食品蛋白质的功能性质

合集下载

蛋白质的功能性质实验报告

蛋白质的功能性质实验报告

蛋白质的功能性质实验报告蛋白质的功能性质实验报告引言:蛋白质是生物体内最重要的有机分子之一,它们在细胞的结构和功能中起着关键的作用。

蛋白质的功能性质对于理解生物体的生命活动和疾病的发生机制具有重要意义。

本实验旨在探究蛋白质的功能性质,并通过实验验证其功能。

实验一:酶的催化作用酶是一类特殊的蛋白质,它能够催化生物体内的化学反应。

本实验以淀粉的降解为例,验证了酶的催化作用。

首先,我们将淀粉溶液分成两份,一份加入唾液酶,另一份不加酶。

然后,在恒温水浴中分别加热两个试管,观察淀粉的降解情况。

结果显示,加入酶的试管中淀粉迅速降解,而不加酶的试管中淀粉几乎没有降解。

这表明酶能够催化淀粉的降解反应,加速化学反应的进行。

实验二:抗体的特异性识别抗体是一种特殊的蛋白质,它能够识别和结合特定的抗原。

本实验以酶联免疫吸附实验(ELISA)为例,验证了抗体的特异性识别。

首先,我们将目标抗原分别涂覆在微孔板上的不同孔中。

然后,加入抗体溶液,并通过酶的催化作用,观察抗体与抗原的结合情况。

结果显示,抗体与对应的抗原结合,而与其他抗原不结合。

这表明抗体具有特异性识别的能力,能够选择性地结合目标抗原。

实验三:结构蛋白的机械强度结构蛋白是一种具有机械强度的蛋白质,它能够维持细胞和组织的结构稳定。

本实验以角蛋白为例,验证了结构蛋白的机械强度。

首先,我们将角蛋白溶液制备成薄膜,并在拉伸机上进行拉伸实验。

结果显示,角蛋白薄膜具有较高的抗拉强度和延展性,能够承受较大的外力。

这表明结构蛋白具有机械强度,能够维持细胞和组织的结构稳定。

实验四:运输蛋白的选择性通透性运输蛋白是一种具有选择性通透性的蛋白质,它能够调节物质的进出细胞。

本实验以细胞膜上的离子通道为例,验证了运输蛋白的选择性通透性。

首先,我们将离子通道蛋白溶液制备成薄膜,并浸泡在含有不同离子的溶液中。

结果显示,离子通道蛋白对特定离子具有通透性,而对其他离子不通透。

这表明运输蛋白具有选择性通透性,能够调节物质的进出细胞。

食品工程中的蛋白质功能性改性研究与应用

食品工程中的蛋白质功能性改性研究与应用

食品工程中的蛋白质功能性改性研究与应用食品工程中的蛋白质功能性改性研究与应用蛋白质是生物体中最重要的营养成分之一,对于人体的生长发育、免疫功能和代谢调节起着至关重要的作用。

