高考数学总复习第十章统计与统计案例概率第6节几何概型教案文含解析北师大版
2020版高考数学总复习第十章统计与统计案例、概率第4节随机事件的概率教案文(含解析)北师大版
第4节 随机事件的概率最新考纲 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别;2.了解两个互斥事件的概率加法公式.知 识 梳 理1.概率与频率(1)频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率.(2)概率:在相同的条件下,大量重复进行同一试验时,随机事件A 发生的频率会在某个常数附近摆动,即随机事件A 发生的频率具有稳定性.这时我们把这个常数叫作随机事件A 的概率,记作P (A ). 2.事件的关系与运算3.概率的几个基本性质(1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率P (E )=1. (3)不可能事件的概率P (F )=0.(4)互斥事件概率的加法公式①如果事件A 与事件B 互斥,则P (A +B )=P (A )+P (B ). ②若事件B 与事件A 互为对立事件,则P (A )=1-P (B ). [微点提醒]1.从集合的角度理解互斥事件和对立事件(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.(2)事件A 的对立事件A -所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集.2.概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时, 要用到概率加法公式的推广,即P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ).基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)事件发生的频率与概率是相同的.( )(2)在大量的重复实验中,概率是频率的稳定值.( ) (3)若随机事件A 发生的概率为P (A ),则0≤P (A )≤1.( )(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.( )答案 (1)× (2)√ (3)√ (4)×2.(必修3P157A9改编)容量为20的样本数据,分组后的频数如下表:则样本数据落在区间[10,40)的频率为( ) A.0.35B.0.45C.0.55D.0.65解析 由表知[10,40)的频数为2+3+4=9, 所以样本数据落在区间[10,40)的频率为920=0.45.答案 B3.(必修3P139例3改编)某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少有一名女生”与事件“全是男生”( ) A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件 C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件解析 “至少有一名女生”包括“一男一女”和“两名女生”两种情况,这两种情况再加上“全是男生”构成全集,且不能同时发生,故“至少有一名女生”与“全是男生”既是互斥事件,也是对立事件. 答案 C4.(2019·长沙月考)将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( ) A.必然事件 B.随机事件 C.不可能事件D.无法确定解析 抛掷10次硬币正面向上的次数可能为0~10,都有可能发生,正面向上5次是随机事件. 答案 B5.(2018·全国Ⅲ卷)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3B.0.4C.0.6D.0.7解析 某群体中的成员分为只用现金支付、既用现金支付也用非现金支付、不用现金支付,它们彼此是互斥事件,所以不用现金支付的概率为1-(0.15+0.45)=0.4. 答案 B6.(2018·咸阳调研)甲、乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则乙不输的概率是________.解析 乙不输包含两人下成和棋和乙获胜,且它们是互斥事件,所以乙不输的概率为12+13=56. 答案 56考点一 随机事件的关系【例1】 (1)把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,每个人分得一张,事件“甲分得红牌”与“乙分得红牌”( ) A.是对立事件B.是不可能事件C.是互斥但不对立事件D.不是互斥事件(2)设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P (A )+P (B )=1”,则甲是乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 (1)显然两个事件不可能同时发生,但两者可能同时不发生,因为红牌可以分给丙、丁两人,综上,这两个事件为互斥但不对立事件.(2)若事件A 与事件B 是对立事件,则A +B 为必然事件,再由概率的加法公式得P (A )+P (B )=1;投掷一枚硬币3次,满足P (A )+P (B )=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件.答案 (1)C (2)A规律方法 1.准确把握互斥事件与对立事件的概念:(1)互斥事件是不可能同时发生的事件,但也可以同时不发生;(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.2.判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件. 【训练1】 从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( ) A.①B.②④C.③D.①③解析 从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数.其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数构成对立事件.又①②④中的事件可以同时发生,不是对立事件. 答案 C考点二 随机事件的频率与概率【例2】 (2017·全国Ⅲ卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为2+16+3690=0.6.所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时,若最高气温低于20,则Y =200×6+(450-200)×2-450×4=-100; 若最高气温位于区间[20,25),则Y =300×6+(450-300)×2-450×4=300; 若最高气温不低于25,则Y =450×(6-4)=900, 所以,利润Y 的所有可能值为-100,300,900.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8.因此Y 大于零的概率的估计值为0.8. 规律方法 1.概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.2.随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.提醒概率的定义是求一个事件概率的基本方法.【训练2】如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),∴用频率估计相应的概率为p=44100=0.44.(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为(3)设A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.由(2)知P(A1)=0.1+0.2+0.3=0.6,P (A 2)=0+0.1+0.4=0.5,∵P (A 1)>P (A 2),∴甲应选择L 1.同理,P (B 1)=0.1+0.2+0.3+0.2=0.8,P (B 2)=0+0.1+0.4+0.4=0.9,∵P (B 1)<P (B 2),∴乙应选择L 2. 考点三 互斥事件与对立事件的概率【例3】 经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(1)至多2人排队等候的概率; (2)(一题多解)至少3人排队等候的概率.解 记“无人排队等候”为事件A ,“1人排队等候”为事件B ,“2人排队等候”为事件C ,“3人排队等候”为事件D ,“4人排队等候”为事件E ,“5人及5人以上排队等候”为事件F ,则事件A ,B ,C ,D ,E ,F 彼此互斥.(1)记“至多2人排队等候”为事件G ,则G =A +B +C , 所以P (G )=P (A +B +C )=P (A )+P (B )+P (C ) =0.1+0.16+0.3=0.56.(2)法一 记“至少3人排队等候”为事件H , 则H =D +E +F ,所以P (H )=P (D +E +F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44.法二 记“至少3人排队等候”为事件H ,则其对立事件为事件G ,所以P (H )=1-P (G )=0.44.规律方法 1.求解本题的关键是正确判断各事件之间的关系,以及把所求事件用已知概率的事件表示出来.2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P (A )=1-P (A -)求解.当题目涉及“至多”、“至少”型问题,多考虑间接法.【训练3】 (一题多解)一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.解法一(利用互斥事件求概率)记事件A1={任取1球为红球},A2={任取1球为黑球},A3={任取1球为白球},A4={任取1球为绿球},则P(A1)=512,P(A2)=412=13,P(A3)=212=16,P(A4)=112,根据题意知,事件A1,A2,A3,A4彼此互斥,由互斥事件的概率公式,得(1)取出1球是红球或黑球的概率为P(A1+A2)=P(A1)+P(A2)=512+412=34.(2)取出1球是红球或黑球或白球的概率为P(A1+A2+A3)=P(A1)+P(A2)+P(A3)=512+412+212=1112.法二(利用对立事件求概率)(1)由法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1+A2的对立事件为A3+A4,所以取出1球为红球或黑球的概率为P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)=1-212-112=34.(2)因为A1+A2+A3的对立事件为A4,所以P(A1+A2+A3)=1-P(A4)=1-112=1112.[思维升华]1.对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率f n(A)来估计概率P(A).2.对立事件不仅两个事件不能同时发生,而且二者必有一个发生.3.求复杂的互斥事件的概率一般有两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率加法公式计算.(2)间接法:先求此事件的对立事件的概率,再用公式P (A )=1-P (A -),即运用逆向思维(正难则反). [易错防范]1.易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数.2.正确认识互斥事件与对立事件的关系,对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.3.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.基础巩固题组 (建议用时:40分钟)一、选择题1.下列说法正确的是( )A.甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90% 解析 由概率的意义知D 正确. 答案 D2.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是( ) A.互斥但非对立事件 B.对立事件 C.相互独立事件D.