第4讲 圆锥曲线大题题型培优学生
高中数学压轴培优教程—圆锥曲线篇
高中数学压轴培优教程圆锥曲线篇目录第一章基础篇1.1曲线与方程 (1)1.2顶角最大问题 (19)1.3渐近线性质 (25)1.4共焦点问题 (35)1.5面积问题 (49)1.6抛物线的性质 (67)1.7定点问题 (83)1.8定值问题 (111)1.9最值与范围问题 (161)第二章技法篇2.1垂径定理与第三定义 (189)2.2点差法与定比点差法 (205)2.3点乘双根法 (225)2.4齐次化巧解双斜率问题 (233)2.5同构式方程简化运算 (251)2.6非对称韦达定理 (265)第三章观点篇3.1椭圆的共轭直径 (279)3.2圆锥曲线等角定理 (293)3.3蒙日圆及其应用 (307)3.4阿基米德三角形 (321)3.5椭圆中的蝴蝶模型 (335)3.6曲线系及其应用 (347)3.7极点极线与调和点列 (363)参考文献 (411)第二章 技法篇2192.2 点差法与定比点差法一、知识纵横1、点差法的原理(1)假设点1111(,),(,)A x y B x y 在有心二次曲线22221±=x y a b 上,且弦AB 的中点为00(,)M x y .,A B 代入曲线,有22112222222211⎧±=⎪⎪⎨⎪±=⎪⎩x y a b x y a b ,两式作差,得1212121222()()()()0+−+−±=x x x x y y y y a b ;左右两边同除以1212()()++x x x x ,得1212221212110+−±⋅⋅=+−y y y y a b x x x x .变形得220201⋅=±=−AB y b k e x a ,其中e 为有心二次曲线的离心率(圆的离心率0=e ).(2)抛物线22=y px ,任意弦AB 的中点为00(,)M x y ,,A B 代入曲线,有21122222⎧=⎪⎨=⎪⎩y px y px ,两式作差,得121212()()2()+−=−y y y y p x x ,左右两边同除以12()−x x ,得0⋅=AB k y p .2、有心二次曲线实仿射平面的有一个对称中心的常态二次曲线称为有心二次曲线,所有有心二次曲线都是椭圆或双曲线. 3、点差法基本题型(1)求以定点为中点的弦所在直线的方程 (2)过定点的弦和平行弦的中点轨迹问题 (3)求与中点弦有关的圆锥曲线的方程 (4)圆锥曲线上两点关于某直线对称问题与中点有关的的几何特征:对称、垂直平分、等腰三角形、菱形、平行四边形等. 4、点差法在双曲线中的适用条件已知双曲线22221(0,0)−=>>x y a b a b,任意弦AB 的中点00(,)M x y ,若当中点00(,)M x y 满足22002201−x y a b ≤≤,则这样的双曲线的中点弦不存在(如图阴影部分);若当中点00(,)M x y 满足2200221−>x y a b 或2200220−<x y a b,则这样的双曲线的中点弦存在.高中数学压轴培优教程———圆锥曲线篇5、定比分点若λ=AM MB ,则称点M 为点,A B 的λ定比分点. 当0λ>时,点M 在线段AB 上,称为内分点;当0(1)λλ<≠−时,点M 在线段AB 的延长线上,称为外分点.定比分点坐标公式:若点1122(,),(,)A x y B x y ,λ=AM MB ,则点M 的坐标为1212(,)11λλλλ++++x x y y M . 6、定比点差法原理:若λ=AM MB ,λ=−AN NB ,则称,M N 调和分割,A B ,根据定义,那么,A B 也调和分割,M N .定理:设,A B 为有心二次曲线22221±=x y a b上的两点,若存在,M N 两点,满足λ=AM MB ,λ=−AN NB ,则一定有221⋅⋅±=M N M Nx x y y a b . 证明:(1)设点1122(,),(,)A x y B x y ,(,),(,)M M N N M x y N x y , 因为λ=AM MB ,λ=−AN NB , 则由定比分点坐标公式可得1212(,)11λλλλ++++x x y y M ,1212(,)11λλλλ−−−−x x y y N (1)λ≠±, 将,A B 代入曲线,有221122222222 1 1 ⎧±=⎪⎪⎨⎪±=⎪⎩①②x y a b x y a b ,2222222222 λλλλ⨯±=②③得x y a b ①-③,得21212121222()()()()1λλλλλ+−+−±=−x x x x y y y y a b. 这样就得到了12121212221111111λλλλλλλλ+−+−⋅⋅±⋅⋅=+−+−x x x x y y y y a b ,则221⋅⋅±=M N M N x x y y a b .(2)若点(,)M M M x y 为异于原点的定点,则点N 在直线221⋅⋅±=M M x x y ya b 上. 7、定比点差法基本题型(1)求弦长被坐标轴分界的两段的比值范围;(2)简化证明过定点的直线问题的运算以及定值问题;二、典型例题第二章 技法篇2211、 点差法关于点差法的研究,在解析几何中有着广泛的应用,主要有以下四种基本题型. 1.1、求以定点为中点的弦所在直线的方程例1.已知双曲线2212−=y x ,过()1,1B 能否作直线l ,使l 与双曲线交于,P Q 两点,且B 是线段PQ 的中点,这样的直线如果存在,求出它的方程;如果不存在,说明理由. 【解析】假设这样的直线存在,设点11(,)P x y 、22(,)Q x y 点B 是线段PQ 的中 121222+=⎧⎨+=⎩x x y y ,221122221212⎧−=⎪⎪⎨⎪−=⎪⎩y x y x 两式相减得:121212121()()()()02+−−+−=x x x x y y y y , 左右两边同除以1212()()+−x x x x ,得121212121102+−−⋅⋅=+−y y y y x x x x ,即001111022−⋅⋅=−⋅=PQ PQ y k k x ,解得2=PQ k ,又直线l 过,,P Q B 三点,所以l 的方程为12(1)−=−y x ,即210−−=x y .联立直线与双曲线2212210⎧−=⎪⎨⎪−−=⎩y x x y ,消去y 得22430,162480−+=∆=−=−<x x , 此方程无实数解,与假设矛盾,所以满足题设的直线不存在.【注】本题如果忽视对判别式的考察,将得出错误的结果,请务必小心.由此题可看到中点弦问题中判断点的M 位置非常重要.若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在. 1.2、求过定点的弦或平行弦的中点轨迹例2.已知椭圆22143+=x y 的弦AB 所在直线过点(1,1)E ,求弦AB 中点F 的轨迹. 【解析】设1122(,),(,)A x y B x y ,则弦AB 的中点(,)F x y , 若直线AB 的斜率存在,将,A B 代入椭圆,的22112222143143⎧+=⎪⎪⎨⎪+=⎪⎩x y x y , 两式作差,得12121212()()()()043+−+−+=x x x x y y y y ,左右两边同除以1212()()+−x x x x ,高中数学压轴培优教程———圆锥曲线篇得1212121211043+−+⋅⋅=+−y y y y x x x x ,即121211043−+⋅⋅=−y y y x x x ,又四点,,,A B E F 共线, 所以直线EF 的斜率11−−y x 等于直线AB 的斜率1212−−y y x x ,则1110431−+⋅⋅=−y y x x ,整理得2234340+−−=x y x y .若直线AB 的斜率不存在,则AB 的方程为1=x ,代入椭圆方程解得,A B 的坐标为33(1,),(1,)22−,所以(1,0)F 也满足上述方程.故2234340+−−=x y x y 为所求点F 的轨迹方程.【注】不难看出,在求满足一定条件的动弦的中点轨迹方程时,利用点差法可以大大减少计算量,简化推理过程.1.3、求与中点弦有关的圆锥曲线的方程例3.已知中心在原点,一焦点为F 的椭圆被直线:32=−l y x 截得的弦的中点的横坐标为12,求椭圆的方程.【解析】设椭圆的方程为22221+=y x a b ,则2250−=a b ┅┅①设弦端点11(,)P x y 、22(,)Q x y ,弦PQ 的中点00(,)M x y ,则012=x , 001322=−=−y x 所以12021+==x x x ,12021+==−y y y ,P Q 两点代入椭圆方程,得22112222222211⎧+=⎪⎪⎨⎪+=⎪⎩y x a b y x a b ,两式相减得1212121222()()()()0+−+−+=y y y y x x x x a b , 即221212()()0−−+−=b y y a x x ,所以 212212−=−y y a x x b ,即 223=a b┅┅② 联立①②解得275=a ,225=b ,故所求椭圆的方程是2217525+=y x . 1.4、圆锥曲线上两点关于某直线对称问题例4.已知椭圆22143+=x y ,试确定的m 取值范围,使得对于直线4=+y x m ,椭圆上总有不同的两点关于该直线对称.【解析】设111(,)P x y ,222(,)P x y 为椭圆上关于直线4=+y x m 的对称两点,00(,)P x y 为弦12PP 的中点,第二章 技法篇223则22112222143143⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式作差得:12121212()()()()043+−+−+=x x x x y y y y , 左右两边同除以1212()()+−x x x x ,得1212121211043+−+⋅⋅=+−y y y y x x x x ,由题意可知:1202+=x x x ,1202+=y y y ,121214−=−−y y x x , 所以003=y x ,即00(,3)P x x .由P 在直线4=+y x m 上得00034=+⇒=−x x m x m ,即(,3)−−P m m .因为弦12PP 的中点P 必在椭圆内,所以22()(3)143−−+<m m,解得<m . 例5.已知椭圆2222:1(0)+=>>x y E a b a b的离心率=e ,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆E 的方程.(2)设直线l 与椭圆相交于不同的两点,A B ,已知点(,0)−A a ,点0(0,)Q y 在线段AB 的垂直平分线上,且4⋅=QA QB ,求0y 的值.【解析】(1)由==c e a ,得2234=a c .由222=−c a b ,得2=a b . 由题意可知12242⋅⋅=a b ,即2=ab .解方程组22=⎧⎨=⎩a b ab ,得2,1==a b .所以椭圆E 的方程为2214+=x y .(2)设1122(,),(,)A x y B x y ,线段AB 的中点为33(,)M x y ,当直线l 与x 轴重合时,(2,0),(2,0)−A B ,于是00(2,),(2,)→→=−−=−QA y QB y . 由2000(2,)(2,)44⋅=−−⋅−=−+=QA QB y y y,解得0=±y 当直线l 不过原点O 且不平行于x 轴时,于是321213,−==−l OM y y y k k x x x , 又221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减,得121212121()()()()04+−++−=x x x x y y y y ,左右两边同除以1212()()+−x x x x ,得2112211214−+⋅=−−+y y y y x x x x , 所以3314⋅=−l y k x ,则3314=−⋅l xk y ,高中数学压轴培优教程———圆锥曲线篇又333330330333124114⎧==−⋅⎪+⎪⎨−−⎪⋅=−⋅⋅=−⎪⎩l ly x k x y y y x y y k x y x ,所以30223330134(2)49⎧=−⋅⎪⎪⎨⎪+=−=−⋅⎪⎩y y x x y y ,因为M 为线段AB 的中点,所以2322=+x x ,231302223=−==−⋅y y y y y ,20303055(2,)(22,)2(22)433⋅=−−⋅+−=−++=QA QB y x y x y ,解得2305212=−x y ,所以22203300455(2)(2)(22)91212−⋅=+=−−+y x x y y,解得0=y ,综上所述:0=±y05=±y . 2、定比点差法关于点差法的研究,在解析几何中有着广泛的应用,下面主要从三方面来研究. 2.1求弦长被坐标轴分界的两段的比值范围例6.已知椭圆22194+=x y ,过定点(0,3)P 的直线与椭圆交于两点,A B (可重合),求PA PB 的取值范围.【解析】设1122(,),(,)A x y B x y ,λ=AP PB ,则12120131λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩x x y y ,即120λ+=x x ,123(1)λλ+=+y y ,将,A B 两点代入椭圆方程:221122222221,(1)94,(2)94λλλ⎧+=⎪⎪⎨⎪+=⎪⎩x y x y , 2(1)(2)λ−⋅得212121212()()()()194λλλλλ+−+−+=−x x x x y y y y ,即124(1)3λλ−=−y y所以:132135(1)(1)2366λλλ=++−=+y ,又因为1[2,2]∈−y ,则1[5,]5λ∈−−,1[,5]5∈PA PB. 【注】根据两个调和调和定比分点的联立,将坐标求出与比值的关系式,两个定比分点的式子将问题解决,这就是定比点差法的核心.例7.已知椭圆2222:1(0)+=>>x y C a b b a的上下两焦点分别为12,F F ,过点1F 与y 轴垂直的直线交椭圆C 于,M N 两点,2∆MNFC .第二章 技法篇225(1)求椭圆C 的标准方程.(2)已知O 为坐标原点,直线:=+L y kx m 与y 轴交于点P ,与椭圆C 交于,A B 两个不同的点,若存在实数λ,使得4λ+=OA OB OP ,求m 的取值范围. 【解析】(1)由题设条件得椭圆的方程为:2214y x +=.(2)当0m =时,1λ=−,显然成立;当0m ≠时,4OA OB OP λ+=144OP OA OB λ⇒=+,因为,,A P B 三点共线,所以3λ=;所以3AP PB =, 设1122(,),(,)A x y B x y ,所以121233(,)1313x x y y P ++++,所以1234y y m +=,将,A B 两点代入椭圆方程:22112222 1 4 1 4y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩①②,①-②得:12121212(3)(3)(3)(3)84y y y y x x x x +−+−+=−, 即1283y y m−=−,由上可知:224(2,2)33y m m =+∈−, 所以2(3,3)m m+∈−,解得:(2,1)(1,2)m ∈−−,综上所述:m 的取值范围为(2,1)(1,2){0}−−.2.2简化证明过定点的直线问题的运算以及定值问题例8.设椭圆2222:1(0)+=>>x y C a b a b过点M,且左焦点为1(F .(1)求椭圆C 的方程;(2)当过点(4,1)P 的动直线l 与椭圆C 相交于两不同点,A B 时,在线段AB 上取点Q ,满足⋅=⋅AP QB AQ PB ,证明:点Q 总在某定直线上.【解析】(1)由题意:222222212,1,=+==−c c a b a b,解得224,2==a b , 所以椭圆C 的方程为22142+=x y . (2)证明:设点为(,)Q x y ,12(,)A x y ,22(,)B x y . 由题设知,,,AP PB AQ QB 均不为零,记λ==AP AQ PBQB,则01λλ>≠且,又,,,A P B Q 四点共线,将点(4,1)P 代入椭圆方程得2241142+>,则点P 在椭圆外,又因为点Q 在线段AB 上,从而λ=−AP PB ,λ=AQ QB ,高中数学压轴培优教程———圆锥曲线篇于是12124,1(1)1,1λλλλ−⎧=⎪⎪−⎨−⎪=⎪−⎩x x y y 1212,1(2),1λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩x x x y x y 又点AB 在椭圆C 上,即221122221,(3)421,(4)42⎧+=⎪⎪⎨⎪+=⎪⎩x y x y 2(3)(4)λ−⋅,得212121212()()()()142λλλλλ+−+−+=−x x x x y y y y ,即12121212()()()()111411211λλλλλλλλ+−+−⋅⋅+⋅⋅=+−+−x x x x y y y y , 将(1),(2)代入得1,2202+=+−=即yx x y . 