然而,蛋白质在食品加工过程中常常受到诸多因素的影响,如热处理、酸碱性、氧化等,导致其功能性下降或失活。

因此,研究蛋白质的功能性改性已成为食品工程领域的重要课题之一。

蛋白质的功能性主要包括胶凝性、乳化性、发泡性、稳定性等,在食品加工中起到重要的作用。

目前,一些研究通过改变蛋白质的结构和性质,以提高其功能性和稳定性。

常见的蛋白质功能性改性方法包括酶法、物理法和化学法等。

下面将介绍其中几种常见的方法及其应用。

酶法改性:酶法改性是利用特定的酶对蛋白质进行酶解、交联、脱磷酸化等处理,从而改变其结构和性质。

例如,利用蛋白酶对鱼肉蛋白进行酶解处理,可以提高其胶凝性和乳化性,改善鱼肉制品的质地和口感。

物理法改性:物理法改性是通过物理手段改变蛋白质的结构和性质。

常见的物理法包括高压处理、超声波处理、微波处理等。

例如,利用高压处理可以改善蛋白质的溶解性和胶凝性,提高食品的质地和稳定性。

化学法改性:化学法改性是通过化学反应改变蛋白质的结构和性质。

常见的化学法包括酸碱处理、醛基化、酯化等。

例如,利用酸碱处理可以改变蛋白质的异构结构,增强其胶凝性和稳定性。

蛋白质功能性改性的研究与应用已取得了很多成果。

一方面,功能性改性可以提高蛋白质在食品制造过程中的稳定性和质量;另一方面,蛋白质功能性改性也为食品创新提供了新的思路和方法。

以乳化性改性为例,乳化性是蛋白质常见的功能之一,对于食品的质地和口感起到重要的作用。

研究发现,通过改变蛋白质的结构和性质,可以提高其乳化性能。

例如,利用酶法改性可以增加蛋白质的亲水性,使其更易于乳化;利用物理法改性可以增加蛋白质的分子量和稳定性,提高乳化性能。

在实际应用中,蛋白质功能性改性已广泛应用于食品行业。

例如,利用改性蛋白质可以制备出更加稳定的乳化液,用于制作乳饮料、酱料等;利用改性蛋白质可以增加食品的黏度和质地,用于制作肉制品、面制品等。

第五章 蛋白质2

第五章 蛋白质2

第5章 蛋白质 5.5蛋白质的功能性质 5.5蛋白质的功能性质
动物蛋白,例如乳(酪蛋白) 蛋和肉蛋白等, 动物蛋白,例如乳(酪蛋白)、蛋和肉蛋白等, 是几种蛋白质的混合物, 是几种蛋白质的混合物,它们有着较宽范围 的物理和化学性质,及多种功能特性; 的物理和化学性质,及多种功能特性;又如 蛋清具有持水性、胶凝性、黏合性、乳化性、 蛋清具有持水性、胶凝性、黏合性、乳化性、 起泡性和热凝结等作用, 起泡性和热凝结等作用,这些功能来自复杂 的蛋白质组成及它们之间的相互作用 植物蛋白和乳清蛋白等其他蛋白质, 植物蛋白和乳清蛋白等其他蛋白质,它们也 是由多种类型的蛋白质组成, 是由多种类型的蛋白质组成,但是它们的功 能特性不如动物蛋白
蛋白质在界面的稳定性决定了它在界面所形成膜的机械强度, 蛋白质在界面的稳定性决定了它在界面所形成膜的机械强度,而膜的强 度又与分子间的相互作用、静电吸引、氢链和疏水相互作用有关。 度又与分子间的相互作用、静电吸引、氢链和疏水相互作用有关。二硫 键的形成可以增加蛋白质膜的黏弹性。当界面膜中蛋白质的浓度达到约 键的形成可以增加蛋白质膜的黏弹性。 20%~25%(质量 体积) 质量/ 蛋白质则以凝胶状态存在。 20%~25%(质量/体积)时,蛋白质则以凝胶状态存在。各种非共价键相互 作用达到所需平衡时,才能使凝胶状膜稳定和具黏弹性。 作用达到所需平衡时,才能使凝胶状膜稳定和具黏弹性。倘若疏水相互 作用太强,则蛋白质会在表面絮凝、聚结甚至沉淀。 作用太强,则蛋白质会在表面絮凝、聚结甚至沉淀。当静电排斥力大大 超过吸引力时, 超过吸引力时,不易形成厚的内聚膜
只有当蛋白质表面的疏水数目 达到足以提供疏水达到足以提供疏水-界面相互 作用需要的能量, 作用需要的能量,才能使蛋白 质在界面牢固地吸附, 质在界面牢固地吸附,并形成 隔离的疏水小区。 隔离的疏水小区。只有这样方 可促进蛋白质吸附, 可促进蛋白质吸附,形成稳定 的泡沫或乳状液

蛋白质的功能性质

蛋白质的功能性质

蛋白质的功能性质(Functional Properties of Protein)蛋白质的功能性质是指食品体系在加工、贮藏、制备和消费过程中蛋白质对食品产生需要特征的那些物理、化学性质。

各种食品对蛋白质功能特性的要求是不一样的(表2-3)。

表2-2 食品体系中蛋白的功能作用表2-3 各种食品对蛋白质功能特性的要求食品的感官品质是由各种食品原料复杂的相互作用产生的。

例如蛋糕的风味、质地、颜色和形态等性质,是由原料的热胶凝性,起泡、吸水作用、乳化作用、粘弹性和褐变等多种功能性组合的结果。

因此,一种蛋白质作为蛋糕或其他类似产品的配料使用时,必须具有多种功能特性。

动物蛋白,例如乳(酪蛋白)、蛋和肉蛋白等,是几种蛋白质的混合物,它们有着较宽范围的物理和化学性质,及多种功能特性,例如蛋清具有持水性、胶凝性、粘合性、乳化性、起泡性和热凝结等作用,现已广泛地用作许多食品的配料,蛋清的这些功能来自复杂的蛋白质组成及它们之间的相互作用,这些蛋白质成分包括卵清蛋白、伴清蛋白、卵粘蛋白、溶菌酶和其他清蛋白。

然而植物蛋白(例如大豆和其他豆类及油料种子蛋白等);和乳清蛋白等其他蛋白质,虽然它们也是由多种类型的蛋白质组成,但是它们的功能特性不如动物蛋白,目前只是在有限量的普通食品中使用。

一、蛋白质的界面性质(Interficial properties)泡沫或乳化体系类的食品,一般要利用到蛋白质的起泡性、泡沫稳定性和乳化性等功能,例如焙烤食品、甜点心、啤酒、牛奶、冰淇淋、黄油和肉馅等,这些分散体系,除非有两亲物质存在,否则是不稳定的。

