一元一次不等式和一元一次不等式组难题

合集下载

2022年中考数学复习:一元一次不等式(组)及一元一次不等式的应用

2022年中考数学复习:一元一次不等式(组)及一元一次不等式的应用

17.(2021·长沙)为庆祝伟大的中国共产党成立 100 周年,发扬红色传统,传承红 色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的 党史知识竞赛,一共有 25 道题,满分 100 分,每一题答对得 4 分,答错扣 1 分, 不答得 0 分. (1)若某参赛同学只有一道题没有作答,最后他的总得分为 86 分,则该参赛同学 一共答对了多少道题? 解:设该参赛同学一共答对了 x 道题,则答错了(25-1-x)道题.
解:圆圆的解答过程有错误. 正确过程如下:由①,得 2+2x>-1. 所以 2x>-3.所以 x>-32. 由②,得 1-x<2.所以-x<1.所以 x>-1. 所以原不等式组的解集是 x>-1.
3(x-1)>x, ①
15.(2021·湘西州)解不等式组1-2x≥x-2 3,
并在数轴上表示它的解集. ②
解:解不等式①,得 x>32. 解不等式②,得 x≤1. 在数轴上表示不等式①和②的解集为
∴不等式组无解.
3(x-1)≥2x-5,①
16.(2021·济南)解不等式组:2x<x+2 3, ②
并写出它的所有整数解.
解:解不等式①,得 x≥-2. 解不等式②,得 x<1. ∴不等式组的解集为-2≤x<1, ∴它的整数解是-2,-1,0.
11.(2021·眉山)若关于 x 的不等式 x+m<1 只有 3 个正整数解,则 m 的取
值范围是 -3≤m<-2
.
12.(2021·通辽)若关于 x 的不等式组32xx- -2a≥ <51,有且只有 2 个整数解,则
a 的取值范围是 -1<a≤1
.
13.(2021·乐山)当 x 取何正整数时,代数式x+2 3与2x3-1的值的差大于 1? 解:根据题意,得x+2 3-2x- 3 1>1,解得 x<5. ∵x 为正整数, ∴当 x 为 1,2,3,4 时,代数式x+2 3与2x3-1的值的差大于 1.

(完整版)一元一次不等式和一元一次不等式组(经典难题)

(完整版)一元一次不等式和一元一次不等式组(经典难题)

一元一次不等式和一元一次不等式组1.某同学说213a a -+一定比21a -大,你认为对吗?说明理由。

2.已知方程组23121x y m x y m +=+⎧⎨-=-⎩(1) 请列出x>y 成立的关于m 的不等式。

(2) 运用不等式的基本性质将此不等式化为m>a 或m<a 的形式。

3.要使不等式(1)12a x x a ->+-的解集为x<-1,求a 的取值范围。

4.已知关于x 的一元一次方程4131x m x -+=-的解都是负数,求m 的取值范围.5.如果关于x 的不等式(1)524.a x a x a -<+<和的解集相同,求的值6.x 取哪些非负整数时,322x -的值不小于213x +与1的差。

7.m 取何值时,关于x 的方程6151632x m m x ---=-的解大于1?8.如果方程组24122x y m x y m -=+⎧⎨-=-⎩的解满足3x-y>0,求m 的取值范围.9.若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.10.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是 .11.对于整数a ,b ,c ,d ,定义bd ac c d ba -=,已知3411<<d b,则b +d 的值为_________.12.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.13.解下列不等式或不等式组:.15)2(22537313-+≤--+x x x ).1(32)]1(21[21-<---x x x x⋅->+-+2503.0.02.003.05.09.04.0x x x ⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x14.当310)3(2kk -<-时,求关于x 的不等式k x x k ->-4)5(的解集.15.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.16.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.17.关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.18.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+ax x x x 322,3215只有4个整数解,求a 的取值范围.22.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.。

一元一次不等式和一元一次不等式组

一元一次不等式和一元一次不等式组

一元一次不等式和一元一次不等式组知识梳理(一)基本概念1.不等式:2.不等式的解:3.不等式的解集:4.一元一次不等式:5.一元一次不等式组的解集:(二)不等式的基本性质基本性质1:基本性质2:基本性质3:(三)基本方法1.不等式解集的表示方法:(1) (2)2.不等式的解法:【与解方程类似,不同之处就在:左右两边同时乘以(或除以)一个负数时,不等号的方向一定要改变。

】3.不等式组解法:“分开解,集中判”解出各个不等式,再判断所有解集的公共部分即为不等式组的解集。

4.不等式组解集规律:“同大取大,同小取小,不大不小中间找,又大又小无解了。

” 请用数轴展现:设 a > b :⎩⎨⎧bx a x ⎩⎨⎧b x a x ⎩⎨⎧b x a x ⎩⎨⎧bx a x(四)方法思想1.数形结合思想:不等式(组)解集的两种表示方法。

2.不等式与一次函数的关系,可以利用函数图像来分析解答。

如:一次函数y 1=k 1x+b 1,y 2=k 2x+b 2图像如右图所示,求不等式k 1x+b 1≤k 2x+b 2的解集。

专题一:不等式的有关概念与不等式的基本性质解不等式(组)(一)、不等式的基本性质练习1、已知a <b ,用“<”或“>”填空(1) a -3b -3;(2) 6a6b ;(3) -a -b ;(4) a -b 0;2aa+b2、若a <b ,则不等式○1a-5<b-5 ○2a+k <b+k ○32a <2b ○4ac <b 中成立的有( ) A、1个 B、2个 C、3个 D、4个3、不等式7+5x 〈24 的正整数解的个数是( )A.1个B.3个C.无数个D.4个4、已知32,5221+-=-=x y x y ,如果21y y <,则x 的取值范围是( )A .2>xB .2<xC .2->xD .2-<x5、当x 时,能使x+4>0和2x+1>0同时成立6、关于x 的方程632=-x a 的解是正数,那么a 的取值范围:__________(二)、解不等式(组)1(1)4352+>-x x (2)11237x x --≤2、解下列不等式组(1)⎪⎩⎪⎨⎧->->13132x x (2)⎩⎨⎧>+≤0312x x(3)⎩⎨⎧-≤+>+145321x x x x (4)24321<--<-x专题三、不等式组的特解1、求不等式x x 228)2(5-≤+的非负整数解2、解不等式组()⎪⎩⎪⎨⎧---+≥+-xx x x 81311323 并写出该不等式组的整数解当堂练习1、求不等式组⎪⎩⎪⎨⎧-≤+421121 x x 的整数解2、求不等式()⎪⎩⎪⎨⎧-+≤+3212352x x x x 的正整数专题三 用不等式或不等式组解答实际问题一、课堂练习1、小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买笔记本多少本?2、某校初一新生中有若干住宿生,分住若干间宿舍,若每间住4人,则还有21人无房住;若每间住7人,则有一间不空也不满,求住宿生人数.3、暑假,学校的老师将带领校、镇、市级“三好学生”去旅游.甲旅行社说:“其中一位带队老师买全票,全票价为240元,则其余老师和学生可享受半价优惠”;乙旅行社说:“包括带队老师和学生全部票价6折优惠”。

一元一次不等式方程组困难应用题

一元一次不等式方程组困难应用题
15.将若干只鸡放入若干个笼子。若每个笼子里放4只,则有一只鸡无笼可放;若每个笼子里放5只,则有一个笼子无鸡可放,请问至少有多少只鸡,多少个笼子?
16.迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需要甲种花卉50盆,乙种花卉90盆。 (1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来. (2)若搭配一个A造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本是最低的?最低成本是多少元?
那么就是有5间宿舍,女生有5×5+5=30人
六、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%。
(1)求调整后这款彩屏手机的新单价是每部多少元?让利后的实际销售价是每部多少元?
解:手机原来的售价=2000元/部
每部手机的成本=2000×60%=1200元
设每部手机的新单价为a元
a×80%-1200=a×80%×20%
0.8a-1200=0.16a
0.64a=1200
a=1875元
让利后的实际销售价是每部1875×80%=1500元
(2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部?
11.水果店进了一批水果,原按50%的利润率定价,销去一半以后为尽快销完,准备打折出售,若要使总利润不低于30%,问余下的水果可按定价的几折出售(精确到0.1折)?

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。

2、能够根据具体问题中的大小关系了解不等式的意义。

3、掌握不等式的基本性质。

4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。

其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。

1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。

观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。

专题1.2 一元一次不等式与不等式组章末重难点题型(举一反三)(沪科版)(解析版)

专题1.2  一元一次不等式与不等式组章末重难点题型(举一反三)(沪科版)(解析版)

专题1.2 一元一次不等式与不等式组章末重难点题型【沪科版】【考点1 不等式的基本性质】【方法点拨】不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

【例1】(2019春•南平期中)下列四个不等式:(1)ac>bc;(2)﹣ma<mb;(3)ac2>bc2;(4)>1,一定能推出a>b的有()A.1个B.2个C.3个D.4个【分析】根据不等式的性质逐个判断即可求得答案.【答案】解:在(1)中,当c<0时,则有a<b,故不能推出a>b,在(2)中,当m>0时,则有﹣a<b,即a>﹣b,故不能推出a>b,在(3)中,由于c2>0,则有a>b,故能推出a>b,在(4)中,当b<0时,则有a<b,故不能推出a>b,综上可知一定能推出a>b的只有(3),故选:A.【点睛】本题主要考查不等式的性质,掌握不等式的性质是解题的关键,特别是在不等式的两边同时乘或除以一个不为0的数或因式时,需要确定该数或因式的正负.【变式1-1】(2018春•江汉区期末)若a>b,则下列结论:①a+x>b+x;②>;③ax2>bx2;④ab<b2;⑤﹣|a|<﹣|b|.其中一定成立的个数是()A.1 B.2 C.3 D.4【分析】根据不等式的基本性质逐项判断即可.【答案】解:①∵a>b,∴根据不等式的基本性质1可得:a+x>b+x;所以,正确的个数为1个;②当x<0时,>不成立;③ax2>bx2;④当b>0时,ab<b2不成立;⑤当0>a>b时,﹣|a|<﹣|b|不成立.故选:A.【点睛】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【变式1-2】(2019春•冠县期末)下列式子正确的是()A.若<,则x<y B.若bx>by,则x>yC.若=,则x=y D.若mx=my,则x=y【分析】根据不等式的基本性质,以及等式的性质,逐项判断即可.【答案】解:∵若<,则a>0时,x<y,a<0时,x>y,∴选项A不符合题意;∵若bx>by,则b>0时,x>y,b<0时,x<y,∴选项B不符合题意;∵若=,则x=y,∴选项C符合题意;∵若mx=my,且m=0,则x=y或x≠y,∴选项D不符合题意.故选:C.【点睛】此题主要考查了不等式的基本性质,以及等式的性质,要熟练掌握,解答此题的关键是要明确:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变【变式1-3】(2019春•宜宾县校级期中)若ab<0,且a<b,下列解不等式正确的是()A.由ax<b,得x<B.由(a﹣b)x>2,得x>C.由bx<a,得x>D.由(b﹣a)x<2,得x<【分析】先求出a,b的大小关系,再运用不等式的基本性质判定.【答案】解:∵ab<0,且a<b,∴a<0<b.A、由ax<b,得x>,故A选项错误;B、由(a﹣b)x>2,得x<,故B选项错误;C、由bx<a,得x<),故C选项错误;D、由(b﹣a)x<2,得x<,故D选项正确.故选:D.【点睛】本题主要考查了不等式的基本性质,解题的关键是确定x系数的正负值.【考点2 由实际问题抽象出一元一次不等式】【方法点拨】由实际问题抽象出一元一次不等式组,关键是正确理解题意,找出题目中的不等关系.【例2】(2019春•湘桥区期末)某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打()A.6折B.7折C.8折D.9折【分析】设该商品打x折销售,根据利润=销售价格﹣进价结合利润率不低于5%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【答案】解:设该商品打x折销售,依题意,得:900×﹣600≥600×5%,解得:x≥7.故选:B.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.【变式2-1】(2019春•威远县校级期中)将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A.8(x﹣1)<5x+12<8 B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8 D.8x<5x+12<8【分析】设有x人,由于每位小朋友分5个苹果,则还剩12个苹果,则苹果有(5x+12)个;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果,就是苹果数﹣8(x﹣1)大于0,并且小于8,根据不等关系就可以列出不等式【答案】解:设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选:C.【点睛】此题主要考查由实际问题抽象出一元一次不等式组,关键是正确理解题意,找出题目中的不等关系.【变式2-2】(2019春•肥城市期中)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2016﹣2017赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(32﹣x)≥48 B.2x﹣(32﹣x)≥48C.2x+(32﹣x)≤48 D.2x≥48【分析】根据题意表示出胜与负所得总分数大于等于48,进而得出不等关系.【答案】解:这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是:2x+(32﹣x)≥48.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确得出不等关系是解题关键.【变式2-3】(2019•江北区一模)某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A.3×5+3×0.8x≤27 B.3×5+3×0.8x≥27C.3×5+3×0.8(x﹣5)≤27 D.3×5+3×0.8(x﹣5)≥27【分析】设小聪可以购买该种商品x件,根据总价=3×5+3×0.8×超出5件的部分结合总价不超过27元,即可得出关于x的一元一次不等式,此题得解.【答案】解:设小聪可以购买该种商品x件,根据题意得:3×5+3×0.8(x﹣5)≤27.故选:C.【点睛】本题考查了由实际问题抽象出一元一次不等式,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.【考点3 解一元一次不等式】【方法点拨】解一元一次不等式组的步骤:(1)求出每个不等式的解集;(2)求出每个不等式的解集的公共部分;(一般利用数轴)(3)用代数符号语言来表示公共部分。

一元一次不等式和一元一次不等式组(经典难题)

一元一次不等式和一元一次不等式组(经典难题)

一元一次不等式和一元一次不等式组1.某同学说一定比大,你认为对吗?说明理由。

213a a -+21a -2.已知方程组23121x y m x y m +=+⎧⎨-=-⎩(1)请列出x>y 成立的关于m 的不等式。

(2)运用不等式的基本性质将此不等式化为m>a 或m<a 的形式。

3.要使不等式的解集为x<-1,求a 的取值范围。

(1)12a x x a ->+-4.已知关于x 的一元一次方程的解都是负数,求m 的取值范围.4131x m x -+=-5.如果关于x 的不等式(1)524.a x a x a -<+<和的解集相同,求的值6.x 取哪些非负整数时,的值不小于与1的差。

322x -213x+7.m 取何值时,关于x 的方程的解大于1?6151632xm m x ---=-8.如果方程组的解满足3x-y>0,求m 的取值范围.24122x y m x y m -=+⎧⎨-=-⎩9.若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.10.不等式组的解集是x >2,则m 的取值范围是.⎩⎨⎧+>+<+1,159m x x x 11.对于整数a ,b ,c ,d ,定义,已知,则b +d 的值为_________.bd ac c d ba -=3411<<d b12.k 满足______时,方程组中的x 大于1,y 小于1.⎩⎨⎧=-=+4,2y x k y x 13.解下列不等式或不等式组:.15)2(22537313-+≤--+x x x ).1(32)]1(21[21-<---x x x x ⋅->+-+2503.0.02.003.05.09.04.0x x x ⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x14.当时,求关于x 的不等式的解集.310)3(2k k -<-k x x k ->-4)5(15.已知中的x ,y 满足0<y -x <1,求k 的取值范围.⎩⎨⎧+=+=+122,42k y x k y x 16.已知a 是自然数,关于x 的不等式组的解集是x >2,求a 的值.⎩⎨⎧>-≥-02,43x a x 17.关于x 的不等式组的整数解共有5个,求a 的取值范围.⎩⎨⎧->-≥-123,0x a x 18.若关于x 的不等式组只有4个整数解,求a 的取值范围.⎪⎪⎩⎪⎪⎨⎧+<+->+ax x x x 322,321522.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y (元)与所买水性笔支数x (支)之间的函数关系式;(2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜;x (3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.。

第二章 一元一次不等式与一元一次不等式组(提高卷)(解析版)

第二章 一元一次不等式与一元一次不等式组(提高卷)(解析版)