综上所述,点(,)Q x y 总在定直线220+−=x y 上.例9.已知12(,0),(,0)−F c F c 为有心二次曲线2222:1(0)±=>>x y E a b a b 的左、右两个焦点,P 为曲线上任意一点,直线12,PF PF 分别交曲线E 异于P 的点,A B ,设11λ=PF F A ,22μ=PF F B ,证明:λμ+为定值.【解析】证明:设112200(,),(,),(,)A x y B x y P x y ,因为11λ=PF F A ,可得011101λλλλ+⎧=−⎪⎪+⎨+⎪=⎪+⎩x x c y y ,将1100(,),(,)A x y P x y ,代入曲线方程有2200222211221,(1)1,(2)⎧±=⎪⎪⎨⎪±=⎪⎩x y a b x y a b ,2(2)λ⨯得222221122,(3)λλλ+=x y a b ,(1)(3)−得20101010122()()()()1λλλλλ+−+−±=−x x x x y y y y a b. 两边同除以21λ−整理得01010101221111111λλλλλλλλ+−+−⋅⋅±⋅⋅=+−+−x x x x y y y y a b ,所以01211λλ−−⋅=−x x c a ,即201(1)λλ−=−a x x c .又01,1λλ+−=+x x c即01(1)λλ+=−+x x c .两式相加得:222202λ−+=−a c a c x c c同理:222202μ+−=−a c a c x c c ,所以22222λμ++=⋅−a c a c. 【注】若将11λ=PF F A ,22μ=PF F B ,换成11λ=AF F B ,22μ=BF F P ,则有2222112λμ++=⋅−a c a c 为定值,11()()24μλλμλμλμ++=++≥,得22min 22()2λμ−+=⋅+a c a c .第二章 技法篇227例10.已知椭圆2222:1(0)+=>>x y C a b a b 的离心率为23,半焦距为(0)>c c ,且1−=a c ,经过椭圆的左焦点F ,斜率为11(0)≠k k 的直线与椭圆交于,A B 两点,O 为坐标原点.(1)求椭圆C 的标准方程; (2)当11=k 时,求∆AOB S 的值;(3)设(1,0)R ,延长,AR BR 分别于椭圆交于,C D 两点,直线CD 的斜率为2k ,求证:12k k 为定值. 【解析】(1)由题意:得231⎧=⎪⎨⎪−=⎩c a a c 解得32=⎧⎨=⎩a c 所以2225=−=b a c ,故椭圆C 的标准方程22195+=x y . (2)由(1),知(2,0)−F 设1122(,),(,)A x y B x y ,则12187+=−x x ,12914=−x x ,12|||=−=AB xx 307=, 设O 点到直线AB 的距离为d,则=d1130||227∆=⋅=⨯AOB S AB d . (3)设AB 直线方程:(2)=+y k x ,11223344(,),(,),(,),(,)A x y B x y C x y D x y ,λ=AR RC ,μ=BR BD , 将,,,A B C D 坐标代入椭圆得:221122331,(1)951,(2)95⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,222222441,(3)951,(4)95⎧+=⎪⎪⎨⎪+=⎪⎩x y x y 2(1)(2)λ−得:213131313()()()()195λλλλλ−+−++=−x x x x y y y y ,2(3)(4)μ−得:224242424()()()()195μμμμμ−+−++=−x x x x y y y y ,13131101λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩x x y y ,24241101μμμμ+⎧=⎪+⎪⎨+⎪=⎪+⎩x x y y ,所以1391λλ−=−x x ,2491λμ−=−x x , 由上式得:125445λλ=−⎧⎪⎨=−⎪⎩x x ,245445μμ=−⎧⎪⎨=−⎪⎩x x , 所以12123434224444(5)(5)λμλμλμλμ−−++−−+−==−−−−−+y y kx kkx ky y x x (54)2(54)2117()7441144()λμλμλμλμλμ−+−+−+−−===−+−−k kk kk k .【注】综上可知,若出现相交弦共点在坐标轴上的时候,常规联立非常繁琐,那么将坐标变换成比值,达到事半功倍的效果,其结果就是几步秒杀.例11.已知椭圆22143+=x y ,点(4,0)P ,过点P 作椭圆的割线PAB ,C 为B 关于x 轴的对称点,求证:直线AC 恒过定点.【解析】设1122(,),(,)A x y B x y ,则22(,)−C x y ,设AC 与x 轴的交点为(,0)M m ,λ=AP PB ,μ=AM MC ,则1212(,)11λλλλ++++x x y y P ,1212(,)11μμμμ+−++x x y y M , 于是124(1)λλ+=+x x ,120λ+=y y ,12(1)μμ+=+x x m ,120 (1)μ−=y y ,则μλ=−, 由点,A B 在椭圆上得:221122221,(1)431,(2)43⎧+=⎪⎪⎨⎪+=⎪⎩x y x y , 2(1)(2)μ−⨯得:212121212()()()()143μμμμμ+−+−+=−x x x x y y y y ,所以124(1)μμ−−=x x m ,124(1)λλ++=x x m,由(1)可知:1=m , 综上可知:直线AC 恒过定点(1,0).【注】因为,,A B P 三点共线,,,A C M 三点也共线,且,,A B C 三点都在椭圆上,我们用定比点差法去解决这个问题.例12.(2018·全国卷Ⅰ)设椭圆22:12+=x C y 的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程. (2)设O 为坐标原点,证明:∠=∠OMA OMB .【解析】(1)由已知得(1,0),F l 的方程为1=x ,由已知可得点A的坐标为或(1,,所以AM的方程为2=−y x2=−y x (2)当l 与x 轴重合时,00∠=∠=OMA OMB .当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以∠=∠OMA OMB .当l 与x 轴不重合也不垂直时,设11(,)A x y ,22(,)B x y ,点B 关于x 轴对称的点22(,)'−B x y ,229根据几何性质可得:令ON 为∠ANB 的角平分线,AB 与x 轴交点为2F ,下面通过证明N 与M 重合来证明∠=∠OMA OMB ,根据角平分线定理有:22=='AF AN AN F B NB NB ,令λ'=AN NB ,则12(,0)1λλ++x x N ,由122211λλλ−=−⇒=−x x AF F B ,,A B 代入椭圆方程221122221,(1)21,(2)2⎧+=⎪⎪⎨⎪+=⎪⎩x y x y 2(1)(2)λ−⨯得:212121212()()()()12λλλλλ+−++−=−x x x x y y y y ,即21212121011(2,0)21112λλλλλλ+−−⋅⋅+⋅=⇒=⇒+−−F N x x x x x x y y N ,即N 与M 重合,所以∠=∠OMA OMB . 例13.(2018·北京文)已知椭圆2222:1(0)+=>>x y M a b a bk 的直线l 与椭圆M 有两个不同的交点,A B ,(1)求椭圆M 的方程.(2)若1=k ,求||AB 的最大值.(3)设(2,0)−P ,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D ,若,C D 和点71(,)44−Q 共线,求k .【解析】(1)由题意得2=cc=c e a=a 2221=−=b a c ,所以椭圆M 的标准方程为2213+=x y .(2)设直线AB 的直线方程为=+y x m ,由2213=+⎧⎪⎨+=⎪⎩y x m x y ,消去y 可得2246330++−=x mx m , 则2223644(33)48120∆=−⨯−=−>m m m ,即24<m ,1122(,),(,)A x y B x y ,1232+=−mx x ,212334−=m x x ,12|||=−=AB x x=, 易得当20=m时,max ||=AB ||AB.(3)设11223344(,),(,),(,),(,)A x y B x y C x y D x y ,λ=AP PC ,2424(,)(2,0)11μμμμ++=−++x x y y P ,有22112233 1 (1)3 1 (2)3⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,2(1)(2)λ−⨯得:213131313()()()()13λλλλλ+−++−=−x x x x y y y y , 即13(2)()13(1)λλ−−=−x x ,1311333171244(3)172441λλλλλλ−⎧⎧=−=−−⎪⎪⎪⎪−⇒⎨⎨+⎪⎪=−−=−⎪⎪⎩+⎩x x x x x x , 同理2422443171244(4)172441μλλλλλ−⎧⎧=−=−−⎪⎪⎪⎪−⇒⎨⎨+⎪⎪=−−=−⎪⎪⎩+⎩x x x x x x 故121()(5)4λμ−=−−x x ,同时1324λμ⎧=⎪−⎪⎨⎪=⎪−⎩y y y y ,由于CD 过定点71(,)44−Q , 故21341234111114444()(6)711144444μλλμλμ−−−−−−=⇒=⇒−=−−+−−−y y y y y y x x , 结合(5)(6)可得12121−=−y y x x ,即1=k . 例14.已知点(0,1)P ,椭圆22:(1)4+=>x C y m m 上两点,A B 满足2=AP PB ,则当m 为何值时,点B 横坐标的绝对值最大.【解析】设11(,)A x y ,22(,)B x y ,22(,),(0,1)B x y P ,则22112222,(1)4,(2)4⎧+=⎪⎪⎨⎪+=⎪⎩x y m x y m ,由2=AP PB 得121220122112+⎧=⎪⎪+⎨+⎪=⎪⎩+x x y y , 2(1)(2)2−⋅得222222212122(2)(12)4−⋅+−⋅=−x x y y m ,即1212121222221412121212+−+−⋅⋅+⋅=+−+−x x x x y y y y m ,则,122−=−y y m ,1223+=y y ,则234+=my ,所以2223()44++=x m m , 即2221094−+−=m m x ,当5=m 时,()22max 4=x ,则2max2=x .三、方法总结点差法是解决圆锥曲线与直线的关系中常用到的一种方法.当直线与圆锥曲线相交的问题涉及到相交弦的中点时,宜应用点差法求解,即将直线被圆锥曲线截得的弦的两端点坐标代入圆锥曲线方程,得到两个等式,再将两个等式作差,转化得到弦的中点坐标与直线斜率的关系,进而解决问题.在解答圆锥曲线231的某些问题时,若果能适时运用点差法,可以达到“设而不求”的目的,同时,还可以降低解题的运算量,优化解题过程.当1λ=时,点M 为弦AB 的中点.若1λ≠时,点M 不再是中点,就成了定比分点.这时就会出现12λ+x x 这样形式的式子,若果再凑出12λ−x x ,我们就会想到222121212()()λλλ+−=−⋅x x x x x x ,则在有心二次曲线的方程上乘以2λ再作差,就会得到这样的式子,因此我们想到了“定比点差法”.定比点差法实际上是直线的参数方程的变异形式,只不过将其中的t 变作了λ,也就是说只要是共线点列的问题都可以在考虑运用直线的参数方程的同时考虑定比点差法.定比点差法在处理圆锥曲线上过定点的直线的证明题时往往可以起到简化运算的作用.但定比点差法无法应用于抛物线,并且它采用的参数λ在解析几何问题中并不通用,在求解具体的斜率、弦长与面积时往往会引起运算上的麻烦(当然,求坐标还是很简便的),所以并不是所有的共线问题都适用用定比点差法解决.综上所述,在研究点差法及定比点差法时,主要核心思想统一体现为减元、消元以及方程的思想.四.巩固练习1.已知椭圆()222210+=>>x y a b a b 的一条准线方程是1=x ,有一条倾斜角为4π的直线交椭圆于、A B 两点,若AB 的中点为11,24⎛⎫− ⎪⎝⎭C ,则椭圆方程为 .【答案】2211124+=x y【解析】设()()1122,,、A x y B x y ,则121211,2+=−+=x x y y , 且2211221+=x y a b ①, 2222221+=x y a b②, −①②得:2222121222−−=−x x y y a b ,()()221212221212112+−−∴=−=−⋅−+b x x y y b x x a y y a ,21221221−∴===−AB y y b k x x a,222∴=a b ③又21=a c ,2∴=a c ④ 而222=+a b c ⑤由③④⑤可得212=a ,214=b ,所求椭圆方程为2211124+=x y . 2.已知椭圆221259+=x y 上不同的三点()()11229,,4,,,5⎛⎫⎪⎝⎭A x yBC x y 与焦点()4,0F 的距离成等差数列.(1)求证:128+=x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 【解析】(1)略; (2)解128+=x x ,∴设线段AC 的中点为()04,D y .又、A C 在椭圆上,∴22111259+=x y ①,22221259+=x y ②,−①②得:22221212259−−=−x x y y , ()()1212121200998362525225+−∴=−=−⋅=−−+x x y y x x y y y y . ∴直线DT 的斜率02536=DT y k ,∴直线DT 的方程为()0025436−=−y y y x .令0=y ,得6425=x ,即64,025⎛⎫ ⎪⎝⎭T ,∴直线BT 的斜率9055644425−==−k . 3.若抛物线2:=C y x 上存在不同的两点关于直线():3=−l y m x 对称,则实数m 的取值范围是 .【答案】(【解析】当0=m 时,显然满足.当0≠m 时,设抛物线C 上关于直线():3=−l y m x 对称的两点分别为()()1122,,、P x y Q x y ,且PQ 的中点为()00,M x y ,则211=y x ①,222=y x ②, −①②得:221212−=−y y x x ,1212120112−∴===−+PQ y y k x x y y y , 又1=−PQ k m ,02∴=−m y . 中点()00,M x y 在直线():3=−l y m x 上,()003∴=−y m x ,于是052=x . 中点M 在抛物线2=y x 内部,200∴<y x ,即2522⎛⎫−< ⎪⎝⎭m,解得<m综上可知,所求实数m的取值范围是(.4.(2011浙江理)设1F ,2F 分别为椭圆2213+=x y 的左、右焦点,点A ,B 在椭圆上,若125=F A F B ,则点A 的坐标是 .233解答:记直线1F A 反向延长交椭圆于1B ,由125=F A F B 及椭圆对称性得1115=AF F B ,设11(,)A x y ,22(,)B x y,(F .①定比分点公式得:12125155015+⎧=⎪⎪+⎨+⎪=⎪+⎩x x yy 1212550⎧+=−⎪⇒⎨+=⎪⎩x x y y ②又⎧+=⎪⎪⎨⎪+=⎪⎩221122221(1)31(2)3x y x y 221122221(1)4252525(3)3x y x y ⎧+=⎪⎪⇒⎨⎪+=⎪⎩③由(1)-(3)得+−++−=−12121212(5)(5)(5)(5)243x x x x y y yy ⇒−=125x x ,又+=−125x x ⇒=10x ⇒±(0,1)A .5.