蛋白质是两亲分子,它能自发地迁移到空气-水界面或油-水界面,在界面上形成高粘弹性薄膜,其界面体系比由低分子质量的表面活性剂形成的界面更稳定。

1.乳化性质许多食品属于乳胶体(牛奶、乳脂、冰淇淋、豆奶、黄油、干酪、蛋黄酱和肉馅),蛋白质成分在稳定这些胶态体系中通常起着重要的作用。

天然乳胶体靠脂肪球“这种“膜”由三酰甘油、磷脂、不溶性脂蛋白和可溶性蛋白的连续吸附层所构成。

蛋白质的功能性质

蛋白质的功能性质

5.5.2食品蛋白质在食品体系中的功能作用
功能 溶解性 食品 饮料 蛋白质类型 乳清蛋白
粘度
持水性 胶凝作用
汤、调味汁
香肠、蛋糕、 肉和奶酪 肉和面包 香肠、蛋糕 冰淇淋、蛋糕 油炸面圈
明胶
肌肉蛋白,鸡蛋蛋白 肌肉蛋白和乳蛋白 肌肉蛋白,谷物蛋白 肌肉蛋白,鸡蛋蛋白 鸡蛋蛋白,乳清蛋白 谷物蛋白
粘结-粘合
0.33
0.62 0.45 0.40 0.30 0.45-0.52
大豆蛋白
0.33
3.影响蛋白质结合水能力的因素
温度
pH
蛋白质结合水
盐的种类
离子强度
⑴pH: 在pI由于蛋白质 – 蛋白质相互作用增强,使得蛋 白质与水相互作用最弱,所以蛋白质水合力最低; 而高于或低于pI,由于净电荷和推斥力的增加,使 蛋白质肿胀结合较多水。 大多数蛋白质结合水能力在pH=9~10比任何pH来 的大。
所以,大多数食品蛋白质溶解度pH图是一条U形曲 线。最低溶解度出现在蛋白质pI附近 反例:β-乳球蛋白质(pI=5.2)牛血清清蛋白 (pI=4.8)在pI高度溶解。解释:因为这些蛋白质 分子中表面亲水性残基数量远远高于表面疏水性残 基数量。
热变性会改变蛋白质的pH-溶解度关系曲线
三、离子强度和溶解度 离子强度 μ=0.5∑Ci Zi2 盐 析: 盐 溶: 在相同的μ,各种离子对蛋白质溶解度有特异的离子效 应。遵循Hofemister系列 阴离子提高蛋白质溶解能力顺序: SO42-<F-<Cl-<Br-<I-<Cl4-<SCN- 阳离子降低蛋白质溶解度能力顺序: NH4+<K+<Na+<Li+<Mg2+<Ca2+
⑵离子强度:
低盐浓度(<0.2mol/L)盐能提高蛋白质的结 合水能力。盐离子与蛋白质的结合并没有影响蛋白 质分子上带电基团的水合壳层, 蛋白质结合水能力 的增加基本上来自于结合离子自身缔合的水;高盐 浓度,更多的水与盐离子结合,导致蛋白质脱水。

蛋白质功能性质的检测

蛋白质功能性质的检测

蛋白质功能性质的检测蛋白质的功能性质的一般是指能使蛋白质成为人们所需要的食品特征而具有的物理化学性质,即对食品的加工、贮藏、销售过程中发生作用的那些性质,这些性质对食品的质量和风味起着重要的作用。

蛋白质的功能性质与蛋白质在食品体系中的用途有着十分密切的关系,是开发和有效利用蛋白质资源的重要依据。

蛋白质的功能性质可以分为水化性质、表面性质、蛋白质-蛋白质相互作用的有关性质三个主要类型,主要包括有吸水性、溶解性、保水性、分散ing、粘度合粘着性、乳化性、起泡性、凝胶作用的等等。

一、实验目的通过本实验定性地了解蛋白质的主要功能性质。

二、实验材料、试剂和仪器2.1. 实验材料2.1.1 2%蛋清蛋白溶液:取2g蛋清加98ml蒸馏水稀释,过滤取清夜。

2.1.2 卵黄蛋白:鸡蛋除蛋清后剩下的蛋黄捣碎。

2.2 试剂2.2.1 硫酸铵、饱和硫酸铵溶液2.2.2 氯化钠、饱和氯化钠溶液2.2.3 花生油2.2.4 酒石酸2.3 仪器若干试管、100ml烧杯、冰箱、均质机三、操作步骤3.1蛋白质水溶性的测定在10ml试管中加入0.5ml蛋清蛋白,加入5ml水,摇匀,观察其水溶性,有无沉淀产生。

在溶液中逐滴加入饱和氯化钠溶液,摇匀,得到澄清的蛋白质的氯化钠溶液。

取上述蛋白质的氯化钠溶液3ml,加入3ml饱和硫酸铵溶液,观察球蛋白的沉淀析出,再加入粉末硫酸铵至饱和,摇匀,观察清蛋白从溶液中析出,解释蛋清蛋白质在水中及氯化钠溶液中的溶解度以及蛋白质沉淀的原因。