以上都不对解析 由于每人一个方向,事件“甲向南”与事件“乙向南”不能同时发生,但能同时不发生,故是互斥事件,但不是对立事件. 答案 A3.设事件A ,B ,已知P (A )=15,P (B )=13,P (A +B )=815,则A ,B 之间的关系一定为( )A.两个任意事件B.互斥事件C.非互斥事件D.对立事件解析 因为P (A )+P (B )=15+13=815=P (A +B ),所以A ,B 之间的关系一定为互斥事件.答案 B4.(2019·九江检测)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为( ) A.0.95B.0.97C.0.92D.0.08解析 记“抽检的产品是甲级品”为事件A ,是“乙级品”为事件B ,是“丙级品”为事件C ,这三个事件彼此互斥,因而所求概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92.答案 C5.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率是17,都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是( ) A.17B.1235C.1735D.1解析 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A +B ,且事件A 与B 互斥. 由于P (A )=17,P (B )=1235.所以P (C )=P (A )+P (B )=17+1235=1735.答案 C 二、填空题6.传说古时候有一个农夫正在田间干活,忽然发现一只兔子撞死在地头的木桩上,他喜出望外,于是拾起兔子回家了,第二天他就蹲在木桩旁守候,就这样日复一日,年复一年,但再也没有等着被木桩碰死的兔子,原因是_______________________________________________________________________________________. 答案 兔子碰死在木桩上是随机事件,可能不发生7.(2019·济南模拟)从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为________. 解析 ∵事件A ={抽到一等品},且P (A )=0.65,∴事件“抽到的产品不是一等品”的概率为p=1-P(A)=1-0.65=0.35.答案0.358.(2019·北京东城区调研)经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下表:则该营业窗口上午9点钟时,至少有2人排队的概率是________.解析由表格知,至少有2人排队的概率p=0.3+0.3+0.1+0.04=0.74.答案0.74三、解答题9.黄种人人群中各种血型的人数所占的比例见下表:已知同种血型的人可以互相输血,O型血的人可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若他因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解(1)任找一人,其血型为A,B,AB,O型血分别记为事件A′,B′,C′,D′,它们是互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.因为B,O型血可以输给B型血的人,故“任找一个人,其血可以输给小明”为事件B′+D′,根据概率加法公式,得P(B′+D′)=P(B′)+P(D′)=0.29+0.35=0.64.(2)由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小明”为事件A′+C′,且P(A′+C′)=P(A′)+P(C′)=0.28+0.08=0.36.10.(2016·全国Ⅱ卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(1)记A 为事件:“一续保人本年度的保费不高于基本保费”,求P (A )的估计值; (2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度平均保费的估计值.解 (1)事件A 发生当且仅当一年内出险次数小于2,由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4,由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3. (3)由所给数据得调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192 5a .因此,续保人本年度平均保费的估计值为1.192 5a .能力提升题组 (建议用时:20分钟)11.掷一个骰子的试验,事件A 表示“出现小于5的偶数点”,事件B 表示“出现小于5的点数”,若B -表示B 的对立事件,则一次试验中,事件A +B -发生的概率为( ) A.13B.12C.23D.56解析 掷一个骰子的试验有6种可能结果. 依题意P (A )=26=13,P (B )=46=23,∴P (B -)=1-P (B )=1-23=13.∵B -表示“出现5点或6点”的事件,因此事件A 与B -互斥,从而P (A +B -)=P (A )+P (B -)=13+13=23.答案 C12.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )A.25B.710C.45D.910解析 设被污损的数字为x ,则x -甲=15(88+89+90+91+92)=90,x -乙=15(83+83+87+99+90+x ),若x -甲=x -乙,则x =8.若x -甲>x -乙,则x 可以为0,1,2,3,4,5,6,7, 故p =810=45.答案 C13.某城市2018年的空气质量状况如表所示:其中污染指数T ≤50时,空气质量为优;50<T ≤100时,空气质量为良,100<T ≤150时,空气质量为轻微污染,则该城市2018年空气质量达到良或优的概率为________. 解析 由题意可知2018年空气质量达到良或优的概率为p =110+16+13=35.答案 3514.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg)与它的“相近”作物株数X 之间的关系如表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米. (1)完成下表,并求所种作物的平均年收获量;(2)在所种作物中随机选取一株,求它的年收获量至少为48 kg 的概率.解 (1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株,列表如下:所种作物的平均年收获量为51×2+48×4+45×6+42×315=69015=46.(2)由(1)知,P (Y =51)=215,P (Y =48)=415.故在所种作物中随机选取一株,它的年收获量至少为48 kg 的概率为P (Y ≥48)=P (Y =51)+P (Y =48)=215+415=25.。
六年级下册数学教案-总复习 统计与概率|北师大版
六年级下册数学教案-总复习统计与概率|北师大版一、教学目标本节课主要让学生全面回顾统计与概率这个单元所学习的知识,加深对这一领域的理解,为下一阶段的学习做好铺垫。
1. 知识与技能•回顾概率的基本概念和性质,并能利用概率进行简单的计算。
•回顾统计的基本概念和方法,并能够根据实际情况进行数据的分析与总结。
2. 过程与方法•通过回顾统计与概率的知识,让学生对这一单元的知识有一个全面的认识。
•通过小组合作,让学生在实践中掌握统计与概率的基本方法。
3. 情感态度价值观•培养学生的数据意识,让学生能够主动地在日常生活中进行数据的收集和分析。
•强化学生的合作意识和团队精神,让学生在互动中体验到学习的快乐。
二、教学重难点1. 教学重点•概率的基本性质和计算方法。
•统计的基本方法和技巧。
2. 教学难点•统计与概率的综合应用。
•让学生培养主动收集数据和形成数据分析意识的能力。
三、教学内容及课时安排1. 教学内容•概率的基本概念和性质。
•概率的计算方法。
•统计的基本概念和方法。
•统计与概率的综合应用。
2. 课时安排•第一课时:概率的基本概念和性质(1小时)。
•第二课时:概率的计算方法(1小时)。
•第三课时:统计的基本概念和方法(1小时)。
•第四课时:统计与概率的综合应用(1小时)。
四、教学方法与教学手段1. 教学方法•讲授法。
•实践操作法。
•合作学习法。
2. 教学手段•课件。
•实物模型。
•数学游戏。
•小组合作。
五、教学评价方法1. 随堂测验在教学过程中进行多次随堂测验,检查学生对知识点的掌握情况。
2. 作业评估根据学生的作业完成情况,评估学生对知识点的整体掌握程度。
3. 课堂表现评估根据学生在课堂上的表现和参与情况,评估学生对学习的态度和思维能力。
六、教学安排与重点1. 教学安排•创建轻松愉快的学习氛围。
•讲授概率的基本概念和性质。
•实践演练概率计算。
•讲授统计的基本概念和方法。
•合作完成小组统计任务。
•讲授统计与概率的综合应用。
北师大版版高考数学一轮复习算法初步统计与统计案例统计图表用样本估计总体教学案理解析版
[考纲传真] 1.了解分布的意义与作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题.1.常用统计图表(1)频率分布表的画法:第一步:求极差,决定组数和组距,组距=错误!;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;第三步:登记频数,计算频率,列出频率分布表.(2)频率分布直方图:反映样本频率分布的直方图.横轴表示样本数据,纵轴表示错误!,每个小矩形的面积表示样本落在该组内的频率.(3)频率分布折线图和总体密度曲线1频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.(4)茎叶图的画法:第一步:将每个数据分为茎(高位)和叶(低位)两部分;第二步:将各个数据的茎按大小次序排成一列;第三步:将各个数据的叶依次写在其茎的右(左)侧.2.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把错误!=错误!称为x1,x2,…,x n这n个数的平均数.(4)标准差与方差:设一组数据x1,x2,x3,…,x n的平均数为错误!,则这组数据的标准差和方差分别是s=错误!;s2=错误![(x1—错误!)2+(x2—错误!)2+…+(x n—错误!)2].错误!1.频率分布直方图中各小矩形的面积之和为1.2.频率分布直方图与众数、中位数与平均数的关系(1)最高的小长方形底边中点的横坐标即是众数.(2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.3.若数据x1,x2,…,x n的平均数为错误!,方差为s2,则数据mx1+a,mx2+a,mx3+a,…,mx n+a的平均数是m错误!+a,方差为m2s2.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.(2)一组数据的方差越大,说明这组数据越集中. ()(3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高.(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.()[答案] (1)√(2)×(3)√(4)×2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数B[标准差反映样本数据的离散波动大小,故选B.]3.数据1,3,4,8的平均数与方差分别是()A.2,2.5B.2,10.5C.4,2D.4,6.5D[平均数为错误!=4,方差为错误!=6.5.]4.某学生在一门功课的22次考试中,所得分数茎叶图如图所示,则此学生该门功课考试分数的极差与中位数之和为()A.117 B.118C.118.5D.119.5B[22次考试中,所得分数最高的为98,最低的为56,所以极差为98—56=42,将分数从小到大排列,中间两数为76,76,所以中位数为76,所以此学生该门功课考试分数的极差与中位数之和为42+76=118.]5.