10 m/s[解析]子弹进入小车的过程中,子弹与小车组成的系统动量守恒,由动量守恒定律得m 0v 0=(m 0+m 1)v 1解得v 1=10 m/s.(2)小车的长度L.[答案] 2 m[解析] 三物体组成的系统动量守恒,由动量守恒定律得(m 0+m 1)v 1=(m 0+m 1)v 2+m 2v 3解得v 2=8 m/s由能量守恒可得12(m 0+m 1)12=μm 2gL +12(m 0+m 1)22+12m 232解得L =2 m.2.如图所示,静止在光滑水平面上的木板右端有一轻质弹簧沿水平方向与木板相连,木板质量M =3 kg .质量m =1 kg 的铁块以水平速度v 0=4 m/s 从木板的最左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好停在木板的最左端.在上述过程中弹簧具有的最大弹性势能为( )A .3 J B .4 J C .6 J D .20 JA 题型二 “滑块—木板”模型[解析]设铁块与木板共速时速度大小为v ,铁块相对木板向右运动的最大距离为L ,铁块与木板之间的摩擦力大小为F f ,铁块压缩弹簧使弹簧最短时,由能量守恒定律得12m 02=F f L +12(M +m )v 2+E p ,由动量守恒定律得mv 0=(M +m )v ,从铁块开始运动到最后停在木板最左端过程,由功能关系得12m 02=2F f L +12(M +m )v 2,联立解得E p =3 J,故选项A 正确.3.如图所示,光滑水平面上有质量为m 、长为R 的长木板紧靠在半径为R 的光滑四分之一圆弧体左侧,圆弧体固定,长木板上表面和圆弧体最低点的切线重合,质量为m 的物块(可视为质点)以初速度v 0=3g (g 为重力加速度)从左端滑上长木板,并刚滑到圆弧面的最高点,求:(1)物块与长木板间的动摩擦因数;[答案] 0.5 [解析]根据题意,物块由开始运动到最高点的过程中,由动能定律有-μmgR -mgR =0-12m 02代入数据解得μ=0.5(2)物块从圆弧体上返回到长木板后,相对长木板滑行的距离.[答案] R[解析] 设物块由圆弧体最高点滑到最低点时速度为v 1,由机械能守恒定律可得mgR =12m 12,解得v 1=2g物块从圆弧体上返回到长木板后,由题意可知,最终物块和木板一起运动,设此时的速度为v 2,相对长木板滑行的距离为x ,由动量守恒定律有mv 1=2mv 2由能量守恒定律有12m 12−12·2m 22=μmgx 联立解得x =R 即物块从圆弧体上返回到长木板后,相对长木板滑行的距离为R.作业手册◆基础巩固练◆1.[2023·河北邯郸模拟]如图所示,子弹以某一水平速度击中静止在光滑水平面上C的木块并留在其中.对子弹射入木块的过程,下列说法正确的是()A.木块对子弹的冲量等于子弹对木块的冲量B.因子弹受到阻力的作用,故子弹和木块组成的系统动量不守恒C.子弹和木块组成的系统损失的机械能等于子弹损失的动能减去子弹对木块所做的功D.子弹克服木块阻力做的功等于子弹的动能减少量和摩擦产生的热量之和[解析]木块对子弹的冲量与子弹对木块的冲量,方向相反,不相等,A项错误;因为水平面光滑,系统不受外力,子弹和木块组成的系统动量守恒,B项错误;根据动能定理,子弹对木块所做的功等于木块获得的动能,根据能量守恒定律,子弹和木块组成的系统损失的机械能等于子弹损失的动能减去木块获得的动能,C项正确;根据动能定理,子弹克服木块阻力做的功等于子弹的动能减少量,D项错误.2.[2023·湖北武汉模拟]一颗子弹水平击中静止在光滑水平面上的木块,子弹与木块的速度—时间图像如图所示.若子弹射击木块时的初速度增大,则下列说法中正确的是(设子弹所A受阻力大小不变)()A.