3.2蛋白质乳化性的测定取10g卵黄蛋白于均质机料液瓶中,加入90g 水,加入5ml花生油,均质1min后,取约10ml于试管中;另取100g水于均质机料液瓶中,加入5ml花生油,进行均质1min后,取约10ml于试管中,两试管中液面相平即可,然后将两支试管放在试管架上,每隔15min观察一次,共观察4次,观察油水是否分离。

3.3蛋白质起泡性的测定(1) 在二个100ml的烧杯中,各加入2%的蛋清蛋白溶液30ml,一份用玻璃棒不断搅打1~2min;另一份用吸管不断吹入空气泡1~2min,观察泡沫的生成、泡沫的多少及泡沫稳定时间的长短。

蛋白质的功能性质实验报告

蛋白质的功能性质实验报告

蛋白质的功能性质实验报告蛋白质是生物体内一类重要的有机化合物,它在维持生命活动中起着重要的作用。

本次实验旨在探究蛋白质的功能性质,通过实验方法和结果分析,深入了解蛋白质在生物体内的重要功能。

首先,我们进行了蛋白质的结构分析实验。

我们选择了几种不同来源的蛋白质样本,进行了SDS-PAGE凝胶电泳实验。

通过实验结果,我们观察到不同蛋白质样本在凝胶上的迁移距离不同,说明它们的分子量不同。

这表明蛋白质的结构在不同来源的生物体中存在差异,为蛋白质的功能性质提供了基础。

其次,我们进行了蛋白质的溶解性实验。

我们将蛋白质样本分别溶解在不同的溶剂中,观察其溶解情况。

实验结果显示,不同蛋白质样本在不同溶剂中的溶解性存在差异,这说明蛋白质的溶解性受到多种因素的影响,如PH值、离子强度等。

这为我们进一步研究蛋白质的功能性质提供了重要线索。

接着,我们进行了蛋白质的酶解实验。

我们选取了几种常见的酶,将其与蛋白质样本进行反应,观察酶解后的蛋白质的变化。

实验结果显示,不同酶对蛋白质的酶解效果不同,说明蛋白质的结构对酶的作用具有选择性。

这为我们深入探究蛋白质的功能性质提供了重要线索。

最后,我们进行了蛋白质的功能性实验。

我们选择了几种常见的生物活性分子,将其与蛋白质样本进行反应,观察其对蛋白质功能的影响。

实验结果显示,不同生物活性分子对蛋白质功能的影响存在差异,说明蛋白质在生物体内的功能受到多种因素的调控。

这为我们深入理解蛋白质的功能性质提供了重要线索。

通过以上实验,我们对蛋白质的功能性质有了更深入的了解。

蛋白质的结构、溶解性、酶解和功能受到多种因素的影响,这为我们进一步研究蛋白质的功能性质提供了重要线索。

希望通过本次实验,能够为蛋白质的功能性质研究提供一定的参考价值。

食品化学 第5章 蛋白质化学

食品化学 第5章 蛋白质化学

四、蛋白质的胶凝作用

聚合或聚集反应:一般是指大的复合物的 形成。
聚合或聚集反应:
沉淀作用:是指由于蛋白质的溶解性完全或部分 丧失而引起的聚集反应。 絮凝:是指蛋白质未发生变性时的无规则聚集反 应,这常常是因为链间的静电排斥降低而发生的 一种现象。 凝结作用:发生变性的无规聚集反应和蛋白质-蛋 白质的相互作用大于蛋白质-溶剂的相互作用引起 的聚集反应,定义为凝结作用。 凝胶化作用:是指变性的蛋白质分子聚集并形成 有序的蛋白质网络结构过程。
一些高疏水性蛋白质,像β-酪蛋白和一些 谷类蛋白质的溶解度却和温度呈负相关 。
影响因素
4.有机溶剂 导致蛋白质溶解度下降或沉淀
降低水介质的介电常数 提高静电作用力 静电斥力导致分子结构的展开 促进氢键的形成和反电荷间的静电吸引
三、蛋白质溶液的黏度

理想溶液
牛顿流体

蛋白质溶液
假塑性或剪切变稀
凝胶化作用机制
溶胶状态----似凝胶状态-----有序的网络结构状态
凝胶化的相互作用
静电相互作用 氢键、疏水相互作用 二硫键 金属离子的交联相互作用
(一)胶凝过程

蛋白质分子构象的改变或部分伸展,发生 变性 单个变性的蛋白质分子逐步聚集,有序地 形成可以容纳水等物质的网状结构

大豆蛋白质的胶凝过程示意图
流动性、伸展性和膨胀性。
麦谷蛋白:分子质量大,二硫键(链内、链
过度黏结
过度延展
面筋蛋白质中含有的化学键 氢键 :谷氨酰胺、脯氨酸和丝氨酸、苏氨酸:
水吸收能力强,有黏性。