(2009江理)双曲线()222210,0−=>>x y a b a b的右顶点A 作斜率为1−的直线,该直线与双曲线的两条渐近线的交点分别为B ,C .若12=AB BC ,则双曲线的离心率是( )ABCD【答案】C【解析】设11(,)C x y ,22(,)B x y ,(,0)A a ,由12=AB BC ,由12=AB BC 得121212112102112⎧+⎪=⎪⎪+⎪⎨⎪+⎪=⎪+⎪⎩a x x y y 12123230−=−⎧⇒⎨−=⎩x x a y y . 又22112222222200⎧−=⎪⎪⎨⎪−=⎪⎩x y a b x y a b 2211222222220 990 ⎧−=⎪⎪⇒⎨⎪−=⎪⎩①②x y a b x y a b , 由①-②得:1212121222(3)(3)(3)(3)0+−+−−=x x x x y y y y a b 1230⇒+=x x ,又1232−=−x x a所以1=−x a ,所以(,)−C a b ,所以01−=−=−−AC b k a a2⇒=ba ⇒=e 6.已知椭圆22162+=x y 的左右焦点分别为1F ,2F ,A ,B ,P 是椭圆上的三个动点,且11λ=PF F A ,22μ=PF F B .若2λ=,求μ的值.【解析】设()00,P x y ,11(,)A x y ,22(,)B x y , 由11λ=PF F A 得()0101010111001λλλλλλλ+⎧−=⎪⎧+=−+⎪⎪+⇒⎨⎨++=⎪⎩⎪=⎪+⎩x x c x x c y y y y 由22μ=PF F B 得()02020********μμμμμμμ+⎧=⎪⎧+=−++⎪⎪⇒⎨⎨++=⎪⎩⎪=⎪+⎩x x c x x c y y y y由22002222112211⎧+=⎪⎪⎨⎪+=⎪⎩x y a bx y a b ⇒2200222222211221 λλλ⎧+=⎪⎪⎨⎪+=⎪⎩①②x y a bx y ab235由①-②得:()()()()010*******21λλλλ−+−++=−x x x x y y y yx ab()()()()()()20101201111λλλλλλ−+⇒=⇒−=−−−+x x x x a a x x c ,又()()011λλ+=−+x x c所以222202λ−+=−a c a c x c c ,同理可得222202μ−+=−+a c a c x c c 所以()()2222222222108λμλμμ−+++=⋅⇒+=⋅=⇒=−a c a c a c c c a c . 7.已知椭圆22:12+=xy C ,设过点()2,2P 的直线l 与椭圆C 交于A ,B ,点Q 是线段AB 上的点,且112+=PA PB PQ,求点Q 的轨迹方程.【解析】设11(,)A x y ,22(,)B x y ,()00,Q x y ,由112+=PA PB PQ 22−+⇒+=⇒+=PQ PQ PA AQ PB QB PA PB PA PB0−⇒+=⇒=AQ QB PA AQ PAPBPBQB,记()0λλ==>AP AQ PBQB,即λ=−AP PB ,λ=AQ QB .由λ=−AP PB 得:()()1212121222112121λλλλλλλλ−⎧=⎪⎧−=−⎪⎪−⇒⎨⎨−−=−⎪⎪⎩=⎪−⎩x x x x y y y y由λ=AQ QB 得:()()1201201212001111λλλλλλλλ+⎧=⎪⎧+=+⎪⎪+⇒⎨⎨++=+⎪⎪⎩=⎪+⎩x x x x x x y y y y y y又221122222222⎧+=⎪⎨+=⎪⎩x y x y 221122222222 222 λλλ⇒⎪⎧+=⎪⎨+=⎩①②x y x y 由①-②得:()()()()()212121212221λλλλλ+⋅−+⋅+⋅−=−x x x x y y y y ()()()()()20021141121λλλλλ⇒+⋅−+⋅+⋅−=−x y 00242⇒+=x y ,即00210+−=x y .注意到在椭圆内,故点Q 的轨迹方程为()2221022+−=+<x y x y .8.(2019全国卷理)已知抛物线2:3=C y x 的焦点为F ,斜率为32的直线l 与C 的交点分别为,A B ,与x 轴的交点为P .(1)若4+=AF BF ,求直线l 的方程; (2)若3=AP PB ,求AB .【答案】(1)3728=−y x ;(2)=AB 【解析】(1)设直线l 的方程为:32=+y x m ,与抛物线方程联立可得:()22239330342⎧=⎪⇒+−+=⎨=+⎪⎩y xx m x m y x m , 设()()1122,,,A x y B x y ,故()12413+=−x x m 由抛物线定义可得:()12431432+=++=−+=AF BF x x p m ,解得78=−m . 故直线方程为:3728=−y x . (2)设直线l 的方程为:32=+y x m ,联立22322032⎧=⎪⇒−+=⎨=+⎪⎩y xy y m y x m设()()()11220,,,0,,A x y B x y P x ,则1212 2 2 +=⎧⎪⎨⋅=⎪⎩①②y y y y m 由3=AP PB 可得()12030−=−y y ,即123=−y y ③237由①②解得1231=⎧⎨=−⎩y y ,代入③式得32=−m ,故直线方程为3322=−y x .解得:()53,3,13⎛⎫− ⎪⎝⎭,A B,故=AB .联系2675512809购买。
圆锥曲线培优
高三培优专题 圆锥曲线一.离心率与焦点三角形1. 已知、是椭圆(>>0)的两个焦点,为椭圆上一点,且,则此椭圆的离心率的取值范围为________2. 已知是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于D,且2BF FD ,则椭圆C 的离心率为 3.直线l 经过.双曲线22221x y a b-=的右焦点F ,与一条渐近线垂直且垂足为A ,与另一条渐近线交于B ,且12AF FB ,则双曲线的离心率为 4 .若椭圆221x y m (1)m 与 双曲线221(0)x y n n有公共焦点12,F F ,P 是椭圆与双曲线的一个公共交点,则12PF F 的面积为5(2016年浙江高考) 已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n –y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<16.在平面直角坐标系xOy 中,已知ABC ∆的顶点(5,0)A -和(5,0)C 。
顶点B 在双曲线221169x y -=上,则sinB sinA sin C-为 ( ) A. 32 B. 23 C. 54 D . 457.【2015高考新课标1,理5】已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<,则0y 的取值范围是( )(A )(-3,3)(B )(-6,6)(C )() (D )() 8.(2010全国卷1)已知、为双曲线C:的左、右焦点,点P 在C 上, 1F 2F 1:2222=+by a x C a b P C 21PF PF ⊥1F 2F 221x y -=∠P =,则P 到x 轴的距离为(A) (B) (C) (D) 9(2013浙江卷)如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是A .2B .3C .23D .26 10[2014·湖北卷] 已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A.433 B.233C .3D .2 11.【2016高考浙江理数】如图,设椭圆(a >1). (I )求直线y =kx +1被椭圆截得的线段长(用a 、k 表示);(II )若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围1F 2F 0603262362221x y a+=Ox yABF 1 F 2二.圆锥曲线的切线问题12.[2014·辽宁卷] 已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A.12B.23C.34D.4313【2013年大纲全国理】已知抛物线2:8C y x =与点(2,2)M -,过C 的焦点且斜率为k 的直线与C 交于A B 、两点,若0MA MB •=,则k =( )A .12 B.2 C.214..已知抛物线px y 22=(0P ),过其焦点F 的直线与抛物线交与,A B 两点,该抛物线在,A B 两点处的切线交于C ,设AF a ,BF b ,则CF ( )ABC 2a bD15.(2013新课标2卷)设抛物线2:2(0)C y px p =>的焦点为,点在上,,若以为直径的圆过点,则的方程为( )A .或B .或C .或D .或16.过点M ()p 22-,作抛物线py x 22=()0>p 的两条切线,切点为A B 、.若线段AB 的中点纵坐标为6.则实数=p17.在平面直角坐标系中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C ,动点P 在C 上,C 在点P 处的切线与轴的交点分别为A 、B ,且向量。
圆锥曲线大题综合:五个方程型(学生版)
圆锥曲线大题综合归类:五个方程型目录重难点题型归纳 1【题型一】基础型 1【题型二】直线设为:x=ty+m型 4【题型三】直线无斜率不过定点设法:双变量型 7【题型四】面积最值 10【题型五】最值与范围型 13【题型六】定点:直线定点 15【题型七】定点:圆过定点 18【题型八】定值 21【题型九】定直线 23【题型十】斜率型:斜率和定 26【题型十一】斜率型:斜率和 29【题型十二】斜率型:斜率比 31【题型十三】斜率型:三斜率 34【题型十四】定比分点型:a=tb 36【题型十五】切线型 38【题型十六】复杂的“第六个方程” 41好题演练 45重难点题型归纳重难点题型归纳题型一基础型【典例分析】1已知椭圆x2a21+y2b21=1a1>b1>0与双曲线x2a22-y2b22=1a2>0,b2>0有共同的焦点,双曲线的左顶点为A-1,0,过A斜率为3的直线和双曲线仅有一个公共点A,双曲线的离心率是椭圆离心率的3倍.(1)求双曲线和椭圆的标准方程;(2)椭圆上存在一点P x P,y P-1<x P<0,y P>0,过AP的直线l与双曲线的左支相交于与A不重合的另一点B,若以BP为直径的圆经过双曲线的右顶点E,求直线l的方程.1已知F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个焦点,过点P t ,b 的直线l 交C 于不同两点A ,B .当t =a ,且l 经过原点时,AB =6,AF +BF =22.(1)求C 的方程;(2)D 为C 的上顶点,当t =4,且直线AD ,BD 的斜率分别为k 1,k 2时,求1k 1+1k 2的值.题型二直线设为:x =ty +m 型【典例分析】1已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,右顶点为P ,点Q 0,b ,PF 2=1,∠F 1PQ =60°.(1)求双曲线C 的方程;(2)直线l 经过点F 2,且与双曲线C 相交于A ,B 两点,若△F 1AB 的面积为610,求直线l 的方程.1已知椭圆C:x2a2+y2b2=1a>b>0的左焦点为F,右顶点为A,离心率为22,B为椭圆C上一动点,△FAB面积的最大值为2+1 2.(1)求椭圆C的方程;(2)经过F且不垂直于坐标轴的直线l与C交于M,N两点,x轴上点P满足PM=PN,若MN=λFP,求λ的值.题型三直线无斜率不过定点设法:双变量型【典例分析】1已知抛物线:y 2=2px p >0 ,过其焦点F 的直线与抛物线交于A 、B 两点,与椭圆x 2a 2+y 2=1a >1 交于C 、D 两点,其中OA ⋅OB =-3.(1)求抛物线方程;(2)是否存在直线AB ,使得CD 是FA 与FB 的等比中项,若存在,请求出AB 的方程及a ;若不存在,请说明理由.1已知双曲线E 的顶点为A -1,0 ,B 1,0 ,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且S △OFG =324.点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程;(2)求证:OP ⋅OH 为定值.题型四面积最值【典例分析】1已知椭圆x 23+y 22=1的左、右焦点分别为F 1,F 2.过F 1的直线交椭圆于B ,D 两点,过F 2的直线交椭圆于A ,C 两点,且AC ⊥BD ,垂足为P .(1)设P 点的坐标为(x 0,y 0),证明:x 203+y 202<1;(2)求四边形ABCD 的面积的最小值.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.2020年新高考全国卷Ⅱ数学试题(海南卷)题型五最值与范围型【典例分析】1设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点.(1)若P 是该椭圆上的一个动点,求PF 1 ⋅PF 2 =-54,求点P 的坐标;(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.1已知椭圆E:x2a2+y2b2=1(a>b>0)一个顶点A(0,-2),以椭圆E的四个顶点为顶点的四边形面积为45.(1)求椭圆E的方程;(2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交y=-3交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.2021年北京市高考数学试题题型六定点:直线定点【典例分析】1已知F为抛物线C:y2=2px(p>0)的焦点,O为坐标原点,M为C的准线l上的一点,直线MF的斜率为-1,△OFM的面积为1.(1)求C的方程;(2)过点F作一条直线l ,交C于A,B两点,试问在l上是否存在定点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方?若存在,求出点N的坐标;若不存在,请说明理由.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),四点P 12,2 ,P 20,2 ,P 3-2,2 ,P 42,2 中恰有三点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与椭圆C 相交于A ,B 两点,线段AB 的中点为M ,若∠AMP 2=2∠ABP 2,试问直线l 是否经过定点?若经过定点,请求出定点坐标;若不过定点,请说明理由.题型七定点:圆过定点【典例分析】1如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1) 求抛物线E的方程;(2) 设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明以PQ为直径的圆恒过y轴上某定点【变式演练】1已知动点P到点F1,0的距离与到直线l:x=4的距离之比为12,记点P的轨迹为曲线E.(1)求曲线E的方程;(2)曲线E与x轴正半轴交于点M,过F的直线交曲线E于A,B两点(异于点M),连接AM,BM并延长分别交l于D,C,试问:以CD为直径的圆是否恒过定点,若是,求出定点,若不是,说明理由.【典例分析】1如图,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2,证明:|MN 2|2-|MN 1|2为定值,并求此定值.【变式演练】1已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM =λQO ,QN =μQO ,求证:1λ+1μ为定值..【典例分析】1已知直线l:x=my-1,圆C:x2+y2+4x=0.(1)证明:直线l与圆C相交;(2)设直线l与C的两个交点分别为A、B,弦AB的中点为M,求点M的轨迹方程;(3)在(2)的条件下,设圆C在点A处的切线为l1,在点B处的切线为l2,l1与l2的交点为Q.证明:Q,A,B,C四点共圆,并探究当m变化时,点Q是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.【变式演练】1已知双曲线E:x2a2-y2b2=1a>0,b>0的左、右焦点分别为F1、F2,F1F2=23且双曲线E经过点A3,2.