《阳光测评》2020-2021学年下学期八年级数学单元提升卷【北师大版】第二章一元一次不等式与一元一次不等式组(提高卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下面给出了6个式子:①3>0;②4x+3y>0;③x=3;④x﹣1;⑤x+2≤3;⑥2x≠0,其中不等式有()A.2个B.3个C.4个D.5个【答案】C【分析】不等式就是含有不等号,表示不等关系的式子,据此即可判断.【解答】解:其中是不等式的有:①3>0;②4x+3y>0;⑤x+2≤3;⑥2x≠0.共4个.故选:C.【知识点】不等式的定义2.下列不等式的变形中,不正确的是()A.若a>b,则a+1>b+1B.若﹣a>﹣b,则a<bC.若﹣x<y,则x>﹣3y D.若﹣3x>a,则x>﹣a【答案】D【分析】根据不等式的基本性质,逐项判断即可.【解答】解:∵a>b,∴a+1>b+1,∴选项A不符合题意;∵﹣a>﹣b,∴a<b,∴选项B不符合题意;∵﹣x<y,∴x>﹣3y,∴选项C不符合题意;∵﹣3x>a,∴x>﹣a,∴选项D符合题意.故选:D.【知识点】不等式的性质3.不等式5x﹣1≤2x+5的解集在数轴上表示正确的是()A.B.C.D.【答案】D【分析】不等式移项合并,把x系数化为1,求出解集,表示在数轴上即可.【解答】解:不等式移项合并得:3x≤6,解得:x≤2,表示在数轴上,如图所示:,故选:D.【知识点】在数轴上表示不等式的解集、解一元一次不等式4.如图,L1:y=x+2与L2:y=ax+b相交于点P(m,4),则关于x的不等式x+2≥ax+b的解集为()A.x≥2B.x≤2C.x≤4D.x≥4【答案】A【分析】首先把P(m,4)代入y=x+2可得m的值,进而得到P点坐标,然后再利用图象写出不等式的解集即可.【解答】解:把P(m,4)代入y=x+2得:m=2,则P(2,4),根据图象可得不等式x+2≥ax+b的解集是x≥2,故选:A.【知识点】两条直线相交或平行问题、一次函数与一元一次不等式5.对有理数x,y定义运算:x※y=ax+by,其中a,b是常数.如果2※(﹣1)=﹣4,3※2>1,那么a,b的取值范围是()A.a<﹣1,b>2B.a>﹣1,b<2C.a<﹣1,b<2D.a>﹣1,b>2【答案】D【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题意得:2a﹣b=﹣4①,3a+2b>1②由①得:b=2a+4③∴3a+2(2a+4)>1,解得a>﹣1,把a>﹣1代入得,b>2,∴a>﹣1,b>2故选:D.【知识点】解一元一次不等式、有理数的混合运算6.已知一次函数y=kx+b(k≠0,k,b为常数),x与y的部分对应值如下表所示,x﹣2﹣10123y3210﹣1﹣2则不等式kx+b<0的解集是()A.x<1B.x>1C.x>0D.x<0【答案】B【分析】由表格得到函数的增减性后,再得出y=0时,对应的x的值即可.【解答】解:当x=1时,y=0,根据表可以知道函数值y随x的增大而减小,故不等式kx+b<0的解集是x>1.故选:B.【知识点】一次函数的性质、一次函数与一元一次不等式7.不等式组的解集为()A.x≥2B.﹣3≤x≤2C.x<﹣3D.﹣3<x≤2【答案】D【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x+1>0,得:x>﹣3,解不等式2﹣x≥0,得:x≤2,则不等式组的解集为﹣3<x≤2,故选:D.【知识点】解一元一次不等式组8.不等式组有3个整数解,则a的取值范围是()A.﹣2≤a≤﹣1B.﹣2<a≤﹣1C.﹣2≤a<﹣1D.﹣2<a<﹣1【答案】C【分析】先求出不等式组的解集,根据不等式组的整数解即可得出答案.【解答】解:∵解不等式①得:x>a,解不等式②得:x<2,∴不等式组的解集是a<x<2,∵不等式组有3个整数解,∴﹣2≤a<﹣1,故选:C.【知识点】一元一次不等式组的整数解9.对于整数a、b、c、d,符号表示运算ac﹣bd,已知关于x的不等式组有4个整数解,则a的取值范围为()A.﹣≤a≤﹣B.﹣3<a<﹣C.﹣3≤a≤﹣D.﹣≤a<﹣【答案】D【分析】先变形,再求出不等式组的解集,再得出关于a的不等式组,求出不等式组的解集即可.【解答】解:,∵解不等式①得:x>8,解不等式②得:x<2﹣4a,∴不等式组的解集是8<x<2﹣4a,∵不等式组有4个整数解,∴12<2﹣4a≤13,解得:﹣≤a<﹣,故选:D.【知识点】有理数的混合运算、一元一次不等式组的整数解10.小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种【答案】C【分析】设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意列出不等式组进行解答便可.【解答】解:设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,3<x≤8,∵x为整数,也为整数,∴x=4或6或8,∴有3种购买方案.故选:C.【知识点】一元一次不等式组的应用二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)11.不等式组有2个整数解,则实数a的取值范围是.【答案】8≤a<13【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式3x﹣5>1,得:x>2,解不等式5x﹣a≤12,得:x≤,∵不等式组有2个整数解,∴其整数解为3和4,则4≤<5,解得:8≤a<13,故答案为:8≤a<13.【知识点】一元一次不等式组的整数解12.今年4月某天的最高气温为8℃,最低气温为2℃,则这天气温t℃的t的取值范围是.【答案】2≤t≤8【分析】这一天的气温应该大于或等于最低气温而小于或等于最高气温.【解答】解:因为最低气温是2℃,所以2≤t,最高气温是8℃,t≤8,则今天气温t(℃)的范围是2≤t ≤8.故答案为:2≤t≤8.【知识点】不等式的定义13.非负数a,b,c满足a+b=9,c﹣a=3,设y=a+b+c的最大值为m,最小值为n,则m﹣n=.【答案】9【分析】由于已知a,b,c为非负数,所以m、n一定≥0;根据a+b=9和c﹣a=3推出c的最小值与a 的最大值;然后再根据a+b=9和c﹣a=3把y=a+b+c转化为只含a或c的代数式,从而确定其最大值与最小值.【解答】解:∵a,b,c为非负数;∴y=a+b+c≥0;又∵c﹣a=3;∴c=a+3;∴c≥3;∵a+b=9;∴y=a+b+c=9+c;又∵c≥3;∴c=3时y最小,即y最小=12,即n=12;∵a+b=9;∴a≤9;∴y=a+b+c=9+c=9+a+3=12+a;∴a=9时y最大,即y最大=21,即m=21;∴m﹣n=21﹣12=9,故答案为:9【知识点】不等式的性质14.若关于x的一元一次不等式组有解,则m的取值范围为﹣.【答案】m>-1.5【分析】求得不等式①和不等式②的解集,然后根据不等式组有解以及不等式组解集的判断口诀求解即可.【解答】解:解不等式①得:x<3,解不等式②得:x≥﹣2m.∵不等式组有解,∴﹣2m<3.解得:m>﹣1.5.故答案为:m>﹣1.5.【知识点】不等式的解集15.关于x的方程3k﹣5x=9的解是非负数,则k的取值范围是.【答案】k≥3【分析】求出方程的解,根据题意得出≥0,求出不等式的解集即可.【解答】解:3k﹣5x=﹣9,﹣5x=﹣9﹣3k,x=,∵关于x的方程3k﹣5x=﹣9的解是非负数,∴≥0,解不等式得:k≥3,∴k的取值范围是k≥3.故答案是:k≥3.【知识点】一元一次方程的解、解一元一次不等式16.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是.【答案】x<3【分析】观察函数图象得到当x<3时,函数y=kx+6的图象都在y=x+b的图象上方,所以关于x的不等式kx+6>x+b的解集为x<3.【解答】解:当x<3时,kx+6>x+b,即不等式kx+6>x+b的解集为x<3.故答案为:x<3.【知识点】一次函数与一元一次不等式三、解答题(本大题共9小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.若关于x、y的方程组的解满足x+y≤6,求k的取值范围.【分析】先把k当作已知表示出x、y的值,再根据x+y≤6列出不等式,求出k的取值范围即可.【解答】解:解方程组得,,∵x+y≤6,∴3k+1﹣k﹣2≤6,解得k≤.∴k的取值范围为k≤.【知识点】二元一次方程组的解、解一元一次不等式18.解不等式组:并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x<3,解不等式②,得:x≥﹣1,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:【知识点】在数轴上表示不等式的解集、解一元一次不等式组19.(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;(2)若x<y,且(a﹣3)x>(a﹣3)y,求a的取值范围.【分析】(1)先在x>y的两边同乘以﹣3,变号,再在此基础上同加上5,不变号,即可得出结果;(2)根据题意,在不等式x<y的两边同时乘以(a﹣3)后不等号改变方向,根据不等式的性质3,得出a﹣3<0,解此不等式即可求解.【解答】解:(1)∵x>y,∴不等式两边同时乘以﹣3得:(不等式的基本性质3)﹣3x<﹣3y,∴不等式两边同时加上5得:5﹣3x<5﹣3y;(2)∵x<y,且(a﹣3)x>(a﹣3)y,∴a﹣3<0,解得a<3.即a的取值范围是a<3.【知识点】不等式的性质、整式的加减20.如图,已知直线y=x+5与x轴交于点A,直线y=﹣x+b与x轴交于点B(1,0),且这两条直线交于点C.(1)求直线BC的解析式和点C的坐标;(2)直接写出关于x的不等式x+5>﹣x+b的解集.【分析】(1)将点B的坐标代入y=﹣x+b即可求得直线BC的解析式,然后联立两个函数求得交点C的坐标即可;(2)根据函数的图象确定不等式的解集即可.【解答】解:(1)∵直线y=﹣x+b与x轴交于点B(1,0),∴﹣1+b=0 解得:b=1,∴直线BC的解析式为y=﹣x+1,,解得:,∴C(﹣2,3)(2)∵直线y=﹣x+b与y=﹣x+1,交于点C(﹣2,3),∴根据图象得到关于x的不等式x+5>﹣x+b的解集x>﹣2.【知识点】一次函数与一元一次不等式、待定系数法求一次函数解析式、两条直线相交或平行问题21.已知:x,y满足3x﹣4y=5.(1)用含x的代数式表示y,结果为;(2)若y满足﹣1<y≤2,求x的取值范围;(3)若x,y满足x+2y=a,且x>2y,求a的取值范围.【答案】3x-54【分析】(1)解关于y的方程即可;(2)利用y满足﹣1<y≤2得到关于x的不等式,然后解不等式即可;(3)解方程组得由x>2y得不等式,解不等式即可.【解答】解:(1)y=;故答案为:;(2)根据题意得﹣1<≤2,解得<x≤;(3)解方程组得∵x>2y,∴>2×,解得a<10.【知识点】不等式的性质、列代数式22.(1)解方程组:;(2)解不等式组:,并将不等式组的解集在数轴上表示出来.【分析】(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1),①×3+②,得:5x=10,解得x=2,将x=2代入①,得:2+y=1,解得y=﹣1,则方程组的解为;(2)解不等式x﹣2(x﹣1)≤3,得:x≥﹣1,解不等式>x﹣1,得:x<2,则不等式组的解集为﹣1≤x<2,将解集表示在数轴上如下:【知识点】在数轴上表示不等式的解集、解二元一次方程组、解一元一次不等式组23.如图,直线y=﹣x+m与x轴交于点B(4,0),与y轴交于点A,点C为x轴上一点,且已知S△ABC=4.又直线y=x+b与直线AB交于点M,M点横坐标为2.(1)求直线AB的解析式;(2)求C点坐标;(3)结合图形写出不等式x+b≥﹣x+m的解集.【分析】(1)先把B点坐标代入y=﹣x+m求出m的值,从而得到直线AB的解析式为y=﹣x+4,(2)求出A点坐标,接着利用三角形面积公式计算出BC,即可得到C(2,0)或(6,0);(3)根据图象即可求得;【解答】解:(1)把B(4,0)代入y=﹣x+m得﹣4+m=0,解得m=4,所以直线AB的解析式为y=﹣x+4;(2)当x=0时,y=﹣x+4=4,则A(0,4),∵S△ABC=4,∴BC•4=4,解得BC=2,∴C(2,0)或(6,0);(3)由图象可知,不等式x+b≥﹣x+m的解集为x≥2.【知识点】待定系数法求一次函数解析式、两条直线相交或平行问题、一次函数与一元一次不等式24.在抗击新冠肺炎疫情期间,市场上防护口罩岀现热销,某药店售出一批口罩.已知3包儿童口罩和2包成人口罩共26个,5包儿童口罩和3包成人口罩共40个.(1)求儿童口罩和成人口罩的每包各是多少个?(2)某家庭欲购进这两种型号的口罩共5包,为使其中口罩总数量不低于26个,且不超过34个,①有哪几种购买方案?②若每包儿童口罩8元,每包成人口罩25元,哪种方案总费用最少?【分析】(1)设儿童口罩每包x个,成人口罩每包y个,根据:“3包儿童口罩和2包成人口罩共26个,5包儿童口罩和3包成人口罩共40个”列方程组求解即可;(2)①设购买儿童口罩m包,根据“这两种型号的口罩共5包,为使其中口罩总数量不低于26个,且不超过34个”列出不等式组,确定m的取值,进而解决问题;②分别求出每个方案的费用即可解决问题.【解答】解:(1)设儿童口罩每包x个,成人口罩每包y个,根据题意得,,解得,,∴儿童口罩每包2个,成人口罩每包10个;(2)①设购买儿童口罩m包,则购买成人口罩(5﹣m)包,根据题意得,,解得,2≤m≤3,∵m为整数,∴m=2或m=3,∴共有两种购买方案:方案一:购买儿童口罩2包,则购买成人口罩3包;方案二:购买儿童口罩3包,则购买成人口罩2包.②方案一的总费用为:2×8+3×25=91元;方案二的总费用为:3×8+2×25=74元.∵91>74,∴方案二的总费用最少.【知识点】一元一次不等式组的应用、二元一次方程组的应用25.哈六十九中校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元,且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购买这两种笔记本的总金额不超过320元,求本次乙种笔记本最多购买多少个?【分析】(1)首先设甲种笔记本的单价是x元,乙种笔记本的单价是y元,根据题意可得:①20个甲种笔记本的价格+10个乙种笔记本的价格=110元;②甲种笔记本30个的价格+10=乙种笔记本20个的价格,根据等量关系列出方程组,再解即可;(2)设乙种笔记本购买a个,由题意得不等关系:3×甲种笔记本的数量+5×乙种笔记本的数量≤320元,根据不等关系列出不等式,再解即可.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元,由题意得:,解得.答:甲种笔记本的单价是3元;乙种笔记本的单价是5元;(2)设乙种笔记本购买a个,由题意得:3(2a﹣10)+5a≤320,解得:,∵a为整数,∴a取31.答:本次乙种笔记本最多购买31个.【知识点】一元一次不等式的应用、二元一次方程组的应用。

一元一次不等式(组)专题训练

一元一次不等式(组)专题训练

1、某校某年级秋游,若租用48座客车若干辆,则正好坐满;若租用64座客车,则能少租1辆,且有一辆车没有坐满,但超过一半.(1)需租用48座客车多少辆?解:设需租用48座客车x辆.则需租用64座客车辆.当租用64座客车时,未坐满的那辆车还有个空位(用含x的代数式表示).由题意,可得不等式组:解这个不等式组,得:.因此,需租用48座客车辆.(2)若租用48座客车每辆250元,租用64座客车每辆300元,应租用哪种客车较合算?2、某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?3、某部门为了给员工普及电脑知识,决定购买A、B两种电脑,A型电脑单价为4800元,B型电脑单价为3 200元,若用不超过160000元去购买A、B型电脑共36台,要求购买A型电脑多于25台,有哪几种购买方案?4、为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?5、筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务.该厂生产桌子的必须5人一组.每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均毎天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.6、某电器城经销A型号彩电,今年四月份毎台彩电售价为2000元.与去年同期相比,结果卖出彩电的数量相同的,但去年销售额为5万元,今年销售额为4万元.(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?7、为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人.规则二:合唱队的队员中,九年级学生占合唱团总人数的1/2 ,八年级学生占合唱团总人数的1 /4 ,余下的为七年级学生.请求出该合唱团中七年级学生的人数.8、在“五?一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?9、我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.10、某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?11、王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长;(2)问第一条边长可以为7米吗?请说明理由,并求出a的取值范围;(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.12、为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户六月份的水费支出不少于60元,但不超过90元,求该用户六月份的用水量x的取值范围.13、小明家需要用钢管做防盗窗,按设计要求需要用同种规格、每根长6米的钢管切割成长0.8m的钢管及长2.5m的钢管.﹙余料作废﹚(1)现切割一根长6m的钢管,且使余料最少.问能切出长0.8米及2.5米的钢管各多少根?(2)现需要切割出长0.8米的钢管89根,2.5米的钢管24根.你能用23根长6m的钢管完成切割吗?若能,请直接写出切割方案;若不能,请说明理由.14、建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?15、义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的1/3 .请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?16、某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒?(用含x的代数式表示).(2)该敬老院至少有多少名老人?最多有多少名老人?17、为了对学生进行爱国主义教育,某校组织学生去看演出,有甲乙两种票,已知甲乙两种票的单价比为4:3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?18、某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.(1)求每件T恤和每本影集的价格分别为多少元?(2)有几种购买T恤和影集的方案?19、整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?20、2010年的世界杯足球赛在南非举行.为了满足球迷的需要,某体育服装店老板计划到服装批发市场选购A、B两种品牌的服装.据市场调查得知,销售一件A品牌服装可获利润25元,销售一件B品牌服装可获利润32元.根据市场需要,该店老板购进A种品牌服装的数量比购进B种品牌服装的数量的2倍还多4件,且A种品牌服装最多可购进48件.若服装全部售出后,老板可获得的利润不少于1740元.请你分析这位老板可能有哪些方案?21、黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?22、某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两种花木每株成本分别为多少元?(2)据市场调研,1株甲种花木售价为760元,1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21 600元,花农有哪几种具体的培育方案?23、某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?24、某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?25、某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元,根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金?26、为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B 两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?27、2010年1月1日,全球第三大自贸区-中国-东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代,广西某民营边贸公司要把240顿白砂糖运往东盟某国的A,B两地,现用大,小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种火车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往A地,其余货车前往B地,且运往A地的白砂糖不少于115吨,请你设计出使用总运费最少的货车调配方案,并求出最少总运费?28、某校为迎接县中学生篮球比赛,计划购买A、B两种篮球共20个供学生训练使用.若购买A种篮球6个,则购买两种篮球共需费用720元;若购买A种篮球12个,则购买两种篮球共需费用840元.(1)A、B两种篮球单价各多少元?(2)若购买A种篮球不少于8个,所需费用总额不超过800元.请你按要求设计出所有的购买方案供学校参考,并分别计算出每种方案购买A、B两种篮球的个数及所需费用.29、为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?30、师徒二人分别组装28辆摩托车,徒弟单独工作一周(7天)不能完成,而师傅单独工作不到一周就已完成,已知师傅平均每天比徒弟多组装2辆,求:(1)徒弟平均每天组装多少辆摩托车(答案取整数)?(2)若徒弟先工作2天,师傅才开始工作,师傅工作几天,师徒两人做组装的摩托车辆数相同?31、某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少?32、为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品4件,B种纪念品3件,需要550元,(1)求购进A,B两种纪念品每件需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?33、东艺中学初三(1)班学生到雁鸣湖春游,有一项活动是划船.游船有两种,甲种船每条船最多只能坐4个人,乙种船每条船最多只能坐6个人.已知初三(1)班学生的人数是5的倍数,若仅租甲种船,则不少于12条;若仅租乙种船,则不多于9条.(1)求初三(1)班学生的人数;(2)初三(1)班学生的人数是50人,如果甲种船的租金是每条船10元,乙种船的租金是每条船12元.应怎样租船,才能使每条船都坐满,且租金最少?说明理由.34、为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球,已知篮球和排球的单价比为3:2.单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?35、去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?36、君实机械厂为青扬公司生产A、B两种产品,该机械厂由甲车间生产A种产品,乙车间生产B种产品,两车间同时生产.甲车间每天生产的A种产品比乙车间每天生产的B种产品多2件,甲车间3天生产的A种产品与乙车间4天生产的B种产品数量相同.(1)求甲车间每天生产多少件A种产品?乙车间每天生产多少件B种产品?(2)君实机械厂生产的A种产品的出厂价为每件200元,B种产品的出厂价为每件180元.现青扬公司需一次性购买A、B两种产品共80件,君实机械厂甲、乙两车间在没有库存的情况下只生产8天,若青扬公司按出厂价购买A、B两种产品的费用超过15000元而不超过15080元.请你通过计算为青扬公司设计购买方案?37、某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案?38、某儿童服装店欲购进A、B两种型号的儿童服装,经调查:B型号童装的进货单价是A型号童装进货单价的2倍,购进A型号童装60件和B型号童装40件共用2100元.(1)求A、B两种型号童装的进货单价各是多少元?(2)若该店每销售1件A型号童装可获利4元,每销售1件B型号童装可获利9元,该店准备用不超过63 00元购进A、B两种型号童装共300件,且这两种型号童装全部售出后总获利不低于1795元,问应该怎样进货,才能使总获利最大,最大获利为多少元?39、某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.40、今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台,若要求购买的费用不超过40000元,安装及运输费用不超过92 00元,则可购买甲、乙两种设备各多少台?41、初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分每份可得0.2元.(1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份.(2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.42、郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用1000元为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?43、玉柴一分厂计划一个月(按30天计)内生产柴油机500台.(1)若只生产一种型号柴油机,并且每天生产量相同,按原先的生产速度,不能完成任务;如果每天比原先多生产1台,就提前完成任务.问原先每天生产多少台?(2)若生产甲,乙两种型号柴油机,并且根据市场供求情况确定:乙型号产量不超过甲型号产量的3倍.已知:甲型号出厂价2万元,乙型号出厂价5万元,求总产量ω最大是多少万元?44、在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?45、某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨.(1)该果农安排甲、乙两种货车时有几种方案请您帮助设计出来;(2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元?46、开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.47、迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?48、某校校园超市老板到批发中心选购甲、乙两种品牌的书包,若购进甲品牌的书包9个,乙品牌的书包1 0个,需要905元;若购进甲品牌的书包12个,乙品牌的书包8个,需要940元.(1)求甲、乙两种品牌的书包每个多少元?(2)若销售1个甲品牌的书包可以获利3元,销售1个乙品牌的书包可以获利10元.根据学生需求,超市老板决定,购进甲种品牌书包的数量要比购进乙品牌的书包的数量的4倍还多8个,且甲种品牌书包最多可以购进56个,这样书包全部出售后,可以使总的获利不少于233元.问有几种进货方案?如何进货?49、某运动鞋专卖店,欲购进甲、乙两型号的运动鞋共100双,若购进5双甲型号运动鞋和3双乙型号运动鞋共需1350元,若购进4双甲型号运动鞋和2双乙型号运动鞋共需1020元.(1)求甲、乙两型号运动鞋的进价每双各是多少元?。