非极性氨基酸:使蛋白相互聚集、有黏弹性和
与脂肪有效结合。

二硫键:使面团坚韧。

蛋白质的功能性质

蛋白质的功能性质

蛋白质的功能性质蛋白质是生命体内非常重要的生物大分子,具有多种功能性质。

以下是蛋白质的主要功能性质:1. 结构功能:蛋白质可以构成细胞组织结构的基础。

细胞骨架中的肌动蛋白和微管蛋白可以提供细胞的形状和稳定性。

胶原蛋白是结缔组织的主要成分,为皮肤、骨骼和血管提供强度和弹性。

2. 酶功能:许多蛋白质具有酶活性,可以促进生物体内的化学反应。

酶是生物体内的催化剂,可以加速代谢和合成反应。

例如,酶淀粉酶可以催化淀粉的分解为葡萄糖,提供能量给生物体。

3. 运输功能:部分蛋白质可以运输分子和离子进出细胞,维持细胞内外物质平衡。

例如,红血球中的血红蛋白可以结合氧气,在体内运输氧气到组织器官,同时将二氧化碳运输回肺部。

4. 免疫功能:免疫蛋白质可以识别和清除入侵的外来病原体,提供身体免疫保护。

抗体是一种免疫蛋白质,可以识别和结合细菌、病毒等病原体,激活其他免疫细胞攻击和清除。

5. 调节功能:某些蛋白质可以调节细胞功能和生理过程。

例如,激素是一类具有调节功能的蛋白质,可以在体内激活和抑制特定的细胞过程,如生长、发育、代谢调控等。

6. 运动功能:肌动蛋白和肌球蛋白是肌肉收缩的主要蛋白质组成,可以实现身体的运动功能。

肌动蛋白和肌球蛋白之间的相互作用可以导致肌肉的收缩和放松。

7. 储存功能:某些蛋白质可以在生物体内储存重要物质,如铁、氧气等。

例如,铁蛋白是一种储存铁离子的蛋白质,可以在需要时释放铁离子供应给细胞使用。

总之,蛋白质在生物体内具有多种重要的功能性质,包括结构、酶、运输、免疫、调节、运动和储存功能,对于维持生物体的正常生理功能和生命活动至关重要。

食品化学简答题

食品化学简答题

维持和稳定蛋白质结构的作用力维持蛋白质高级结构的作用力来自蛋白质肽段内氨基酸残基间的相互作用,包括共价键和非共价键(次级键)。

共价键主要是指由两个半胱氨酸残基形成的二硫键;非共价键主要是氨基酸残基间的氢键、静电作用、疏水相互作用和范德华力。

其中,二硫键比其他键能量大得多,一般在80oC以上才会发生变化;而其他非共价键则是非常容易变化,这构成了蛋白质结构易发生变化的基础。

蛋白质的功能性质哪几类是蛋白质和谁相互作用食品蛋白质的“功能性质”:除营养价值外的那些对食品需宜特性有利的蛋白质的物理化学性质,如蛋白质的胶凝、溶解、泡沫、乳化、黏度等。

根据蛋白质所能发挥作用的特点,将其功能性质分为4大类:水合性质:(取决于蛋白质-水的相互作用)包括水的吸收与保留、润湿性、膨胀性、粘合、分散性、溶解度等;结构性质: (取决于蛋白质-蛋白质的相互作用),如产生沉淀、胶凝作用、组织化和面团形成等;表面性质:涉及蛋白质在极性不同的两相之间所产生的作用,主要包括乳化性、起泡性等;感官性质:如气味、颜色、适口性、咀嚼度、爽滑度、浑浊度等。

这些功能性质不是独立的,它们之间也存在着相互联系。

水合作用:大多数食品是水合体系,食品的流变和质构性质取决于水与其他食品组分,尤其是水与蛋白质、多糖等大分子的相互作用。

食品蛋白质吸附水、保留水的能力,不仅影响蛋白质的黏度,还影响食品的质地结构,因此,研究蛋白质的水合和复水性质,在食品加工中非常有用蛋白质的水合就是蛋白质与水结合的能力,是通过蛋白质分子表面上的各种极性基团与水分子相互作用产生的。