(教材改编)某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60],由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的有________人.48 [由频率分布直方图可知45岁以下的教师的频率为5×(0.040+0.080)=0.6,所以共有80×0.6=48(人). ]样本的数字特征的计算与应用1.在某次测量中,得到的A样本数据为81,82,82,84,84,85,86,86,86,若B样本数据恰好是A样本数据分别加2后所得的数据,则A,B两个样本的下列数字特征对应相同的是()A.众数B.平均数C.标准差D.中位数C[由题意可得A,B两组数据的众数分别是86和88,排除A;B组数据的平均数比A组数据的平均数大2,排除B;B组数据的中位数比A组数据的中位数大2,排除D;A,B两组数据的标准差相同,C正确,故选C.]2.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()甲乙A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差C[根据条形统计图可知甲的中靶情况为4环、5环、6环、7环、8环;乙的中靶情况为5环、5环、5环、6环、9环.错误!甲=错误!(4+5+6+7+8)=6,错误!乙=错误!(5×3+6+9)=6,甲的成绩的方差为错误!=2,乙的成绩的方差为错误!=2.4;甲的成绩的极差为4环,乙的成绩的极差为4环;甲的成绩的中位数为6环,乙的成绩的中位数为5环,综上可知C正确,故选C.]3.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x—y|的值为()A.1B.2C.3D.4D[由题意可知错误!∴错误!∴(x+y)2=x2+y2+2xy,即208+2xy=400,∴xy=96.∴(x—y)2=x2+y2—2xy=16,∴|x—y|=4,故选D.][规律方法] 众数、中位数、平均数、方差的意义及常用结论(1)平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(2)方差的简化计算公式:s2=错误![(x错误!+x错误!+…+x错误!)—n错误!2],或写成s2=错误!(x错误!+x错误!+…+x错误!)—错误!2,即方差等于原数据平方的平均数减去平均数的平方.【例1】某良种培育基地正在培育一小麦新品种A,将其与原有的一个优良品种B进行对照试验,两种小麦各种植了25亩,所得亩产量的数据(单位:千克)如下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454.品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430(1)作出品种A与B亩产量数据的茎叶图;(2)用茎叶图处理现有的数据,有什么优点?(3)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.[解] (1)画出茎叶图如图所示.(2)由于每个品种的数据都只有25个,样本容量不大,画茎叶图很方便;此时茎叶图不仅清晰明了地展示了数据的分布情况,便于比较,没有任何信息损失,而且可以随时记录新的数据.(3)通过观察茎叶图可以看出:1品种A的亩产量的平均数(或均值)比品种B高;2品种A的亩产量的标准差(或方差)比品种B大,故品种A的亩产量的稳定性较差.[规律方法] 茎叶图中的两个关注点(1)重复出现的数据要重复记录,不能遗漏.(2)给定两组数据的茎叶图,估计数字特征,茎上的数字由小到大排列,一般“重心”下移者平均数较大,数据集中者方差较小.易错警示:茎叶图中数字大小排列不一定从小到大排列,一定要看清楚.气质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.从某地一环保人士某年的AQI记录数据中,随机抽取10个,用茎叶图记录如图.根据该统计数据,估计此地该年AQI大于100的天数约为________.(该年为365天)(2)如图所示的茎叶图是甲、乙两位选手在某次比赛中的比赛得分,则下列说法正确的是()A.甲的平均数大于乙的平均数B.甲的中位数大于乙的中位数C.甲的方差大于乙的方差D.甲的平均数等于乙的中位数(1)146 (2)C[(1)该样本中AQI大于100的频数是4,频率为错误!,由此估计该地全年AQI大于100的频率为错误!,估计此地该年AQI大于100的天数约为365×错误!=146.(2)由茎叶图可知,错误!甲=错误!×(59+45+32+38+24+26+11+12+14)=29,错误!乙=错误!×(51+43+30+34+20+25+27+28+12)=30,s错误!=错误!×(302+162+32+92+52+32+182+172+152)≈235.3,s错误!=错误!×(212+132+02+42+102+52+32+22+182)≈120.9,甲的中位数为26,乙的中位数为28.所以甲的方差大于乙的方差.故选C.]频率分布直方图【例2】某城市100户居民的月平均用电量(单位:千瓦时),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值.(2)求月平均用电量的众数和中位数.(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240]的用户中应抽取多少户?[解] (1)(0.002+0.009 5+0.011+0.0125+x+0.005+0.0025)×20=1,解得x=0.007 5.即直方图中x的值为0.007 5.(2)月平均用电量的众数是错误!=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,(0.002+0.009 5+0.011+0.0125)×20=0.7>0.5,∴月平均用电量的中位数在[220,240)内.设中位数为a,则0.45+0.0125×(a—220)=0.5,解得a=224,即中位数为224.(3)月平均用电量在[220,240]的用户有0.0125×20×100=25(户).同理可得月平均用电量在[240,260)的用户有15户,月平均用电量在[260,280)的用户有10户,月平均用电量在[280,300]的用户有5户,故抽取比例为错误!=错误!.∴月平均用电量在[220,240)的用户中应抽取25×错误!=5(户).[规律方法] 频率、频数、样本容量的计算方法(1)错误!×组距=频率.(2)错误!=频率,错误!=样本容量,样本容量×频率=频数.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125]频数62638228(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?[解] (1)如图所示:(2)质量指标值的样本平均数为错误!=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(—20)2×0.06+(—10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.1.(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了1月至12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳A[对于选项A,由图易知月接待游客量每年7,8月份明显高于12月份,故A错;对于选项B,观察折线图的变化趋势可知年接待游客量逐年增加,故B正确;对于选项C,D,由图可知显然正确.故选A.2.(2018·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半A[设新农村建设前经济收入的总量为x,则新农村建设后经济收入的总量为2x.建设前种植收入为0.6x,建设后种植收入为0.74x,故A不正确;建设前其他收入为0.04x,建设后其他收入为0.1x,故B正确;建设前养殖收入为0.3x,建设后养殖收入为0.6x,故C正确;建设后养殖收入与第三产业收入的总和占建设后经济收入总量的58%,故D正确.]。
高考数学一轮复习 第十章 概率与统计 课时59 几何概型学案 文 北师大版
课时59 几何概型班级: 姓名:一、高考考纲要求1.了解随机数的意义,能运用模拟方法估计概率;2.了解几何概型的意义. 二、高考考点回顾1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.特点:①无限性:在一次试验中,可能出现的结果有无限多个; ②等可能性:每个结果的发生具有等可能性.3.求解公式:P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.思考:已知区间[5,5]M =-.事件A :在M 内任取一个整数x ,使得21x <;事件B :在M 内任取一个实数x ,使得21x <.请问,事件A 与事件B 有何区别?4.几何概型的类型:(1)与长度、角度相关; (2)与面积相关; (3)与体积相关.三、课前检测1. 在区间[20,80]内随机取一实数a ,则实数a 属于区间[50,75]的概率是( ).A.14 B.34 C.512 D.7122.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,当某人到达路口时看见的是红灯的概率是( ).A.15 B.25 C. 35 D. 453.在1 L 高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10 mL ,则含有麦锈病种子的概率是 ( )A .1B .0.1C .0.01D .0.0014.如图,矩形ABCD 中,点E 为边CD 的中点.若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE ∆内部的概率等于 ( ). A.14B.13C.12 D.23课时 59 几何概型 (课内探究案)班级: 姓名:考点一:与长度、角度等相关的几何概型【典例1】(1)已知一只蚂蚁在边长分别为5,12,13的三角形的边上随机爬行,则其恰在离三个顶点的距离都大于1的地方的概率为________. (2)如图,四边形ABCD 为矩形,3,1AB BC ==,以A 为圆心,1为半径作四分之一个圆弧DE ,在DAB ∠内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.【变式1】(1)有一根长为1米的细绳子,随机从中间将细绳剪断,则使两截的长度都大于18米的概率为________. (2)如图,在ABC ∆中,60B ∠=o ,45C ∠=o,高3AD =,在BAC ∠内作射线AM 交BC 于点M ,则1BM <的概率是________.考点二:与面积、体积相关的几何概型【典例2】(1)花园小区内有一块三边长分别是5m 、5m 、6m 的三角形绿化地,有一只小花猫在其内部玩耍,若不考虑猫的大小,则在任意指定的某时刻,小花猫与三角形三个顶点的距离均超过2m 的概率是________. (2)在棱长为2的正方体1111ABCD A B C D -中,点O 为底面ABCD 的中心,在正方体1111ABCD A B C D -内随机取一点P ,则点P 到点O 的距离大于1的概率为________.【变式2】 (1)如图,在半径为R 的圆内随机撒一粒黄豆,它落在圆的内接正三角形(阴影部分)内的概率是 ( ). A.3B.33C. 3D.33(2)一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为________.考点三:几何概型的综合应用【典例3】(1)在区间[1,1]-上随机取一个数k ,使直线(2)y k x =+与圆221x y +=相交的概率为( ) A.12B.13C.3 D.3 (2)如图所示,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为________.【变式3】(1)如图的矩形长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,由此我们可以估计出阴影部分的面积约为( ) A.165B.215C.235D.195(2)在不等式组2403000x y x y x y +-≤⎧⎪+-≤⎪⎨≥⎪⎪≥⎩所表示的平面区域内,点(,)x y 落在[1,2]x ∈区域内的概率是________.【当堂检测】班级: 姓名:1. 将一根长10 cm 的铁丝用剪刀剪成两段,然后再将每一段剪成等长的两段,并用这四段铁丝围成一个矩形,则围成的矩形面积大于6 cm 2的概率等于( )A.15 B. 25 C. 35 D. 452. 