初一数学不等式难题初一数学一元一次不等式应用题

初一数学不等式难题初一数学一元一次不等式应用题

初一数学一元一次不等式应用题列方程组解应用题常用的问题:①行程问题:行程=速度×时间②工程问题:工作量=工作效率×工作时间③浓度问题:溶质的溶量=溶液的质量×浓度浓度溶液的质量④存款问题:本息和=本金+利息利息=本金×利率×期数⑤调配问题⑥方案设计及最佳方案选择问题等⑦利润问题:利润=售价-进价【典型例题】(一)题中含一个未知量,结果求一个未知量例1:某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是?分析:此题中只有一个未知量既某数,可设此未知量根据题意列不等式。

解:设这个数为x 2x+5<=3x-4解得:x>=9 所以此数小于9。

例2:一个长方形足球场的长为X米,宽为70米,如果它的周长大于350米,面积小于7560平方米,求X的取值范围,并判断这个球场是否可以作为国际足球比赛(注:用于国际比赛的足球场的长在100至110米之间,宽在64至75米之间。

)解:2(70+x)>350 70x<7560 解得:105<x<108所以x范围是105到108,可做国际比赛的足球场(二)题中含多个未知量,求一个或多个未知量例3:一次考试共有25道选择题,做对一题得4分,做错一题或不做减2分,若小明想确保考试成绩在60分以上,那么,他至少做对X题,应满足的不等式是什么?分析:此题有两个未知量,既做对的题和不做做错的题,可设其中一个量,用这个量表示另一个量;解:设作对x到题,则做错或不做(25-x)到题所以可列不等式为: 4x-2(25-x)>=60 解得:x>=55/3所以x至少为19例4:有三个连续自然数,它们的和小于15,问这样的自然数有几组它们分别是多少?分析;三个自然数都是未知量,但它们之间有联系,可设其中一个,用它们之间联系表示另两个;解:设最小的一个为x,则另两个为(x+1),(x+2) x+(x+1)+(x+2)<15x<4 x可为0,1,2,3所以这样的自然数有4组,它们分别是012,123,234,3451、某宾馆一楼房间比二楼房间少5间,一旅游团有48人,若全部安排在1楼,每间住4人,房间不够,每间住5人,有房间没住满,若全部安排在二楼,每间住3人,房间不够,每间住4人,则房间没住满,问宾馆一楼有多少房间?解:设宾馆一楼有X个房间,则二楼房间为X+5间旅游团有48人,若全部安排在1楼,每间住4人,房间不够,每间住5人,有房间没住满,所以48/5<X<48/4 9.6<X<12全部安排在二楼,每间住3人,房间不够,每间住4人,则房间没住满所以48/4<X+5<48/3 12<X+5<16 7<X<11 所以X=10宾馆一楼有10个房间2、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

北师大版八年级下册数学《不等关系》一元一次不等式和一元一次不等式组研讨说课复习课件

北师大版八年级下册数学《不等关系》一元一次不等式和一元一次不等式组研讨说课复习课件
A.两种客车总的载客量不少于500人 B.两种客车总的载客量不超过500人 C.两种客车总的载客量不足500人 D.两种客车总的载客量恰好等于500人
4. 用“<”或“>”号填空.
(1)-2_<___2;
(2)-3_<___-2;
(3)12_>___6;
(4)0__>__-8;
(5)-a__<__a (a>0); (6)-a__>__a(a<0).
5.用不等式表示下列问题中数量之间的关系.
(1)小陈的体重(x)至少100斤. x≥100
(2)这支铅笔的价钱(y)至多3元. y≤3
(3)一辆轿车在某公路上的行驶速度是 x km/h,已知 x≤100 这辆轿车在该公路上行驶的速度不超过100 km/h. (4)一块正方形的苗圃地,边长为y(m),周长不少于 36 m . 4y≥36 (5)某隧道限速为60km/h,一辆车在隧道中行驶 的速度为v(km/h)的轿车因超速被交警处罚. v>60 (6)山亭3月8日最低气温1oC,最高气温是 13oC,薛城这一天某一时刻的气温是toC . 1oC ≤ toC ≤ 13oC
探究新知
不等式的概念:
观 察 由 上 述 问 题 得 到 的 关 系 式 : x>50 , s>60x , s<100x,a+b+c≤160 ,6+3x>30,它们有什么共同的特点?
结论
一般地,用不等号“>”(或“≥”),“<”(或
“≤”)连接的式子叫做不等式.
探究新知
不等号:
不等号

读作
大于

第二章 一元一次不等式与一元一次不等式组
不等关系
课件
情景导入
找出下列材料中的不等关系.

一元一次不等式组计算题及答案

一元一次不等式组计算题及答案

一元一次不等式组计算题及答案题目一求解下面的一元一次不等式组:3x−2>4x+5<7解答第一个不等式:3x−2>4首先,我们需要先将等式改写为x在左边,常数在右边的形式:3x>4+23x>6接下来,我们需要将不等式中的系数为x的项除以系数,以获取x的系数为1的形式:$\\frac{3x}{3}>\\frac{6}{3}$x>2所以第一个不等式的解为x>2。

第二个不等式:x+5<7同样,我们将等式转化为x在左边,常数在右边的形式:x<7−5x<2所以第二个不等式的解为x<2。

综上,该一元一次不等式组的解为x>2和x<2。

题目二求解下面的一元一次不等式组:$2x-4\\leq6$$3x+1\\geq10$解答第一个不等式:$2x-4\\leq6$同样,我们将等式转化为x在左边,常数在右边的形式:$2x\\leq6+4$$2x\\leq10$接下来,我们将不等式中的系数为x的项除以系数:$\\frac{2x}{2}\\leq\\frac{10}{2}$$x\\leq5$所以第一个不等式的解为$x\\leq5$。

第二个不等式:$3x+1\\geq10$将等式转化为x在左边,常数在右边的形式:$3x\\geq10-1$$3x\\geq9$将不等式中的系数为x的项除以系数:$\\frac{3x}{3}\\geq\\frac{9}{3}$$x\\geq3$所以第二个不等式的解为$x\\geq3$。

综上,该一元一次不等式组的解为$x\\leq5$和$x\\geq3$。

题目三求解下面的一元一次不等式组:4x+3>152x−8<12解答第一个不等式:4x+3>15同样,我们将等式转化为x在左边,常数在右边的形式:4x>15−34x>12将不等式中的系数为x的项除以系数:$\\frac{4x}{4}>\\frac{12}{4}$x>3所以第一个不等式的解为x>3。

《浅析初中生解一元一次不等式(组)应用题的困难及应对策》论文

《浅析初中生解一元一次不等式(组)应用题的困难及应对策》论文

浅析初中生解一元一次不等式(组)应用题的困难及应对策【摘要】现实世界既包含大量的相等关系,又存在许多不等关系. 解决实际问题的过程中,有时不能确定或无需确定某个量的具体取值,但可以求出或确定这个量的变化范围,不等式(组)就是探求不等关系的基本工具. 列不等式(组)解决实际问题是初中数学中的难点,同时也是中考的热点. 解这类题的关键是在实际问题中找出相等关系和不等关系,列出方程和不等式. 但在解不等式(组)时有的同学常因基础不扎实、概念不清、粗心大意,而在解题过程中遇到各种困难.【关键词】初中生;一元一次不等式(组)应用题;应对策略对于“不等式(组)”,新课程标准的具体要求是:“能够根据具体问题中的数量关系列出一元一次不等式和一元一次不等式组,解决简单的实际问题,并体会不等式(组)也是描述实际问题的一个有效的数学模型.”虽然同学们都能够记住解题步骤,但是在解这类应用题时由于经验不足、抓不到关键词、概念混淆、思维定式等原因的存在,使学生们在解题过程中遇到困难,而不能得到正确的解.一、解题中遇到的困难及常见错误1.生活经验的不足及问题信息量大是造成初中生解应用题难的两大屏障例1地砖按每块5.5元出售,地砖每边长35厘米,用这种砖铺满长7.8米、宽5.7米的房间,需花费多少钱购买地砖?评析要正确地解应用题,必须读懂题目中语言文字表达的问题条件和问题要求. 本题中,学生必须清楚“地砖”、“出售”、“购买”、“铺”等词语的含义,否则不能读懂题意. “地砖问题”中的事实知识包括长方形、正方形的概念,以及米与厘米之间的进率换算. 像这类与生活综合知识联系较紧的应用题还有很多,信息量大,经验不足导致学生读不懂题目,不知从何下手,是学生最伤脑筋的. 总之,学生的生活经验、课外知识、社会知识的储备量,已成为度量学生解答应用题思维厚度的一把标尺.2.思维定式造成设未知数出错并带来列式困难例2苏科版八年级下教科书20页练习第1题.某班学生外出春游时合影留念,1张彩色底片的费用为1元,冲印1张彩照需0.6元. 如果每人预定1张彩照,且每人所花费用不超过0.8元,那么参加合影的学生至少有多少人?错解设参加合影的学生至少有x人,(错误原因:设未知数不确切,应改为设“参加合影的学生有x人”)则1+0.6x≥0.8x,(错误原因:列式时不等号反向)解这个不等式,得x≤ 5.答:参加合影的学生有5人.(错误原因:认为此题结果是确定值,而此题结果是一个取值范围)评析在列不等式解应用题中,学生设未知数时,往往受方程应用题的迁移,沿用求什么设什么的做法,常给列式带来困难,甚至出错.3.列不等式(组)时忽视关键词例3(2011山东枣庄)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”. 计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?解(1)设组建中型图书角x个,则组建小型图书角为(30-x)个.由题意,得80x+30(30-x)≤ 1900,50x+60(30-x)≤ 1620,解这个不等式组,得18≤ x≤ 20.由于x只能取整数,∴x的取值是18,19,20.当x=18时,30-x=12;当x=19时,30-x=11;当x=20时,30-x=10.故有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个.(2)方案一的费用是:860×18+570×12=22320(元);方案二的费用是:860×19+570×11=22610(元);方案三的费用是:860×20+570×10=22900(元).故方案一费用最低,最低费用是22320元.评析解这类应用题的难点在于理清题意,寻找题目中的关键词语. 例3中的两个关键词“不超过”、“ 不少于”是列不等式(组)的依据. 另外还要注意所设未知数受实际情况的制约,此例中中型图书角的个数x应是正整数.不等式应用题的取材广泛,又紧密结合实际生活,解这类题首先要理清题意,寻找关键词,比如“不少于”、“不大于”、“大于”、“小于”、“比……要节省”等,从而找到不等关系,列出不等式(组),通过解不等式确定不等式的解,最后要检验所求解是不是与实际问题相符合.4.移项或两边同乘(除)负值时不变号根据题意正确地列出不等式(组)后,最重要的是解不等式(组).例4解不等式:2x+4>x-1.错解移项,得2x+x>-1+4.即3x>3,则x>1.例5解不等式:-3x+9<0.错解移项,得-3x<-9.系数化为1,得x<3.评析上面两例均犯了不变号的错误. 例4、例5分别因“移项要变号”、“不等式的两边都乘(或除以)同一个负数,不等号的方向应改变”这类知识点不能及时回应所致. 因而求解时应在掌握知识点的基础上再加细心. 例4的正确结果应为x>-5,例5的正确结果应为x>3.5.概念或意义不明确例6求不等式2x-4<0的非负整数解.错解因为2x-4<0的解为x<2,所以它的非负整数解为1.例7解不等式:|x|<3.错解x<3.评析例6和例7错误的原因主要是对某些概念不明确或混淆,如“非负整数解”、“绝对值”等. 非负整数应包括0和一切正整数,故例6正确解为:0和1. 绝对值的意义是指在数轴上某个数到原点的距离,故例7的正确解为:-3<x<3.6.去括号时不遵守运算法则例8解不等式:3x-2(1-2x)≥ 5.错解去括号,得3x-2-2x≥ 5,故x≥ 7.评析本题有括号,根据解不等式的步骤,要先去括号. 括号前的数要与括号里的各项相乘. 去括号时,除应遵循乘法的分配律不能漏乘外,还应遵循去括号法则:去括号时,括号前面为“-”,去括号要将括号里的各项都变号. 本题产生错解的原因有两点:括号外的数只与第一项相乘,括号前面是负号只对第一项变号. 因此本题的正确解应为x≥ 1.7.去分母时,漏乘不含分母的项例9解不等式:+2≥ -2x.错解去分母,得x-1+2≥ -4x.移项、合并同类项,得5x≥ -1,即x≥ -.评析本例的解答过程中没有掌握不等式的运算性质,去分母时,不等式的两边同乘各分母的最小公倍数,漏乘不含分母的项,漏乘了常数项,这是解一元一次不等式(组)时常出的错误之一,应引起高度重视. 因此本题的正确解应为x≥ -.8. 分子是多项式,去分母时忽视了分数线的括号作用例10解不等式:->0.错解去分母,得4x-1-3x-1>0,移项、合并同类项,得x>2.评析去分母时,当分子是多项式时,各分式的分子必须看成一个整体. 忽视分数线的括号作用也是解一元一次不等式时常出的错误之一.为避免出这类错,应分别对分子添加括号,再运用去括号法则. 例10中没有添加括号导致了错误.正确去分母,得2(2x-1)-3(x-2)>0.去括号,得4x-2-3x+6>0,移项、合并同类项,得x>-4.二、学好解一元一次不等式(组)及应用题的策略1.理解有关的概念①不等式:用“<”或“>”号表示大小关系的式子,叫做不等式.②一元一次不等式:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式. 分母中不能含有未知数.③不等式的解:在含有未知数的不等式中,把使不等式成立的未知数的值叫做不等式的解. 不等式若有解,一般它的解有无数个.④不等式的解集:如果一个不等式有解,能使不等式成立的未知数的取值范围,叫做不等式的解的集合,简称解集. 不等式的解集包括所有能使不等式成立的未知数的值.2.领悟不等式的三个基本性质①不等式的两边加(或减)同一个数(或式子),不等号的方向不变.②不等式两边同乘以(或除以)同一个正数,不等号的方向不变.③不等式的两边乘(或除以)同一个负数,不等号的方向改变.不等式的三个基本性质是进行不等式变形的根本依据,其中前两个性质类似于等式的性质,而在运用性质③时,要注意必须改变不等号的方向,这是不等式特有的性质.3.牢固掌握不等式(组)的解法解一元一次不等式的一般步骤与解一元一次方程相同:①去分母;②去括号;③移项;④合并同类项;⑤系数化成1.各步需注意事项:①去分母:不要漏乘不含分母的项,是否改变不等号的方向;②去括号:括号前是负号时,括号内各项均要变号;③移项:移项要变号;④合并同类项:系数相加,字母及字母指数不变;⑤系数化成1:是否改变不等号的方向.4.牢固掌握列不等式(组)解应用题的步骤,抓住不等关系关键词,挖掘隐含的不等关系在能构建不等式的题目中往往有表示不等关系的词语,如“大于、小于、不大于、不小于、超过、不超过”等.我们一定要利用好这些关键信息,列出不等式(组)以解决实际问题.有些题目中无明显表示不等关系的关键词,而是深藏于题意中,这就要求老师引导学生根据问题的实际意义,深入挖掘蕴含其中的不等关系.5. 重视不等式(组)应用题的教学在平时的教学过程中,教师既要注重知识的传授和题目的解答,也要重视学生的实践性活动的开展和教学,这样才会避免数学和实际生活脱节,同时教学中要不断地增加新的背景和内容,跟上时代,弥补生活经验的不足,激发学生学习的热情.对于不等式(组)应用题文字较多学生获得信息困难的问题,教师平常在教学中在应用题上要多停留,有耐心.在实际问题中,有许多用方程很难解决的问题,而用不等式去处理则可轻易解决. 应用题是初中数学的重点,列不等式解应用题是初中数学的难点,根据题意正确地列出不等式(组),解应用题就成功了一半. 一元一次不等式(组)的解法十分重要,它与一元一次方程的解法有许多相似之处,但又有其自身特点,同学们要认清两者解法的联系与区别. 正确应对学生在解题过程中遇到的困难,提高学习的积极性,增加学习数学的兴趣,才有可能应用一元一次不等式(组)去解决生活中的实际问题.。