木块获得的动能减小B.子弹穿过木块的时间变长C.木块的位移变大D.系统损失的动能变大[解析]子弹射击木块时的初速度增大,则子弹在木块中运动时相对木块的速度越大,子弹在木块中的作用时间越短,根据f=B,可知木块得到的速度减小,动能减小,选项A正确,B错误;对木块根据f=12B2,可知木块的位移减小,选项C错误;系统损失的动能Δ=f,因子弹相对木块的位移等于木块的厚度,可知系统损失的动能不变,选项D错误.3.如图所示,放在光滑水平面上的矩形滑块是由不同材料的上、下两层粘在一起组成的.质量为的子弹(可视为质点)以速度水平射向滑块,若击中上层,则子弹刚好不穿出;若击中下层,则子弹嵌入其中部.比较这两种情况,以下说法中A不正确的是()A.滑块对子弹的阻力一样大B.子弹对滑块做的功一样多C.滑块受到的冲量一样大D.系统产生的热量一样多[解析]最后滑块与子弹相对静止,根据动量守恒定律可知,两种情况下滑块和子弹的共同速度相等,根据能量守恒定律可知,两种情况下动能的减少量相等,产生的热量相等,而子弹相对滑块的位移大小不等,故滑块对子弹的阻力不一样大,A项错误,D项正确;根据动能定理可知,滑块动能的增加量等于子弹对滑块做的功,因两种情况下滑块的动能增加量相等,所以两种情况下子弹对滑块做的功一样多,B项正确;因两种情况下滑块的动量变化相同,根据动量定理可知,两种情况下滑块受到的冲量一样大,C项正确.◆综合提升练◆4.[2023·福建莆田模拟]如图所示,质量为B的木板静止在足够大的光滑水平地面上,质量为的滑块静止在木板的左端.质量为的子弹以大小为0的初速度射入滑块,子弹射入滑块后未穿出滑块,且滑块恰好未滑离木板.滑块与木板间的动摩擦因数为,重力加速度大小为,子弹与滑块均视为质点,不计子弹射入滑块的时间.求:(1)木板最终的速度大小;[答案]0r2[解析]设子弹射入滑块后瞬间子弹和滑块的共同速度大小为1,根据动量守恒定律有B0=2B1解得1=02对子弹、滑块和木板组成的系统,根据动量守恒定律有2B1=+2B 解得=0r2(2)木板的长度;[答案]B028r2B[解析]对滑块在木板上相对木板滑动的过程,根据功能关系有⋅2B=12×2B12−12+2B2解得=B028r2B(3)滑块在木板上相对木板滑动的过程中系统克服摩擦力做功(产生热量)的平均功率.[答案]BB02[解析]滑块在木板上相对木板滑动的过程中系统克服摩擦力做的功=⋅2B 设滑块在木板上相对木板滑动时木板的加速度大小为,对木板,根据牛顿第二定律有⋅2B=B设滑块在木板上相对木板滑动的时间为,根据匀变速直线运动的规律有=B 又由于=解得=BB025.[2023·广东汕头模拟]如图甲所示,质量为=4.0kg的物块与质量为=2.0kg的长木板并排放置在粗糙的水平面上,二者之间夹有少许塑胶炸药,长木板的右端放置有可视为质点的小物块.现引爆塑胶炸药,爆炸后物块可在水平面上向左滑行=1.2m,小物块的速度随时间变化图像如图乙所示.已知物块和长木板与水平面间的动摩擦因数均为0=16,物块未从长木板上掉落,重力加速度取10m/s2,求:(1)炸药爆炸后瞬间长木板的速度大小;[答案]4.0m/s[解析]对物块,在爆炸后有−0B=0−122可得=2.0m/s对物块与长木板,在爆炸过程中有0=−可得=4.0m/s(2)小物块的质量;[答案]1.0kg[解析]由图乙可知=1s时,、共速,共=1.0m/s 对小物块,在0∼1s内=共−0Δ=B可得=0.1对长木板,在0∼1s内有0++B=且=−共Δ可得=1.0kg(3)小物块静止时距长木板右端的距离.[答案]1.75m[解析]长木板与小物块在0∼1s内,相对位移为相=+共2Δ−0+共2Δ=2m对长木板,在1s后至停下时有0+−B=y可得y=2.0m/s2对长木板与小物块,共速后至停下过程中的相对位移为y相=共22y−共+02Δ=−0.25m可知,小物块静止时距长木板右端的距离=相+y相=1.75m。