分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为( ). A.42π- B.22π-C.44π-D.24π-3. 在区间(0,1)上任取两个数,则两个数之和小于65的概率是( ) A.1225 B. 1825 C. 1625 D. 17254. 利用计算机产生1~0之间的均匀随机数a ,则事件“013<-a ”发生的概率为_______ 5.在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m =__________.课后巩固案班级: 姓名: 完成时间:30分钟1.设不等式组0202x y ≤≤⎧⎨≤≤⎩表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ). A.4π B.22π- C.6π D.44π-2.已知集合{}2|230A x x x =--<,1|13x B x y g x -⎧⎫==⎨⎬+⎩⎭,在区间()3,3-上任取一实数x ,则“x A B ∈I ”的概率为( )A.41 B.81 C.31 D.121 3.在长为12cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于232cm 的概率为( ).A.16B.13C.23D.454.在区间[,]22ππ-上随机取一个数x ,则cos x 的值介于0至12之间的概率为________. 5.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.1.设事件A 表示“关于x 的方程2220x ax b ++=有实数根”. (1)若a ,{1,2,3}b ∈,求事件A 发生的概率()P A ; (2)若a ,[1,3]b ∈,求事件A 发生的概率()P A .2.已知关于x 的一元二次方程222(2)160.x a x b ---+=(1)若,a b 是一枚骰子掷两次所得到的点数,求方程有两正根的概率; (2)若[2,6],[0,4]a b ∈∈,求方程没有实根的概率.参考答案 课前检测 1.C 2.B 3.C 4.C【典例1】(1)45;(2)13.【变式1】(1)34;(2)25.【典例2】(1)16π-;(2)112π-.【变式2】(1)D ;(2)127.【典例3】(1)C ;(2)83【变式3】(1)C ;(2)27.【当堂检测】 1.A 2.B 3.D 4.135.31.D2.C3.C4.1 35.13161.(1)23;(2)12.2.(1)19;(2)4.。
北师大版版高考数学一轮复习第十章计数原理概率随机变量及其分布二项分布及其应用教学案理
1.“二项分布”与“超几何分布”的区别有放回抽取问题对应二项分布,不放回抽取问题对应超几何分布,当总体容量很大时,超几何分布可近似为二项分布来处理.2.两个概率公式(1)在事件B发生的条件下A发生的概率为P(A|B)=错误!.注意其与P(B|A)的不同.(2)若事件A1,A2,…,A n相互独立,则P(A1A2…A n)=P(A1)P(A2)…P(A n).3.二项分布进行n次试验,如果满足以下条件:(1)每次试验只有两个相互对立的结果,可以分别称为“成功”和“失败”;(2)每次试验“成功”的概率均为p,“失败”的概率均为1—p;(3)各次试验是相互独立的.用X表示这n次试验中成功的次数,则P(X=k)=C错误!p k(1—p)n—k(k=0,1,2,…,n).若一个随机变量X的分布列如上所述,称X服从参数为n,p的二项分布,简记为X~B(n,p).常用结论二、教材衍化1.天气预报,在元旦假期甲地降雨概率是0.2,乙地降雨概率是0.3.假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为________.解析:设甲地降雨为事件A,乙地降雨为事件B,则两地恰有一地降雨为A错误!+错误!B,所以P(A错误!+错误!B)=P(A错误!)+P(错误!B)=P(A)P(错误!)+P(错误!)P(B)=0.2×0.7+0.8×0.3=0.38.答案:0.382.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,则在他第一次拿到白球的条件下,第二次拿到红球的概率为________.解析:设A={第一次拿到白球},B={第二次拿到红球},则P(AB)=错误!×错误!,P(A)=错误!,所以P(B|A)=错误!=错误!.答案:错误!一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)条件概率一定不等于它的非条件概率.()(2)相互独立事件就是互斥事件.()(3)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.()(4)二项分布是一个概率分布,其公式相当于(a+b)n二项展开式的通项公式,其中a=p,b=1—p.()(5)P(B|A)表示在事件A发生的条件下,事件B发生的概率,P(AB)表示事件A,B同时发生的概率.()答案:(1)×(2)×(3)×(4)×(5)√二、易错纠偏错误!错误!(1)条件概率公式套用错误;(2)相互独立事件恰有一个发生的概率的理解有误;(3)独立重复试验公式应用错误.1.由0,1组成的三位数编号中,若事件A表示“第二位数字为0”,事件B表示“第一位数字为0”,则P(A|B)=________.解析:因为第一位数字可为0或1,所以第一位数字为0的概率P(B)=错误!,第一位数字为0且第二位数字也为0,即事件A,B同时发生的概率P(AB)=错误!×错误!=错误!,所以P(A|B)=错误!=错误!=错误!.答案:错误!2.计算机毕业考试分为理论与操作两部分,每部分考试成绩只记“合格”与“不合格”,只有两部分考试都“合格”者,才给颁发计算机“合格证书”.甲、乙两人在理论考试中“合格”的概率依次为错误!,错误!,在操作考试中“合格”的概率依次为错误!,错误!,所有考试是否合格相互之间没有影响.则甲、乙进行理论与操作两项考试后,恰有一人获得“合格证书”的概率为________.解析:甲获得“合格证书”的概率为错误!×错误!=错误!,乙获得“合格证书”的概率是错误!×错误!=错误!,两人中恰有一个人获得“合格证书”的概率是错误!×错误!+错误!×错误!=错误!.答案:错误!3.设随机变量X~B错误!,则P(X=3)=________.解析:因为X~B错误!,所以P(X=3)=C错误!错误!错误!×错误!错误!=错误!.答案:错误!条件概率(典例迁移)(1)(一题多解)现有3道理科题和2道文科题共5道题,若不放回地依次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为()A.错误!B.错误!C.错误!D.错误!(2)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P(B|A)=()A.错误!B.错误!C.错误!D.错误!【解析】(1)法一:设第1次抽到理科题为事件A,第2次抽到理科题为事件B,P(B|A)=错误!=错误!=错误!.故选C.法二:在第1次抽到理科题的条件下,还有2道理科题和2道文科题,故在第1次抽到理科题的条件下,第2次抽到理科题的概率为错误!.故选C.(2)P(A)=错误!=错误!=错误!,P(AB)=错误!=错误!,由条件概率公式,得P(B|A)=错误!=错误!=错误!.【答案】(1)C (2)B【迁移探究】(变条件)将本例(2)中的“和”改为“积”,求P(B|A).解:事件A:“取到的2个数之积为偶数”所包含的基本事件有:(1,2),(3,2),(4,2),(5,2),(4,1),(4,3),(4,5),所以P(A)=错误!.事件B:“取到的2个数均为偶数”所包含的基本事件有(2,4),所以P(AB)=错误!,所以P(B|A)=错误!=错误!=错误!.错误!条件概率的两种求解方法1.(2020·珠海模拟)夏秋两季,生活在长江口外浅海域的中华鱼洄游到长江,历经三千多公里的溯流搏击,回到金沙江一带产卵繁殖,产后待幼鱼长大到15厘米左右,又携带它们旅居外海.一个环保组织曾在金沙江中放生一批中华鱼鱼苗,该批鱼苗中的雌性个体能长成熟的概率为0.15,雌性个体长成熟又能成功溯流产卵繁殖的概率为0.05,若该批鱼苗中的一个雌性个体在长江口外浅海域已长成熟,则其能成功溯流产卵繁殖的概率为________.解析:设事件A为鱼苗中的一个雌性个体在长江口外浅海域长成熟,事件B为该雌性个体成功溯流产卵繁殖,由题意可知P(A)=0.15,P(AB)=0.05,所以P(B|A)=错误!=错误!=错误!.答案:错误!2.将三颗骰子各掷一次,设事件A为“三个点数都不同”,B为“至少出现一个6点”,则条件概率P(A|B)=________,P(B|A)=________.解析:P(A|B)的含义是在事件B发生的条件下,事件A发生的概率,即在“至少出现一个6点”的条件下,“三个点数都不相同”的概率,因为“至少出现一个6点”有6×6×6—5×5×5=91种情况,“至少出现一个6点且三个点数都不相同”共有C错误!×5×4=60种情况,所以P(A|B)=错误!.P (B|A)的含义是在事件A发生的条件下,事件B发生的概率,即在“三个点数都不相同”的条件下,“至少出现一个6点”的概率,因为“三个点数都不同”有6×5×4=120种情况,所以P(B|A)=错误!.答案:错误!错误!相互独立事件的概率(师生共研)(2020·福州四校联考)某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A,B,C三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款方式付款的客户进行统计分析,得到如下的柱状图.已知从A,B,C三种分期付款销售中,该经销商每销售此品牌汽车1辆所获得的利润分别是1万元、2万元、3万元.现甲、乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率估计1位客户采用相应分期付款方式的概率.(1)求甲、乙两人采用不同分期付款方式的概率;(2)记X(单位:万元)为该汽车经销商从甲、乙两人购车中所获得的利润,求X的分布列与数学期望.【解】(1)设“采用A种分期付款方式购车”为事件A,“采用B种分期付款方式购车”为事件B,“采用C种分期付款方式购车”为事件C,由柱状图得,P(A)=错误!=0.35,P(B)=错误!=0.45,P(C)=错误!=0.2,所以甲、乙两人采用不同分期付款方式的概率P=1—[P(A)·P(A)+P(B)·P(B)+P(C)·P (C)]=0.635.(2)由题意知,X的所有可能取值为2,3,4,5,6,P(X=2)=P(A)P(A)=0.35×0.35=0.1225,P(X=3)=P(A)P(B)+P(B)P(A)=0.35×0.45+0.45×0.35=0.315,P(X=4)=P(A)P(C)+P(B)P(B)+P(C)P(A)=0.35×0.2+0.45×0.45+0.2×0.35=0.3425,P(X=5)=P(B)P(C)+P(C)P(B)=0.45×0.2+0.2×0.45=0.18,P(X=6)=P(C)P(C)=0.2×0.2=0.04.所以X的分布列为X23456P0.12250.3150.34250.180.04EX=0.122.04×6=3.7.错误!利用相互独立事件求复杂事件概率的解题思路(1)将待求复杂事件转化为几个彼此互斥简单事件的和.(2)将彼此互斥简单事件中的简单事件,转化为几个已知(易求)概率的相互独立事件的积事件.(3)代入概率的积、和公式求解.1.(2019·高考全国卷Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.解:(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1—0.5)×(1—0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1—0.4)+(1—0.5)×0.4]×0.5×0.4=0.1.2.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为错误!,错误!;1小时以上且不超过2小时离开的概率分别为错误!,错误!;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列.解:(1)两人所付费用相同,相同的费用可能为0,40,80元,两人都付0元的概率为P1=错误!×错误!=错误!,两人都付40元的概率为P2=错误!×错误!=错误!,两人都付80元的概率为P3=错误!×错误!=错误!×错误!