一元一次不等式与一元一次不等式组典型例题

一元一次不等式与一元一次不等式组典型例题

一元一次不等式与一元一次不等式组的解法知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。

任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。

4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .a 与6的和小于5; x 与2的差小于-1;1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >01.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-6): (这类试题在中考中很多见)1.(2010湖北随州)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥ 2.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来. 3.(2006年绵阳市)12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集:当0a >时,b x a >(或b x a<) 当0a <时,bx a <(或b x a >)当0a <时,b x a <(或b x a>) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-ab,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在|x |<37的整数解是________.不等式|x |<1的解集是________. 已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A.x <2B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)yx<0中,正确结论的序号为________。

北师大版八年级下册数学《资源与评价》答案

北师大版八年级下册数学《资源与评价》答案

1.1 不等关系1.B ; 2.A ; 3.D ; 4.C ; 5.C ;6.D ;7.(1)>,(2)>;8.3y +4x <0;9.x<ll .7,x ≥11.7;10.a <1<1a ;11.8;12.12a 2+12b 2>ab (a ≠b) . 13.(1)2a<a+3,(2)1502y -≥,(3)3x +l < 2x -5.14.(1)设这个数为x ,则x 2≥0;(2)设某天的气温为x ℃, 则≤25. 15.2a<a +b <3b . 16.a >b .17.设参加春游的同学x 人,则8x<250,9x >250(或8x< 250<9x ). 18.50+(20-3)x >270.19.设该同学至少应答对x 道题,依题意有6x -(16-x)×2≥60.20.(1)>(2)=(3)>(4)>(5)>; 22a b +≥2ab (当a =b 时取等号).聚沙成塔:甲同学说的意思是:如果每5人一组玩一个篮球,那么玩球的人数少于50人,有些同学就没有球玩.乙同学说的意思是:如果每6人一组玩一个篮球,那么就会有一个组玩篮球的人数不足6人.丙同学说的意思是:如果每6人一组玩一个篮球,除了一个球以外,剩下的每6人玩一个球,还有几个(不足6人)玩另外一个篮球.1.2 不等式的基本性质1.C ; 2.D ; 3.B ; 4.A ; 5.C ; 6.A ; 7.C ; 8.D ; 9.(1)<(2)>(3)>(4)>(5)>(6)<;10.(1)<(2)>(3)>(4)<;11.a <0; 12.(4); 13.0,1,2,3,4,5; 14.<a b ; 15.<2 <0; 16.>32. 17.(1)x >5;(2)172x >-;(3)得x <-3.(4)x <-8. 18.解:根据不等式基本性质3,两边都乘以-12,得3a >4a .根据不等式基本性质1,两边都减去3a ,得0>a ,即a<0 ,即a 为负数. 19.(1)a >0;(2)a >l 或a <0;(3)a<0. 聚沙成塔解:∵B 1=45×111111111=45×(10+11111)=12.5+111125.1<13A 1=⨯341111111=⨯34(10+1111)=13.33+11133.1>13∴A 1>B1>0 ∴A <B点拨:利用倒数比较大小是一种重要方法.1.3 不等式的解集1.A ;2.B ;3.C ;4.D ;5.B ;6.A ;7.B ;8.C ;9.答案不唯一,如x -1≤0,2x ≤2等. 10.=52,≤52.11.x =2. 12.x =1,2,3 13.-6. 14.(1)x >3;(2)x <6;(3)x >5;(4)x >10. 15.x =1,2 16.n >75% 40%≤n ≤49% n <20% 温饱.17.图略.18.答案不惟一:(1)x <4; (2) -3<x ≤1. 19.不少于1.5克. 20.x 可取一切实数.21.非负整数为0,1,2,3. 22. x >512. 23. k 大于36时b 为负数. 24. a=-3 聚沙成塔解:设白球有x 个,红球有y 个,由题意,得⎩⎨⎧=+60322y x xy x由第一个不等式得:3x <3y <6x ,由第二个不等式得,3y=60-2x ,则有3x <60-2x <6x ∴7.5<x <12,∴x 可取8,9,10,11.又∵2x=60-3y=3(20-y ) ∴2x 应是3的倍数 ∴x 只能取9,y =39260⨯-= 14 答:白球有9个,红球有14个.1.4一元一次不等式(1)1.B ;2.C ;3.D ;4.B ;5.B ;6.D ;7.A ;8.A ;9.x =0,-1,-2,-3,-4 ;10.x <-3;11.R >3;12.-6;13.2;14.2≤a <3; 15.x ≥119. 16.第④步错误,应该改成无论x 取何值,该不等式总是成立的,所以x 取一切数. 17.(1)得x ≥1;(2)x >5;(3)x ≤1;(4)x < 3;18.(1)解不等式231023x x ++-≥,得74x ≥- 所以当74x ≥-时,23123x x ++-的值是非负数.(2)解不等式231123x x ++-≤,得14x ≤- 所以当14x ≤-时,代数式23123x x ++-的值不大于119.p >-6. 20.-11.聚沙成塔解:假设存在符合条件的整数m . 由 321mx x +->+ 解得 25->m x由 mm x m x 931+>+整理得 m m m x ->92, 当0>m 时,29mx ->.根据题意,得 2925mm -=- 解得 m=7 把m=7代入两已知不等式,都解得解集为1>x ,因此存在整数m ,使关于x 的不等式与321mx x +->+是同解不等式,且解集为1>x .1.4一元一次不等式(2)1.B ; 2.B ; 3.C ; 4.C ; 5.D ; 6.12; 7.13; 8.152. 9.以后6天内平均每天至少要挖土80立方米. 10.以后每个月至少要生产100台. 11.不少于16千米.12.每天至少安排3个小组.13.招聘A 工种工人为50人时,可使每月所付的工资最少,此时每月工资为130000元. 14.甲厂每天处理垃圾至少需要6小时. 15.(1)y=9.2-0.9x ;;(2)饼干和牛奶的标价分别为2元、8元. 聚沙成塔 解:(1)由题意,可将一、二、三等奖的奖品定为相册、笔记本、钢笔即可.此时所需费用为5×6+10×5+25×4=180(元); (2)设三等奖的奖品单价为x 元,则二等奖奖品单价应为4x 元,一等奖奖品单价为20x 元,由题意应由5×20x +10×4x +25×x ≤1000,解得x ≤6.06(元).故x 可取6元、5元、4元.故4x 依次应为24元,20元,16元,20x 依次应为120元、100元、80元.再看表格中所提供各类奖品单价可知,120元、24元、6元以及80元、16元、4元这两种情况适合题意,故有两种购买方案,方案一:奖品单价依次为120元、24元、6元,所需费用为990元;方案二:奖品单价依次为80元、16元、4元,所需费用为660元.从而可知花费最多的一种方案需990元.1.5一元一次不等式与一次函数(1)1.A ;2.D ;3.C ;4.C ;5.B ;6.A ;7.D ;8.B ;9.m <4且m ≠1;10.20;11.x >-45,x <-45;12.x <-5;13.x >-2;14.x <3;15.(-3,0);16.(2,3). 17.(1) 12x <-;(2)x ≤0.18. (1)P (1,0);(2)当x <1时y 1>y 2,当x >1时y 1<y 2. 聚沙成塔在直角坐标系画出直线x =3,x +y =0,x -y +5=0, 因原点(0,0)不在直线x -y +5=0上,故将原点(0,0)代入x -y +5可知,原点所在平面区域表示x -y+5≥0部分, 因原点在直线x+y=0上,故取点(0,1)代入x+y 判定可知点(0,1)所在平面区域表示x+y≥0的部分,见图阴影部分.1.5 一元一次不等式与一次函数(2)1.B ;2.B ;3.A ;4.13;5.(1)y 1=600+500x y 2=2000+200x ; (2)x >432,到第5个月甲的存款额超过乙的存款额. 6.设商场投入资金x 元,如果本月初出售,到下月初可获利y 1元, 则y 1=10%x +(1+10%)x·10%=0.1x +0.11x =0.21x ;如果下月初出售,可获利y 2元,则y 2=25%x -8000=0.25x -8000 当y 1=y 2即0.21x =0.25x -8000时,x =200000 当y 1>y 2即0.21x >0.25x -8000时,x <200000 当y 1<y 2即0.21x <0.25x -8000时,x >200000∴ 若商场投入资金20万元,两种销售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多,若投入资金多于20万元,下月初出售获利较多.7.(1)分两种情况:y=x(0≤x ≤8),y=2x -8(x >8); (2)14. 8.(1)乙在甲前面12米;(2)s 甲=8t ,s 乙=12+213t ; (3)由图像可看出,在时间t >8秒时,甲走在乙前面,在0到8秒之间,甲走在乙的后面,在8秒时他们相遇.9.解:如果购买电脑不超过11台,很明显乙公司有优惠,而甲公司没优惠,因此选择乙公司.如果购买电脑多于10台.则:设学校需购置电脑x 台,则到甲公司购买需付[10×5800+5800(x -10)×70%]元,到乙公司购买需付5800×85% x 元.根据题意得: 1)若甲公司优惠:则 10×5800+5800(x -10)×70%<5800×85% x 解得: x >202)若乙公司优惠:则 10×5800+5800(x -10)×70%>5800×85% x 解得: x <203)若两公司一样优惠:则 10×5800+5800(x -10)×70%=5800×85% x 解得: x =20答:购置电脑少于20台时选乙公司较优惠,购置电脑正好20台时两公司随便选哪家,购置电脑多于20台时选甲公司较优惠. 10.(1)他继续在A 窗口排队所花的时间为42844a a -⨯-=(分) (2)由题意,得42625246a a -⨯-⨯+⨯>,解得 a >20. 11. 解:(1)设轿车要购买x 辆,那么面包车要购买(10-x )辆,由题意得:7x +4(10-x )≤55 解得:x ≤5又∵x ≥3,则 x =3,4,5 ∴购机方案有三种:方案一:轿车3辆,面包车7辆;方案二:轿车4辆,面包车6辆;方案三:轿车5辆,面包车5辆; (2)方案一的日租金为:3×200+7×110=1370(元) 方案二的日租金为:4×200+6×110=1460(元) 方案三的日租金为:5×200+5×110=1550(元) 为保证日租金不低于1500元,应选择方案三. 12.(1)y 1=50+0.4x ,y 2=0.6x ;(2)当y 1=y 2,即50+0.4x =0.6x 时,x =250(分钟),即当通话时间为250分钟时,两种通讯方式的费用相同; (3)由y 1<y 2即50+0.4x <0.6x ,知x >250,即通话时间超过250分钟时用“全球通”的通讯方式便宜.13.解:(1)该商场分别购进A 、B 两种商品200件、120件. (2)B 种商品最低售价为每件1080元. 聚沙成塔 解:(1)500n ;(2)每亩年利润=(1400×4+160×20)-(500+75×4+525×4+15×20+85×20) =3900(元) (3)n 亩水田总收益=3900n 需要贷款数=(500+75×4+525×4+15×20+85×20)n -25000=4900n -25000 贷款利息=8%×(4900n -25000)=392n -2000根据题意得:35000)2000392(3900≥--n n 解得:n ≥9.41 ∴ n =10需要贷款数:4900n -25000=24000(元)答:李大爷应该租10亩水面,并向银行贷款24000元,可使年利润超过35000元.1.6 一元一次不等式组(1)1.C ;2.D ;3.C ;4.C ;5.A ;6.D ;7.D ;8.-1<y <2;9.-1≤x <3;10.-14≤x ≤4;11.M ≥2;12.2≤x <5;13.a ≤2;14.-6;15.A ≤1; 16.(1)31023x <<;(2)无解;(3)-2≤x <13;(4)x >-3.17.解集为345x <≤-,整数解为2,1,0,-1.18.不等式组的解集是27310x ≤<-,所以整数x 为0.19.不等式组的解集为6913x ≤, 所以不等式组的非负整数解为:0,l ,2,3,4,5.聚沙成塔 -4<m <0.5.1.6.一元一次不等式组(2)1.解:设甲地到乙地的路程大约是xkm ,据题意,得 16<10+1.2(x -5)≤17.2, 解之,得10<x ≤11,即从甲地到乙地路程大于10km ,小于或等于11km .2.解:设甲种玩具为x 件,则甲种玩具为(50-x )件.根据题意得:⎩⎨⎧≤-+≤-+6440)50(1201404600)50(10080x x x x 解得:20≤x ≤22答:甲种玩具不少于20个,不超过22个. 3.(1)y =3.2-0.2x(2)共有三种方案,A 、B 两种车厢的节数分别为24节、16节或25节、15节或26节、14节. 4.(1)共有三种购买方案,A 、B 两种型号的设备分别为0台、10台或1台、9台或2台、8台;(2)A 、B 两种型号的设备分别1台、9台;(3)10年节约资金42.8万元. 5.解:设明年可生产产品x 件,根据题意得:⎪⎩⎪⎨⎧+≤≤≤⨯≤600006000412000100002400800120x x x 解得:10000≤x ≤12000 答:明年产品至多能生产12000件.6.解:设宾馆底层有客房x 间,则二楼有客房(x+5)间.根据题意得:⎪⎪⎩⎪⎪⎨⎧>+<+><48)5(448)5(3485484x x x x 解得:9.6<x <11,所以 x = 10 答:该宾馆底层有客房10间. 7.解:(1)32(20)y x x =+-40x =+ (2)由题意可得203(20)264486(20)708x x x x +-⎧⎨+-⎩≥ ①≤ ②解①得x ≥12 解②得x ≤14∴不等式的解为12≤x ≤14 ∵x 是正整数∴x 的取值为12,13,14即有3种修建方案:①A 型12个,B 型8个;②A 型13个,B 型7个;③A 型14个,B 型6个. (3)∵y =x +40中,y 随x 的增加而增加,要使费用最少,则x =12 ∴最少费用为y =x +40=52(万元) 村民每户集资700元与政府补助共计:700×264+340000=524800>520000 ∴每户集资700元能满足所需要费用最少的修建方案. 8.解:(1)设一盒“福娃”x 元,一枚徽章y 元,根据题意得23153195x y x y +=⎧⎨+=⎩ 解得15015x y =⎧⎨=⎩ 答:一盒“福娃”150元,一枚徽章15元. (2)设二等奖m 名,则三等奖(10—m )名,216515015(10)1000216515015(10)1100m m m m ⨯++-⎧⎨⨯++-⎩≥≤ 解得1041242727m ≤≤. ∵m 是整数,∴m =4,∴10-m =6. 