(1)求双曲线E的方程;(2)过点P2,1作动直线l,与双曲线的左、右支分别交于点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,求证:点H恒在一条定直线上.【典例分析】1已知点F是椭圆E:x2a2+y2b2=1(a>b>0)的右焦点,P是椭圆E的上顶点,O为坐标原点且tan∠PFO=33.(1)求椭圆的离心率e;(2)已知M1,0,N4,3,过点M作任意直线l与椭圆E交于A,B两点.设直线AN,BN的斜率分别为k1,k2,若k1+k2=2,求椭圆E的方程.【变式演练】1在平面直角坐标系中,己知圆心为点Q的动圆恒过点F(1,0),且与直线x=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(Ⅰ)求曲线Γ的方程;(Ⅱ)过点F的两条直线l1、l2与曲线Γ相交于A、B、C、D四点,且M、N分别为AB、CD的中点.设l1与l2的斜率依次为k1、k2,若k1+k2=-1,求证:直线MN恒过定点.【典例分析】1设椭圆方程为x2a2+y2b2=1a>b>0,A-2,0,B2,0分别是椭圆的左、右顶点,动直线l过点C6,0,当直线l经过点D-2,2时,直线l与椭圆相切.(1)求椭圆的方程;(2)若直线l与椭圆交于P,Q(异于A,B)两点,且直线AP与BQ的斜率之和为-12,求直线l的方程.【变式演练】1已知点M1,3 2在椭圆x2a2+y2b2=1a>b>0上,A,B分别是椭圆的左、右顶点,直线MA和MB的斜率之和满足:k MA+k MB=-1.(1)求椭圆的标准方程;(2)斜率为1的直线交椭圆于P,Q两点,椭圆上是否存在定点T,使直线PT和QT的斜率之和满足k PT+k QT=0(P,Q与T均不重合)?若存在,求出T点坐标;若不存在,说明理由.【典例分析】1已知圆F 1:x 2+y 2+2x -15=0和定点F 2(1,0),P 是圆F 1上任意一点,线段PF 2的垂直平分线交PF 1于点M ,设动点M 的轨迹为曲线E .(1)求曲线E 的方程;(2)设A (-2,0),B (2,0),过F 2的直线l 交曲线E 于M ,N 两点(点M 在x 轴上方),设直线AM 与BN 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【变式演练】1已知椭圆E :x 2a 2+y 2b2=1(a >0,b >0),离心率e =55,P 为椭圆上一点,F 1,F 2分别为椭圆的左、右焦点,若△PF 1F 2的周长为2+25.(1)求椭圆E 的方程;(2)已知四边形ABCD (端点不与椭圆顶点重合)为椭圆的内接四边形,且AF 2 =λF 2C ,BF 2 =μF 2D ,若直线CD 斜率是直线AB 斜率的52倍,试问直线AB 是否过定点,若是,求出定点坐标,若不是,说明理由.江西省重点中学协作体2023届高三下学期第一次联考数学(理)试题题型十三斜率型:三斜率【典例分析】1已知F是椭圆C:x2a2+y2b2=1(a>b>0)的右焦点,且P1,32在椭圆C上,PF垂直于x轴.(1)求椭圆C的方程.(2)过点F的直线l交椭圆C于A,B(异于点P)两点,D为直线l上一点.设直线PA,PD,PB的斜率分别为k1,k2,k3,若k1+k3=2k2,证明:点D的横坐标为定值.【变式演练】1在平面内动点P与两定点A1(-3,0),A2(3,0)连线斜率之积为-23.(1)求动点P的轨迹E的方程;(2)已知点F1(-1,0),F2(1,0),过点P作轨迹E的切线其斜率记为k(k≠0),当直线PF1,PF2斜率存在时分别记为k1,k2.探索1k⋅1k1+1k2是否为定值.若是,求出该定值;若不是,请说明理由.题型十四定比分点型:a =tb【典例分析】1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),倾斜角为30°的直线过椭圆的左焦点F 1和上顶点B ,且S △ABF 1=1+32(其中A 为右顶点).(1)求椭圆C 的标准方程;(2)若过点M (0,m )的直线l 与椭圆C 交于不同的两点P ,Q ,且PM =2MQ ,求实数m 的取值范围.【变式演练】1已知点M ,N 分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点与上顶点,原点O 到直线MN 的距离为32,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)斜率不为0的直线经过椭圆右焦点F 2,并且与椭圆交于A ,B 两点,若AF 2 =12F 2B ,求直线AB 的方程.题型十五切线型【典例分析】1法国数学家加斯帕尔·蒙日被誉为画法几何之父.他在研究椭圆切线问题时发现了一个有趣的重要结论:一椭圆的任两条互相垂直的切线交点的轨迹是一个圆,尊称为蒙日圆,且蒙日圆的圆心是该椭圆的中心,半径为该椭圆的长半轴与短半轴平方和的算术平方根.已知在椭圆C :x 2a 2+y 2b 2=1(a >b >0)中,离心率e =12,左、右焦点分别是F 1、F 2,上顶点为Q ,且QF 2 =2,O 为坐标原点.(1)求椭圆C 的方程,并请直接写出椭圆C 的蒙日圆的方程;(2)设P 是椭圆C 外一动点(不在坐标轴上),过P 作椭圆C 的两条切线,过P 作x 轴的垂线,垂足H ,若两切线斜率都存在且斜率之积为-12,求△POH 面积的最大值.【变式演练】1已知椭圆C:x2a2+y2b2=1a>b>0的上顶点为A,左、右焦点分别为F1、F2,三角形AF1F2的周长为6,面积为3.(1)求椭圆C的方程;(2)已知点M是椭圆C外一点,过点M所作椭圆的两条切线互相垂直,求三角形AF2M面积的最大值.题型十六复杂的“第六个方程”【典例分析】1如图,已知点B2,1,点N为直线OB上除O,B两点外的任意一点,BK,NH分别垂直y轴于点K,H,NA⊥BK于点A,直线OA,NH的交点为M.(1)求点M的轨迹方程;(2)若E3,0,C,G是点M的轨迹在第一象限的点(C在G的右侧),且直线EC,EG的斜率之和为0,若△CEG的面积为152,求tan∠CEG.【变式演练】1已知椭圆C的中心在原点O,焦点在x轴上,离心率为32,且椭圆C上的点到两个焦点的距离之和为4.(1)求椭圆C的方程;(2)设A为椭圆C的左顶点,过点A的直线l与椭圆交于点M,与y轴交于点N,过原点且与l平行的直线与椭圆交于点P.求SΔPAN⋅SΔPAM(SΔAOP)2的值.好题演练1(2023·贵州毕节·统考模拟预测)已知椭圆C的下顶点M,右焦点为F,N为线段MF的中点,O为坐标原点,ON=32,点F与椭圆C任意一点的距离的最小值为3-2.(1)求椭圆C的标准方程;(2)直线l:y=kx+m k≠0与椭圆C交于A,B两点,若存在过点M的直线l ,使得点A与点B关于直线l 对称,求△MAB的面积的取值范围.2(2023·天津南开·统考二模)已知椭圆x2a2+y2b2=1a>b>0的离心率为32,左、右顶点分别为A,B,上顶点为D,坐标原点O到直线AD的距离为255.(1)求椭圆的方程;(2)过A点作两条互相垂直的直线AP,AQ与椭圆交于P,Q两点,求△BPQ面积的最大值.3(2023·河北·统考模拟预测)已知直线l :x =12与点F 2,0 ,过直线l 上的一动点Q 作直线PQ ⊥l ,且点P 满足PF +2PQ ⋅PF -2PQ =0.(1)求点P 的轨迹C 的方程;(2)过点F 作直线与C 交于A ,B 两点,设M -1,0 ,直线AM 与直线l 相交于点N .试问:直线BN 是否经过x 轴上一定点?若过定点,求出该定点坐标;若不过定点,请说明理由.4(2023·北京东城·统考二模)已知焦点为F 的抛物线C :y 2=2px (p >0)经过点M (1,2).(1)设O 为坐标原点,求抛物线C 的准线方程及△OFM 的面积;(2)设斜率为k (k ≠0)的直线l 与抛物线C 交于不同的两点A ,B ,若以AB 为直径的圆与抛物线C 的准线相切,求证:直线l 过定点,并求出该定点的坐标.5(2023·四川自贡·统考三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =22,设A 62,12 ,B -62,12,P 0,2 ,其中A ,B 两点在椭圆C 上.(1)求椭圆C 的方程;(2)过点P 的直线交椭圆C 于M ,N 两点(M 在线段AB 上方),在AN 上取一点H ,连接MH 交线段AB 于T ,若T 为MH 的中点,证明:直线MH 的斜率为定值.6(2023·江西赣州·统考二模)在平面直角坐标系xOy 中,F 1(-1,0),F 2(1,0),点P 为平面内的动点,且满足∠F 1PF 2=2θ,PF 1 ⋅PF 2 cos 2θ=2.(1)求PF 1 +PF 2 的值,并求出点P 的轨迹E 的方程;(2)过F 1作直线l 与E 交于A 、B 两点,B 关于原点O 的对称点为点C ,直线AF 2与直线CF 1的交点为T .当直线l 的斜率和直线OT 的斜率的倒数之和的绝对值取得值最小值时,求直线l 的方程.7(2023·四川乐山·统考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (2,0),短轴长等于焦距.(1)求C 的方程;(2)过F 的直线交C 于P ,Q ,交直线x =22于点N ,记OP ,OQ ,ON 的斜率分别为k 1,k 2,k 3,若(k 1+k 2)k 3=1,求|OP |2+|OQ |2的值.8(2023·贵州贵阳·统考模拟预测)已知椭圆C 1:x 2a 2+y 2b2=1a >b >0 与椭圆C 2:x 22+y 2=1的离心率相等,C 1的焦距是22.(1)求C 1的标准方程;(2)P 为直线l :x =4上任意一点,是否在x 轴上存在定点T ,使得直线PT 与曲线C 1的交点A ,B 满足PA PB =AT TB?若存在,求出点T 的坐标.若不存在,请说明理由.。
2021届高三数学精准培优专练 圆锥曲线综合(文) 学生版
2021届高三精准培优专练例1:过双曲线221916x y -=的右焦点2F 作倾斜角为45的弦AB ,求:(1)弦AB 的中点C 到点2F 的距离; (2)弦AB 的长.例2:设抛物线2:2(0)C y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于||1AF -. (1)求抛物线C 的方程;(2)已知经过抛物线C 的焦点F 的直线l 与抛物线交于A ,B 两点,证明:11||||AF BF +为定值. 培优点 圆锥曲线综合一、弦长问题二、定值问题例3:已知两定点(2,0)A -,(2,0)B ,O 为坐标原点,动点P 满足:直线PA ,PB 的斜率之积为12-. (1)求动点P 的轨迹C 的方程;(2)设过点(1,0)D -的直线l 与(1)中曲线C 交于M ,N 两点,求OMN △的面积的最大值.三、最值问题例4:已知中心在坐标原点O 的椭圆C 经过点1(3,)2A ,且点(3,0)F 为其右焦点. (1)求椭圆C 的方程;(2)是否存在直线l 与椭圆C 交于B ,D 两点,满足225OB OD ⋅=,且原点到直线l 的距离为3? 若存在,求出直线l 的方程;若不存在,请说明理由.四、存在性问题一、选择题1.已知经过椭圆2215x y +=的右焦点且与x 轴正方向成60︒的直线与椭圆交于A ,B 两点,则||AB =( ) A .51+ B .10 C .5 D .10或51+ 2.已知双曲线221mx ny -=与直线12y x =+交于M ,N 两点,过原点与线段MN 中点所在直线的 斜率为3,则m n的值是( ) A .3-B .3C .3-D .3 3.等边三角形OAB 的三个顶点都在抛物线22(0)y px p =>上,O 为坐标原点,则这个三角形的边长 为( ) A .3pB .23pC .43pD .2p4.若过椭圆2212516x y +=上一点P 作圆22(3)1x y -+=的两条切线,切点分别为A ,B ,则APB ∠的 最大值为( ) A .30︒B .60︒C .90︒D .120︒5.已知双曲线22:14y C x -=,P 是双曲线C 上不同于顶点的动点,经过P 分别作曲线C 的两条渐近线的平行线,与两条渐近线围成平行四边形OAPB ,则四边形OAPB 的面积是( ) A .2B .1C .5 D .56.00(,)P x y 是抛物线2:2(0)C y px p =>上一定点,A ,B 是C 上异于P 的两点,直线PA ,PB 的 斜率PA k ,PB k 满足PA PB k k λ+=(λ为常数,0λ≠),且直线AB 的斜率存在,则直线AB 过定点对点增分集训( ) A .00022(,)x px y λλ--B .0002(,)x x y λ--C .00022(,)y px y λλ--D .0002(,)y x y λ--二、填空题7.已知抛物线1C :2(0)y ax a =>的焦点F 也是椭圆2C :2221(0)4y x b b +=>的一个焦点,点M ,3(,1)2P 分别为曲线1C ,2C 上,则MP MF +的最小值为 .8.若椭圆221(15)1015x y t t t +=>+-与双曲线221169x y -=在第一象限内有交点A ,且椭圆与双曲线有公共焦点,左、右焦点分别是12,F F ,12120F F A ∠=︒,点P 是椭圆上任意一点,则12PF F △面积的最大值是___________.三、解答题9.已知椭圆2222:1(0)x y C a b a b +=>>过点1)2P ,离心率是2.(1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 交于A 、B 两点,线段AB 的中点为11(,)22M ,求直线l 与坐标轴围成的三角形的面积.10.已知抛物线2:2(0)C y px p =>的焦点为(1,0)F ,O 为坐标原点,A 、B 是抛物线C 上异于O 的两点.(1)求抛物线C 的方程;(2)若直线OA 、OB 的斜率之积为14-,求证:直线AB 过定点.11.如图,已知A ,B 是椭圆22122:1(0)x y C a b a b +=>>与双曲线22222:1x y C a b-=的公共顶点,且4AB =,两曲线离心率之积为4.M 为2C 上除顶点外一动点,AM 交椭圆1C 于点P ,点Q 与点P 关于x 轴对称.(1)求椭圆1C 的方程;(2)证明:存在实数λ,使MB BQ λ=.12.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为2,P 是椭圆C 上的动点,当1260F PF ∠=︒时,12PF F △的面积为3. (1)求椭圆C 的标准方程;(2)若过点(2,0)H -的直线交椭圆C 于A ,B 两点,求1ABF △面积的最大值.例1:【答案】(1)8027;(2)1927.【解析】(1)双曲线的右焦点2(5,0)F ,直线AB 的方程为5y x =-.联立2251916y x x y =-⎧⎪⎨-=⎪⎩,得27903690x x +-=.设11(,)A x y ,22(,)B x y ,则12907x x +=-,123697x x =-. 设弦AB 的中点C 的坐标为(,)x y , 则124527x x x +==-,8057y x =-=-. 所以2224580802||(5)()777CF =++=. (2)由(1),知221212||(11)[()4]AB x x x x =++-2290369192(11)[()4()]777=+⨯--⨯-=. 例2:【答案】(1)24y x =;(2)证明见解析.【解析】(1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线1x =-的距离, 由抛物线的定义得12p=,即2p =. 故抛物线C 的方程为24y x =.(2)易知焦点F 的坐标为(1,0),若直线l 的斜率不存在,即直线l 方程为1x =, 此时令(1,2)A ,(1,2)B -,∴11111||||22AF BF +=+=; 若直线l 的斜率存在,设直线l 方程为(1)y k x =-,培优点十八 圆锥曲线综合 答案设11(,)A x y ,22(,)B x y ,由抛物线的定义知1||1AF x =+,2||1BF x =+.由24(1)y x y k x ⎧=⎨=-⎩,得22222(2)0k x k x k -++=, 根据韦达定理得121x x =, 所以121212121212121222211111||||11(1)(1)12x x x x x x AF BF x x x x x x x x x x +++++++=+====++++++⋅+++, 综上可得,11||||AF BF +为定值. 