如带电基团与水分子产生离子-偶极作用;极性基团与水分子产生偶极-偶极相互作用(氢键);非极性残基与水分子产生偶极-诱导偶极、疏水相互作用。

6.胶凝作用热致凝胶是怎样形成的胶凝作用:变性的蛋白质分子聚集并形成有序的蛋白质网络结构的过程。

蛋白质胶凝作用的结果是形成凝胶,它具有三维网状结构,是介于固体和液体之间的一个中间相,可以容纳其他的成分和物质,对食品的质地等方面具有重要的作用。

蛋白质功能特性

蛋白质功能特性

蛋白质功能特性一、蛋白质的水合性质(溶解性、黏度)蛋白质的水合是通过蛋白质的肽键和氨基酸侧链与水分子间的相互作用而实现的。

浓缩蛋白质或离析物在应用时必须水合,食品的流变性质和质构性质也取决于水与其他食品组分,尤其像蛋白质与多糖等大分子的相互作用,水能改变蛋白质的物理化学性质。

此外,蛋白质的许多功能性质,如分散性、湿润性、溶解性、持水能力、凝胶作用、增稠、黏度、凝结、乳化和气泡等,都取决于水—蛋白质的相互作用。

因此了解食品蛋白质的水合性质和复水性质在食品加工中有重要的意义。

1、溶解性蛋白质的溶解度是蛋白质—蛋白质和蛋白质—溶剂相互作用达到平衡的热力学表现形式。

蛋白质的溶解性,可以用水溶性蛋白质(WSP)、水可分散性蛋白质(WDP)、蛋白质分散性指标(PDI)、氮溶解性指标(NSI)来评价。

蛋白质溶解度的大小与pH值、离子强度、温度和蛋白质浓度有关。

蛋白质在水中形成的实际是胶体分散体,作为有机大分子化合物,蛋白质在水中以胶体态存在,并不是真正化学意义上的溶解态,所以蛋白质在水中形成的是胶体分散系,只是习惯上将它称为溶液。

蛋白质的溶解度影响其功能性质,包括增稠、气泡、乳化和凝胶作用,起始溶解性较大的蛋白质,能使蛋白质分子迅速地在体系中扩散,也有利于蛋白质分子向空气或油水界面扩散,有利于蛋白质其他功能性质的提高。

蛋白质溶解度大小在实际应用中非常重要,蛋白质溶解也是判断蛋白质潜在应用价值的一个指标,此外,蛋白质的溶解性也与其在饮料中的应用直接相关。

影响蛋白质溶解性的因素:(1)氨基酸组成与疏水性:疏水相互作用增加了蛋白质与蛋白质之间的相互作用,使其溶解性下降;离子相互作用有利于蛋白质与水的相互作用,增加溶解性。

(2)PH:PH不在PI(等电点)时蛋白质分子溶解性大,PH在等电点时溶解度最小。

(例如β-乳球蛋白、牛血清蛋白在等电点时溶解度高)(3)离子强度:μ<0.5时盐溶效应,增加了蛋白质的溶解性;μ>1时盐析作用,蛋白质和盐离子之间争夺水,其溶解度下降。

蛋白质功能性质

蛋白质功能性质

蛋白质功能性质蛋白质是构成生物体的主要化学成分之一,也是细胞结构和功能的重要组成部分。

蛋白质具有多种功能性质,包括结构支撑、运输传导、免疫防御、酶催化、生长发育调控等。

首先,结构支撑是蛋白质最基本的功能之一。

蛋白质在生物体内能通过不同的结构形式提供重要的支撑作用,如骨骼中的胶原蛋白、肌肉中的肌动蛋白等。

这些蛋白质通过形成复杂的三维结构,赋予细胞和组织坚固的形态和力学特性。

其次,蛋白质也参与了激素、氧气和营养物质的运输传导。

例如,血红蛋白能够结合氧气并将其输送到身体各个组织和器官,确保氧气正常运输到细胞中。

此外,蛋白质还能通过离子通道和载体蛋白参与物质的运输和传导,调节细胞内外的物质平衡。

蛋白质的另一个重要功能是免疫防御。

机体通过产生多种免疫球蛋白来应对外部病原微生物的入侵,这些免疫球蛋白能够特异性地结合并中和病原体,从而防止其繁殖和侵袭机体。

此外,蛋白质还能参与炎症反应、细胞凋亡等免疫防御过程。

蛋白质也是酶的组成部分,具有催化作用。

酶是生物体内促进化学反应的催化剂,而蛋白质就是许多酶的基本单位。

蛋白质通过与底物的特异性结合,降低化学反应的活化能,加速反应速率。

不同的酶能够催化不同的反应,如消化道中的蛋白酶、葡萄糖酶、DNA聚合酶等。

此外,蛋白质还参与生长发育调控。

生长因子是蛋白质或多肽,能够通过结合细胞表面的受体来调控细胞的增殖、分化和存活。

在胚胎发育中,蛋白质通过与细胞的信号转导通路相互作用,参与了器官形成和组织发育的调控过程。

总之,蛋白质作为生物体的重要组成部分,具有多种功能性质。

除了结构支撑、运输传导、免疫防御、酶催化和生长发育调控等基本功能外,蛋白质还参与了许多其他生物过程,如细胞信号传导、遗传物质的复制与修复等。

蛋白质的多功能性质决定了其在生命活动中的重要地位。

食品中的蛋白质的性质教学

食品中的蛋白质的性质教学

LOGO
第2节 食品蛋白质的性质
9.化学因素——有机溶剂
对非极性侧链的增溶作用。 破坏疏水相互作用,降低蛋白质的稳定性。 降低溶液的介电常数。 能够促进氢键作用,静电相互作用。
大多数有机溶剂会导致蛋白质的变性。
LOGO
第2节 食品蛋白质的性质
10.化学因素-脲和胍盐
高浓度的脲和胍盐能使蛋白质变性。
8.化学因素——盐类
o –Na2SO4 Δ-NaCl □-NaBr
-脲素 ●-NaClO4 ▢-NaSCN