答:二等奖4名,三等奖6名.单元综合评价1. 3a -2b ≤5; 2.0,1,2,3; 3. <; 4. x >21; 5. m <2; 6.28人或29人;7.4x ; 8. 51-+≤a a x ; 9.x >2; 10. 1. 11. D ; 12. B ;13. B ;14. C ;15. D ;16. C ;17. B ;18. A . 19.解:图略 (1)x >-4 (2)-6≤x ≤-2. 20.(1)x ≤4;(2)x <3;(3)1<x ≤2; (4)2<x ≤4. 21. 解:9a 2 + 5a + 3-(9a 2-a -1)=6a +4当6a +4>0即a >-32时,9a 2 + 5a + 3>9a 2-a -1 当6a +4=0即a =-32时,9a 2 + 5a + 3=9a 2-a -1当6a +4<0即a <-32时,9a 2 + 5a + 3<9a 2-a -1.22.解:根据三角形三边关系定理,得 ⎩⎨⎧->-+<-38213821a a解得 25-<<-a .23.解:设导火线至少需xcm ,根据题意,得40215>⋅x4.80>x 81≈x答:导火线至少需要81厘米长.24.解:假设存在符合条件的整数m . 由 321mx x +->+ 解得 25->m x由 mm x m x 931+>+整理得 m m m x ->92, 当0>m 时,29mx ->.根据题意,得 2925mm -=- 解得 m=7 把m=7代入两已知不等式,都解得解集为1>x因此存在整数m ,使关于x 的不等式与321mx x +->+是同解不等式,且解集为1>x .25.解:(1)y 1=250x+200,y 2=222x+1600.(2)分三种情况:①若y 1>y 2,250x+200>222x+1600,解得x >50;②若y 1=y 2,解得x=50; ③若y 1<y 2,解得x <50.因此,当所运海产品不少于30吨且不足50吨时,应选择汽车货运公司承担运输业务;当所运海产品刚好50吨时,可选择任意一家货运公司;当所运海产品多于50吨时,应选择铁路货运公司承担业务.第二章 分解因式2.1分解因式1.整式,积;2.整式乘法;3.因式分解;4.C ;5.A ;6.D ;7.D ;8.B ;9.2,1-=-=n m ;10.0; 11.C; 12.能;2.2提公因式法1.ab 2;2.3+x ;3.)43)(2(++a a ;4.(1)x+1;(2)b-c;5.22432y xy x +-;6.D;7.A;8.(1)3xy(x-2); (2))5(522x y y x -; (3))1382(22+--m m m ; (4))72)(3(--a a ; (5))223)((y x m y x +--; (6))25()(62a b b a --;(7) )413(522y xy y x -+; (8)2(x+y)(3x-2y); (9)))((c b a a x ---; (10))(2n m q +;9.C;10.10;21;11.)1(2n n a a a ++;12.)1(2+=+n n n n ;13.6-;14.6;2.3运用公式法(1)1.B;2.B;3.C;4.(1)))((x y x y -+;(2))3)(3(41y x y x -+; 5.(1)800;(2)3.98; 6.(1)(2x+5y)(2x-5y); (2)y(x+1)(x-1); (3)(2x+y-z)(2x-y+z); (4)(5a-3b)(3a-5b);(5)-3xy(y+3x)(y-3x); (6)4a 2(x+2y)(x-2y); (7)(a+4)(a-4); (8))3)(3)(9(22y x y x y x -++; (9)(7p+5q)(p+7q); (10)-(27a+b)(a+27b); 7.x m+1(x+1)(x-1); 8.A; 9.2008; 10.40162009; 2.3运用公式法(2)1.±8;2.1;3.2)121(-x ; 4.(1)5x+1;(2)b-1;(3)4;2;(4)±12mn;2m ±3n;5.D;6.C;7.D;8.D;9.C;10.C;11.A;12.(1)-(2a-1)2;(2)-y(2x-3y)2;(3)(3x-3y+1)2;(4)3(1-x)2;(5)-a(1-a)2; (6)(x+y)2(x-y)2; (7)(a+b)2(a-b)2; (8)(x+3)2(x-3)2; (9)22)3(n mn +; (10)-2ax n-1(1-3x)2; 13.x=2;y=-3; 14.(1)240000;(2)2500;15.7;16.31-;17.A;18.B;19.B;20.1;单元综合评价1.C; 2.B; 3.B; 4.C; 5.C; 6.A; 7.C; 8.D; 9.A; 10.A;11.-11或13;12.57;13.-6;14.3;15.5;16. -3xy(3x 2y+2xy-1); 17.(a-b)2(a+b); 18.2)21(--x a ; 19.(x+y)2(x-y)2; 20.45000; 21.14; 22.2)1(1)1(+=+++n n n n第三章 分式3.1分式(1)1.②和④,①和③;2.43;3.23+-m m ,-2;4.31,-5;5.为任意实数,1;6.32-,3±;7.⑴t s ,⑵)(a mb a m --,⑶b a bn am ++,⑷pnm -;8.B ;9.C ;10.C ;11.⑴3±≠x ,⑵a x 4±≠;12.⑴x=2,⑵x=1;13.a=6;14.2<x ;15.-3,-1,0,2,3,5;四.109=+b a . 1分式(2):1.⑴ab a +2,⑵x ,⑶4n ,⑷x-y ;2.1≠x 且0≠x ;3.①y x32,②x x --112,③xx x -+-2122,④1312-++x x x ;4.①y x y x 560610+-,②15203012+-x y x ,③yx y x 20253940+-,④b a b a 1512810+-;5.B ;6.71-;7.①-6xyz ,②m m 2-,③42+-m ,④22+-a a ;8.5;9.53;10.-3,11;11.5642++x x ;四.1.M=N ;2.1. 3.2分式的乘除法1.⑴bc a 2,⑵22xy ;2.2-≠x 且3-≠x 且4-≠x ;3.b a x 265;4.515;5.D ;6.D ;7.C ;8.⑴y x 2-,⑵55ba -,⑶2-x x ,⑷11-+-m m ;9.⑴-1,⑵34-,⑶41.四.1. 3.3分式的加减法(1)1.⑴ab c -7,⑵1,⑶3-a ,⑷a b c b c 129810+-;2.D ;3.15bc 2;4.22+x x ;5.2235--x x ;6.yx xy+;7.⑴a1-,⑵8-,⑶33-+x x ,⑷a a 2-;8.52;9.2x ;10.-2;11.B ;12.⑴2,⑵21+-x ;13.83;四.1.3.3分式的加减法(2)1.B;2.B;3.C;4.27;5.1;6.⑴11-x ,⑵2)2(4--x x x ,⑶y ,⑷3-x ;7.31或21;8.81;9.A=1,B=1;10.12;11.-3;四.解:由13ab a b =+,得3a b ab +=,即113a b+=……① 同理可得114b c +=……②,115a c +=……③,①+②+③得22212a b c ++=,∴1116a b c ++=,∴6bc ac ab abc++=,∴abc ab bc ca ++=163.4分式方程(1)1.整式方程,检验;2.12-x ;3.D ;4.0;5.x=20;6.-1;7.5;8.x=2;9.3;10.C ;11.D ;12.3;13.4;14.-1;15.A ;16.⑴原方程无解,⑵x=2,⑶x=3,⑷3-=x ;四.221+-n n .3.4分式方程(2)1.B ;2.C ;3.3;4.22;5.D ;6.⑴x200,⑵5x ,(200-5x),⑶55200+-x x ,⑷1552005200++-+=x xx ;⑸20;7.3±;8.⑴x=4,⑵x=7;9.1>m 且9≠m ;10.解:设公共汽车的速度为x 千米/时,则小汽车速度为3x 千米/时,根据题意得xx x 38031380=+-解得x=20,经检验x=20是所列方程的解,所以3x=60,答:公共汽车的速度为20千米/时,小汽车的速度为60千米/时;11.解:设去年居民用水价格为x 元,则今年价格为1.25x 元,根据题意得,6181.2536=-xx ,解得x=1.8,经检验x=1.8是所列方程的解,所以1.25x=2.25.答:今年居民用水价格为2.25元.四.解:设需要竖式纸盒5x 个,则需要横式3x 个,根据题意得,)3354x x ⨯+⨯(∶)325(x x ⨯+=29x ∶11x=29∶11.答:长方形和正方形纸板的张数比应是29∶11.单元综合评价1.D ;2.B ;3.D ;4.C ;5.B ;6.B ;7.C ;8.)1()1(2-+x x x ;9.21≠x 且43-≠x ;10.2;11.53;12.-3;13.av v a +25;14.x=2;15.1<m 且3-≠m ;16.1210222++-x x x ;17.x -22;18.21;19.56-=x ;20.5-=x ;21.解:设改进前每天加工x 个,则改进后每天加工2.5个,根据题意得155.210001000+=xx ,解得x=40,经检验x=40是所列方程的解,所以2.5x=100.答:改进后每天加工100个零件.22.解:设甲原来的速度为x 千米/时,则乙原来的速度为(x-2)千米/时,根据题意得240844-40-=-+x x x ,解得x=12,经检验x=12是所列方程的解,所以x-2=10.答:甲原来的速度为12千米/时,乙原来的速度为10千米/时.第四章 相似图形4. 1线段的比⑴1.2:5,57;2.58;3.269;4.5; 5.1:50000;6.45;7.1:2:2;8.D ;9.B ;10.C ;11.B ;12.D ;13.⑴√⑵×;14.BC=10cm .4.1线段的比⑵1.3;2.32;3.53;4.C ;5.B ;6.B ;7.D ;8.B ;9.PQ=24;10.⑴3;⑵54-;11.⑴38;⑵76-;(3)-5;12.a :b:c=4:8:7;13.分两种情况讨论:⑴a +b+c≠0时,值为2;⑵a +b+c=0时,值为-1.4.2黄金分割 1.AP 2=BP·AB 或PB 2=AP·AB ;2.0.618;3.7.6,4.8;4.C ;5.C ;6.B ;7.C ;8证得AM 2=AN·MN 即可;9.⑴AM=5-1;DM=3-5;⑵略;⑶点M 是线段AD 的黄金分割点;10.通过计算可得215-=AB AE ,所以矩形ABFE 是黄金矩形. 4.3形状相同的图形1.相同⑶⑸;不同(1)(2)(4)(6).2.(a )与⑷,(b)与⑹,(c)与⑸是形状相同的;3.略;4.⑴AB=13,BC=26,AC=5,⑵A /B /=213,B /C /=226,A /C /=10,⑶成比例,⑷相同.4.4相似多边形1.×2.√3.×4.√5.√6.①④⑤;7.B ;8.B ;9.C ;10.C ;11.A ;12.27;13.66;14.一定;15.不一定;16.2;17.都不相似,不符合相似定义;18.各角的度数依次为650,650,1150;1150.B 'C '=A 'D '=415cm ;19.BC·CF=1;20.相似;21.2;22.b 2=2a 2. 4.5相似三角形1.全等;2.4:3;3.24cm ;4.80,40;5.直角三角形,96cm 2;6.3.2;7.D ;8.B ;9.D ;10.C ;11.C ;12.A ;13.B ;14.A /B /=18cm ,B /C /=27cm ,A /C /=36cm ;15.⑴相似,1:2.⑵分别为43a 2和163a 2. ⑶面积之比等于边长之比的平方.4.6探索三角形相似的条件⑴1.2;2.6;3.2;4.4;△CDF ,1:2,180;5.4:3;6.2.4;7.572;8.B ;9.B ;10.C ;11.C ;12D ;13.BF=10cm ;14.⑴略.⑵BM=3. 15.由已知可得:AE AF BE FG =, AEAF DE FC =,BE=DE ,所以,FG=FC . 16.由已知可得: AG AF CG BF =,AG AF GD EF =,所以GD EF CG BF =.17. 由已知得:BF DF CF GF =,BFDF EF CF =,可得EF CF CF GF =,即: CF 2=GF·EF . 18.由已知得: PB PD PA PQ =,PB PD PR PA =,可得: 22PBPD PR PQ =. 19.不变化,由已知得: BC CP AB PE =,BCBP CD PF =,得:1=+CD PF AB PE ,即PE+PF=3. 20.提示:过点C 作CG//AB 交DF 于G .21.23. 22.⑴由已知得:21===CD OE FC OF GC EG ,所以32=CE GC ,即31=BC GC .问题得证.⑵连结DG 交AC 于M ,过M 作MH ⊥BC 交BC 于H ,点H 即为所求.23.⑴证△AEC ≌△AEF 即可.⑵EG=4.24.⑴过点E 作EG//BC 交AE 于G .可得: nn m EC BE +=.⑵由⑴与已知得:2=+n n m 解得:m=n ,即AF=BF .所以:CF ⊥AB .⑶不能,由⑴及已知可得:若E 为中点,则m=0与已知矛盾.4.6探索三角形相似的条件⑵1.三;2.22,26;3.6;4;15-55;5.310;6.2.4;7.A ;8.C ;9.B ;10.A ;11.B ;12.A ;13.⑴略.⑵相似,由⑴得∠AFE=∠BAC=600,∠AEF 公共.⑶由△BDF ∽△ABD 得: AD BD BD DF =,即BD 2=AD·DF .14.⑴∠BAC=∠D 或∠CAD=∠ACB .⑵由△ABC ∽△ACD 得BCAC AC AD =,解得:AD= 4,所以中位线的长= 6.5. 15.证: △ADF ∽△BDE 即可.16.AC = 43.17.提示:连结AC 交BD 于O .18.连结PM ,PN .证: △BPM ∽△CPN 即可.19.证△BOD ∽△EOC 即可.20.⑴连结AF .证; △ACF ∽△BAF 可得AF 2=FB·FC ,即FD 2=FB·FC .⑵由⑴相似可得: CF AF AC AB =,AF BF AC AB =,即CFBF AC AB =22. 21.⑴略.⑵作AF//CD 交BC 与F .可求得AB=4.⑶存在.设BP=x ,由⑴可得xx -⨯=74834,解得x 1=1, x 2= 6.所以BP 的长为1cm 或6cm .22.⑴由∠AFC=∠BCE=∠BCF+450,∠A=∠B=450可证得相似.⑵由⑴得AF·BE=AC·BC=2S .23. ⑴略. ⑵△ABP ∽△DPQ , DQ PD AP AB =,xy x -+=522,得y =-21x 2+25x -2.(1<x <4). 24. ⑴略. ⑵不相似.增加的条件为: ∠C=300或∠ABC=600.4.6探索三角形相似的条件⑶1.√;2.√;3.相似;4.90;5.相似;6.相似;7.D ;8.C ;9.C ;10.略;11.略;12.易得BCEF OC OF AC DF OA OD AB DE ====. 13.证: 22===AG AF CG AC AC CF 得△ACF ∽△ACG ,所以∠1=∠CAF ,即∠1+∠2+∠3=900. 14.A .15. ⑴略. ⑵AQ 平分∠DAP 或△ADQ ∽△AQP 等.4.6探索三角形相似的条件⑷1.相似;2.4.1;3.310;4.4;5.ABD ,CBA ,直角;6.D ;7.A ;8.C ;9.B ;10.C ;11.DE//BC ;12.证△AEF ∽△ACD ,得∠AFE=∠D ;13.易得△ABD ∽△CBE , ∠ACB=∠DEB .14.证△ABD ∽△ACE 得∠ADB=∠AEC 即可.15.略.16. ⑴CD 2=AC·BD .⑵∠APB=1200. 17.分两种情况讨论: ⑴CM=55,⑵CM=552. 