2024_2025学年新教材高中物理第1章专题提升3子弹打木块模型和滑块_木板模型课件新人教版选择性
联立解得
0
答案
1
− 2(m+m0)2 2
=
0 2
(1)
2
2 0 +
。
0
(2)
2 0 +
0
学以致用·随堂检测全达标
1.(子弹打木块模型)(2024江苏无锡高三月考)如图所示,质量为m的子弹以
水平速度v0射入放在光滑水平桌面上质量为m'的木板,子弹没有射出。此
过程中木板的位移为x,子弹进入木板的深度为Δx,若将子弹在射入木板的
质量为m的小滑块(可视为质点)以水平速度v0滑上木板的左端,滑到木板的
右端时速度恰好为零。
(1)求小滑块与木板间的摩擦力大小;
(2)现小滑块以某一速度v滑上木板的左端,滑到木板的右端时与竖直墙壁
发生弹性碰撞,然后向左
运动,刚好能够滑到木板左端而不从木板上落下,试求 的值。
0
解析 (1)小滑块以水平速度
(3)方法一:B向右加速过程的位移设为x2
则
1
μmgx2= ×3mv2
2
解得
30 2
x2=32
木板的最小长度
30 2
L=x1-x2= 8 。
方法二:从 A 滑上 B 至达到共同速度的过程中,由能量守恒得
1
μmgL= 0 2
2
解得
30 2
L=
。
8
−
1
(m+3m)v2
2
答案
0
恒定律可知m'v0-mv0=m'v1+0,解得v1=3.75 m/s,A正确;设最终速度为v2,根据
动量守恒定律,得m'v0-mv0=(m'+m)v2,解得v2=3 m/s,因此A、B最终一起向右
【高考物理】模型构建:模型13、子弹打木块模型(解析版)Word(18页)
模型13、子弹打木块模型动量守恒定律、机械能守恒定律、动能定理等解决动力学问题的三大观点:力学观点:牛顿运动定律、运动学公式能量观点:动能定理、机械能守恒定律、能量守恒定律、功能关系动量观点:动量守恒定律(4nmgLn8nmgLn,对子弹射入木块后的上升过程,由机械能守恒定律得C.498m/s 【详解】第一粒弹丸射入木块中,根据动量守恒可得1()mv M m v=+.子弹射入沙箱的过程系统满足动量守恒、机械能守恒.子弹和沙箱合为一体的瞬间轻绳的拉力为()F m M g =++.子弹和沙箱合为一体后一起上升的最大高度与轻绳的长度有关.子弹和沙箱合为一体后一起上升的最大高度为2m v h =C.50J D C.5J Dv=.子弹打入木块后子弹和木块的共同速度为8m/s500J的过程中,两物块的动量守恒的过程中,子弹对物块A的冲量大小大于物块.子弹开始打物块到与物块共速,子弹、物块组成的系统动量守恒.子弹开始打物块到弹簧压缩至最短,子弹、物块、弹簧组成的系统机械能守恒.子弹开始打物块到弹簧压缩至最短,子弹、物块、弹簧组成的系统动量守恒.子弹物块以相同速度压弹簧的过程中,物块、子弹、弹簧组成的系统动量守恒【答案】A【详解】A.由于子弹和物块作用时间极短,则在打击过程中,内力远远大于外力,可知子弹开始打物块到与物块共速,子弹、物块组成的系统动量守恒,A正确;B.根据上述,子弹开始打物块到与物块共速过程类似完全非弹性碰撞,该过程有一部分动能转化为内能,则子弹开始打物块到弹簧压缩至最短,子弹、物块、弹簧组成的系统机械能减小,不守恒,B错误;C.打击过程子弹与物块动量守恒,打击完成后,子弹与木块向右压缩弹簧,系统所受外力的合力不为0,该过程动量不守恒,可知子弹开始打物块到弹簧压缩至最短,子弹、物块、弹簧组成的系统动量不守恒,C错误;D.根据上述可知,子弹物块以相同速度压弹簧的过程中,物块、子弹、弹簧组成的系统动量不守恒,D错误。