例3:【答案】(1)221(0)2x y y +=≠;(2)2.【解析】(1)设点P 的坐标为(,)x y,则PA k =,PB k =,所以22122PA PBy k k x ⋅==--,化简得22220x y -+=, 所以所求轨迹方程是221(0)2x y y +=≠. (2)设直线l 的方程为1x my =-,联立曲线C 的方程得22(2)210m y my +--=,设11(,)M x y ,22(,)N x y ,由韦达定理得12222m y y m +=+,12212y y m -=+, 所以OMN △的面积121||||2S OD y y =⋅-==,(1)t t =≥,则S t t==≤+, 上式当1t =即0m =时取等号,所以OMN △. 例4:【答案】(1)2214x y +=;(2)见解析.【解析】(1)设椭圆C 的方程为22221(0)x y a b a b+=>>,则左焦点为(F ',在直角三角形AFF 'Rt △中,可求7||2AF '=,∴2||||42a AF AF a '=+=⇒=.又c =2221b a c =-=.故椭圆C 的方程为2214x y +=. (2)假设存在符合题意的直线l ,其方程为y kx m =+, 由原点到l223(1)m k ==+.联立方程2214x y y kx m ⎧+=⎪⎨⎪=+⎩,得222(14)84(1)0k x kmx m +++-=.则2216(2)02Δk k =->⇒>.设11(,)B x y ,22(,)D x y ,则122814mkx x k-+=+,21224(1)14m x x k -=+, 则22212121212211(1)22(1)()145k OB OD x x y y k x x mk x x m k +⋅=+=++++==+, 解得21(2,)k =∉+∞.当斜率不存在时,l的方程为x =112245OB OD ⋅=≠. 综上,不存在符合条件的直线.一、选择题 1.【答案】C【解析】由已知条件可知直线为2)y x =-,由222)15y x x y ⎧=-⎪⎨+=⎪⎩,得21660550x x -+=,∴126016x x +=,125516x x =,∴12|||AB x x =-= 2.【答案】B【解析】设11(,)M x y ,22(,)N x y ,中点坐标00(,)A x y ,代入双曲线方程中,得到22111mx ny -=,22221mx ny -=,两式相减得到12121212()()()()m x x x x n y y y y -+=-+, 结合12122y y x x -=-,1202x x x +=,1202y y y +=,且002y x =,代入上面式子,得到mn=. 3.【答案】C【解析】∵抛物线22y px =关于x 轴对称,∴若正三角形的一个顶点位于坐标原点, 另外两个顶点在抛物线22(0)y px p =>上,则A ,B 点关于x 轴对称, ∴直线OA 倾斜角为30︒OA方程为y x =.由22y x y px⎧=⎪⎨⎪=⎩,得6x p y =⎧⎪⎨=⎪⎩,∴(6,)A p,(6,)B p -,∴||AB =,∴这个正三角形的边长为.4.【答案】B【解析】如图,因为椭圆2212516x y +=与圆22(3)1x y -+=关于x 轴对称,并且圆的圆心坐标(3,0)为 椭圆右焦点,所以过椭圆2212516x y +=上一点P 作圆22(3)1x y -+=的两条切线, 要使APB ∠的最大,则PC 取最小,所以P 为右端点.因为1AC =,2PC =,AC AP ⊥,所以260APB APC ∠=∠=︒.5.【答案】B【解析】设(,)P m n ,则2244m n -=,设PA 和渐近线2y x =平行,PB 和渐近线2y x =-平行, 由:2()PA y x m n =-+,:2()PB y x m n =--+, 且PA 和渐近线2y x =的距离为d =, 由2y x =和2()y x m n =--+,求得22(,)42m n m nB ++,可得|||2|OB m n =+,∴四边形OAPB 的面积是2211||2||4|4144d OB m n m n =+=-=⋅=. 6.【答案】C【解析】设2(,)2a A a p ,2(,)2b B b p ,则直线AB 的方程为222222b x y b p ba b a p p--=--, 整理得2p aby x b a b a=+++, 又00002222220000222222PA PB a y b y a y b y k k a b y y a b x x p p p p p pλ----+=+=+=----, 化简得0022p p a y b y λ+=++,则00022()2y p x ab p y b a b aλλ-=--++.则直线AB 的方程为000222[()]y p py x x y b a λλ=--+-+, 直线AB 过定点00022(,)y p x y λλ--.二、填空题 7.【答案】2【解析】由点3(,1)2P 在椭圆2C 上,且0b >,所以223()1214b b+=⇒=F 的坐标为(0,1).又由抛物线1C 方程得1(0,)4F a ,所以11144a a =⇒=, 则211:4C y x =,由抛物线定义知MF 等于点M 到其准线:1l y =-的距离d . 过点P 作准线:1l y =-的垂线3:2l x '=,则垂直3:2l x '=与抛物线211:4C y x =的交点即为所求M 点, 所以MP MF MP d +=+,其最小值为1(1)2--=.8.【答案】【解析】依题意有122510F F =⨯=,设2AF m =,18AF m =+, 由余弦定理得222(8)10210cos120m m m +=+-⋅⋅⋅︒,解得6m =.故对与椭圆来说12202AF AF a +==,10a ∴=,90t =,275b =,b ∴=椭圆方程为22110075x y +=.当p 为短轴上顶点时,面积取得最大值为1102⨯⨯=三、解答题9.【答案】(1)2214x y +=;(2)2532S =.【解析】(1)依题意可知c a =,223114a b+=,222c a b =-,解得2a =,1b =, ∴椭圆的方程为2214x y +=.(2)设11(,)A x y 、22(,)B x y ,代入椭圆方程得221114x y +=,222214x y +=, 两式相减得12121212()()()()04x x x x y y y y -++-+=,由中点坐标公式得121x x +=,121y y +=.∴121214AB y y k x x -==--,可得直线AB 的方程为111()242y x -=--. 令0x =,可得58y =;令0y =,可得52x =, 则直线l 与坐标轴围成的三角形面积为1552528232S =⨯⨯=. 10.【答案】(1)24y x =;(2)证明见解析.【解析】(1)因为抛物线2:2(0)C y px p =>的焦点坐标为(1,0), 所以12p=,所以2p =,所以抛物线的方程为24y x =. (2)证明:①当直线AB 的斜率不存在时,设2(,)4t A t ,2(,)4t B t -,因为直线OA ,OB 的斜率之积为14-,所以2224161444t t t t t t --⋅=-,化简得264t =, 所以(16,)A t ,(16,)B t -,此时直线AB 的方程为16x =;②当直线AB 的斜率存在时,设其方程为y kx b =+,(,)A A A x y ,(,)B B B x y ,联立得24y x y kx b⎧=⎨=+⎩,化简得2440ky y b -+=,根据根与系数的关系得4A B b y y k =,因为直线OA ,OB 的斜率之积为14-,所以14A B A B y y x x =-⋅,即40A B A B x x y y +=,即224044A B A B y y y y ⋅+=,解得0A B y y =(舍去)或64A B y y =-, 所以464A B by y k==-,即16b k =-,所以16y kx k =-,即(16)y k x =-. 综上所述,直线AB 过x 轴上一定点(16,0).11.【答案】(1)2214x y +=;(2)证明见解析. 【解析】(1)由题可知2a =,则224⋅=,解得1b 2=, 所以椭圆1C 的方程为2214x y +=. (2)设00(,)M x y ,直线AM 的斜率为k ,∵(2,0)A -,(2,0)B ,双曲线方程为2214x y -=, ∴2000200012244AM BMy y y k k x x x ⋅=⋅==+--,所以14BM k k =, 联立22(2)14y k x x y =+⎧⎪⎨+=⎪⎩,得2222(14)16(164)0k x k x k +++-=,所以22164(2)14P k x k -⋅-=+,即22814P k x k 2-=+,所以24(2)14P P ky k x k =+=+,则22241142824214P BQBM Pk y k k k k x k k +====---+, 所以M ,B ,Q 三点共线,即存在实数λ,使MB BQ λ=.12.【答案】(1)2212x y +=;(2)4.【解析】(1)设椭圆C 的半焦距为c ,因为椭圆C的离心率为2,所以2c a =.① 在12PF F △中,1260F PF ∠=︒, 由余弦定理,得222121212121cos 22PF PF F F F PF PF PF +-∠==, 得222121212PF PF F F PF PF +-=,得22121212()3PF PF F F PF PF +-=,即2212(2)(2)3a c PF PF -=,所以21143PF PF b =, 所以12PF F △的面积212121sin 233S PF PF F PF =∠==, 所以21b =,即1b =,② 又222a b c =+,③由①②③,解得a =1b =,1c =,所以椭圆C 的标准方程为2212x y +=. (2)设直线AB 的方程为(2)y k x =+,11(,)A x y ,22(,)B x y ,联立得22(2)12y k x x y =+⎧⎪⎨+=⎪⎩,得2222(12)8820k x k x k +++-=,由28160Δk =->,得212k <,根据韦达定理有212812k x x k 2+=-+,21228212k x x k -=+.由弦长公式,得12AB x =-== 又点1F 到直线AB的距离为d =所以11122ABFS AB d∆=⋅===261(1,4)t k=+∈,则216tk-=,所以1ABFS∆==4≤=4tt=,即2t=,k=所以1ABF△面积的最大值为4.。
圆锥曲线大题专题及答案
解析几何大题专题第一类题型 弦长面积问题1.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率是2,且过点P .直线2y x m =+与椭圆C 相交于,A B 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求PAB △的面积的最大值;(Ⅲ)设直线,PA PB 分别与y 轴交于点,M N .判断||PM ,||PN 的大小关系,并加以证明.2. (本小题14分) 已知椭圆22:13+=x y C m m,直线:20+-=l x y 与椭圆C 相交于P ,Q 两点,与x 轴交于点B ,点,P Q 与点B 不重合.(Ⅰ)求椭圆C 的离心率;(Ⅱ)当2∆=OPQ S 时,求椭圆C 的方程;(Ⅲ)过原点O 作直线l 的垂线,垂足为.N 若λ=PN BQ ,求λ的值.3.(本小题共14分)已知椭圆2222:1(0)x yC a ba b+=>>离心率等于12,(2,3)P、(2,3)Q-是椭圆上的两点.(Ⅰ)求椭圆C的方程;(Ⅱ),A B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为12,求四边形APBQ面积的最大值.4.(本小题满分14分)已知椭圆C:2231(0)mx my m+=>的长轴长为O为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设点(3,0)A,动点B在y轴上,动点P在椭圆C上,且P在y轴的右侧,若||||BA BP=,求四边形OPAB面积的最小值.5.(本小题共14分)已知椭圆C:2214xy+=,F为右焦点,圆O:221x y+=,P为椭圆C上一点,且P位于第一象限,过点P作PT与圆O相切于点T,使得点F,T在OP两侧.(Ⅰ)求椭圆C的焦距及离心率;(Ⅱ)求四边形OFPT面积的最大值.6.(本小题13分)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.(I)求抛物线C的方程,并求其焦点坐标和准线方程;(II)若OA OB,求△AOB面积的最小值.第二类题型 圆过定点问题( 包括点在圆上 点在圆外 点在圆内)1.(本小题满分14 分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,椭圆C 与y 轴交于A , B 两点,且|AB |=2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 是椭圆C 上的一个动点,且直线PA ,PB 与直线x =4分别交于M , N两点.是否存在点P 使得以MN 为直径的圆经过点(2,0)?若存在,求出点P 的横坐标;若不存在,说明理由。
圆锥曲线问题在高考的常见题型及解题技巧
圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线是数学中的重要概念,也是高中数学中的重要内容之一。
在高考中,圆锥曲线问题往往是考查学生分析能力、解题技巧和数学理论应用能力的重要内容。
圆锥曲线问题包括了圆、椭圆、双曲线和抛物线等内容,这些问题在高考中的常见题型有很多,下面我们就来总结一下圆锥曲线问题在高考中的常见题型及解题技巧。
一、圆锥曲线的常见题型1. 求解圆锥曲线的焦点、直径等坐标问题2. 求圆锥曲线与坐标轴的交点3. 求圆锥曲线的参数方程4. 求解圆锥曲线的切线方程5. 求解圆锥曲线的渐近线方程6. 判断点是否在圆锥曲线内部或外部等问题这些都是高考中经常出现的圆锥曲线的题型,考查学生的代数计算、几何推理、参数方程应用等多方面的数学能力。
二、解题技巧1. 确定圆锥曲线的类型在解题时首先要明确圆锥曲线的类型,包括圆、椭圆、双曲线和抛物线等。
这样可以根据具体的类型选择相应的解题方法,避免盲目求解导致错误。
2. 利用几何的方法辅助求解对于椭圆、双曲线等圆锥曲线,可以利用几何的方法来辅助求解,比如通过图形性质来确定焦点、直径等坐标,利用图形的对称性质来求解切线方程等。
3. 转换坐标系有些圆锥曲线问题在直角坐标系中比较复杂,但是如果将坐标系进行适当的旋转、平移或变换,可能会使问题更易于求解。
将坐标系转换成合适的坐标系是解决问题的有效方法之一。
4. 参数化求解对于一些复杂的圆锥曲线问题,可以尝试使用参数方程来进行求解,将问题转化成参数方程的形式,有时会使问题变得更加简单。
5. 利用数学工具软件辅助求解在解题过程中,可以利用数学软件来辅助求解,比如利用计算机绘制图形、求解方程等,可以帮助理清思路、验证结果,并避免繁琐的计算错误。
三、举例分析以下举一个常见的圆锥曲线问题作为例子进行分析:已知椭圆的方程为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]求椭圆的焦点坐标及渐近线方程。
高考数学一轮复习 名校尖子生培优大专题 圆锥曲线训练4 新人教A版