18. ⑴证明△ACD ∽△ABE , ⑵AD AC DE BC =或AE AB DE BC =.由⑴得: AD AE AC AB =,△ABC ∽△AED 问题即可得证.19.650或1150.20.易得2==CEDF CF AD ,△CEF ∽△DAF ,得2=EF AF 与∠AFE=900.即可得到.21. ⑴证明△CDE ∽△ADE ,⑵由⑴得BC AD CE DM 212=,即BC AD CE DM =,又∠ADM=∠C .⑶由⑵得∠DBF=∠DAM ,所以AM ⊥BE . 22.易得:AC=6,AB=10.分两种情况讨论: 设时间为t 秒.⑴当AC CQ BC PC =时, 6828t t =-,解得t=512.⑵同理得8628t t =-,解得t=1132. 23. ⑴相似,提示可延长FE ,CD 交于点G . ⑵分两种情况:①∠BCF=∠AFE 时,产生矛盾,不成立.②当∠BCF=∠EFC 时,存在,此时k=23.由条件可得∠BCF=∠ECF=∠DCE=300,以下略.4.6探索三角形相似的条件⑸1.B ;2.C ;3.B ;4.C ;5.C ;6.C ;7.C ;8.A ;9.C ;10.B ;11.2等(答案不 唯一);12.DE//BC(答案不唯一);13. △ABF ∽△ACE , △BDE ∽△CDF 等;14.②③;15. ∠B=∠D(答案不 唯一);16.略;17.略(只要符合条件即可);18. ⑴七. ⑵△ABE ∽△DCA ∽△DAE ;19.利用相似可求得答案: x = 2cm .20. ⑴相似,证略.⑵BD=6.21.BF 是FG ,EF 的比例中项.证△BFG ∽△EFB 即可.22.证△ACF ∽△AEB .23. 2.24. ⑴AQ=AP ,6-t=2t 解得t=2.⑵S=12×6-21×12t -21×6(12-2t)=36.所以四边形的面积与点P ,Q 的位置无关.⑶分两种情况:①t=3.②t=56. 4.7测量旗杆的高度1.20;2.5;3.14;4.C ;5.C ;6.AB=25346米;7.MH=6m ;8. ⑴DE=310m ;⑵3.7m/s ;9.由相似可得: ⎪⎪⎩⎪⎪⎨⎧+==1284.37.18.17.1BC AB BC AB 解得AB=10.所以这棵松树的高为10m . 10.略.4.8相似多边形的性质1.2:3;2.2:5,37.5;3.1:4,1:16;4.1:4;5.75;6.1:16;7.22;8.60;9.C ;10.C ;11.C ;12.D ;13.B ;14.B ;15.C ;16.B ;17.4.8cm ;18.25;19.16;20.⑴提示:延长AD ,BF 交于G .AE:EC=3:2.⑵4.21.⑴S 1:S=1:4.⑵141+-=x y (0<x <4).22.提示:延长BA ,CD 交于点F .面积=16217.23. ⑴可能,此时BD=72108180-.⑵不可能,当S FCE ∆的面积最大时,两面积之比=925<4. 24.⑴S AEF ∆=x x 512522+-.⑵存在.AE=266-.25.略.26. ⑴640元.⑵选种茉莉花.⑶略.27. ⑴利用勾股定理问题即可解决.⑵答:无关.利用△MCG ∽△MDE 的周长比等于相似比可求得△MCG 的面积=4a .28. ⑴CP=22.⑵CP=724.⑶分两种情况①PQ=3760,②PQ=49120. 29.提示:作△ABC 的高AG . ⑴略.⑵DE=38. 30. ⑴x =310s .⑵2:9.⑶AP=940或20. 31.⑴DE=AD ,AE=BE=CE . ⑵有: △ADE ∽△ACE 或△BCD ∽△ABC . ⑶2:1.4.9图形的放大与缩小1.点O ,3:2;2.68,40;3. △A 'B 'C ',7:4, △OA 'B ',7:4;4.一定;5.不一定;6.略;7.(-1,2)或(1, -2),(-2,1)或(1, -2);8.2:1;9.D ;10.C ;11.B ;12.D ;13.C ;14.D ;15.略;16.略;17.略;18.略;19. ⑴略; ⑵面积为445. 单元综合评价⑴1.C ;2.C ;3.C ;4.A ;5.D ;6.B ;7.B ;8.C ;9.95;10.80;11.5;12.8;13.7.5;14.5;15.8:27;16.a 22;17.1:3; 18.相似.证明略.19.10:2.20.25:64.21.边长为6.22.y x :=3:2.23.略.24. △ABF ∽△ACE ,AB AF AC AE =得△AEF ∽△ACB . 25.菱形的边长为320cm . 26.证明略.27. ⑴边长为48mm .⑵分两种情况讨论:①PN=2PQ 时,长是7480mm ,宽是7240mm .②PQ=2PN 时,长是60mm .宽是30mm .单元综合评价⑵1.64cm ;2.4:9;3.30;4.三;5.72;6. △AEC ;7.1:4;8.②③④;9.8:5;10.7;11.C ;12.B ;13.B ;14.C ;15.C ;16.D ;17.D ;18.C ;19.B ;20.A ;21.略;22.EC= 4.5cm ;23.21. 6cm 2;24.略;25.边长是48mm .26. ⑴AC AO BC OE =,DC DF BC OF =,DCDF AC AO =,所以:OE= OF . ⑵易得OE=712,EF=2OE=724.27. ⑴PM=43厘米. ⑵相似比为2:3.⑶由已知可得:t=aa +66≤3,解得a ≤6,所以3<a ≤6. ⑷存在.由条件可得:⎪⎪⎩⎪⎪⎨⎧-=-+=t t a at a a t 3)(66 解得: a 1=23,a 2=-23(不合题意,舍去). 28. ⑴600,450.⑵900-21α.⑶900-21α,900+21α.证明略. 第五章 数据的收集与处理5.1 每周干家务活的时间1、(1)普查 (2)抽样调查 (3)抽样调查 (4)抽样调查2、(1)总体:该种家用空调工作1小时的用电量;个体:每一台该种家用空调工作1小时的用电量;样本:10台该种家用空调每台工作1小时的用电量;样本容量:10 (2)总体:初二年级270名学生的视力情况;个体:每一名学生的视力情况;样本:抽取的50名学生的视力情况;样本容量:50.3、D4、B5、(1)适合抽样调查 (2)适合普查 (3)适合抽样调查 (4)适合普查6、(1)缺乏代表性 (2)缺乏代表性 (3)有代表性7、8001512000=÷条 8、估计该城市一年(以365天计)中空气质量达到良以上的天数为219天. 四、聚沙成塔(略)5.2 数据的收集1、抽样调查2、A3、C4、7万名学生的数学成绩、每名考生的数学成绩、1500名考生的数学成绩5、D6、(1)丘陵,平原,盆地,高原,山地;山地的面积最大(2)59%(3)丘陵和平原(4)各种地形的面积占总面积的百分比,100%(5)略(6)不能(7)96万平方千米,249.6万平方千米.7、原因可能是:样本的容量太小,或选区的样本不具有代表性、广泛性、随机性.8、(1)否(2)抽样调查(3)200(4)不一定,抽查的样本不具有代表性和广泛性. 9、(1)平均质量为2.42千克. (2)900只可以出售.四、聚沙成塔能装电话或订阅《文学文摘》杂志的人在经济上相对富裕,而占人口比例多数、收入不高的选民却选择了罗斯福,因此抽样调查既要关注样本的大小,又要关注样本的代表性.5.3 频数与频率1、C2、0.323、0.54、0.185、D6、(1)48人(2)12人,0.257、0.258、(1)0.26 24 3 0.06(2)略9、(1)8,12,0.2,0.24 (2)略 (3)900名学生竞赛成绩, 每名学生竞赛成绩, 50名学生竞赛成绩,50 (4)80.5~90.5 (5)216人四、聚沙成塔(1)89分(2)甲的综合得分=92(1-a )+87a 乙的综合得分=89(1-a )+88a 当0.5 ≤a <0.75, 甲的综合得分高;当0.75 <a ≤0.8, 乙的综合得分高.5.4 数据的波动1、B2、A3、24、C5、B6、B7、D8、9 s ²9、2 10、4牛顿 11、(1)90分、70分、甲组(2)172、256、甲组成绩比较整齐. 12、甲x =8,乙x =8,x 丙=7.6,2甲s =4.4,2乙s =2.8,2s 丙=5.44;(2)乙 13、(1)8,7,8,2,60% (2)略 四、聚沙成塔(1)701.6 699.3 (2)65.84 284.21 (3)甲稳定 (4)甲,乙单元综合评价1、 某校八年级学生的视力情况,每名八年级学生的视力情况,85八年级学生的视力情况.2、 (2), (1)、(3)3、3.2 、964、不可信,样本不具有代表性5、50,20、0.46、3,5,12克7、(1)50,(2)60%(3)15 8、3,2.25,1.5 9、A 10、B 11、D 12、B 13、C 14、B 15、B 16、B 17、C 18、B 19、(1)102、113,106 (2)3180(3)y=53x 20\(1)21人 (2)0.96 (3)答题合理即可 21、(1)7、7、7.5、3(2)①甲的成绩较为稳定②乙的成绩较好③乙要比甲成绩好④尽管甲的成绩较为稳定,单从折线图的走势看,从第四次射击后,乙每次成绩都比甲高,并成上升趋势,乙的潜力比较大.第六章 证明(一)6.1 你能肯定吗?1、 观察可能得出的结论是(1)中的实线是弯曲的;(2)a 更长一些;(3)AB 与CD 不平行.而我们用科学的方法验证可发现:(1)中的实线是直的;(2)a 与b 一样长;(3)AB 与CD 平行. 2、一样长.计算略. 3、(1)不正确;(2)不正确;(3)不正确. 4.A 5.B6.能 7、原式=n 4,,所以一定为4的倍数.8、(1)正确的结论有①②③;(2)略 9.将此长方体从右到左数记为Ⅰ,Ⅱ,Ⅲ,Ⅳ,由Ⅱ,Ⅳ可知,白颜色的面与红、黄两种颜色的面必相邻,又由Ⅰ知,白颜色的面应是蓝色的对面,恰为Ⅰ中的下底面,由Ⅲ知红与紫必相邻,再与Ⅰ相比较知,黄色的对面必为紫色了,从而红色的对面必为绿色了,通过上面的推理可以知道Ⅰ的下底面为白颜色,有4朵花,Ⅱ的下底面为绿色,有6朵花,Ⅲ的下底面为黄色,有2朵花,Ⅳ的下底面的紫色有5朵花,故这个长方体的下底面有(4+6+2+5)朵花,即共17朵花.聚沙成塔.m 4.107371000201.030≈÷⨯,比五层楼和电视塔都高.6.2 定义与命题1.(1)题设:两个角是对顶角;结论:这两个角相等(2)题设: 22b a =;结论:b a =(3)题设:如果两个角是同角或等角的补角;结论:这两个角相等(4)题设:同旁内角互补;结论:两直线平行(5)题设:经过两点作直线;结论:有且只有一条直线.2.C3.C4.C5.B6.D7.(1)如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行.(2)如果一个三角形有两条边相等,那么这两条边所对的角相等.(3)如果两个数的绝对值相等,那么这两个数相等.(4)如果一个数是有理数,那么在数轴上就有一个点与之相对应.(5)如果一个三角形是直角三角形,那么这个三角形的两个锐角互余.8.略9.D 10.D 11.B 12.C 13.D 14略 15.(1)假命题(2)真命题(3)假命题16. 两条平行直线被第三条直线所截,同旁内角的平分线互相垂直.17.解;例如已知,,C B AC AB ∠=∠=求证:AD AE =是真命题.(只要答案合理即可)18.先把羊带过河,再把狼带过河,然后把羊带回去,把青草带过河,最后再回去把羊带过河.6.3 为什么它们平行1.C2. C3.B4.C5.B6. D7.A8.B9.(1)AD ∥BC (2) AD ∥BC (3)AB ∥CD 10.平行11.平行 12.平行,同位角相等,两直线平行. 13——16答案略 17.因为∠A=∠1,∠2+∠ACE+∠1=180º,又AC ⊥CE ,故∠ACE=90º,∴∠1+∠2=90º,∴∠A+∠2=90º,∴∠ABC=90º,同理∠EDC=90º,∴AB ∥DE. 18.提示:∠B+∠A=90º,∠AEF=∠B ,∴∠AEF+∠A=90º19.提示:∠A=90º,∠B=60º,∠C=30º ,∠A :∠B :∠C=3:2:16.4 如果两条直线平行1.C 2.C 3.C 4.B 5.A 6. 110º 7. 123º 8. 180º 9.南偏东70º 10. 证明:(1)∵AD ∥BC ,∴∠1=∠B ,∠2=∠C.又∠B=∠C ,∴∠1=∠2,即AD 平分∠EAC ;(2)由∠B+∠C+∠BAC=180º,且∠1+∠2+∠BAC=180º知,∠1+∠2=∠B+∠C ,又AD 平分∠EAC ,∴∠1=∠2,而∠B=∠C ,故∠1=∠B ,或∠2=∠C ,从而AD ∥BC.11. 148º12.提示:过点C 做CP ∥AB 13. 121º49ˊ 14. (1)证明:过C 作CD ∥AB ,∵AB ∥EF ,∴CD ∥AB ∥EF ,∴∠B=∠BCD ,∠F=∠FCD , 故∠B+∠F=∠BCF.(2)过C 作CD ∥AB ,∴∠B+∠BCD=180º,又AB ∥EF ,AB ∥CD ,∴CD ∥EF ∥AB ,∴∠F+∠FCD=180º,故∠B+∠F+∠BCF=360º.6.5 三角形内角和定理的证明1.B2.D3.C4.D5.B6. 90º7. 50º, 100º8. 40º9. 63º 10. 100º 11. 50º12.略13.略 14.连CE ,记∠AEC=∠1,∠ACE=∠2,∴∠D+∠2+∠1+∠DEA=180º,∠B+∠1+∠2+∠BCA=180º,∠F+∠1+∠2+21∠DEA+21∠BCD=180º 由 ∠D+∠2+∠1+∠DEA+∠B+∠1+∠2+∠BCA=360º. ∴21(∠D+∠B )+∠1+∠2+21∠BCA+21∠DEA=180º ∴∠1+∠2+21∠BCA+21∠DEA=180º-21(∠D+∠B ), 即∠F+180º-21(∠D+∠B )=180º,∴∠F=21(∠B+∠D ); ( 2)设∠B=2α,则∠D=4α,∴∠F= 21(∠B+∠D )=3α, 又∠B :∠D :∠F=2:4:x ,∴x=3.2.略. 15.略6.6 关注三角形的外角1.C 2.C 3.C 4.B 5C 6. 35° 7. 37.5° 8. 260° 9. 55°或70° 10. 120°或115°或125°11.AF ⊥DE 12.∠D=70° ∠D=90°12A +∠ 13. 证法一:延长CD 交AB 于点E ; 证法二:过点B 做BF ⊥AD ,交AD 的延长线于点F.14.证法1: 360BDC BDA CDA∠=-∠-∠又180BDA B BAD ∠=-∠-∠ 180CDA C CAD ∠=-∠-∠360(180)BDC B BAD ∴∠=--∠-∠-(180)C CAD BAD CAD B C -∠-∠=∠+∠+∠+∠即BDC BAC B C ∠=∠+∠+∠;证法2略. 15.略16.延长BP 交AC 于D ,则∠BPC >∠BDC ,∠BDC >∠A 故∠BPC >∠A(2)在直线l 同侧,且在△ABC 外,存在点Q ,使得∠BQC >∠A 成立.此时,只需在AB 外,靠近AB 中点处取点Q ,则∠BQC >∠A .证明略.提示:单元综合评价一、1.A 2.C 3.D 4.B 5.B 6.B 7.B 8.C 9.B 10.B二、11.略12.80° 13.60° 14.115° 15.88° 16.45°>∠B>30°17.360 ° 18.118° 19.3 20.68°三、21.10022.证明: ∵∠ADE=∠B ,∴ED ∥BC . ∴∠1=∠3.∵∠1=∠2,∴∠3=∠2.∴CD ∥FG .∵FG ⊥AB ,∴CD ⊥AB .23. ∵L 1∥L 2, ∴∠ECB+∠CBF=180°. ∴∠ECA+∠ACB+∠CBA+∠ABF=180°.∵∠A=90°, ∴∠ACB+∠CBA=90°. 又∠ABF=25°, ∴∠ECA=180°-90°-25°=65°.24.解:分两种情况(1)当ABC ∆为锐角三角形时,70B ∠=(2) 当ABC ∆为钝角三角形时,20B ∠=25.略 33.FD EC ⊥90EFD FEC ∴∠=-∠而FEC B BAE ∴∠=∠+∠又AE 平分BAC ∠11(180)22BAE BAC B C ∴∠=∠=-∠-∠=190()2B C -∠+∠ 则19090()2EFD B B C ⎡⎤∠=-∠+-∠+∠⎢⎥⎣⎦=1()2C B ∠-∠ (2)成立。