2024年高中物理新教材同步 选择性必修第一册 第1章 专题强化4 子弹打木块模型 滑块—木板模型
专题强化4 子弹打木块模型 滑块—木板模型[学习目标] 1.进一步理解动量守恒条件。
2.会分析两物体在相对运动过程中的能量转换(重点)。
3.能够从动量和能量的观点分析子弹打木块模型、滑块—木板模型(重难点)。
一、子弹打木块模型1.如图所示,质量为M =1 kg 的木块静止于粗糙的水平面上,木块与水平面间的动摩擦因数为0.2,一质量为m =20 g 、速度为v 0=600 m/s 的子弹水平射入木块,穿出时的速度为v =100 m/s ,若木块的宽度为d =0.1 m ,重力加速度g =10 m/s 2,试求子弹与木块间的平均作用力与木块和地面间的滑动摩擦力之比,并根据结果分析在解决此类问题时应如何处理?答案 由动能定理可得-F ·d =12m v 2-12m v 02解得F =3.5×104 N木块与地面间的滑动摩擦力F f =μMg =2 N 两者之比为FF f=17 500由此可知,子弹与木块间的平均作用力远大于木块与地面间的作用力,因此子弹和木块组成系统在相互作用过程中满足动量守恒的条件。
2.如图所示,质量为M 的木块静止于光滑的水平面上,一质量为m 、速度为v 0的子弹水平射入木块且未穿出,设木块对子弹的阻力恒为F ,则(1)子弹与木块相对静止时二者共同速度为多大; (2)子弹射入过程中产生的内能为多少? (3)木块至少为多长时子弹不会穿出?答案 (1)子弹与木块组成的系统动量守恒,以子弹的初速度方向为正方向,由动量守恒定律得:m v 0=(m +M )v 解得:v =m v 0m +M(2)由能量守恒定律可知:12m v 02=Q +12(m +M )v 2得产生的热量为:Q=Mm v022(M+m)(3)设木块最小长度为L,由能量守恒定律:FL=Q得木块的最小长度为:L=Mm v022(M+m)F.1.模型特点(1)子弹打木块的过程很短暂,认为该过程内力远大于外力,系统动量守恒。
高中物理第1章动量守恒定律专题提升3子弹打木块模型和滑块_木板模型课件新人教版选择性必修第一册
正确,A、B、C 错误。
的上、下两层黏合在一起组成,将其放在光滑的水平面上,质量为m的子弹
以速度v水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚
好能射进一半厚度,如图所示,上述两种情况相比较( AC )
A.子弹对滑块做的功一样多
B.子弹对滑块做的功不一样多
C.系统产生的热量一样多
D.系统产生的热量不一样多
1 2 3 4 5
x<Δx,故选
项 C 正确。
方法二:由动量守恒定律,有 mv0=(m+m')v,由动能定理,对木板
1
2 1
弹-Ff(x+Δx)= mv - 0 2 ,联立解得
2
2
1 2 3 4 5
x=
Δx<Δx,故选项
+ '
1
Ffx=2m'v2,对子
C 正确。
2.(子弹打木块模型)(多选)(2024山东淄博高二月考)矩形滑块由不同材料
(2)明确研究过程,对多个过程进行合理划分,明确每个子过程遵循的规律
及相邻子过程之间的联系;也可把其看作一个整体应用能量和动量规律。
获取有效信息
对点演练
1.(2024山东东营一中高二期末)如图所示,质量为m'的木块静止于光滑的水
平面上,一质量为m、速度为v0的子弹水平射入木块且未穿出,设木块对子
块。如果将子弹与木块相互作用力大小F视为恒力。求:
(1)如果子弹没有打穿木块,系统产生的热量是多少?