名校专题----圆锥曲线培优训练41、在ABC ∆中AC =B 是椭圆22154x y +=在x 轴上方的顶点,l 的方程是1y =-,当AC 在直线l上运动时.(1)求ABC ∆外接圆的圆心P 的轨迹E 的方程;(2)过定点3(0,)2F 作互相垂直的直线12,l l ,分别交轨迹E 于,M N 和,R Q ,求四边形MRNQ 面积的最小值.解:(1)由椭圆方程22154x y +=得点(0,2),B 直线l 方程是1y =-AC ∴=且AC 在直线l 上运动.可设(1),(1),A m C m ---则AC 的垂直平分线方程为x m = ①AB 的垂直平分线方程为12y x -= ②P Q 是ABC ∆的外接圆圆心,∴点P 的坐标(,)x y 满足方程①和②,由①和②联立消去m 得26x y =故圆心P 的轨迹E 的方程为26x y =(2)由图可知,直线1l 和2l 的斜率存在且不为零,设1l的方程为32y kx =+,12l l ⊥Q ,2l ∴的方程为132y x k =-+.由23216y kx y x ⎧=+⎪⎪⎨⎪=⎪⎩ 得 2690x kx --=Q △=226360,k ∆=+>∴直线1l 与轨迹E 交于两点.设1122(,),(,)M x y N x y ,则12126,9x x k x x +==.2||6(1).MN k ∴===+同理可得:21||6(1).RQ k =+∴四边形MRNQ 的面积2211||||18(2)18(272.2S MN RQ k k =•=++≥+=当且仅当221k k =,即1k =±时,等号成立.故四边形MRNQ 的面积的最小值为72.2、已知圆O:222x y +=交x 轴于A ,B 两点,曲线C 是以AB 为长轴,离心率为2的椭圆,其左焦点为F.若P 是圆O 上一点,连结PF,过原点O 作直线PF 的垂线交椭圆C 的左准线于点Q. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切;(Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.解:(Ⅰ)因为2a e ==,所以c=1 则b=1,即椭圆C 的标准方程为2212x y +=(Ⅱ)因为P (1,1),所以12PF k =,所以2OQ k =-,所以直线OQ 的方程为y=-2x 又椭圆的左准线方程为x=-2,所以点Q(-2,4) 所以1PQ k =-,又1OP k =,所以1k k PQ OP -=⊥,即OP PQ ⊥,故直线PQ 与圆O 相切(Ⅲ)当点P 在圆O 上运动时,直线PQ 与圆O 保持相切证明:设00(,)P x y(0x ≠),则22002y x =-,所以001PF y k x =+,001OQ x k y +=-,所以直线OQ 的方程为001x y x y +=-所以点Q(-2,0022x y +)所以002200000000000022(22)22(2)(2)PQ x y y y x x x xk x x y x y y +--+--====-+++,又00OP y k x =, 所以1k k PQ OP -=⊥,即OP PQ ⊥,故直线PQ 始终与圆O 相切3、已知圆M P N y x M 为圆点定点),0,5(,36)5(:22=++上的动点,点Q 在NP 上,点G 在MP 上,且满足0,2=⋅=.(I )求点G 的轨迹C 的方程;(II )过点(2,0)作直线l ,与曲线C 交于A 、B 两点,O 是坐标原点,设,OB OA OS += 是否存在这样的直线l ,使四边形OASB 的对角线相等(即|OS|=|AB|)?若存在,求出直线l 的方程;若不存在,试说明理由.1. 解:(1)⇒⎪⎭⎪⎬⎫=⋅=02PN GQ Q 为PN 的中点且GQ ⊥PN ⇒GQ 为PN 的中垂线⇒|PG|=|GN| ∴|GN|+|GM|=|MP|=6,故G 点的轨迹是以M 、N 为焦点的椭圆,其长半轴长3=a ,半焦距5=c ,∴半轴长b=2,∴点G 的轨迹方程是14922=+y x(2)因为+=,所以四边形OASB 为平行四边形 若存在l 使得||=|AB |,则四边形OASB 为矩形0=⋅∴ 若l 的斜率不存在,直线l 的方程为x=2,由⎪⎩⎪⎨⎧±==⎪⎩⎪⎨⎧=+=3522149222y x y x x 得 0,0916=⋅>=⋅∴OB OA OB OA 与矛盾,故l 的斜率存在.设l 的方程为),(),,(),2(2211y x B y x A x k y -=)1(3636)49(149)2(222222=-+-+⇒⎪⎩⎪⎨⎧=+-=k x k x k y x x k y 由49)1(36,493622212221+-=+=+∴k k x x k k x x ①)]2()][2([2121--=x k x k y y 4920]4)(2[2221212+-=++-=k k x x x x k ②把①、②代入2302121±==+k y y x x 得∴存在直线06230623:=-+=--y x y x l 或使得四边形OASB 的对角线相等.2.已知椭圆)0(12222>>=+b a b y ax 的长轴长为4,离心率为21,21,F F 分别为其左右焦点.一动圆过点2F ,且与直线1-=x 相切。
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。
圆锥曲线大题全攻略含答案详解
圆锥曲线大题全攻略含答案详解本文介绍了圆锥曲线中常见的问题和解题技巧,包括求轨迹方程问题、定点问题、定值问题、最值问题、点差法解决中点弦问题、常见几何关系的代数化方法、非对称“韦达定理”问题处理技巧、三点共线问题、巧用曲线系方程解决四点共圆问题、抛物线中阿基米德三角形的常见性质及应用、双切线题型等。
求轨迹方程问题是圆锥曲线中的高频题型,求轨迹方程的主要方法有直译法、相关点法、定义法、参数法等。
直译法的步骤是设求轨迹的点为P(x,y),由已知条件建立关于x,y的方程,化简整理;相关点法的步骤是设求轨迹的点为P(x,y),相关点为Q(xO,yO),根据点的产生过程,找到(x,y)与(xO,yO)的关系,并将xO,yO用x和y表示,将(xO,yO)代入相关点的曲线,化简即得所求轨迹方程;定义法的步骤是分析几何关系,由曲线的定义直接得出轨迹方程;参数法的步骤是引入参数,将求轨迹的点(x,y)用参数表示,消去参数,研究范围。
本文还给出了四个例题,分别是求点P的轨迹方程、求动点M的轨迹方程、求动点Q的轨迹方程、求AB中点M的轨迹方程。
最后,给出两道专题练题,帮助读者巩固所学知识。
3.抛物线C的焦点为F,点A在抛物线上运动,点P满足AP=-2FA,求动点P的轨迹方程。
改写:已知抛物线C的焦点为F,点A在抛物线上运动,设点P的坐标为(x,y),则有AP=-2FA,求P的轨迹方程。
4.已知定圆M的方程为(x+y+4)^2=100,定点F的坐标为(0,4),动圆P过定点F且与定圆M内切,求动圆圆心P的轨迹方程。
改写:已知定圆M的方程为(x+y+4)^2=100,定点F的坐标为(0,4),设动圆P的圆心坐标为(x,y),则P过定点F且与定圆M内切,求P的轨迹方程。
5.已知定直线l的方程为x=-2,定圆A的方程为(x-4)^2+y^2=16,动圆H与直线l相切,与定圆A外切,求动圆圆心H的轨迹方程。
改写:已知定直线l的方程为x=-2,定圆A的方程为(x-4)^2+y^2=16,设动圆H的圆心坐标为(x,y),则H与直线l相切,与定圆A外切,求H的轨迹方程。
圆锥曲线(课堂讲义和例题)
专题1 焦长与焦比体系】过椭圆的一个焦点的弦与另一个焦点围成的三角形的周长是 .【例2】 过椭圆的一个焦点F 作弦AB ,若,,则 的数值为( ) A . B .C .D .与、斜率有关【例3】设直线与椭圆相交于A 、B 两个不同的点,与x 轴相交于点F .(1)证明:;(2)若F 是椭圆的一个焦点,且,求椭圆的方程.【例4】设椭圆中心在坐标原点,焦点在轴上,一个顶点,离心率为. (1)求椭圆的方程;(2)若椭圆左焦点为,右焦点,过且斜率为1的直线交椭圆于,求的面积.秒杀秘籍:椭圆焦长以及焦比问题体:过椭圆的左焦点F 1的弦与右焦点F 2围成的三角形的周长是4a ;焦长公式:A 是椭圆上一点,、是左、右焦点,为,过,c 是椭圆半焦距,则(1);(2);(3).体面积:,. 证明:(1)如图所示,,故; (2)设由余弦定理得 ;整理得 ;整理得则过焦点的弦长.(焦长公式)焦比定理:过椭圆的左焦点F 1的弦,,令,即,代入弦长公式可得.yO F 2AB xF 1【例5】已知椭圆C:的左右顶点为A,B,点P为椭圆C上不同于A,B,的一点,且直线P A,PB的斜率之积为;(1)求椭圆的离心率;(2)设为椭圆C的左焦点,直线l过点F与椭圆C交与不同的两点M,N,且求直线l的斜率.【例6】(2014•安徽)设F1,F2分别是椭圆E:的左、右焦点,过点F1的直线交椭圆E于A、B两点,若,轴,则椭圆E的方程为.【例7】(2011•浙江)设F1,F2分别为椭圆的焦点,点A,B在椭圆上,若,则点A的坐标是.【例8】(2014•安徽)设F1,F2分别是椭圆E:的左、右焦点,过点F1的直线交椭圆E于A,B两点,.(1)若,的周长为16,求;(2)若,求椭圆E的离心率._________.【例10】过双曲线的左焦点F 1作倾斜角为的直线交双曲线于A 、B 两点,则=________.【例11】已知双曲线的左、右焦点分别为,.过的直线与双曲线的右支相交于,两点,若,若是以为顶角的等腰三角形,则双曲线的离心率为( ) A . B .C .D .注意:关于这类型焦比双曲线求离心率的题目很多,通常需要利用双曲线的几何性质把拥有焦比的较长的那段用关于的式子表示出来,再利用(交一支)或者(交两支)得出离心率.证明:1. ;同理. 2..3.设O 到AB 的距离为,则 ,故. 4.,. 5.;;;.关于抛物线的焦长公式及定理(A 为直线与抛物线右交点,B 为左交点,为AB 倾斜角) 1.;2. 3.;4.设,则; 5.设AB 交准线于点P ,.【例12】已知抛物线C :的焦点为F ,直线与C 交于A ,B (A 在x 轴上方)两点,若,则m 的值为( ) A .B .C .D .【例13】已知抛物线的方程为,过其焦点F 的直线与抛物线交于A 、B 两点,且,O 为坐标原点,则的面积和的面积之比为( ) A . B . C . D .【例14】过抛物线的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若,且则此抛物线的方程为( )若交于两支时,,代入弦长公式可得.秒杀秘籍:抛物线焦长公式及性质 1..2..3..4.设,则.5.设AB 交准线于点P ,则;.秒杀秘籍:过焦点的弦与其中垂线的性质 1.设椭圆焦点弦的中垂线与长轴的交点为,则与之比是离心率的一半(如图)。
(完整版)圆锥曲线大题题型归纳,推荐文档
精心整理圆锥曲线大题题型归纳基本方法:1. 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a 、b 、c 、e 、p 等等; 2. 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题;3. 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。
要注4. 5. 1.2.3无关;45“转化”的经验;6.大多数问题只要真实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。
题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题例1、 已知F 1,F 2为椭圆2100x +264y =1的两个焦点,P 在椭圆上,且∠F 1PF 2=60°,则△F 1PF 2的面积为多少?点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。
变式1、已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且12F PF ∠=120︒,求12F PF ∆的面积。
变式2、已知F 1,F 2为椭圆2221100x y b +=(0<b <10)的左、右焦点,P 是椭圆上一点.(1)求|PF 1|?|PF 2|的最大值; (2)若∠F 1PF 2=60°且△F 1PF 2的面积为6433,求b 的值 题型二过定点、定值问题例2.(淄博市2017届高三3月模拟考试)已知椭圆C :22221(0)x y a b a b+=>>经过点3(1,),离心率为3,点A 为椭圆C 的右顶点,直线l 与椭圆相交于不同于点A 的两个点1122(,),(,)P x y Q x y . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)当0AP AQ •=u u u r u u u r时,求OPQ ∆面积的最大值;(Ⅲ)若直线l 的斜率为2,求证:OPQ ∆的外接圆恒过一个异于点A 的定点.处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明。
高考数学高分专题篇 圆锥曲线(培优)
圆锥曲线【知识要点】1.你知道圆锥曲线有两种定义吗?2.我们应该掌握圆锥曲线的哪几方面的性质?请把它们放在一起作比较?3.你能把圆锥曲线问题归结成两种问题(给性质——求方程;给方程——求性质)并分别说出解题的基本思路吗?【典型例题】例1.设P 是曲线24y x =上的一个动点。
(1)求点P 到A (1,-1)的距离与点P 到1x =-的距离之和的最小值; (2)若点B 为(2,2),求PB PF +的最小值。
例2.已知双曲线的离心率为2,12,F F 为左右焦点,P 为双曲线上的点,1260F PF ∠=︒,12PF F S ∆=学习笔记:例3.已知某椭圆的焦点是()()124,0,4,0F F -,过点2F 并垂直于x 轴的直线与椭圆的一个交点为B ,且1210FB F B +=,椭圆上不同的两点()()1122,,,A x y C x y 满足条件:222,,F A F B F C 成等差数列。
(1)求椭圆的方程; (2)求弦AC 中点的横坐标;(3)设弦AC 的垂直平分线的方程为,y kx m m =+求的范围。
例4.设点P 到M (1,0),N (-1,0)距离之差为2m ,到x 轴、y 轴距离之比为2,求m 的取值范围。
例5.已知抛物线24x y =的焦点为F ,A ,B 是抛物线上的两动点,且()0AF FB λλ=>,过A ,B 两点分别作抛物线的切线,设其交点为M 。
(1)证明:FM AB ⋅为定值;(2)设ABM ∆的面积为S ,写出()S f λ=的表达式,并写出S 的最小值。
例6.已知椭圆C 的中点在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1。
(1)求椭圆C 的标准方程;(2)若直线l :y kx m =+与椭圆C 相交于A ,B 两点(A ,B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
圆锥曲线(学生版)--2024年高考数学大题突破