一元一次不等式组 重难点专项练习【八大题型】-2022-2023学年七年级数学下册同步精品课堂

一元一次不等式组 重难点专项练习【八大题型】-2022-2023学年七年级数学下册同步精品课堂

9.3《一元一次不等式组》重难点题型专项练习考查题型一 一元一次不等式组的定义(2021春·四川绵阳·七年级校考期中)1. 下列不等式组是一元一次不等式组的是( )A. ()2012x x x ->⎧⎨-≤⎩B. 1010x y +>⎧⎨-<⎩C. 203x x ->⎧⎨<-⎩D. 30110x x>⎧⎪⎨+<⎪⎩(2020春·四川巴中·七年级统考期末)2. 下列不等式组中,是一元一次不等式组的是( )A. 203x x ->⎧⎨<-⎩B. 1010x y +>⎧⎨-<⎩C. ()()320230x x x ->⎧⎨-+>⎩ D. 30110x x>⎧⎪⎨+>⎪⎩(2020春·浙江台州·七年级台州市书生中学校考期中)3. 下列不等式组是一元一次不等式组的是( )A. 00x y x y ->⎧⎨+<⎩B. 1132341x x x x ⎧+>⎪⎨⎪≠-⎩C. 320(2)(3)0x x x ->⎧⎨-+>⎩D. 320x y x y +=⎧⎨>-⎩(2022春·全国·七年级假期作业)4. 下列不等式组:①23x x >-⎧⎨<⎩,②024x x >⎧⎨+>⎩,③22124x x x ⎧+<⎨+>⎩,④307x x +>⎧⎨<-⎩,⑤1010x y +>⎧⎨-<⎩.其中一元一次不等组的个数是( )A. 2个 B. 3个 C. 4个 D. 5个考查题型二 求不等式组的解集(2022春·山西晋城·七年级统考期末)5. 不等式组211238x x ->⎧⎨-<⎩的解集是( ).A. 1x >B. 2<<1x -C. 2x >-D. 无解(2022春·海南海口·七年级琼山中学校考阶段练习)6. 不等式组21390x x >-⎧⎨-+≥⎩的解集是( )A. 3x ≤- B. 12x >- C. 132x -<≤ D. 132x ≤<(2022春·福建厦门·七年级统考期末)7. 将不等式组23x x >⎧⎨≥⎩的解集表示在数轴上,正确的是( )A. B. C.D.(2022春·宁夏吴忠·七年级校考期末)8. 不等式组13x x -≤-⎧⎨<⎩的解集在数轴上可以表示为( )A. B. C.D.考查题型三 求一元一次不等式组的整数解(2022春·陕西商洛·七年级校考期末)9. 不等式组2313252x x x +>⎧⎨≤-⎩的非负整数解的个数是( )A. 6个B. 5个C. 4个D. 3个(2022春·四川眉山·七年级统考期末)10. 已知56m <≤,则关于x 的不等式组01112m x x x ->⎧⎪⎨-≤-⎪⎩的整数解共有()A. 6个B. 5个C. 4个D. 3个(2022春·四川乐山·七年级统考期末)11. 已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有3个,则a 的取值范围是( )A. 21a -<<-B. 21a -<-C. 21a -<-D. 21a - (2022春·安徽合肥·七年级统考期末)12. 一元一次不等式组3620x x x -<⎧⎨+≥⎩的解集中,最大的整数解是( )A. 2 B. 3 C. 2- D. 1-考查题型四 由一元一次不等式组的解集求参数(2022秋·重庆北碚·七年级统考期末)13. 若关于x 的不等式组51222x x x x a+⎧<-⎪⎨⎪+<+⎩只有4个整数解,则a 的取值范围是( )A. 13a ≥B. 1314a <<C. 1314a ≤<D. 1314a <≤(2023春·安徽六安·七年级校考阶段练习)14. 不等式组2x x a ≥⎧⎨<⎩无解,则a 的取值范围是( )A. 2a < B. 2a > C. 2a ≤ D. 2a ≥(2022春·江苏扬州·七年级校考阶段练习)15. 如果不等式组212x m x m >+⎧⎨>+⎩的解集是x >-1,那么m 的值是( )A. 1 B. 3 C. -1 D. -3(2022春·河南驻马店·七年级校考期中)16. 如果不等式组262x x x m x-+<-⎧⎨>-⎩的解集是x >4,那么m 的取值范围是( )A. m ≥4 B. m ≤4 C. m <4 D. m =4考查题型五 不等式组和方程组结合问题(2022春·河南南阳·七年级统考期中)17. 关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组()21323x x k x x ⎧--≥⎪⎨+≤⎪⎩无解,则符合条件的整数k 的值的和为( )A. 5 B. 2 C. 4 D. 6(2022春·重庆忠县·七年级校考期中)18. 若关于x ,y 的二元一次方程组128x y a x y +=+⎧⎨+=⎩的解为正数,则满足条件的所有整数a 的和为( )A. 14B. 15C. 16D. 17(2022春·内蒙古呼伦贝尔·七年级校考期末)19. 如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解为正数,则a 的取值范围是( )A. 45a -<<B. 54a -<<C. 4a <-D. 5a >(2021春·福建南平·七年级统考期末)20. 已知2321x y k x y k +=⎧⎨+=+⎩,且01x y <-<,则k 的取值范围为( )A. 112k << B. 102k <<C. 01k << D. 112k -<<-考查题型六 列一元一次不等式组(2021春·辽宁抚顺·七年级期末)21. 七年级下册数学课本有如下6章:《相交线与平行线》、《实数》、《平面直角坐标系》、《二元一次方程组》、《不等式与不等式组》、《数据的收集、整理与描述》.期末试卷编题要求,每章至少有3个题,全卷总题数不超过26题,若本次期末试卷的全卷总题数为x ,则x 的取值范围是______.(2020春·黑龙江佳木斯·七年级统考期末)22. 若干名学生住宿舍,每间住4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____(2020春·江西南昌·七年级校联考期末)23. 运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x后程序操作进行了两次停止,则x的取值范围是______.(2020春·广西崇左·七年级统考期中)24. 方程组431,65x y kx y-=+⎧⎨+=⎩的解x、y满足条件0<3x-7y<1,则k的取值范围______.考查题型七用一元一次不等式组解决销售利润问题(2020·湖南湘潭·中考真题)25. 习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买获得第十届矛盾文学奖的《北上》(徐则臣著)和《牵风记》(徐怀中著)两种书共50本.已知购买2本《北上》和1本《牵风记》需100元;购买6本《北上》与购买7本《牵风记》的价格相同.(1)求这两种书的单价;(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半,且购买两种书的总价不超过1600元.请问有哪几种购买方案?哪种购买方案的费用最低?最低费用为多少元?(2019·四川泸州·统考中考真题)26. 某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B 型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.(2020·湖南邵阳·中考真题)27. 2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A、B两种类型的便携式风扇到地摊一条街出售.已知2台A 型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.(1)求A型风扇、B型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?(2023·广东深圳·二模)28. 某初三某班计划购买定制钢笔和纪念卡册两种毕业纪念礼物,已知购买1支定制钢笔和4本纪念卡册共需130元,购买3支定制钢笔和2本纪念卡册共需140元.(1)求每支定制钢笔和每本纪念卡册的价格分别为多少元?(2)该班计划购买定制钢笔和纪念卡册共60件,总费用不超过1600元,且纪念卡册本数小于定制钢笔数量的3倍,那么有几种购买方案,请写出设计方案?考查题型八用一元一次不等式组解决方案选择问题(2022·四川遂宁·统考中考真题)29. 某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?(2021·广西贵港·统考中考真题)30. 某公司需将一批材料运往工厂,计划租用甲、乙两种型号的货车,在每辆货车都满载的情况下,若租用30辆甲型货车和50辆乙型货车可装1500箱材料;若租用20辆甲型货车和60辆乙型货车可装载1400箱材料.(1)甲、乙两种型号的货车每辆分别可装载多少箱材料?(2)经初步估算,公司要运往工厂的这批材料不超过1245箱,计划租用甲、乙两种型号的货车共70辆,且乙型货车的数量不超过甲型货车数量的3倍,该公司一次性将这批材料运往工厂共有哪几种租车方案?(2019·贵州遵义·中考真题)31. 某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?(2023·湖南湘潭·湘潭县云龙中学校考一模)32. 随着新能源汽车的发展,某公交公司将用新能源汽车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆.若购买A 型公交车1辆和B型公交车2辆共需300万元;且购买一辆A型公交车的费用比购买一辆B型公交车的费用少30万元.(1)求A型和B型公交车的单价分别为多少万元?(2)预计在该条线路上A型和B型公交车每辆日均载客量为160人次和200人次,若该公司购买A型和B型公交车的总费用不超过1000万元,且确保这10辆公交车在该线路的日均载客量总和不少于1800人次,则该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?9.3《一元一次不等式组》重难点题型专项练习考查题型一 一元一次不等式组的定义(2021春·四川绵阳·七年级校考期中)【1题答案】【答案】C【解析】【分析】根据一元一次不等式组的定义逐个判断即可.【详解】解:A .最高二次,不是一元一次不等式组,故本选项不符合题意;B .有两个未知数,不是一元一次不等式组,故本选项不符合题意;C .是一元一次不等式组,故本选项符合题意;D .第二个不等式中有的式子不是整式,不是一元一次不等式组,故本选项不符合题意;故选:C .【点睛】本题考查了一元一次不等式组的定义,能熟记一元一次不等式组的定义是解此题的关键,含有相同字母的几个不等式,如果每个不等式都是一次不等式,那么这几个不等式组合在一起,就叫一元一次不等式组.(2020春·四川巴中·七年级统考期末)【2题答案】【答案】A【解析】【分析】根据一元一次不等式组的概念逐一辨析.【详解】A. 203x x ->⎧⎨<-⎩是一元一次不等式组,故正确; B. 1010x y +>⎧⎨-<⎩是二元一次不等式组,故不正确; C. ()()320230x x x ->⎧⎨-+>⎩是一元二次不等式组,故不正确;D.30110xx>⎧⎪⎨+>⎪⎩是分式不等式组,故不正确;故选A.【点睛】本题考查了对一元一次不等式组概念的理解,深刻理解基本定义是解决这类问题的关键.(2020春·浙江台州·七年级台州市书生中学校考期中)【3题答案】【答案】B【解析】【分析】根据不等式组中只含有一个未知数并且未知数的次数是一次的,可得答案.【详解】A、是二元一次不等式组,故A错误;B、是一元一次不等式组,故B正确;C、是一元二次不等式组,故C错误;D、不是一元一次不等式组,故D错误;故选:B.【点睛】本题考查了一元一次不等式组的定义,不等式组中只含有一个未知数并且未知数的最高次的次数是一次的.(2022春·全国·七年级假期作业)【4题答案】【答案】B【解析】【分析】根据一元一次不等式组的定义,含有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是1,对各选项判断再计算个数即可【详解】根据一元一次不等式组的定义,①②④都只含有一个未知数,所含未知数相同,并且未知数的最高次数是1,所以都是一元一次不等式组.③含有一个未知数,但是未知数的最高次数是2;⑤含有两个未知数,所以③⑤不是一元一次不等式组故选B【点睛】此题主要考查一元一次不等式组的定义考查题型二求不等式组的解集(2022春·山西晋城·七年级统考期末)【5题答案】【答案】A【解析】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可.【详解】解:211 238xx->⎧⎨-<⎩①②,解①得,1x>,解②得,2x>-,∴不等式组的解集是1x>.故选A.【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.(2022春·海南海口·七年级琼山中学校考阶段练习)【6题答案】【答案】C【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:21 390xx>-⎧⎨-+≥⎩①②∵解不等式①得:12 x>-,解不等式②得:3x≤,∴不等式组的解集为13 2x-<≤,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此(2022春·福建厦门·七年级统考期末)【7题答案】【答案】D【解析】【分析】先定界点,再定方向即可得.【详解】解:不等式组23x x >⎧⎨≥⎩的解集在数轴上表示如下:,故选:D .【点睛】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点;二是定方向,注意“实心点”、“空心点”的用法.(2022春·宁夏吴忠·七年级校考期末)【8题答案】【答案】B【解析】【分析】先解出不等式组的解集,然后在数轴上表示出来即可.【详解】解:13x x -≤-⎧⎨<⎩①②,解不等式1x -≤-得:1x ≥,∴该不等式组的解集是13x ≤<,其解集在数轴上表示如下:故选:B .【点睛】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解答本题的关键是掌握解一元一次不等式的方法.考查题型三 求一元一次不等式组的整数解(2022春·陕西商洛·七年级校考期末)【答案】A【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集,最后在解集中找到非负整数解即可.【详解】解不等式231x +>,得:x >-1,解不等式3252x x ≤-,得:5x ≤,∴该不等式组的解集为:15x -<≤,∴该不等式组的非负整数解为:0、1、2、3、4、5,共有6个.故选A .【点睛】本题主要考查解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.(2022春·四川眉山·七年级统考期末)【10题答案】【答案】C【解析】【分析】先解不等式组求出不等式组的解集,再根据56m <≤即可得.【详解】解:01112m x x x ->⎧⎪⎨-≤-⎪⎩①②,解不等式①得:x m <,解不等式②得:43x ≥, 不等式组有整数解,43x m ∴≤<,又56m <≤ ,∴不等式组的整数解为2,3,4,5,共有4个,故选:C .【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.(2022春·四川乐山·七年级统考期末)【答案】C【解析】【分析】分别求出每一个不等式的解集,根据不等式组的解集的情况得出a 的范围.【详解】解:由0x a ->,得:x a >,由320x ->,得:32x <, 不等式组有3个整数解,∴不等式组的整数解为1、0、1-,21a ∴-<- ,故选:C .【点睛】本题考查了一元一次不等式组的整数解,解题的关键是正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则.(2022春·安徽合肥·七年级统考期末)【12题答案】【答案】A【解析】【分析】按照解一元一次不等式组的步骤进行计算,即可解答.【详解】解:3620x x x -⎧⎨+≥⎩<①②,解不等式①得:x <3,解不等式②得:x ≥-2,∴原不等式组的解集为:-2≤x <3,∴该不等式组的最大的整数解是2,故选:A .【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,准确熟练地进行计算是解题的关键.考查题型四 由一元一次不等式组的解集求参数(2022秋·重庆北碚·七年级统考期末)【13题答案】【答案】D【解析】【分析】先求出不等式组的解集,再根据题意求a 的取值范围即可.【详解】解:51222x x x x a +⎧<-⎪⎨⎪+<+⎩①②,解①得7x >,解②得2x a <-,所以不等式组的解集为72x a <<-,因为不等式组只有4个整数解,所以11212a <-≤,所以1314a <≤.故选:D .【点睛】本题考查了求不等式组的解集和根据解集求取值范围,正确求出2a -的取值范围是解题的关键.(2023春·安徽六安·七年级校考阶段练习)【14题答案】【答案】C【解析】【分析】利用不等式组的解集是无解可知,x 应该是大大小小找不到.【详解】解:∵不等式组2x x a ≥⎧⎨<⎩无解,∴2a ≤,故选:C .【点睛】主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x a >,x a <),没有交集也是无解,但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).(2022春·江苏扬州·七年级校考阶段练习)【15题答案】【答案】D【解析】【分析】根据不等式组的解集口诀“同大取大”,可分两种情况:212m m +≥+和212m m +<+讨论求解即可.【详解】解:由题意,分两种情况:当212m m +≥+即m ≥1时,2m +1=-1,解得:m =-1,不合题意,舍去;当212m m +<+即m <1时,m +2=-1,解得:m =-3,符合题意,故选:D .【点睛】本题考查解一元一次不等式组,解答关键是将不等式组解集口诀“同大取大,同小取小,大小小大取中间,大大小小找不到(无解)”逆用,即已知不等式组解集求m 的范围,注意分类讨论思想的运用,以防漏解.(2022春·河南驻马店·七年级校考期中)【16题答案】【答案】B【解析】【分析】先求出第一个不等式的解集,再根据不等式组的解集为x >4得出答案即可.【详解】解:262x x x m x -+-⎧⎨-⎩<①>②解不等式①得:4x >,解不等式②得:x m >,∵不等式组的解集为x >4,∴4m ≤,故B 正确.故选:B .【点睛】本题主要考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m 的不等式是解此题的关键.考查题型五不等式组和方程组结合问题(2022春·河南南阳·七年级统考期中)【17题答案】【答案】C【解析】【分析】先求出3﹣2x=3(k﹣2)的解为x932k-=,从而推出3k≤,整理不等式组可得整理得:1xx k≤-⎧⎨≥⎩,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和932kx-=是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x932k-=,∵方程的解为非负整数,∴932k-≥0,∴3k≤,把()213x xx k⎧--≥⎨≥⎩整理得:1xx k≤-⎧⎨≥⎩,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵932kx-=是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.故选C.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.(2022春·重庆忠县·七年级校考期中)【18题答案】【答案】B【解析】【分析】先将二元一次方程组128x y ax y+=+⎧⎨+=⎩的解用a表示出来,然后再根据题意列出不等式组求出的取值范围,进而求出所有a的整数值,最后求和即可.【详解】解:解关于x,y的二元一次方程组128x y ax y+=+⎧⎨+=⎩,得267x ay a=-⎧⎨=-⎩,∵关于x,y的二元一次方程组128x y ax y+=+⎧⎨+=⎩的解为正数,∴260 70aa->⎧⎨->⎩,∴3<a<7,∴满足条件的所有整数a的和为4+5+6=15.故选:B.【点睛】本题考查了二元一次方程组的解法、一元一次不等式组等知识点,根据题意求得a的取值范围是解答本题关键.(2022春·内蒙古呼伦贝尔·七年级校考期末)【19题答案】【答案】A【解析】【分析】将a看做已知数求出方程组的解表示出x与y,根据x与y都为正数,取出a的范围即可.【详解】解:解方程组322x yx y a+=⎧⎨-=-⎩,得:4353axay+⎧=⎪⎪⎨-⎪=⎪⎩,方程组的解为正数,∴03503a >⎪⎪⎨-⎪>⎪⎩,解得:45a -<<,故选:A .【点睛】此题考查了二元一次方程组的解, 方程组的解即为能使方程组中两方程成立的未知数的值.(2021春·福建南平·七年级统考期末)【20题答案】【答案】B【解析】【分析】两个方程相减得出x ﹣y =1﹣2k ,由0<x ﹣y <1知0<1﹣2k <1,解之即可得出答案.【详解】解:两个方程相减,得:x ﹣y =1﹣2k ,∵0<x ﹣y <1,∴0<1﹣2k <1,解得0<k <12,故选:B .【点睛】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.考查题型六 列一元一次不等式组(2021春·辽宁抚顺·七年级期末)【21题答案】【答案】1826x ≤≤【解析】【分析】设本次期末试卷的全卷总题数为x ,根据七年级下册数学课本有6章,每章至少有3个题,全卷总题数不超过26题,即可列出关于x 的不等式组.【详解】解:设本次期末试卷的全卷总题数为x ,根据题意得,26x ⎨≤⎩,解得1826x ≤≤.故答案为:1826x ≤≤.【点睛】本题考查了一元一次不等式组的应用,解题的关键是理解题意得到不等关系.(2020春·黑龙江佳木斯·七年级统考期末)【22题答案】【答案】()142626x x ≤+--<【解析】【分析】先根据“每间住4人,2人无处住”可得学生人数,再根据“每间住 6人,空一间还有一间不空也不满”建立不等式组即可得.【详解】设有x 间宿舍,则学生有()42x +人,由题意得:()142626x x ≤+--<,故答案为:()142626x x ≤+--<.【点睛】本题考查了列一元一次不等式组,理解题意,正确找出不等关系是解题关键.(2020春·江西南昌·七年级校联考期末)【23题答案】【答案】1483x <≤【解析】【分析】根据运行程序,第一次运算结果小于等于18,第二次运算结果大于18列出不等式组,然后求解即可.【详解】解:由题意得:36183(36)618x x -≤⎧⎨-->⎩①②,解不等式①,得:8x ≤,解不等式②,得:143x >,则x得取值范围是:148 3x<≤;故答案为148 3x<≤.【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.(2020春·广西崇左·七年级统考期中)【24题答案】【答案】43<k<53【解析】【分析】将两个等式相减,可得3x-7y=3k-4,再根据0<3x-7y<1即可解出k 的范围.【详解】解:43165x y kx y-=+⎧⎨+=⎩①,②,①-②,得3x-7y=3k-4,则0<3k-4<1,解得43<k<53,故答案为:43<k<53.【点睛】此题主要考查二元一次方程组与不等式的综合,熟知二元一次方程组的解法是解题的关键.考查题型七用一元一次不等式组解决销售利润问题(2020·湖南湘潭·中考真题)【25题答案】【答案】(1)两种书的单价分别为35元和30元;(2)共有4种购买方案分别为:购买《北上》和《牵风记》的数量分别为17本和33本,购买《北上》和《牵风记》的数量分别为18本和32本,购买《北上》和《牵风记》的数量分别为19本和31本,购买《北上》和《牵风记》的数量分别为20本和30本;其中购买《北上》和《牵风记》的数量分别为17本和33本费用最低,最低费用为1585元.【解析】【分析】(1)设购买《北上》和《牵风记》的单价分别为x、y,根据“购买2本《北上》和1本《牵风记》需100元”和“ 购买2本《北上》和1本《牵风记》需100元”建立方程组求解即可;(2)设购买《北上》的数量n本,则购买《牵风记》的数量为50-n,根据“购买《北上》的数量不少于所购买《牵风记》数量的一半”和“购买两种书的总价不超过1600元”两个不等关系列不等式组解答并确定整数解即可.【详解】解:(1)设购买《北上》和《牵风记》的单价分别为x、y由题意得:210067x yx y+=⎧⎨=⎩解得3530xy=⎧⎨=⎩答:两种书的单价分别为35元和30元;(2)设购买《北上》的数量n本,则购买《牵风记》的数量为50-n根据题意得()()15023530501600n nn n⎧≥-⎪⎨⎪+-≤⎩解得:216203n≤≤则n可以取17、18、19、20,当n=17时,50-n=33,共花费17×35+33×30=1585元;当n=18时,50-n=32,共花费17×35+33×30=1590元;当n=19时,50-n=31,共花费17×35+33×30=1595元;当n=20时,50-n=30,共花费17×35+33×30=1600元;所以,共有4种购买方案分别为:购买《北上》和《牵风记》的数量分别为17本和33本,购买《北上》和《牵风记》的数量分别为18本和32本,购买《北上》和《牵风记》的数量分别为19本和31本,购买《北上》和《牵风记》的数量分别为20本和30本;其中购买《北上》和《牵风记》的数量分别为17本和33本费用最低,最低费用为1585元.【点睛】本题考查了二元一次方程组和不等式组的应用,弄清题意、确定等量关系和不等关系是解答本题的关键.(2019·四川泸州·统考中考真题)【26题答案】【答案】(1)A型汽车每辆的价格为25万元,B型汽车每辆的价格为30万元;(2)费用最省的方案是购买A型汽车4辆,B型汽车6辆,该方案所需费用为280万元.【解析】【分析】(1)设A 型汽车每辆的价格为x 万元,B 型汽车每辆的价格为y 万元,根据购买A 型汽车4辆,B 型汽车7辆,共需310万元;购买A 型汽车10辆,B 型汽车15辆,共需700万元,列方程组进行求解即可;(2)设购买A 型汽车m 辆,则购买B 型汽车(10)m -辆,根据总费用不超过285万元,且A 型汽车的数量少于B 型汽车的数量,列不等式组进行求解得出购买方案,然后再讨论即可得.【详解】解:(1)设A 型汽车每辆的价格为x 万元,B 型汽车每辆的价格为y 万元,由题意得:473101015700x y x y +=⎧⎨+=⎩,解得2530x y =⎧⎨=⎩,答:A 型汽车每辆的价格为25万元,B 型汽车每辆的价格为30万元;(2)设购买A 型汽车m 辆,则购买B 型汽车(10)m -辆,由题意得:102530(10)285m m m m <-⎧⎨+-≤⎩,解得:35m ≤<,因为m 是整数,所以3m =或4,当3m =时,该方案所需费用为:253307285⨯+⨯=万元;当4m =时,该方案所需费用为:254306280⨯+⨯=万元,答:费用最省的方案是购买A 型汽车4辆,B 型汽车6辆,该方案所需费用为280万元.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意,找准题中的等量关系、不等关系是解题的关键.(2020·湖南邵阳·中考真题)【27题答案】【答案】(1)A 型风扇、B 型风扇进货的单价各是10元和16元;(2)丹4种进货方案分别是:①进A 型风扇72台,B 型风扇28台;②进A 型风扇73台,B 型风扇27台;③进A 型风扇74台,B 型风扇26台;①进A 型风扇75台,B 型风扇24。