LOGO
第2节 食品蛋白质的性质
8.化学因素——盐类
某些金属离子如钙离子、镁离子,它们可能是某些蛋 白质中的组成部分,当除去这些金属离子时,会明显 降低蛋白质结构对热和蛋白酶作用的稳定性。
一些金属离子如铜、铁、汞、铅、银等离子,它们 易与蛋白质中的巯基形成稳定的配合物,导致蛋白质 变性,产生沉淀。
使球形蛋白质变性,压力诱导的蛋白质 变性是高度可逆的。
大多数蛋白质在25℃,受到 100~1000 MPa的压力后,会发生变性。
LOGO
第2节 食品蛋白质的性质
4.物理因素——静高压 在食品加工中的应用: 静高压可用于灭菌(200-1000MPa),可以不可逆地破坏微生物 的细胞膜。 对肉制品进行高压处理可以使肌肉组织中的肌纤维裂解,改善制 品的组织结构,嫩化肉质。 对蛋清、16%大豆蛋白、3%的肌动球蛋白液施加100-700MPa的 压力(25℃),可以形成凝胶,压力凝胶比热凝胶更软。
LOGO
第2节 食品蛋白质的性质
3. 物理因素——机械处理
挤压、揉捏、搅打、高速震荡等机械处理会产生高 剪切力使蛋白质分子伸展,导致蛋白质的变性。
剪切速率越高,蛋白质变性程度越大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奶酪
肉、香肠、面 条、焙烤食品
肌肉蛋白,鸡蛋蛋白 和牛奶蛋白
肌肉蛋白,鸡蛋蛋白 的乳清蛋白


弹性
疏水键,二硫交
肉和面包
肌肉蛋白,谷物蛋白
联键
乳化
泡沫
脂肪 和风 味的 结合
界面吸附和膜的 形成
界面吸附和膜的 形成
疏水键,截面
香肠、大红肠、 汤、蛋糕、甜

搅打顶端配料, 冰淇淋、蛋糕、
甜食 低脂肪焙烤食 品,油炸面圈
6 食品蛋白质的功能特性 (Functional Properties of Protein)
• 蛋白质的功能性质:在食品加工,保藏,制备和消费期间影响蛋白质在食品 体系中的性能的那些蛋白质的物理和化学性质
• 溶解性 • 粘度 • 水结合 • 胶凝作用 • 成膜性 • 弹性 • 乳化
• 起泡 •
功能
肌肉蛋白,鸡蛋蛋白, 乳清蛋白
鸡蛋蛋白,乳清蛋白
牛奶蛋白,鸡蛋蛋白, 谷物蛋白
食品
功能性
饮料、汤、沙司
不同pH时的溶解性、热稳定性、粘度、乳化作 用、持水性

种 食
形成的面团焙烤产品 (面包、蛋糕等)
成型和形成粘弹性膜,内聚力,热性变和胶凝 作用,吸水作用,乳化作用,起泡,褐变



乳制品(精制干酪、 乳化作用,对脂肪的保留、粘度、起泡、胶凝
• 蛋白质的功能性质(增稠,起泡,乳化,胶凝)均受到蛋白质溶解度的影响。
影响因素
• 影响蛋白质溶解性的主要相互作用:疏水,离子相互作用
• 疏水相互作用促进蛋白质-蛋白质相互作用,使蛋白质溶解度下降 • 离子相互作用促进蛋白质-水相互作用,使蛋白质溶解度上升
pH和溶解度
• 在低于和高于pI的pH时,蛋白质分别带有净的正电荷和净负电荷,则带电氨 基酸残基的静电推斥和水合作用促进了蛋白质的溶解。
作用机制
食品
Hale Waihona Puke 蛋白质类型溶解亲水性
饮料
乳清蛋白



粘度
持水性,流体动
汤、调味汁、
明胶
体 系 中 蛋
持水 性
力学的大小和形 状
氢键、离子水合
色拉调味汁、 甜食
香肠、蛋糕、 面包
肌肉蛋白,鸡蛋蛋白
白 的 功 能
胶凝 作用
粘结粘合
水的截留和不流 动性,网络的形