(2)要使子弹能打穿木块,则子弹的初速度至少多大?
解析 (1)在光滑的水平地面上,系统所受合外力为0,动量守恒。如果子弹没
有打穿木块,则最终木块与子弹具有共同速度,设为v,根据动量守恒定律有
动量守恒之滑块、子弹打木块模型
动量守恒之滑块、子弹打木块模型lv 0 v S动量守恒定律的应用1—— 子弹打木块模型模型:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。
水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )=222121mv mv - ② 对木块 fs=0212-MV ③由①式得 v=)(0v v Mm - 代入③式有 fs=2022)(21v v MmM -•④②+④得 f l =})]([2121{21212121202202220v v Mm M mv mv MV mv mv -+-=--结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即Q=ΔE 系统= fS 相问题:①若要子弹刚好能(或刚好不能)穿出木块,试讨论需满足什么条件?v 0A B②作出作用过程中二者的速度-时间图像,你会有什么规律发现?例题:一木块置于光滑水平地面上,一子弹以初速v 0射入静止的木块,子弹的质量为m ,打入木块的深度为d ,木块向前移动S 后以速度v 与子弹一起匀速运动,此过程中转化为内能的能量为A .)(21020v v v m - B.)(00v v mv - C.s vdv v m 2)(0- D.vd S v v m )(0-滑块、子弹打木块模型练习1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。
求两木板的最后速度。
v 0 AB v 0 l2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
动量专题复习——滑块、子弹打木块模型
滑块、子弹打木块模型之一子弹打木块模型:包括一物块在木板上滑动等。
μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
一 模型理解质量为m 的子弹,以速度V 0水平射入光滑水平面上质量为M 的木块中未穿出。
子弹深入木块时所受的阻力大小恒为f 符合规律:动量守恒定律:mV 。
=(M+m )V 动能定理:子弹 -f S m = mV 2/2-mV 02/2木块 -f S M = MV 2/2-0功能关系:fd = mV 02/2-(M+m)V 2/2能量转化:子弹动能减少:f S m = mV 02/2- mV 2/2木块动能增加:f S M = MV 2/2系统机械能减少:f S m - f S M =mV 022内能增量:f S m - f S M = mV 02/2- 产生热量:f d =f S m - f S M =mV 02/2二 典型例题1 如图所示,质量为M 小铁块,小铁块与平板车之间的动摩擦因数为μ 其获得大小为v 0的初速度而在小车上向右滑动,车上的滑行时间是多少?2如图所示,质量m=2kg 的物体,以水平速度小车,小车质量M=8kg 设小车足够长,求:(1)(2)物体相对小车滑行的时间距离是多少?(3)3.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度(如图),v 0A Bv 0AB v 0lA 2v 0v 0BCA v 05mBL v 0m v使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
以地面为参照系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
lv 0 v Sv 0A Bv 0 AB v 0 l一 滑块、子弹打木块模型子弹打木块模型:包括一物块在木板上滑动等。
μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。
水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )= ②对木块 fs= ③由①式得 v=代入③式有 fs= ④ ②+④得 f l = 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。