圆锥曲线目录【题型一】轨迹【题型二】新结构卷中19题“定义”型轨迹【题型三】直线所过定点不在坐标轴上【题型四】面积比值范围型【题型五】非常规型四边形面积最值型【题型六】“三定”型:圆过定点【题型七】“三定”型:斜率和定【题型八】“三定”型:斜率积定【题型九】圆锥曲线切线型【题型十】“韦达定理”不能直接用【题型十一】“非韦达”型:点带入型【题型一】轨迹求轨迹方程的常见方法有:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q的坐标x、y表示相关点P的坐标x0、y0,然后代入点P的坐标x0,y0所满足的曲线方程,整理化简可得出动点Q的轨迹方程;(4)参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一参数t得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.1(2024·重庆·模拟预测)已知点F-1,0和直线m:x=2,点P到m的距离d=4-2PF.(1)求点P的轨迹方程;(2)不经过圆点O的直线l与点P的轨迹交于A,B两点. 设直线OA,OB的斜率分别为k1,k2,记k1k2 =t,是否存在t值使得△OAB的面积为定值,若存在,求出t的值;若不存在,说明理由.2(2024·辽宁·一模)已知平面上一动点P到定点F12,0的距离比到定直线x=-2023的距离小40452,记动点P的轨迹为曲线C.(1)求C的方程;(2)点A2,1,M,N为C上的两个动点,若M,N,B恰好为平行四边形MANB的其中三个顶点,且该平行四边形对角线的交点在第一、三象限的角平分线上,记平行四边形MANB的面积为S,求证:S≤86 9.3(2024·山东淄博·一模)在平面直角坐标系xOy 中,点.F 5,0 ,点P x ,y 是平面内的动点.若以PF 为直径的圆与圆D :x 2+y 2=1相切,记点P 的轨迹为曲线C .(1)求C 的方程;(2)设点A (1,0),M (0,t ),N (0,4-t )(t ≠2),直线AM ,AN 分别与曲线C 交于点S ,T (S ,T 异于A ),过点A 作AH ⊥ST ,垂足为H ,求|OH |的最大值.【题型二】新结构卷中19题“定义”型轨迹1(2024·新疆乌鲁木齐·二模)在平面直角坐标系xOy 中,重新定义两点A x 1,y 1 ,B x 2,y 2 之间的“距离”为AB =x 2-x 1 +y 2-y 1 ,我们把到两定点F 1-c ,0 ,F 2c ,0 c >0 的“距离”之和为常数2a a >c 的点的轨迹叫“椭圆”.(1)求“椭圆”的方程;(2)根据“椭圆”的方程,研究“椭圆”的范围、对称性,并说明理由;(3)设c =1,a =2,作出“椭圆”的图形,设此“椭圆”的外接椭圆为C ,C 的左顶点为A ,过F 2作直线交C 于M ,N 两点,△AMN 的外心为Q ,求证:直线OQ 与MN 的斜率之积为定值.2(2024·湖南·二模)直线族是指具有某种共同性质的直线的全体,例如x=ty+1表示过点(1,0)的直线,直线的包络曲线定义为:直线族中的每一条直线都是该曲线上某点处的切线,且该曲线上的每一点处的切线都是该直线族中的某条直线.(1)若圆C1:x2+y2=1是直线族mx+ny=1(m,n∈R)的包络曲线,求m,n满足的关系式;(2)若点P x0,y0不在直线族:Ω:(2a-4)x+4y+(a-2)2=0(a∈R)的任意一条直线上,求y0的取值范围和直线族Ω的包络曲线E;(3)在(2)的条件下,过曲线E上A,B两点作曲线E的切线l1,l2,其交点为P.已知点C0,1,若A,B,C三点不共线,探究∠PCA=∠PCB是否成立?请说明理由.3(2024·全国·模拟预测)已知复平面上的点Z对应的复数z满足z2-z2-9=7,设点Z的运动轨迹为W.点 O 对应的数是0.(1)证明W是一个双曲线并求其离心率e;(2)设W的右焦点为 F1 ,其长半轴长为L,点Z到直线x=Le的距离为d(点Z在W的右支上),证明:ZF1=ed;(3)设W的两条渐近线分别为 l1,l2 ,过Z分别作 l1,l2 的平行线l3,l4分别交l2,l1于点 P,Q ,则平行四边形OPZQ的面积是否是定值?若是,求该定值;若不是,说明理由.【题型三】直线所过定点不在坐标轴上存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.1已知点M 是抛物线C :x 2=2py p >0 的对称轴与准线的交点,过M 作抛物线的一条切线,切点为P ,且满足PM =22.(1)求抛物线C 的方程;(2)过A -1,1 作斜率为2的直线与抛物线C 相交于点B ,点T 0,t t >0 ,直线AT 与BT 分别交抛物线C 于点E ,F ,设直线EF 的斜率为k ,是否存在常数λ,使得t =λk ?若存在,求出λ值;若不存在,请说明理由.2已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为233,点P 2,3 到其左右焦点F 1,F 2的距离的差为2.(1)求双曲线C 的方程;(2)在直线x +2y +t =0上存在一点Q ,过Q 作两条相互垂直的直线均与双曲线C 相切,求t 的取值范围.3已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上任意一点Q (异于顶点)与双曲线两顶点连线的斜率之积为19,E 在双曲线C 上,F 为双曲线C 的右焦点,|EF |的最小值为10-3.(1)求双曲线C 的标准方程;(2)过椭圆x 2m 2+y 2n2=1(m >n >0)上任意一点P (P 不在C 的渐近线上)分别作平行于双曲线两条渐近线的直线,交两渐近线于M ,N 两点,且|PM |2+|PN |2=5,是否存在m ,n 使得椭圆的离心率为223?若存在,求出椭圆的方程,若不存在,说明理由.【题型四】面积比值范围型圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.1(2022·全国·高三专题练习)F c,0是椭圆C:x2a2+y2b2=1a>b>0的右焦点,其中c∈N*.点A、B分别为椭圆E的左、右顶点,圆F过点B与坐标原点O,P是椭圆上异于A、B的动点,且△PBF的周长小于8.(1)求C的标准方程;(2)连接BP与圆F交于点Q,若OQ与AP交于点M,求S△OPQS△MBQ的取值范围.2(2023下·福建福州·高三校考)如图,已知圆C:x2a2+y2b2=1(a>b>0)的左顶点A(-2,0),过右焦点F的直线l与椭圆C相交于M,N两点,当直线l⊥x轴时,|MN|=3.(1)求椭圆C的方程;(2)记△AMF,△ANF的面积分别为S1,S2,求S1S2的取值范围.3(2022·湖北黄冈·蕲春县第一高级中学校考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,左、右焦点分别为F 1,F 2,圆A 2:(x -2)2+y 2=r 2(r >0),椭圆C 与圆A 2交于点D ,且k DA2⋅k DA 1=-34.(1)求椭圆方程.(2)若过椭圆右焦点F 2的直线l 与椭圆C 交于P ,Q 两点,与圆A 2交于M ,N 两点,且S △A 1PQS △A 2MN=3,求r 的取值范围.【题型五】非常规型四边形面积最值型求非常规型四边形的面积最大值,首先要选择合适的面积公式,对于非常规四边形,如果使用的面积公式为S DMEN=12x N-x My1-y2,为此计算y1-y2,x N-x M代入转化为k的函数求最大值.1(2023·全国·高三专题练习)已知圆O:x2+y2=4,O为坐标原点,点K在圆O上运动,L为过点K的圆的切线,以L为准线的拋物线恒过点F1-3,0,F23,0,抛物线的焦点为S,记焦点S的轨迹为S.(1)求S的方程;(2)过动点P的两条直线l1,l2均与曲线S相切,切点分别为A,B,且l1,l2的斜率之积为-1,求四边形PAOB面积的取值范围.2(2023·全国·高三专题练习)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点,以F1F2为直径的圆和椭圆C在第一象限的交点为G,若三角形GF1F2的面积为1,其内切圆的半径为2-3.(1)求椭圆C的方程;(2)已知A是椭圆C的上顶点,过点P-2,1的直线与椭圆C交于不同的两点D,E,点D在第二象限,直线AD、AE分别与x轴交于M,N,求四边形DMEN面积的最大值.3(2023·全国·高三专题练习)如图.已知圆M :(x -2)2+y 2=81,圆N :(x +2)2+y 2=1.动圆S 与这两个圆均内切.(1)求圆心S 的轨迹C 的方程;(2)若P 2,3 、Q 2,-3 是曲线C 上的两点,A 、B 是曲线C 上位于直线PQ 两侧的动点.若直线AB 的斜率为12,求四边形APBQ 面积的最大值.【题型六】“三定”型:圆过定点圆过定点思维:1.可以根据特殊性,计算出定点,然后证明2.利用以“某线段为直径”,转化为向量垂直计算2.利用对称性,可以猜想出定点,并证明。
圆锥曲线综合精准培优专练
培优点十八 圆锥曲线综合1.直线过定点例1:已知中心在原点,焦点在x 轴上的椭圆C,过左焦点F 且垂直于x 轴的直线交椭圆C 于P ,Q 两点,且PQ = (1)求C 的方程;(2)若直线l 是圆228x y +=上的点()2,2处的切线,点M 是直线l 上任一点,过点M 作椭圆C 的切线MA ,MB ,切点分别为A ,B ,设切线的斜率都存在.求证:直线AB 过定点,并求出该定点的坐标.【答案】(1)22184x y +=;(2)证明见解析,()2,1. 【解析】(1)由已知,设椭圆C 的方程为()222210x y a b a b +=>>,因为PQ =(P c -,代入椭圆方程得22221c a b+=,又因为c e a ==,所以21212b+=,b c =,所以24b =,2228a b ==, 所以C 的方程为22184x y +=.(2)依题设,得直线l 的方程为()22y x -=--,即40x y +-=, 设()00,M x y ,()11,A x y ,()22,B x y ,由切线MA 的斜率存在,设其方程为()11y y k x x -=-,联立()1122184y y k x x x y -=-+=⎧⎪⎨⎪⎩得,()()()2221111214280k x k y kx x y kx ++-+--=,由相切得()()()222211111682140Δk y kx k y kx ⎡⎤=--+--=⎣⎦,化简得()221184y kx k -=+,即()22211118240x k x y k y --+-=,因为方程只有一解,所以1111122111822x y x y x k x y y ===---,所以切线MA 的方程为()11112x y y x x y -=--, 即1128x x y y +=,同理,切线MB 的方程为2228x x y y +=,又因为两切线都经过点()00,M x y ,所以101020202828x x y y x x y y +=+=⎧⎨⎩,所以直线AB 的方程为0028x x y y +=,又004x y +=,所以直线AB 的方程可化为()00248x x x y +-=,即()02880x x y y -+-=,令20880x y y -=-=⎧⎨⎩,得21x y ==⎧⎨⎩,所以直线AB 恒过定点()2,1.2.面积问题例2:已知椭圆()222210x y a b a b +=>>的左、右焦点分别为1F 、2F ,焦距为4,直线1:bl y x c=与椭圆相交于A 、B 两点,2F 关于直线1l 的对称点E 在椭圆上.斜率为1-的直线2l 与线段AB 相交于点P ,与椭圆相交于C 、D 两点.(1)求椭圆的标准方程;(2)求四边形ACBD 面积的取值范围.【答案】(1)22184x y +=;(2)3232,93⎛⎤⎥⎝⎦. 【解析】(1)由椭圆焦距为4,设()12,0F -,()22,0F ,连结1EF ,设12EF F α∠=, 则tan b cα=,又222a b c =+,得sin b a α=,cos c a α=,()12122sin9012||sin sin 90F F c a ce b c a EF EF b c aa aαα︒∴======++︒-++, 解得222a bc c b c =+⇒==,28a =,所以椭圆方程为22184x y +=.(2)设直线2l 方程:+y x m =-,()11,C x y 、()22,D x y ,由22184x y y x m +==-+⎧⎪⎨⎪⎩,得2234280x mx m -+-=,所以1221243283x x m m x x +=-=⎧⎪⎪⎨⎪⎪⎩,由(1)知直线1l :y x =,代入椭圆得A ⎛ ⎝,B,得AB =,由直线2l 与线段AB 相交于点P,得m ⎛∈ ⎝,12CD x -==而21l k =-与11l k =,知21l l ⊥,12ACBD S AB CD ∴=⨯=由m ⎛∈ ⎝,得232,03m ⎛⎤-∈- ⎥⎝⎦3232,93⎛⎤⎥⎝⎦, ∴四边形ACBD 面积的取值范围3232,93⎛⎤⎥⎝⎦.3.参数的值与范围例3:已知抛物线()2:20C y px p =>的焦点()1,0F ,点()1,2A 在抛物线C 上,过焦点F 的直线l 交抛物线C 于M ,N 两点.(1)求抛物线C 的方程以及AF 的值;(2)记抛物线C 的准线与x 轴交于点B ,若MF FN λ=u u u u r u u u r ,2240BM BN +=,求λ的值.【答案】(1)24y x =,2AF =;(2)2λ=±. 【解析】(1)Q 抛物线()2:20C y px p =>的焦点()1,0F ,12p∴=,则24p =,抛物线方程为24y x =; Q 点()1,2A 在抛物线C 上,122pAF ∴=+=. (2)依题意,()1,0F ,设:1l x my =+,设()11,M x y 、()22,N x y , 联立方程241y xx my ==+⎧⎨⎩,消去x ,得2440y my -=-.所以121244y y m y y +==-⎧⎨⎩ ①,且112211x my x my =+=+⎧⎨⎩,又MF FN λ=u u u u r u u u r,则()()11221,1,x y x y λ--=-,即12y y λ=-,代入①得()222414y y mλλ⎧-=--=⎪⎨⎪⎩,消去2y 得2142m λλ=+-,()1,0B -,则()111,BM x y =+u u u u r ,()221,BN x y =+u u u r,则()()222222221122||11BM BN BM BN x y x y +=+=+++++u u u u r u u u r u u u u r u u u r ()222212121222x x x x y y =++++++()2222121212(1)(1)222my my my my y y =+++++++++ ()()()2221212148m y y m y y =+++++()()22421168448164016m m m m m m =+++⋅+=++,当4216401640m m ++=,解得212m =,故23λ=±.4.弦长类问题例4:已知椭圆()22122:10x y C a b a b +=>>的左右顶点是双曲线222:13x C y -=的顶点,且椭圆1C 的上顶点到双曲线2C 的渐近线的距离为3. (1)求椭圆1C 的方程;(2)若直线l 与1C 相交于1M ,2M 两点,与2C 相交于1Q ,2Q 两点,且125OQ OQ ⋅=-u u u u r u u u u r ,求12M M 的取值范围.【答案】(1)2213x y +=;(2)(0,10⎤⎦.【解析】(1)由题意可知:23a =,又椭圆1C 的上顶点为()0,b , 双曲线2C 的渐近线为:330y x x y =±⇔±=, 由点到直线的距离公式有:331b b +=⇒=,∴椭圆方程2213x y +=. (2)易知直线的斜率存在,设直线的方程为y kx m =+,代入2213x y -=,消去y 并整理得:()222136330k xkmx m ----=,要与2C 相交于两点,则应有:()()222222221301303641333013k k k m k m m k -≠⎧-≠⎪⇒⎨----->+>⎧⎪⎨⎪⎩⎪⎩, 设()111,Q x y ,()222,Q x y ,则有:122613kmx x k +=-,21223313m x x k --⋅=-.又()()()()22121212121212121OQ OQ x x y y x x kx m kx m k x x km x x m ⋅=+=+++=++++u u u u u u u r u r. 又:125OQ OQ ⋅=-u u u u ru u u u r ,所以有:()()()22222221133613513k m k m m k k⎡⎤+--++-=-⎣⎦-, 2219m k ⇒=-,②将y kx m =+,代入2213x y +=,消去y 并整理得:()222136330k x kmx m +++-=,要有两交点,则()()2222223641333031Δk m k m k m =-+->⇒+>.③ 由①②③有2109k <≤.设()133,M x y 、()244,M x y .有342613kmx x k -+=+,23423313m x x k -⋅=+,12M M=将2219mk =-代入有1212M M M M ==12M M ⇒=2t k =,10,9t ⎛⎤∈ ⎥⎝⎦,令()()()()()2311'1313t t tf t f t t t +-=⇒=++,10,9t ⎛⎤∈ ⎥⎝⎦.所以()'0f t >在10,9t ⎛⎤∈ ⎥⎝⎦内恒成立,故函数()f t 在10,9t ⎛⎤∈ ⎥⎝⎦内单调递增,故()(1250,72f t M M ⎛⎤∈⇒∈ ⎥⎝⎦.5.存在性问题例5:已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为()11,0F -,()21,0F,点1,2A ⎛ ⎝⎭在椭圆C 上. (1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线l ,使得当直线l 与椭圆C 有两个不同交点M ,N 时,能在直线53y =上找到一点P ,在椭圆C 上找到一点Q ,满足PM NQ =u u u u r u u u r?若存在,求出直线l 的方程;若不存在,说明理由.【答案】(1)2212x y +=;(2)不存在,见解析.【解析】(1)设椭圆C 的焦距为2c ,则1c =,∵A ⎛ ⎝⎭在椭圆C 上,∴122a AF AF =+==∴a 2221b a c =-=,故椭圆C 的方程为2212x y +=.