北师大版八年级下册数学《不等式的解集》一元一次不等式和一元一次不等式组说课研讨教学复习课件

北师大版八年级下册数学《不等式的解集》一元一次不等式和一元一次不等式组说课研讨教学复习课件
解:设至多可买X支笔,则有:
3×4 + 2X ≤ 30
表示不等式的解集 你能用什么办法把不等式 x>5的解集和 不等式x-5≤-1的解集表示在数轴上?
x>5
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
x≤4
将不等式的解集表示在数轴上时,要注意:
1)指示线的方向,“>”向右,“<”向左. 2)有“=”用实心点,没有“=”用空心圈.
A.1个
B.2个
C.3个
D.4个
探究新知
知识点 2 在数轴上表示不等式的解集
思考:如何在数轴上表示出不等式x>2的解集呢? 先在数轴上标出表示2的点A; 则点A右边所有的点表示的数都大于2,而点A左边 所有的点表示的数都小于2;
因此可以像图那样表示不等式的解集x>2.
A -1 0 1 2 3 4 5 6
课堂检测
能力提升题
2、根据不等式的基本性质确定不等式2-x<1的解集,并把解集表
示在数轴上. 解:根据不等式的基本性质1,不等式的两边同时减去2得-x<-1; 根据不等式的基本性质3,不等式的两边同时除以-1得x>1. 这个不等式的解集在数轴上表示为:
课堂检测
拓广探索题
1、不等式2x-3≥-1的解集在数轴上表示为( A )
-3 -2 -1 0 1 2 3 4 5 6 7 8
根据不等式的基本性质求不等式的解集,
并把解集表示在数轴上.
(1)x-2≥ -4
(2)2x ≤ 8
解:两边同时加2得:
解:两边同时除以2得:
x ≥ -2
x ≤4
-3 -2 -1 0 1 2
(3)-2x-2 > -10

初一数学一元一次不等式练习题汇总(复习用)

初一数学一元一次不等式练习题汇总(复习用)

一元一次不等式和一元一次不等式组测试题一、填空题1. 比较大小:-3________-π,-0.22______(-0.2)2; 2. 若2-x <0,x________2;3. 若xy>0,则xy_________0; 4. 代数式536x-的值不大于零,则x__________;5. a 、b 关系如下图所示: 比较大小|a|______b,-;1______,1_________1bb b a --- 6. 不等式13-3x >0的正整数解是__________;7. 若|x-y|=y-x,是x___________y;8. 若x ≠y,则x 2+|y|_________0; 9. 不等式组⎩⎨⎧+--023,043 x x 的解集是____________.二、选择题在下列各题中的四个备选答案中,只有一个是正确的,将正确答案前的字母填在括号内:1.若|a|>-a,则a 的取值范围是( ). (A)a >0; (B)a ≥0; (C)a <0; (D)自然数.2.不等式23>7+5x 的正整数解的个数是( ). (A) 1个;(B)无数个;(C)3个;(D)4个.3.下列命题中正确的是( ).(A) 若m ≠n,则|m|≠|n|; (B)若a+b=0,则ab >0;(C)若ab <0,且a <b,则|a|<|b|; (D)互为例数的两数之积必为正.4.无论x 取什么数,下列不等式总成立的是( ).(A) x+5>0; (B)x+5<0; (C)-(x+5)2<0;(D)(x-5)2≥0.5.若11|1|-=--x x ,则x 的取值范围是( ). (A)x >1; (B)x ≤1; (C)x ≥1; (D)x <1. 三、解答题1. 解不等式(组),并在数轴上表示它们的解集.(1)213-x (x-1)≥1; (2)21322-++-x x x ; (3)⎪⎩⎪⎨⎧≥--+.052,1372x x x (4)⎪⎩⎪⎨⎧---+.43)1(4,1321x x x x2. x 取什么值时,代数式251x -的值不小于代数式4323+-x的值. 3. K 取何值时,方程k x 332-=5(x-k)+1的解是非负数. 4. k 为何值时,等式|-24+3a|+0232=⎪⎭⎫⎝⎛--b k a 中的b 是负数?参考答案一、1.-3>-π,-22<(-0.2)2; 2.x >2; 3.xy >0; 4.X ≥2; 5.|a|>b,-b a 11 ,-b <-b1; 6.1,2,3,4; 7.x ≤y; 8.x 2+|y|>0; 9.无解. 二、1.A; 2.C; 3.D 4.D; 5.B. 三、1.(1)x ≤-3;(2)x <1;(3)2≤x <8;(4)x <0;2.x ≤-1127;3.k ≥21;4.k >-48. 华师七下第8章一元一次不等式能力测试题一、填空题(每空3分,共27分) 1.(1)不等式123x <的解集是________; (2)不等式327x -<的非负整数解是________;(3)不等式组21527x x ->⎧⎨-<⎩的解集是______________;(4)根据图1,用不等式表示公共部分x 的范围______________. 2.当k ________时,关于x 的方程2x -3=3k 的解为正数.3.已知0, 0a b <<,且a b <,那么ab ________b 2(填“>”“<”“=”). 4.一个三角形的三边长分别是3,1-2m ,8,则m 的取值范围是________. 5.若不等式()327m x -<的解集为13x >-,则m 的值为________. 6.若不等式组121x m x m +⎧⎨>-⎩≤无解,则m 的取值范围是________.二、选择题(每小题4分,共24分)7. 如果不等式()22m x m ->-的解集为1x <,那么( ) A .2m ≠B .2m >C .2m <D .m 为任意有理数8.如果方程()a b x a b -=-有惟一解1x =-,则( ) A .a b =B .a b ≠C .a b >D .a b <9.下列说法①2x =是不等式36x ≥的一个解;②当12a ≠时,210a ->;③不等式3≥1恒成立;④不等式230x -->和23y <-解集相同,其中正确的个数为( ) A .4个B .3个C .2个D .1个10.下面各个结论中,正确的是( ) A .3a 一定大于2a B .13a 一定大于a C .a +b 一定大于a -b D .a 2+1不小于2a11.已知-1<x <0,则x 、x 2、1x三者的大小关系是( ) A .21x x x<<B .21x x x<<C .21x x x<< D .21x x x<< 12.已知a =x +2,b =x -1,且a >3>b ,则x 的取值范围是( )图1A .x >1B .x <4C .x >1或x <4D .1<x <4三、解答题13.解下列不等式(组).(12分)(1)()2232633x x x ⎛⎫---⎡⎤ ⎪⎣⎦⎝⎭≥ (2)()40.30.5 5.8115134x x x x -<+⎧⎪⎨->-+⎪⎩ 14.已知满足不等式531x -≤的最小正整数是关于x 的方程()()941a x x +=+的解,求代数式的值.(12分)15.某人9点50分离家赶11点整的火车.已知他家离火车站10千米.到火车站后,进站、“非典”健康检查、检票等事项共需20分钟.他离家后以3千米/时的速度走了1千米,然后乘公共汽车去火车站.问公共汽车每小时至少行驶多少千米才能不误当次火车?(12分)16.某企业为了适应市场经济的需要,决定进行人员结构调整.该企业现有生产性行业人员100人,平均每人全年可创造产值a 元.现欲从中分流出x 人去从事服务性行业.假设分流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务性行业的人员平均每人全年可创造产值3.5a 元.如果要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业全年总产值的一半,试确定分流后从事服务性行业的人数.(12分)华师七下第8章一元一次不等式能力测试题参考答案一、填空题 1. (1)16x < (2)0,1,2 (3)3x > (4)32x -<≤ 2.k >-1 3.> 4.52x -<<- 5.193m =-6.2m ≥ 二、选择题7.C8.D9.A 10.D 11.D 12.D 三、解答题13.(1)47x ≥-(2)x <2 14.19315.18千米/时 16.15人功16人 一、选择题:(每小题3分,共30分)1、下列不等式中,是一元一次不等式的是 ( )A 012>-x ;B 21<-;C 123-≤-y x ;D 532>+y ; 2、“x 大于-6且小于6”表示为( )A -6<x<6;B x>-6,x ≤6;C -6≤x ≤6;D -6<x ≤6; 3、 解集是x ≥5的不等式是 ( )A x+5≥0B x –5≥0C –5–x ≤0D 5x –2 ≤–94、不等式组⎩⎨⎧x -2≤0x +1>0的解是()A 、x ≤2B 、x ≥2C 、-1<x ≤2D 、x >-15、不等式组240,10x x -<⎧⎨+⎩≥的解集在数轴上表示正确的是( )6、下列不等式组无解的是( ) A .2010x x -<⎧⎨+<⎩ B. 1020x x -<⎧⎨+>⎩ C. 1020x x +>⎧⎨->⎩ D. 1020x x +<⎧⎨->⎩7、不等式组2030x x -<⎧⎨-≥⎩的正整数解的个数是( )A .1个B .2个C .3个D .4个 8、等式组⎩⎨⎧+>+<+1,159m x x x 的解集是2>x ,则m 的取值范围是( )A . m ≤2B . m ≥2C .m ≤1D . m >19、关于x 的一元一次方程4x-m+1=3x-1的解是负数,则m 的取值范围是 ( )A m=2B m>2C m<2D m ≤2 10、ax>b 的解集是( )A .a b x >; B . a b x <; C .abx =; D .无法确定; 二、填空题(每题4分,共20分) 1、不等式122x >的解集是: ;不等式133x ->的解集是: ; 2、不等式组⎩⎨⎧-+0501>>x x 的解集为 . 不等式组3050x x -<⎧⎨-⎩>的解集为 .3、不等式组2050x x ⎧⎨-⎩>>的解集为 . 不等式组112620x x ⎧<⎪⎨⎪->⎩的解集为 .4、当x 时,3x -2的值为正数;x 为 时,不等式183x -的值不小于7; 5、已知不等式组2145x x x m ->+⎧⎨>⎩无解,则m 的取值范围是三、解不等式(组),并在数轴上表示它的解集(每题6分,共24分)(1)11(1)223x x -<-(2)532(1)314(2)2x xx -≥⎧⎪⎨-<⎪⎩(3)14321<--<-x (4)2(1)41413x x x x +-<⎧⎪+⎨>-⎪⎩三、 根据题意列不等式(组)——只列式,不求解;(每题6分,共12分)1、某次知识竞赛共有20道选择题.对于每一道题,若答对了,则得10分;若答错了或不答,则扣3分.请问至少要答对几道题,总得分才不少于70分?解:设 ,依题意得:2、小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少? 解:设 ,依题意得:四、解答题:(每题7分,共14分)1、若方程组212x y x y m+=⎧⎨-=⎩的解x 、y 的值都不大于1,求m 的取值范围。

一元一次不等式难题(1份)

一元一次不等式难题(1份)

一元一次不等式难题1.不等式3x-a ≤0的正整数解是1,2,3,则a 的取值范围是____解:∵3x-a≤0∴x≤a/3正整数解是1,2,3∴3是符合的最大的a/3≥3a≥94是不符合的∴a/3<4a<12∴9≤a<122.已知关于x 的不等式组x-a ≥0,3-2x>-1的整数解共有5个,则a 的取值范围是___。

解:由x -a≥0,得x≥a由3-2x >﹣1,得x <2 ∴a≤x <2∵x 的不等式组x-a>0,3-2x>-1的整数解共有5个∴这5个整数解只能为:1,0,﹣1,﹣2,﹣3∴﹣4<a≤﹣3﹙注明:a 不能等于﹣4,等于﹣4的话,那么整数解就有6个,不满足题意了﹚3.若不等式组2x-1<3,x>a 的解集是x<2,则a 的取值范围是?A.a<2B.a ≤2C.a ≥2D.无法确定【用数轴】解:2x-1<3,X<2x>a∴a ≥2选c4.用锤子以相同的力将铁钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大,当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的13,已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是a cm,若铁钉总长度为6cm ,则a 的取值范围是___。

解:根据题意得:a+13 a+19a ≥6, a+13a<6 解得:5413 ≤a<92∵∵∵∵∵∴∵∴∵∴∵∴ 5.(2012陕西)小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买 瓶甲饮料.【解析】设小宏能买x 瓶甲饮料,则买乙饮料()10-x 瓶.根据题意,得()7+410-50x x ≤ 解得133x ≤所以小宏最多能买3瓶甲饮料.6.把一盒苹果分给几个学生,若每人分4个,则剩下3个,若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生人数是( )4解答:解:设有学生x 个,则苹果4x+3个,4x+3≥6(x -1), 4x+3≤6(x-1)+2解得3.5≤x≤4.5,∵x 是整数,∴x=4.∴学生人数是4.故选B .7.若干苹果分给几只猴子,若每只猴子分3个,则余8个;每只猴分5个,则最后一只猴分得的数不足5个,问共有多少只猴子?多少个苹果?解答:解:设共有x 只猴子,则有(3x+8)个苹果,依题意得0<3x+8-5(x-1)<54<x <6.5∴x=5或x=6∴3x+8=23或3x+8=26.答:共有5只猴子23个苹果或共有6只猴子26个苹果.8.王伟准备用一段长30米的篱笆围在一个三角形状的小圈,用于饲养家兔,已知第一条边长为a 米,由地受地势限制,第二条边长只能是第一条边长的2倍多2米,(1)请用a 表示第三条边长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式和一元一次不等式组1.某同学说a21 3a一定比a21大,你认为对吗?说明理由。

—、计f 2x y 3m 1
2.已知方程组'
x y 2m 1
(1)请列出x>y成立的关于m的不等式。

(2)运用不等式的基本性质将此不等式化为m>a或m<a的形式。

3.要使不等式a(x 1) x 1 2a的解集为x<-1,求a的取值范围。

4.已知关于x的一元一次方程4x m 1 3x 1的解都是负数,求m的取值范围
5.如果关于x的不等式(a 1)x a 5和 2x 4的解集相同,求a的值.
6.x取哪些非负整数时,3x 2 的值不小于2x 1与1的差。

2 3
x6m 1 5m 1
7.m取何值时,关于x的方程一x 的解大于1 ?
6 3 2
8.如果方程组
12. k 满足 时,方程组 x k 的解集
x 2v 4m 1
的解满足3x-y>0,求m 的取值范围
2x y m 2
x V 2k

中的x 大于1, y 小于1.
x y 4
13.解下列不等式或不等式组: 3x 1 7x 3 2 2(x 2) 3 5 15
1 1 2
x [x (x 1)] (x 1).
2 2 3
2 4x 3x 乙 0.4x 0.9 0.0
3 0.02.x x 5 6x 3 5x 4
, 0.5 0.03 2 3x 7 2x 3
.
10 k k(x 5) 9.若关于x 的方程3(x 4) 2a 5的解大于关于x 的方程(4a 1)x 4 a(3x 4)的解,求a 的取值范围. 3 10.不等式组 9 5x m 1
1,
的解集是 x >2,贝U m 的取值范围是
11.对于整数 a , b , c , d , 定义 ac bd ,已知1 3,贝U b + d 的值为
14.当2(k 3) 时,求关于x的不等式—
x 2v 4k
15.已知 '中的x , y 满足O v y — x v 1,求k 的取值范围.
2x y 2k 1
3x 4 a
16.已知a 是自然数,关于 x 的不等式组 '的解集是x >2,求a 的值.
x 2 0 x a 0,
17.关于x 的不等式组 的整数解共有5个,求a 的取值范围.
3 2x 1 x 15
x 3, 18.若关于x 的不等式组
2 只有4个整数解,求a 的取值范围
2x 2 x a
3
19 一若 a h M J6^AliC 的三边’ H uj f 滞绘关系式
|u~3' +仆…4严* 0—是不等式蛆
T —1
>工4电 广L 1的绘大整数解、试判斯△ABQ 的
fir +
9折优惠.书
B. —-^-<^<0
<3*
C, 0 V JT VE
D* — V JT <C2
乩…家小电放映厅的盈利额衬尤)同售票数 川张)之
间的关系如图所示,其中保险祁 门规定;超过150人时雯激纳公安淸防保 险费50元*试根据关系图,何答下列 冋题.
(1) 试就 0<^^150 fll 150<x<200,分別 写出盈
利额列元[与文(张)之间的关 系式.
(2) ①当郴出的栗数丄为何值时"此放映
厅不赔不赚?
Q 半售出的樂数x 谶足何值时,此放映;『要赔钱? ③当售出的劭数T 为何值时,此放映厅能賺钱?
(3〉当售岀的聖数工为何值肘”此时所获得利润比x=15Q 时多?
22.某办公用品销售商店推出两种优惠方法: ①购1个书包,赠送1支水性笔;②购书包和水性笔一律按
包每个定价20元,水性笔每支定价 5元.小丽和同学需买 4个书包,水性笔若干支(不少于
4 支) (1) 分别写出两种优惠方法购买费用 y (元)与所买水性笔支数 x (支)之间的函数关系式;
(2) 对X 的取值情况进行分析,说明按哪种优惠方法迥秦图网得出不尊式組匕壮+5 }*
购买比较便宜;
(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.。

相关文档
最新文档