即Q=f l ,l 为子弹现木块的相对位移。
结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即 Q=ΔE 系统=μNS 相其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。
求两木板的最后速度。
2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。
以地面为参照系。
⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向;⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。
2022121mv mv -0212-MV )(0v v M m -2022)(21v v Mm M -•})]([2121{2121212120220222v v Mm M mv mv MV mv mv -+-=--A 2v 0v 0BCA v 05mBL v 0 m vv 03.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板C 两端相向水平地滑上长木板。
如图示。
设物块A 、B 与长木板 C 间的动摩擦因数为μ,A 、B 、C 三者质量相等。
⑴若A 、B 两物块不发生碰撞,则由开始滑上C 到A 、B 都静止在 C 上为止,B 通过的总路程多大?经历的时间多长? ⑵为使A 、B 两物块不发生碰撞,长木板C 至少多长?4.在光滑水平面上静止放置一长木板B ,B 的质量为M=2㎏同,B 右端距竖直墙5m ,现有一小物块 A ,质量为m=1㎏,以v 0=6m/s 的速度从B 左端水平地滑上B 。
如图所示。
A 、B 间动摩擦因数为μ=0.4,B 与墙壁碰撞时间极短,且 碰撞时无能量损失。
取g=10m/s 2。
求:要使物块A 最终不脱离B 木板,木板B 的最短长度是多少?5.如图所示,在光滑水平面上有一辆质量为M=4.00㎏的平板小车,车上放一质量为m=1.96㎏的木块,木块到平板小车左端的距离L=1.5m ,车与木块一起以v=0.4m/s 的速度 向右行驶,一颗质量为m 0=0.04㎏的子弹以速度v 0从右方射入木块并留 在木块内,已知子弹与木块作用时间很短,木块与小车平板间动摩擦因数 μ=0.2,取g=10m/s 2。
问:若要让木块不从小车上滑出,子弹初速度应 满足什么条件?6.一质量为m 、两端有挡板的小车静止在光滑水平面上,两挡板间距离为1.1m ,在小车正中放一质量为m 、长度为0.1m 的物块,物块与小车间动摩擦因数μ=0.15。
如图示。
现给物块一个水平向右的瞬时冲量,使物块获得v 0 =6m/s 的水平初速度。
物块与挡板碰撞时间极短且无能量损失。
求: ⑴小车获得的最终速度; ⑵物块相对小车滑行的路程; ⑶物块与两挡板最多碰撞了多少次; ⑷物块最终停在小车上的位置。
7.一木块置于光滑水平地面上,一子弹以初速v 0射入静止的木块,子弹的质量为m ,打入木块的深度为d ,木块向前移动S 后以速度v 与子弹一起匀速运动,此过程中转化为内能的能量为A . B. C. D.参考答案1. 金属块在板上滑动过程中,统动量守恒。
金属块最终停在什么位置要进行判断。
假设金属块最终停在A 上。
三者有相同速度v ,相对位移为x ,则有 解得:,因此假定不合理,金属块一定会滑上B 。
设x 为金属块相对B 的位移,v 1、v 2表示A 、B 最后的速度,v 0′为金属块离开A 滑上B瞬间的速度。
有:在A 上 全过程联立解得: ∴ *解中,整个物理过程可分为金属块分别在A 、B 上滑动两个子过程,对应的子系统为整体和金属块与B 。
可分开列式,也可采用子过程→全过程列式,实际上是整体→部分隔离法的一种变化。
2.⑴A 恰未滑离B 板,则A 达B 最左端时具有相同速度v ,有 Mv 0-mv 0=(M+m)v ∴ M >m, ∴ v >0,即与B 板原速同向。
⑵A 的速度减为零时,离出发点最远,设A 的初速为v 0,A 、B 摩擦力为f ,向左运动对地最远位移为S ,则 而v 0最大应满足 Mv 0-mv 0=(M+m)v 解得: 3.⑴由A 、B 、C 受力情况知,当B 从v 0减速到零的过程中,C 受力平衡而保持不动,此子过程中B 的位移S 1和运动时间t 1分别为: 。