(2)假设这样的直线存在,设直线l 的方程为2y x t =+,设()11,M x y ,()22,N x y ,353,P x ⎛⎫⎪⎝⎭,()44,Q x y ,MN 的中点为()00,D x y ,由22222y x t x y =++=⎧⎨⎩,消去x ,得229280y ty t -+-=, ∴1229ty y +=,且()2243680Δt t =-->,故12029y y t y +==且33t -<<, 由PM NQ =u u u u r u u u r,知四边形PMQN 为平行四边形,而D 为线段MN 的中点,因此D 为线段PQ 的中点, ∴405329y t y +==,得42159t y -=,又33t -<<,可得4713y -<<-,∴点Q 不在椭圆上,故不存在满足题意的直线l .一、解答题1.已知动圆P 过点()22,0F 并且与圆()221:24F x y ++=相外切,动圆圆心P 的轨迹为C . (1)求曲线C 的轨迹方程;(2)过点()22,0F 的直线1l 与轨迹C 交于A 、B 两点,设直线1:2l x =,设点()1,0D -,直线AD 交l 于M ,求证:直线BM 经过定点.【答案】(1)()22103y x x -=>;(2)见解析. 【解析】(1)由已知12| | 2PF PF =+,12| | 2PF PF -=,P 轨迹C 为双曲线的右支,22a =,1a =,12| 24F F c ==,2c =∴曲线C 标准方程()22103y x x -=>.(2)由对称性可知,直线BM 必过x 轴的定点,当直线1l 的斜率不存在时,()2,3A ,()2,3B -,13,22M ⎛⎫⎪⎝⎭,知直线BM 经过点()1,0P ,当直线1l 的斜率存在时,不妨设直线()1:2l y k x =-,()11,A x y ,()22,B x y , 直线()11:11y AD y x x =++,当12x =时,()11321M y y x =+,()1131,221y M x ⎛⎫ ⎪ ⎪+⎝⎭, ()22233y k x x y =--=⎧⎪⎨⎪⎩得()()222234430k x k x k -+-+=,212243k x x k -+=-,2122433k x x k +=-, 下面证明直线BM 经过点()1,0P ,即证PM PB k k =,即1212311y yx x -=+-, 即12112233y x y x y y -+=+,由112y kx k =-,222y kx k =-,整理得,()12124540x x x x -++=,即()22222243434450333k k k k k k -+⋅-⋅+=--- 对点增分集训即证BM 经过点()1,0P ,直线BM 过定点()1,0.2.已知点31,2⎛⎫⎪⎝⎭在椭圆()2222:10x y E a b a b +=>>上,设A ,B 分别为椭圆的左顶点、下顶点,原点O 到直线AB 的距离(1)求椭圆E 的方程;(2)设P 为椭圆E 在第一象限内一点,直线PA ,PB 分别交y 轴、x 轴于D ,C 两点,求四边形ABCD 的面积.【答案】(1)22143x y +=;(2) 【解析】(1)因为椭圆()2222:10x y E a b a b +=>>经过点31,2⎛⎫⎪⎝⎭,有229141a b +=,由等面积法,可得原点O 到直线AB=联立两方程解得2a =,b =,所以椭圆E 的方程为22:143x y E +=.(2)设点()()00000,,0P x y x y >>,则2200143x y +=,即2203412x y +=. 直线()00:22y PA y x x =++,令0x =,得0022D yy x =+.从而有00022y BD x =+=+,同理,可得AC =.所以四边形的面积为1122AC BD ⋅=221122====.所以四边形ABCD的面积为3.已知点C 为圆()2218x y ++=的圆心,P 是圆上的动点,点Q 在圆的半径CP 上,且有点()1,0A 和AP 上的点M ,满足0MQ AP ⋅=u u u r u u r u u ,2AP AM =u u u u r u u u r .(1)当点P 在圆上运动时,判断Q 点的轨迹是什么?并求出其方程;(2)若斜率为k 的直线l 与圆221x y +=相切,与(1)中所求点Q 的轨迹交于不同的两点F ,H , 且3445OF OF ≤⋅≤u u ur u u u r (其中O 是坐标原点),求k 的取值范围. 【答案】(1)是以点C ,A 为焦点,焦距为2,长轴长为2212x y +=;(2)⎡⎢⎣⎦⎣⎦U . 【解析】(1)由题意MQ 是线段AP 的垂直平分线,所以2CP QC QP QC QA CA =+=+==,所以点Q 的轨迹是以点C ,A 为焦点,焦距为2,长轴长为∴a 1c =,1b ==,故点Q 的轨迹方程是2212x y +=.(2)设直线l :y kx b =+,()11,F x y ,()22,H x y , 直线l 与圆221x y +=1=,即221b k =+,联立2212x y y kx b +==+⎧⎪⎨⎪⎩,消去y 得:()222124220k x kbx b +++-=,()()()2222222164122182180Δk b k b k b k =-+-=-+=>,得0k ≠,122412kbx x k +=-+,21222212b x x k -=+, ∴()()()()()222221212121222122411212k b kb OF OH x x y y k x x kb x x b kb b k k +--⋅=+=++++=++++u ur u u u u u r()()222222222124111121212k k k k k k k k k +++=-++=+++,所以223144125k k +≤≤+,得21132k ≤≤,k ≤≤,解得k ≤≤k ≤≤故所求范围为⎡⎢⎣⎦⎣⎦U . 4.已知椭圆()2222:10x y C a b a b +=>>的焦距为2c ,离心率为12,圆222:O x y c +=,1A ,2A 是椭圆的左右顶点,AB 是圆O 的任意一条直径,1A AB △面积的最大值为2. (1)求椭圆C 及圆O 的方程;(2)若l 为圆O 的任意一条切线,l 与椭圆E 交于两点P ,Q ,求PQ 的取值范围. 【答案】(1)22143x y +=,221x y +=;(2)⎡⎢⎣⎦.【解析】(1)设B 点到x 轴距离为h ,则1111222A AB A OB S S AO h a h ==⋅⋅⋅=⋅△△,易知当线段AB 在y 轴时,max h BO c ==,12A AB S a c ∴=⋅=△,12c e a ==Q ,2a c ∴=,2a ∴=,1c =,b = 所以椭圆方程为22143x y +=,圆的方程为221x y +=.(2)当直线L 的斜率不存在时,直线L 的方程为1x =±,此时223b PQ a ==;设直线L 方程为:y kx m =+,直线为圆的切线,1d ∴==,221m k ∴=+,直线与椭圆联立,22143y kx m x y ⎧=++=⎪⎨⎪⎩,得()2224384120k x kmx m +++-=,判别式()248320Δk =+>,由韦达定理得:122212284341243km x x k m x x k -+=+-⋅=+⎧⎪⎪⎨⎪⎪⎩,所以弦长12PQ x =-=,令2433t k =+≥,所以PQ ⎛= ⎝⎦;综上,463,PQ⎡⎤∈⎢⎥⎣⎦,5.如图,己知1F、2F是椭圆()2222:10x yG a ba b+=>>的左、右焦点,直线():1l y k x=+经过左焦点1F,且与椭圆G交A,B两点,2ABF△的周长为43.(1)求椭圆G的标准方程;(2)是否存在直线I,使得2ABF△为等腰直角三角形?若存在,求出直线l的方程;若不存在,请说明理由.【答案】(1)22132x y+=;(2)不存在,见解析.【解析】(1)设椭圆G的半焦距为c,因为直线l与x轴的交点为()1,0-,故1c=.又2ABF△的周长为4322443AB AF BF a++==3a=222312b a c=-=-=.因此,椭圆G的标准方程为22132x y+=.(2)不存在.理由如下:先用反证法证明AB不可能为底边,即22AF BF≠.由题意知()21,0F,设()11,A x y,()22,B x y,假设22AF BF=()()2222112211x y x y-+=-+又2211132x y+=,2222132x y+=,代入上式,消去21y,22y得:()()121260x x x x-+-=.因为直线l斜率存在,所以直线l不垂直于x轴,所以12x x≠,故126x x+=.(与13x,23x≤12236x x+≤矛盾)联立方程()221321x yy k x+==+⎧⎪⎨⎪⎩,得:()2222326360k x k x k+++-=,所以21226632kx xk+=-=+矛盾.故22AF BF ≠.再证明AB 不可能为等腰直角三角形的直角腰. 假设2ABF △为等腰直角三角形,不妨设A 为直角顶点.设1AF m =,则2AF m =,在12AF F △中,由勾股定理得:()224m m +=,此方程无解.故不存在这样的等腰直角三角形.。
圆锥曲线专题40大题练习(含答案)
圆锥曲线44道特训221.已知双曲线C:「-仁=1的离心率为心,点(V3,o)是双曲线的一个顶点.a-b'(1)求双曲线的方程;(2)经过的双曲线右焦点旦作倾斜角为30°直线/,直线/与双曲线交于不同的A,3两点,求A3的长.22[2.如图,在平面直角坐标系xOy中,椭圆、+与=1(。
〉力〉0)的离心率为一,过椭圆右a2b22焦点F作两条互相垂直的弦A3与CQ.当直线A3斜率为0时,AB+CD=7.(1)求椭圆的方程;(2)求AB+CD的取值范围.3.已知椭圆C:「+「=1(。
〉力〉0)的一个焦点为尸(1,0),离心率为土.设P是椭圆Zr2C长轴上的一个动点,过点P且斜率为1的直线/交椭圆于A,B两点.(1)求椭圆C的方程;(2)求|PA|2+|PB|2的最大值.224.已知椭圆C:「+七=1(0〉力〉0)的右焦点为『(L°),短轴的一个端点B到F的距离a'd等于焦距.(1)求椭圆。
的方程;(2)过点万的直线/与椭圆C交于不同的两点M,N,是否存在直线/,使得△3加与△B月V的面积比值为2?若存在,求出直线/的方程;若不存在,说明理由..2,25.已知椭圆C:=■+%■=1(a>b>0)过点p(—1,—1)-c为椭圆的半焦距,且c=姻b.过a"b~点P作两条互相垂直的直线L,L与椭圆C分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线L的斜率为一1,求APMN的面积;第1页共62页(3)若线段MN的中点在x轴上,求直线MN的方程.6.已知椭圆E的两个焦点分别为(-1,0)和(1,0),离心率e=—.2(1)求椭圆£*的方程;(2)若直线l:y=kx+m(人主0)与椭圆E交于不同的两点A、B,且线段的垂直平分线过定点P(|,0),求实数女的取值范围.Ji7.已知椭圆E的两个焦点分别为(-1,0)和(1,0),离心率e.2(1)求椭圆E的方程;(2)设直线l-.y=x+m(m^O)与椭圆E交于A、3两点,线段A3的垂直平分线交x 轴于点T,当hi变化时,求面积的最大值.8.已知椭圆错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4讲 圆锥曲线大题题型
培优题型一 范围、最值问题
例1 (2020·开封质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 23
-y 2=1的离心率互为倒数,且直线x -y -2=0经过椭圆的右顶点.
(1)求椭圆C 的标准方程;
(2)设不过原点O 的直线与椭圆C 交于M ,N 两点,且直线OM ,MN ,ON 的斜率依次成等比数列,求△OMN 面积的取值范围.
例2 已知点P 是圆O :x 2+y 2=1上任意一点,过点P 作PQ ⊥y 轴于点Q ,延长QP 到点
M ,使QP →=PM →.
(1)求点M 的轨迹E 的方程;
(2)过点C (m ,0)作圆O 的切线l ,交(1)中的曲线E 于A ,B 两点,求△AOB 面积的最大值.
1.(2018·浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.
(1)设AB 中点为M ,证明:PM 垂直于y 轴;
(2)若P 是半椭圆
x 2+y 24
=1(x <0)上的动点,求△P AB 面积的取值范围.
2.已知曲线C :y 2=4x ,曲线M :(x -1)2+y 2=4(x ≥1),直线l 与曲线C 交于A ,B 两点,O 为坐标原点.
(1)若OA →·OB →=-4,求证:直线l 恒过定点;
(2)若直线l 与曲线M 相切,求P A →·PB →(点P 坐标为(1,0))的取值范围.
3.(2020·邢台模拟)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.
(1)求实数m 的取值范围;
(2)求△AOB 面积的最大值(O 为坐标原点).
培优题型二 定点问题
例3 已知椭圆x 2a 2+y 2
b 2=1(a >b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于点Q ,P ,与椭圆分别交于点M ,N ,各点均不重合
且满足PM →=λ1MQ →,PN →=λ2NQ →.
(1)求椭圆的标准方程;
(2)若λ1+λ2=-3,试证明:直线l 过定点,并求此定点.
[题型练透]
1.(2020 ·聊城模拟)已知圆x 2+y 2
=4经过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点和两个顶点,点A (0,4),M ,N 是椭圆C 上的两点,它们在y 轴两侧,且∠MAN 的平分线在y 轴上,|AM |≠|AN |.
(1)求椭圆C 的方程;
(2)证明:直线MN 过定点.
培优题型三 定值问题
例4 (2018·北京)已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N .
(1)求直线l 的斜率的取值范围;
(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ
为定值.
[题型练透]
1.已知点M 是椭圆C :x 2a 2+y 2b
2=1(a >b >0)上一点,F 1,F 2分别为C 的左、右焦点,且|F 1F 2|=4,∠F 1MF 2=60°,△F 1MF 2的面积为433
. (1)求椭圆C 的方程;
(2)设N (0,2),过点P (-1,-2)作直线l ,交椭圆C 于异于N 的A ,B 两点,直线NA ,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.
培优题型四 证明与探索性问题
例5 (2017·全国Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22
+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →.
(1)求点P 的轨迹方程;
(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点
F .
例6 在平面直角坐标系xOy 中,曲线C :y =x 24
与直线l :y =kx +a (a >0)交于M ,N 两点, (1)当k =0时,分别求C 在点M 和N 处的切线方程;
(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.
[题型练透]
1.已知椭圆T :x 2a 2+y 2b 2=1(a >b >0)的一个顶点A (0,1),离心率e =63
,圆C :x 2+y 2=4,从圆C 上任意一点P 向椭圆T 引两条切线PM ,PN .
(1)求椭圆T 的方程;
(2)求证:PM ⊥PN .
2. (2018·广州模拟)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点Q ⎝
⎛⎭⎫1,-22,且离心率e =22,直线l 与E 相交于M ,N 两点,l 与x 轴、y 轴分别相交于C ,D 两点,O 为坐标原点.
(1)求椭圆E 的方程;
(2)判断是否存在直线l ,满足2OC →=OM →+OD →,2OD →=ON →+OC →?若存在,求出直线l 的方
程;若不存在,请说明理由.。