=错误!,则两人所付费用相同的概率为P=P1+P2+P3=错误!+错误!+错误!=错误!.(2)设甲、乙所付费用之和为ξ,ξ可能取值为0,40,80,120,160,则:P(ξ=0)=错误!×错误!=错误!;P(ξ=40)=错误!×错误!+错误!×错误!=错误!;P(ξ=80)=错误!×错误!+错误!×错误!+错误!×错误!=错误!;P(ξ=120)=错误!×错误!+错误!×错误!=错误!;P(ξ=160)=错误!×错误!=错误!.ξ的分布列为ξ04080120160P错误!错误!错误!错误!错误!独立重复试验与二项分布(师生共研)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值,已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.1若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;2以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解】(1)20件产品中恰有2件不合格品的概率为f(p)=C错误!p2(1—p)18.因此f′(p)=C错误![2p(1—p)18—18p2(1—p)17]=2C错误!p(1—p)17(1—10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)由(1)知,p=0.1.1令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以EX=E(40+25Y)=40+25EY=490.2如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于EX>400,故应该对余下的产品作检验.错误!(1)独立重复试验的特点1每次试验中,事件发生的概率是相同的;2每次试验中的事件是相互独立的,其实质是相互独立事件的特例.(2)判断随机变量X服从二项分布的条件(X~B(n,p))1X的取值为0,1,2,…,n;2P(X=k)=C错误!p k(1—p)n—k(k=0,1,2,…,n,p为试验成功的概率).[提醒] 在实际应用中,往往出现数量“较大”“很大”“非常大”等字眼,这表明试验可视为独立重复试验,进而判定是否服从二项分布.1.一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现音乐,要么不出现音乐.设每次击鼓出现音乐的概率为错误!,且各次击鼓出现音乐相互独立.设每盘游戏出现音乐的次数为X,则P(X≥1)=________.玩三盘游戏,则恰有两盘出现音乐的概率是________.解析:由题意X~B错误!,所以P(X≥1)=1—P(X=0)=1—C错误!错误!错误!=错误!,或P(X≥1)=P(X=1)+P(X=2)+P(X=3)=C错误!错误!错误!错误!+C错误!错误!错误!错误!+C错误!错误!错误!=错误!,故每盘游戏出现音乐的概率为错误!,所以玩三盘游戏,恰有两盘出现音乐的概率P=C错误!错误!错误!×错误!=错误!.答案:错误!错误!2.(2020·合肥模拟)师大附中学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)记录了他们的幸福度分数.(1)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”,求从这16人中随机选取3人,至多有1人的幸福度是“极幸福”的概率;(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示选到幸福度为“极幸福”的人数,求ξ的分布列及数学期望.解:(1)设事件A i(i=0,1,2,3)表示所取3人中有i人的幸福度是“极幸福”,至多有1人的幸福度是“极幸福”记为事件A,结合茎叶图得P(A)=P(A0)+P(A1)=错误!+错误!=错误!.(2)ξ的可能取值为0,1,2,3,由样本估计总体得任选1人,其幸福度为“极幸福”的概率为错误!=错误!,则P(ξ=0)=错误!错误!=错误!;P(ξ=1)=C错误!×错误!×错误!错误!=错误!;P(ξ=2)=C错误!×错误!错误!×错误!=错误!;P(ξ=3)=错误!错误!=错误!.所以ξ的分布列为ξ0123P错误!错误!错误!错误!所以E(ξ)=0×二项分布与超几何分布的辨别方法写出下列离散型随机变量的分布列,并指出其中服从二项分布的是哪些?服从超几何分布的是哪些?(1)X1表示n次重复抛掷1枚骰子出现点数是3的倍数的次数;(2)X2表示连续抛掷2枚骰子,所得的2枚骰子的点数之和;(3)有一批产品共有N件,其中次品有M件(N>M>0),采用有放回抽取方法抽取n次(n>N),抽出的次品件数为X3;(4)有一批产品共有N件,其中M件为次品,采用不放回抽取方法抽n件,出现次品的件数为X 4(N>M>n>0).【解】(1)X1的分布列为X1012…nPC错误!错误!错误!·错误!错误!C错误!错误!错误!·错误!错误!C错误!错误!错误!·错误!错误!…C错误!错误!错误!11(2)X2的分布列为X223456789101112P错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!2(3)X3的分布列为X 3012…nP错误!错误!C错误!错误!·错误!错误!C错误!错误!错误!·错误!错误!…错误!错误!33(4)X4的分布列为X401…k…nP错误!错误!…错误!…错误!4错误!综上,(1)(3)服从二项分布,(4)服从超几何分布,(2)既不服从二项分布也不服从超几何分布.超几何分布的抽取是不放回抽取,各次抽取不独立,二项分布的抽取是独立的,各次抽取相互独立.当超几何分布所对应的总体数量很大时可以近似地看作二项分布.某市电视台举办纪念红军长征胜利知识回答活动,宣传长征精神,首先在甲、乙、丙、丁四个不同的公园进行支持签名活动.公园甲乙丙丁获得签名人数456030150个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品.(1)求此活动中各公园幸运之星的人数;(2)若乙公园中每位幸运之星对每个问题答对的概率均为错误!,求乙公园中恰好2位幸运之星获得纪念品的概率;(3)若幸运之星小李对其中8个问题能答对,而另外2个问题答不对,记小李答对的问题数为X,求X的分布列.解:(1)甲、乙、丙、丁四个公园幸运之星的人数分别为错误!×10=3,错误!×10=4,错误!×10=2,错误!×10=1.(2)根据题意,乙公园中每位幸运之星获得纪念品的概率为C错误!错误!错误!=错误!,所以乙公园中恰好2位幸运之星获得纪念品的概率为C错误!错误!错误!错误!错误!=错误!.(3)由题意,知X的所有可能取值2,3,4,服从超几何分布,P(X=2)=错误!=错误!,P(X=3)=错误!=错误!,P(X=4)=错误!=错误!.所以X的分布列为X234P错误!错误!错误![基础题组练]1.(2020·马鞍山一模)已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还未损坏,则这个元件使用寿命超过2年的概率为()A.0.75B.0.6C.0.52D.0.48解析:选A.设一个这种元件使用到1年时还未损坏为事件A,使用到2年时还未损坏为事件B,则由题意知P(AB)=0.6,P(A)=0.8,则这个元件使用寿命超过2年的概率为P(B|A)=错误!=错误!=0.75,故选A.2.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立,则同一工作日至少3人需使用设备的概率为()A.0.25B.0.30C.0.31D.0.35解析:选C.设甲、乙、丙、丁需使用设备分别为事件A,B,C,D,则P(A)=0.6,P(B)=P(C)=0.5,P(D)=0.4,恰好3人使用设备的概率P1=P(错误!BCD+A错误!CD+AB错误!D+ABC错误!)=(1—0.6)×0.5×0.5×0.4+0.6×(1—0.5)×0.5×0.4+0.6×0.5×(1—0.5)×0.4+0.6×0.5×0.5×(1—0.4)=0.25,4人使用设备的概率P2=0.6×0.5×0.5×0.4=0.06,故所求概率P=0.25+0.06=0.31.3.某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:0天以上的概率为()A.错误!B.错误!C.错误!D.错误!解析:选D.由表可知元件使用寿命在30天以上的概率为错误!=错误!,则所求概率为C错误!错误!错误!×错误!+错误!错误!=错误!.4.(2020·河南中原名校联盟一模)市场调查发现,大约错误!的人喜欢在网上购买家用小电器,其余的人则喜欢在实体店购买家用小电器.经工商局抽样调查,发现网上购买的家用小电器的合格率约为错误!,而实体店里的家用小电器的合格率约为错误!.现工商局接到一个关于家用小电器不合格的投诉,则这台被投诉的家用小电器是在网上购买的可能性是()A.错误!B.错误!C.错误!D.错误!解析:选A.因为大约错误!的人喜欢在网上购买家用小电器,网上购买的家用小电器的合格率约为错误!,所以某家用小电器是在网上购买的,且被投诉的概率约为错误!×错误!=错误!,又实体店里的家用小电器的合格率约为错误!,所以某家用小电器是在实体店里购买的,且被投诉的概率约为错误!×错误!=错误!,故工商局接到一个关于家用小电器不合格的投诉,则这台被投诉的家用小电器是在网上购买的可能性P=错误!=错误!.5.某群体中的每位成员使用移动支付的概率都为p, 各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=()A.0.7 B.0.6C.0.4D.0.3解析:选B.由题意知,该群体的10位成员使用移动支付的概率分布符合二项分布,所以DX=10p·(1—p)=2.4,所以p=0.6或p=0.4.由P(X=4)<P(X=6),得C错误!p4(1—p)6<C错误!p6(1—p)4,即(1—p)2<p2,所以p>0.5,所以p=0.6.6.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且每次投篮是否投中相互独立,则该同学通过测试的概率为________.解析:该同学通过测试的概率P=C错误!×0.62×0.4+0.63=0.432+0.216=0.648.答案:0.6487.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A为“4个人去的景点不相同”,事件B为“小赵独自去一个景点”,则P(A|B)=________.解析:小赵独自去一个景点共有4×3×3×3=108种情况,即n(B)=108,4个人去的景点不同的情况有A错误!=4×3×2×1=24种,即n(AB)=24,所以P(A|B)=错误!=错误!=错误!.答案:错误!8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立.则该选手恰好回答了4个问题就晋级下一轮的概率为________,该选手回答了5个问题结束的概率为________.解析:依题意,该选手第2个问题回答错误,第3,4个问题均回答正确,第1个问题回答正误均有可能,则所求概率P=0.8×0.2×0.82+0.2×0.2×0.82=1×0.2×0.82=0.128.依题意,设答对的事件为A,可分第3个正确与错误两类,若第3个正确则有A错误!A错误!或错误!错误!A错误!两类情况,其概率为:0.8×0.2×0.8×0.2+0.2×0.2×0.8×0.2=0.0256+0.006 4=0.0320.该选手第3个问题的回答是错误的,第1,2两个问题回答均错误或有且只有1个错误,则所求概率P=0.23+2×0.2×0.8×0.2=0.008+0.064=0.072.所以,所求概率为0.0320+0.072=0.104.答案:0.128 0.1049.(2020·湖南两市联考)某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的个人单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.一个运动员出线记1分,未出线记0分.假设甲、乙、丙出线的概率分别为错误!,错误!,错误!,他们出线与未出线是相互独立的.(1)求在这次选拔赛中,这三名运动员至少有一名出线的概率;(2)记在这次选拔赛中,甲、乙、丙三名运动员所得分数之和为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.