然后B 、C 以μg 的加速度一起做加速运动。
A 继续减速,直到它们达到相同速度v 。
对全过程:)(2102v v v m -)(00v v mv -s vd v v m 2)(0-vd Sv v m )(0-⎪⎩⎪⎨⎧⋅-==2200321213mv mv mgx mv mv μL m x φ34=⎪⎩⎪⎨⎧⋅-'-=+'=21201010022121212mv v m mv mgL mv v m mv μ⎪⎩⎪⎨⎧⋅--=++=2221202102212121)(2mv mv mv x L mg mv mv mv μ⎪⎪⎪⎩⎪⎪⎪⎨⎧=='='=sm s m v s m v v sm s m v /65/21/34)(0/31/12001或或舍或⎪⎪⎪⎩⎪⎪⎪⎨⎧===m x s m v s m v 25.0/65/31210v mM mM v +-=02120-=mv fS 220)(21)(21v m M v m M fl +-+=l MmM s 4+=gvt g v S μμ01201,2==m A ·2v 0-m B v 0=(m A +m B +m C )v ∴ v=v 0/3 B 、C的加速度 ,此子过程B 的位移∴ 总路程 ⑵A 、B 不发生碰撞时长为L ,A 、B 在C 上相对C 的位移分别为L A 、LB ,则 L=L A +L B*对多过程复杂问题,优先考虑钱过程方程,特别是ΔP=0和Q=fS 相=ΔE 系统。
全过程方程更简单。
4.A 滑上B 后到B 与墙碰撞前,系统动量守恒,碰前是否有相同速度v 需作以下判断:mv 0=(M+m)v, ①v=2m/s此时B 对地位移为S 1,则对B : ②S=1m <5m,故在B 与墙相撞前与A 已达到相同速度v ,设此时A 在B 上滑行L 1距离,则 ③ L 1=3m【以上为第一子过程】此后A 、B 以v 匀速向右,直到B 与墙相碰(此子过程不用讨论),相碰后,B 的速度大小不变,方向变为反向,A 速度不变(此子过程由于碰撞时间极短且无能量损失,不用计算),即B 以v 向左、A 以v 向右运动,当A 、B 再次达到相同速度v ′时:Mv-mv=(M+m)v ′ ④ v ′=2/3 m/s 向左,即B 不会再与墙相碰,A 、B 以v ′向左匀速运动。
设此过程(子过程4)A 相对B 移动L 2,则 ⑤ L 2=1、33m L=L 1+L 2=4.33m 为木板的最小长度。
*③+⑤得 实际上是全过程方程。
与此类问题相对应的是:当P A 始终大于P B 时,系统最终停在墙角,末动能为零。
5.子弹射入木块时,可认为木块未动。
子弹与木块构成一个子系统,当此系统获共同速度v 1时,小车速度不变,有 m 0v 0-mv=(m 0+m)v 1 ① 此后木块(含子弹)以v 1向左滑,不滑出小车的条件是:到达小车左端与小车有共同速度v 2,则 (m 0+m)v 1-Mv=(m 0+m+M)v 2 ② ③ 联立化简得: v 02+0.8v 0-22500=0 解得 v 0=149.6m/s 为最大值, ∴v 0≤149.6m/s 6. ⑴当物块相对小车静止时,它们以共同速度v 做匀速运动,相互作用结束,v 即为小车g m m gm a CB A μμ21=+=gv g v t g v g v S μμμ32292022022====运动时间gvt t t g v S S S μμ35,18110212021=+==+=总时间gv L v m m m v m v m gL m gL m C B A B A B B A A μμμ37)(2121)2(212022020=++-+=+解得:2121Mv mgS =μ2201)(2121v m M mv mgL +-=μ222)(21)(21v m M v m M mgL '+-+=μ220)(2121v m M mv mgL '+-=μ22022100)(2121)(21)(v M m m Mv v m m gL m m ++-++=+μ最终速度mv 0=2mv v=v 0/2=3m/s ⑵ S=6m ⑶ ⑷物块最终仍停在小车正中。
*此解充分显示了全过程法的妙用。
7.AC A : C :22022121mv mv mgS ⋅-=μ次65.615.0==+--=dl S n ⎪⎩⎪⎨⎧+-=+=2200)(2121)(v m M mv Q v m M mv ⎪⎩⎪⎨⎧⋅=-==df Q v m v mv Mv fS 202)(2121。