疏水作用,离子 键和氢键
肉、凝胶、蛋 糕焙烤食品和
• 蛋白质水结合能力 部分地与AA组成有关,带电AA 残基数越多,水合能力越大
• 含带电基团的AA残基结合实际 6mol/mol残基; • 不带电的极性残基结合2 mol/mol残基 • 非极性残基结合1 mol/mol残基
• 计算水全能力的经验公式 • a=fc+0.4fP+0.2fN • a:水合能力 g水/g蛋白质 • fc fP fN分别代表蛋白质分子中带电,极性的,
• 而高于或低于pI,由于净电荷和推斥力的增加, 使蛋白质溶胀,可以结合较多水。
• 大多数蛋白质结合水能力在pH=9~10比任何pH来的 大。
离子强度:
• 低浓度(<0.2mol/L)盐能提高蛋白质的水合力 • 高浓度,更多的水与盐离子结合,导致蛋白质脱水
温度
• 随着温度的上升,由于氢键作用和离子基团的水合作用减弱,蛋白质结合实 际水的能力一般随之下降。
• 变性蛋白质,结合水能力 一般比天然蛋白质高约10%
持水能力
• 指蛋白质吸收水并将水保留(对抗重力)在蛋白质组织(例如牛肉,鱼肌肉) 中的能力。
• 被保留的水是指:结合水,流体动力学水和物理截留水的总和。 • 研究表明,持水力与结合水能力正相关。
蛋白质的溶解性
• 蛋白质的溶解性是在蛋白质-蛋白质和蛋白质-溶剂相互作用之间平衡的热力 学表现形式。

冰 淇 淋 、 甜 点 心 作用、凝结作用

等)


鸡蛋代用品
起泡、胶凝作用



肉制品(香肠等)
乳化作用、胶凝作用、内聚力、对水和脂肪的

吸收与保持

肉制品增量剂(植物 组织蛋白)
对水和脂肪的吸收与保持、不溶性、硬度、咀 嚼性、内聚力、热变性
食品涂膜
内聚力、粘合
糖果制品(牛奶巧克 力)
分散性、乳化作用
温度和溶解度
• 在恒定pH和离子强度,大多数蛋白质溶解度在 0~40℃范围内随T↑而↑
• 当T>40℃,其溶解度与T呈负相关性 • 因为热动能↑导致蛋白质结构展开(变性),于
是原先埋藏在蛋白质结构内部的非极性基团暴露, 促进了聚集和沉淀作用,蛋白质 溶解度↓ 。如β酪蛋白和一些谷类蛋白质
• 乳化性质 • 起泡性质
• 若蛋白质含有高比例的非极性区域,则电荷屏蔽 效应使之溶解度下降,反之,溶解度上升。
• 当离子强度>1.0时,盐对蛋白质溶解度有特异的离子效应。 • 阴离子提高蛋白质溶解能力顺序:
• SO42-<F-<Cl-<Br-<I-<Cl4-<SCN- • 阳离子降低蛋白质溶解度能力顺序:
• NH4+<K+<Na+<Li+<Mg2+<Ca2+
非极性的残基所占的分数
• 因为亚基与亚基界面蛋白质表面部分的埋藏 ;低 聚蛋白质情况,计算值一般高于实际值
影响蛋白质结合水能力的外在因素
• pH,离子强度,盐的种类,温度,蛋白质构象
pH
• 蛋白质在等电点时,由于蛋白质-蛋白质相互作用 于得到增强而导致最弱的蛋白质与水相互作用, 所以蛋白质水合力最低,
蛋白质的界面性质
• 理想的表面活性蛋白质具有3个性能 • ① 能快速地吸附至界面
• ② 能快速地展开并在界面上再定向
• ③ 一旦到达界面,能与邻近分子相互作用于形成具有强粘结性和粘弹性的 膜,能经受热和机械运动。
影响蛋白质表面性质的因素
• 内在因素 • AA组成 • 非极性AA与极性AA之比
• 蛋白质在pI附近,由于缺乏静电推斥作用,因而疏水相互作用于导致蛋白质, 聚集和沉淀,溶解度最低
离子强度和溶解度
• 离子强度 μ=0.5∑Ci Zi2 • 在低离子强度(<0.5)时,盐的离子中和蛋白质
表面电荷,从而产生电荷屏蔽效应。
• 此效应以两种不同方式影响蛋白质的溶解度,这 取决于蛋白质表面的性质。
蛋白质的水合 作用
• 水对蛋白质的作用 • ① 水能改变蛋白质的物理化学性质 • ② 蛋白质的许多功能 取决于水—蛋白质相互作用(分散性润湿性,肿胀,
溶解性,增稠,粘度,持水能力,胶凝作用,凝结,乳化,起泡) • ③ 水能同蛋白质分子的一些基团相结合
蛋白质结合水能力与影响因素
• 当于蛋白质粉与相对湿度为90~95%水蒸气达到平 衡时,每克蛋白质所结合的水的克数。
相关文档
最新文档