解:(1)记“甲出线”为事件A,“乙出线”为事件B,“丙出线”为事件C,“甲、乙、丙至少有一名出线”为事件D,则P(D)=1—P(错误!错误!错误!)=1—错误!×错误!×错误!=错误!.(2)ξ的所有可能取值为0,1,2,3.P(ξ=0)=P(错误!错误!错误!)=错误!;P(ξ=1)=P(A错误!错误!)+P(错误!B错误!)+P(错误!错误!C)=错误!;P(ξ=2)=P(AB错误!)+P(A错误!C)+P(错误!BC)=错误!;P(ξ=3)=P(ABC)=错误!.所以ξ的分布列为故Eξ=0×错误!+1×错误!+2×错误!+3×错误!=错误!.10.(2020·河北“五个一名校联盟”模拟)空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;300以上为严重污染.一环保人士记录去年某地六月10天的AQI的茎叶图如图.(1)利用该样本估计该地六月空气质量为优良(AQI≤100)的天数;(2)将频率视为概率,从六月中随机抽取3天,记三天中空气质量为优良的天数为ξ,求ξ的分布列.解:(1)从茎叶图中可以发现样本中空气质量为优的天数为2,空气质量为良的天数为4,所以该样本中空气质量为优良的频率为错误!=错误!,从而估计该地六月空气质量为优良的天数为30×错误!=18.(2)由(1)估计某天空气质量为优良的概率为错误!,ξ的所有可能取值为0,1,2,3,且ξ~B错误!.所以P(ξ=0)=错误!错误!=错误!,P(ξ=1)=C错误!错误!错误!错误!=错误!,P(ξ=2)=C错误!错误!错误!错误!错误!=错误!,P(ξ=3)=错误!错误!=错误!.ξ的分布列为ξ0123P错误!错误!错误!错误!1.(2020·南昌模拟)为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是()A.错误!B.错误!C.错误!D.错误!解析:选D.记第i名民工选择的项目属于基础设施类、民生类、产业建设类分别为事件A i,B i,C i,i=1,2,3.由题意,事件A i,B i,C i(i=1,2,3)相互独立,则P(A i)=错误!=错误!,P(B i)=错误!=错误!,P(C i)=错误!=错误!,i=1,2,3,故这3名民工选择的项目所属类别互异的概率是P=A错误!P(A i B i C i)=6×错误!×错误!×错误!=错误!.2.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为()A.错误!B.错误!错误!×错误!C.错误!×错误!D.C错误!×错误!错误!×错误!解析:选B.由题意知,第四次取球后停止是当且仅当前三次取的球是黑球,第四次取的球是白球的情况,此事件发生的概率为错误!错误!×错误!.3.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是________.(写出所有正确结论的序号)1P(B)=错误!;2P(B|A1)=错误!;3事件B与事件A1相互独立;4A1,A2,A3是两两互斥的事件;5P(B)的值不能确定,它与A1,A2,A3中哪一个发生都有关.解析:由题意知A1,A2,A3是两两互斥的事件,P(A1)=错误!=错误!,P(A2)=错误!=错误!,P(A3)=错误!,P(B|A1)=错误!=错误!,P(B|A2)=错误!,P(B|A3)=错误!,而P(B)=P(A1B)+P(A2B)+P(A3B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=错误!×错误!+错误!×错误!+错误!×错误!=错误!.故正确的为24.答案:244.已知甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否之间没有影响.(1)甲、乙两人在第一次试跳中至少有一人成功的概率是________;(2)若甲、乙各试跳两次,则甲比乙的成功次数多一次的概率是________.解析:(1)记“甲在第i次试跳成功”为事件A i,“乙在第i次试跳成功”为事件B i,“甲、乙两人在第一次试跳中至少有一人成功”为事件C.法一:P(C)=P(A1错误!1)+P(错误!1B1)+P(A1B1)=P(A1)P(错误!1)+P(错误!1)P(B1)+P(A1)P(B1)=0.7×0.4+0.3×0.6+0.7×0.6=0.88.法二:由对立事件的概率计算公式得P(C)=1—P(错误!1错误!1)=1—P(错误!1)P(错误!)=1—0.3×0.4=0.88.1(2)设“甲在两次试跳中成功i次”为事件M i,“乙在两次试跳中成功i次”为事件N i,所以所求概率P=P(M1N0)+P(M2N1)=P(M1)P(N0)+P(M2)P(N1)=C错误!×0.7×0.3×0.42+0.72×C错误!×0.6×0.4=0.3024.答案:(1)0.88 (2)0.30245.甲、乙两人各射击一次,击中目标的概率分别是错误!和错误!.假设两人射击是否击中目标相互之间没有影响,每人每次射击是否击中目标相互之间也没有影响.(1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设每人连续2次未击中目标,则终止其射击.问:乙恰好射击5次后,被终止射击的概率是多少?。
2021高考数学复习高考中的概率与统计问题教学案理北师大版
规范答题系列4 高考中的概率与统计问题[命题解读] 从近五年全国卷高考试题来看,在高考的解答题中,对概率与随机变量及其分布相结合的综合问题的考查既是热点又是重点,是高考必考的内容,并且常常与统计相结合,常常设计成包含概率计算、概率分布表、随机变量的数学期望与方差、统计图表的识别等知识为主的综合题.以考生比较熟悉的实际应用问题为载体,考查学生应用基础知识和基本方法分析问题和解决问题的能力.[典例示范] (本题满分12分)(2019·全国卷Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列①;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列②;(ii)求p4,并根据p4的值解释这种试验方案的合理性.[信息提取] (1)看到①,想到概率模型及概率的求法;(2)看到②,想到递推关系的变形;看到求特定项,想到求通项公式.[规范解答] (1)X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β), 3分所以X的分布列为4分(2)①由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1()p i +1-p i =0.4()p i -p i -1, 即p i +1-p i =4()p i -p i -1.6分又因为p 1-p 0=p 1≠0,所以{}p i +1-p i (i =0,1,2,…,7)为公比为4,首项为p 1的等比数列.7分 ②由①可得p 8=p 8-p 7+p 7-p 6+…+p 1-p 0+p 0=()p 8-p 7+()p 7-p 6+…+()p 1-p 0=48-13p 1.由于p 8=1,故p 1=348-1,9分所以p 4=()p 4-p 3+()p 3-p 2+()p 2-p 1+()p 1-p 0=44-13p 1=1257.10分p 4表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257≈0.003 9,此时得出错误结论的概率非常小,说明这种试验方案合理.12分[易错防范][(1)定元:根据已知条件确定离散型随机变量的取值. (2)定性:明确每个随机变量取值所对应的事件.(3)定型:确定事件的概率模型和计算公式. (4)计算:计算随机变量取每一个值的概率. (5)列表:列出分布列. (6)求解:根据公式求期望.[规范特训] 某超市计划按月订购一种冰激凌,每天进货量相同,进货成本为每桶5元,售价为每桶7元,未售出的冰激凌以每桶3元的价格当天全部处理完毕,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关,如果最高气温不低于25 ℃,需求量为600桶,如果最高气温(单位:℃)位于区间[20,25),需求量为400桶,如果最高气温低于20 ℃,需求量为200桶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种冰激凌一天的需求量X (单位:桶)的分布列;(2)设六月份一天销售这种冰激凌的利润为Y (单位:元),当六月份这种冰激凌一天的进货量n (单位:桶)为多少时,Y 的均值取得最大值?[解] (1)由已知得,X 的所有可能取值为200,400,600,记六月份最高气温低于20 ℃为事件A 1,最高气温(单位:℃)位于区间[20,25)为事件A 2,最高气温不低于25 ℃为事件A 3,根据题意,结合频数分布表,用频率估计概率,可知P (X =200)=P (A 1)=1890=15,P (X =400)=P(A 2)=3690=25,P (X =600)=P (A 3)=3690=25,故六月份这种冰激凌一天的需求量X (单位:桶)的分布列为当n ≤200时,EY =2n ≤400;当200<n ≤400时,EY =15×[200×2+(n -200)×(-2)]+45×n ×2=65n +160∈(400,640];当400<n ≤600时,EY =15×[200×2+(n -200)×(-2)]+25×[400×2+(n -400)×(-2)]+25×n ×2=-25n+800∈[560,640);当n>600时,EY=15×[200×2+(n-200)×(-2)]+25×[400×2+(n-400)×(-2)]+25×[600×2+(n-600)×(-2)]=1 760-2n<560, 所以当n=400时,Y的均值取得最大值640.。
北师大版版高考数学一轮复习计数原理概率随机变量及其分布随机事件的概率古典概型与几何概型教学案理解析版
[考纲传真] 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.3.理解古典概型及其概率计算公式.4.会计算一些随机事件所包含的基本事件数及事件发生的概率.5.了解随机数的意义,能运用随机模拟的方法估计概率.6.了解几何概型的意义.1.频率与概率在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时,我们把这个常数叫作随机事件A的概率,记作P(A).2.事件的关系与运算互斥事件:在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.事件A+B:事件A+B发生是指事件A和事件B至少有一个发生.对立事件:不会同时发生,并且一定有一个发生的事件是相互对立事件.3.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)互斥事件概率的加法公式1如果事件A与事件B互斥,则P(A+B)=P(A)+P(B).2若事件A与事件错误!互为对立事件,则P(A)=1—P(错误!).4.古典概型与几何概型名称古典概型几何概型相同点基本事件发生的可能性相等不同点基本事件有有限个基本事件有无限个计算公式P(A)=P(A)=.如果事件A1,A2,…,A n两两互斥,则称这n个事件互斥,其概率有如下公式:P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n).[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)随机模拟方法是以事件发生的频率估计概率.()(2)在大量的重复实验中,概率是频率的稳定值.()(3)对立事件一定是互斥事件,互斥事件不一定是对立事件.()(4)概率为0的事件一定为不可能事件.()[答案] (1)√(2)√(3)√(4)×2.某射手在同一条件下进行射击,结果如下:射击次数102050100200500击中靶心次数8194492178455A.0.80 B.0.85C.0.90 D.0.99C[由题意,该射手击中靶心的频率大约在0.9附近上下波动,故其概率约为0.90.故选C.]3.(教材改编)投掷两枚均匀的硬币,则两枚硬币均正面朝上的概率是()A.错误!B.错误!C.错误!D.错误!A[P=错误!×错误!=错误!,故选A.]4.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()A[P(A)=错误!,P(B)=错误!,P(C)=错误!,P(D)=错误!,∴P(A)>P(C)=P(D)>P(B).]5.对飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.A与B,A与C,B与C,B与D B与D[设I为对飞机连续射击两次所发生的所有情况,因为A∩B =∅,A∩C=∅,B∩C=∅,B∩D=∅,故A与B,A与C,B与C,B与D为互斥事件.而B∩D=∅,B∪D =I,故B与D互为对立事件.]随机事件的频率与概率【例1】(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.[解] (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为错误!=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6×450—4×450=900;若最高气温位于区间[20,25),则Y=6×300+2×(450—300)—4×450=300;若最高气温低于20,则Y=6×200+2×(450—200)—4×450=—100.所以,Y的所有可能值为900,300,—100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为错误!=0.8,因此Y大于零的概率的估计值为0.8.[规律方法] (1)概率与频率的关系概率是常数,是频率的稳定值,频率是变量,是概率的近似值.有时也用频率来作为随机事件概率的估计值.(2)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.易错警示:概率的定义是求一个事件概率的基本方法.利润50元,若供大于求,剩余商品全部退回,但每件退回商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获得利润30元.(1)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天的需求量n(单位:件,n∈N*)的函数解析式;(2)商店记录了50天该商品的日需求量n(单位:件),整理得下表:日需求量n/件89101112频数91115105(ⅱ)若商店一天购进10件该商品,以50天记录的各日需求量的频率作为各日需求量的概率,求当天的利润大于500元的概率.[解] (1)当日需求量n≥10时,利润y=50×10+(n—10)×30=30n+200;当日需求量n<10时,利润y=50×n—(10—n)×10=60n—100.所以日利润y关于日需求量n的函数解析式为y=错误!(2)(ⅰ)由(1)及表格可知,这50天中有9天的日利润为380元,有11天的日利润为440元,有15天的日利润为500元,有10天的日利润为530元,有5天的日利润为560元,所以这50天的日利润的平均数为错误!×(380×9+440×11+500×15+530×10+560×5)=477.2(元).(ⅱ)若当天的利润大于500元,则日需求量大于10件,则当天的利润大于500元的概率P=错误!=错误!.古典概型【例2】(1)(2018·全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.错误!B.错误!C.错误!D.错误!(2)(2017·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.错误!B.错误!C.错误!D.错误!(1)C(2)D[(1)不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有C错误!种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率P=错误!=错误!,故选C.(2)从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P=错误!=错误!.故选D.][规律方法] 1.计算古典概型事件的概率可分三步:(1)计算基本事件总个数n;(2)计算事件A所包含的基本事件的个数m;(3)代入公式求出概率P.2.(1)用列举法写出所有基本事件时,可借助“树状图”列举,以便做到不重、不漏.(2)利用排列、组合计算基本事件时,一定要分清是否有序,并重视两个计数原理的灵活应用.每个小盒中至少有1个小球,那么甲盒中恰好有3个小球的概率为()C.错误!D.错误!(2)(2018·石家庄一模)用1,2,3,4,5组成无重复数字的五位数,若用a1,a2,a3,a4,a分别表示五位数的万位、千位、百位、十位、个位,则出现a1<a2<a3>a4>a5特征的五位数的概率5为________.(1)C(2)错误![(1)将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球有C错误!种放法,甲盒中恰好有3个小球有C错误!种放法,结合古典概型的概率计算公式得所求概率为错误!=错误!.故选C.(2)1,2,3,4,5可组成A错误!=120个不同的五位数,其中满足题目条件的五位数中,最大的5必须排在中间,左、右各两个数字只要选出,则排列位置就随之而定,满足条件的五位数有C错误!C 错误!=6个,故出现a1<a2<a3>a4>a5特征的五位数的概率为错误!=错误!.]几何概型【例3】(1)(2016·全国卷Ⅰ)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.错误!B.错误!C.错误!D.错误!(2)(2018·合肥二模)小李从网上购买了一件商品,快递员计划在下午5:00到6:00之间送货上门,已知小李下班到家的时间在下午5:30到6:00之间.快递员到小李家时,如果小李未到家,则快递员会电话联系小李.若小李能在10分钟之内到家,则快递员等小李回来;否则,就将商品存放在快递柜中.则小李需要去快递柜领取商品的概率为()A.错误!B.错误!(3)已知在四棱锥PABCD中,PA⊥底面ABCD,底面ABCD是正方形,PA=AB=2,现在该四棱锥内部或表面任取一点O,则四棱锥OABCD的体积不小于错误!的概率为________.(1)B(2)D(3)错误![(1)这是几何概型问题,总的基本事件空间如图所示,共40分钟,等车时间不超过10分钟的时间段为:7:50至8:00和8:20至8:30,共20分钟,故他等车时间不超过10分钟的概率为错误!=错误!,故选B.(2)如图,设快递员和小李分别在下午5点后过了x分钟和y分钟到小李家,则所有结果构成的区域为{(x,y)|0≤x≤60,30≤y≤60},这是一个矩形区域,y—x>10表示小李比快递员晚到超过10分钟,事件M表示小李需要去快递柜领取商品,其所构成的区域是如图所示的直角梯形ABCD的内部区域及边界(不包含AB),由错误!可得错误!即A(50,60),由错误!可得错误!即B(20,30),所以由几何概型的概率计算公式可知P(M)=错误!=错误!,故选D.(3)当四棱锥OABCD的体积为错误!时,设O到平面ABCD的距离为h,则错误!×22×h=错误!,解得h=错误!.如图所示,在四棱锥PABCD内作平面EFGH平行于底面ABCD,且平面EFGH与底面ABCD的距离为错误!.因为PA⊥底面ABCD,且PA=2,所以错误!=错误!,所以四棱锥OABCD的体积不小于错误!的概率P=错误!=错误!3=错误!3=错误!.][规律方法] 解答几何概型试题要善于根据题目特点寻找基本事件所在线、面、体,寻找随机事件所在的线、面、体,把几何概型的计算转化为相应的长度、面积和体积的比值的计算.(1)在线段上取点,则点在线段上等可能出现;在角内作射线,则射线在角内的分布等可能.(2)两个变量在某个范围内取值,对应的“区域”是面积.(1)随机地取两个实数x和y,使得x∈[—1,1],y∈[0,1],则满足y≥x2的概率是()A.错误!B.错误!C.错误!D.错误!(2)如图所示,在等腰直角三角形ABC中,过直角顶点C在∠ACB内部任作一条射线CM,与AB交于点M,则AM<AC的概率为________.(1)B(2)错误![(1)满足x∈[—1,1],y∈[0,1]的区域为矩形区域(包括边界)(图略),面积为2,满足y≥x2的区域的面积S=错误!—1(1—x2)dx=错误!|错误!=错误!,故所求概率P=错误!=错误!.故选B.(2)在AB上取AC′=AC(图略),则∠ACC′=错误!=67.5°,记A={在∠ACB内部任作一射线CM与线段AB交于点M,AM<AC},则所有可能结果的区域为∠ACB,事件A构成的区域为∠ACC′.又∠ACB=90°,∠ACC′=67.5°,∴P(A)=错误!=错误!.]1.(2018·全国卷Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3A[设直角三角形ABC的内角A,B,C所对的边分别为a,b,c,则区域Ⅰ的面积即△ABC的面积,为S 1=错误!bc ,区域Ⅱ的面积S 2=错误!π×错误!2+错误!π×错误!2—错误!=错误!π(c 2+b 2—a 2)+错误!bc =错误!bc ,所以S 1=S 2,由几何概型的知识知p 1=p 2,故选A.]2.(2017·全国卷Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.错误!B.错误! C.错误! D.错误!B [不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4.由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=错误!S 圆=错误!,所以由几何概型知所求概率P =错误!=错误!=错误!.故选B.]3.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.错误!B.错误! C.错误! D.错误!C [因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC 内的数对有m 个.用随机模拟的方法可得错误!=错误!,即错误!=错误!,所以π=错误!.]4.(2014·全国卷Ⅰ)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.错误!B.错误! C.错误! D.错误!D [4名同学各自在周六、周日两天中任选一天参加公益活动的情况有24=16(种),其中仅在周六(周日)参加的各有1种,∴所求概率为1—错误!=错误!.]。
高中数学北师大版概率统计教案设计
高中数学北师大版概率统计教案设计第一节:引言概率统计是数学中的一个重要分支,也是生活中应用甚广的一门学科。
本教案将以北师大版高中数学教材为基础,设计一堂概率统计的课程,帮助学生理解和掌握相关概念和方法。
第二节:教学目标本节课主要目标如下:1. 理解随机事件和概率的概念;2. 掌握概率计算的基本方法,包括频率法和几何法;3. 理解条件概率和独立事件的概念,并能运用相关公式解题;4. 学会使用树型图解决复杂概率问题。
第三节:教学内容1. 随机事件和概率- 引入随机事件的概念,介绍事件的基本性质和表示方法;- 解释概率的意义,引导学生理解概率与频率的关系;- 演示如何计算简单事件的概率,并进行相关练习。
2. 概率计算方法- 分别介绍频率法和几何法计算概率的基本思路;- 通过例题演示这两种方法的具体运用,并与学生一起解决相关问题;- 提供一些练习题,巩固学生对概率计算方法的掌握。
3. 条件概率和独立事件- 引入条件概率的概念,解释条件概率的计算方法;- 定义独立事件的概念,并讲解独立事件的性质;- 通过例题,帮助学生掌握条件概率和独立事件的计算方法。
4. 树型图的应用- 介绍树型图的概念和绘制方法;- 解释如何利用树型图解决复杂的概率问题;- 演示树型图在实际问题中的应用,并与学生一起解决相关问题。
第四节:教学方法1. 探究式教学法:通过引入生活中的实际问题,激发学生的兴趣和思考,培养学生的独立思考和问题解决能力。
2. 合作学习法:鼓励学生在小组内合作讨论,促进思想交流和互相学习。
3. 案例分析法:通过引入真实案例,帮助学生将所学的概率统计方法应用到实际问题中,培养学生的应用能力。
第五节:教学过程1. 激发兴趣:- 引入一个有趣的数学概率问题,引发学生思考的兴趣。
2. 知识探究:- 分组讨论,探究随机事件和概率的概念及表示方法;- 学生自主发现和总结概率计算的基本方法;- 利用案例分析法,引导学生理解条件概率和独立事件的概念。
北师大版走向高考数学专题整合统计统计案例
10
55
合计
75
25
100
将 2×2 列联表中的数据代入公式计算,得
第十章 专 题 整 合
走向高考 ·高考一轮总复习 ·北师大版 ·数学
χ2=a+bcn+add-ab+cc2b+d =100×75×302×5×104-5×455×5 152 =13030≈3.030. 因为 3.030>2.706,所以有 90%的把握认为“体育迷”与 性别有关.
第十章 专 题 整 合
走向高考 ·高考一轮总复习 ·北师大版 ·数学
甲、乙两名战士在相同条件下各射靶 10 次,每 次命中的环数分别是:
甲:8,6,7,8,6,5,9,10,4,7 乙:6,7,7,8,6,7,8,7,9,5 (1)分别计算以上两组数据的平均数; (2)分别求出两组数据的方差; (3)根据计算结果,估计一下两名战士的射击情况. [思考分析] 利用平均数和方差的计算公式求解.
别抽取.在优秀生中用简单随机抽样法抽 15 人;在良好生中
用简单随机抽法抽取 60 人;在普通生中用简单随机抽样法抽
取 25 人.
第十章 专 题 整 合
走向高考 ·高考一轮总复习 ·北师大版 ·数学
[方法总结] 选择合适的抽样方法的关键在于明确这三 种抽样方法各自的特点.一般地,当总体容量较少,并且样 本容量也较少,而且能够“搅拌均匀”时,则选用简单随机 抽样方法抽样;当总体容量较大,样本容量也较大,并且总 体的排列不存在明显的周期性和事先排好序时,则采用系统 抽样方法抽样;当总体由差异明显的几部分组成时,则选用 分层抽样方法抽样,并且当层内个体差异较小时,则在层内 抽样,一般选用简单随机抽样或系统抽样方法抽样.
[方法总结] 平均数和方差都是重要的数字特征,是对总 体一种简明的阐述.平均数、中位数、众数描述总体的集中 趋势,方差和标准描述波动大小.
高考数学一轮复习 第10章 计数原理、概率、随机变量及其分布 第6节 几何概型学案 理 北师大版
第六节 几何概型[考纲传真] (教师用书独具)1.了解随机数的意义,能运用模拟方法估计概率.2.了解几何概型的意义.(对应学生用书第181页)[基础知识填充]1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,与区域的形状,位置无关,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的两个基本特点(1)无限性:在一次试验中可能出现的结果有无限多个. (2)等可能性:每个试验结果的发生具有等可能性.3.几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)随机模拟方法是以事件发生的频率估计概率.( ) (2)从区间[1,10]内任取一个数,取到1的概率是110.( )(3)概率为0的事件一定是不可能事件.( )(4)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) [答案] (1)√ (2)× (3)× (4)√2.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )A [P (A )=38,P (B )=28,P (C )=26,P (D )=13,所以P (A )>P (C )=P (D )>P (B ).]3.已知函数f (x )=x 2-2x -3,x ∈[-1,4],则f (x )为增函数的概率为( )A .15B .25C .35D .45C [f (x )=x 2-2x -3=(x -1)2-4,x ∈[-1,4],∴f (x )在[1,4]上是增函数.∴f (x )为增函数的概率为P =4-14-(-1)=35.]4.(2017·全国卷Ⅰ)如图1061,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()图1061A .14B .π8C .12D .π4B [不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知所求概率P =S 黑S 正方形=π24=π8.故选B .]5.如图1062所示,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.图10620.18 [由题意知,S 阴S 正=1801 000=0.18. ∵S 正=1,∴S 阴=0.18.](对应学生用书第181页)(1)(2016·全国卷Ⅰ)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A .13 B .12 C .23D .34(2)如图1063所示,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB 内作射线AP ,则射线AP 与线段BC 有公共点的概率为________.图1063(1)B (2)13 [(1)如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P =2040=12.故选B .(2)以A 为圆心,以AD =1为半径作圆弧交AC ,AP ,AB 分别为C ′,P ′,B ′.依题意,点P ′在上任何位置是等可能的,若射线AP 与线段BC 有公共点,则事件“点P ′在上发生”.又在Rt△ABC 中,易求∠BAC =∠B ′AC ′=π6.故所求事件的概率]A =与角度有关的几何概型作为区域度量来计算概率,且不可用线段的长度代替,这是两种不同的度量手段x 2-2ax +4a -3=0有两个正根的概率为( )A .23 B .12 C .38D .13(2)(2017·江苏高考)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________. (1)C (2)59[(1)因为方程x 2-2ax +4a -3=0有两个正根,所以⎩⎪⎨⎪⎧2a >0,4a -3>0,4a 2-4(4a -3)≥0,解得34<a ≤1或a ≥3,所以所求概率P =1-34+(5-3)5-(-1)=38,故选C .(2)由6+x -x 2≥0,解得-2≤x ≤3,∴D =[-2,3].如图,区间[-4,5]的长度为9,定义域D 的长度为5, ∴P =59.]◎角度1 与平面图形面积有关的几何概型(2018·成都二诊)两位同学约定下午5:30~6:00在图书馆见面,且他们在5:30~6:00之间到达的时刻是等可能的,先到同学须等待,15分钟后还未见面便离开.则两位同学能够见面的概率是( )【导学号:79140362】A .1136B .14C .12D .34D [从下午5:30开始计时,设两位同学到达的时刻分别为x ,y 分钟,则x ,y 应满足⎩⎪⎨⎪⎧0≤x ≤30,0≤y ≤30,如图中正方形OABC 所示,若两位同学能够见面,则x ,y 应满足|x -y |≤15,如图中阴影部分(含边界)所示,所以所求概率P =30×30-2×12×15×1530×30=34,故选D .]◎角度2 与线性规划交汇的问题(2017·广州综合测试)在平面区域{(x ,y )|0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x 的概率为( ) A .14 B .12 C .23 D .34A[依题意作出图像如图,则P (y ≤2x )=S 阴影S 正方形=12×12×112=14.] ◎角度3 与定积分交汇的问题(2018·郑州第二次质量预测)在区间[1,e]上任取实数a ,在区间[0,2]上任取实数b ,使函数f (x )=ax 2+x +14b 有两个相异零点的概率是( )A .12(e -1)B .14(e -1)C .18(e -1)D .116(e -1)A [函数f (x )=ax 2+x +14b 有两个相异零点,即方程ax 2+x +14b =0有两个不等的实数根,则Δ=1-ab >0,b <1a.所有试验结果为Ω={(a ,b )|1≤a ≤e,0≤b ≤2},面积为2(e-1),使函数f (x )有两个相异零点的事件为Ω1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(a ,b )⎪⎪⎪b <1a ,1≤a ≤e,0≤b ≤2,面积为⎠⎛1e 1ad a =ln a|e1=1-0=1,则所求概率为P(A)=12(e -1),故选A .]x =RAND (0,1),y =RAND (0,1),则x 2+y 2<1的概率为( )A .π4B .1-π4C .π8D .1-π8(2)如图1064,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f(x )=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于________.图1064(1)A (2)512 [(1)由几何概型的概率计算公式知,所求概率P =14×π×121×1=π4,故选A .(2)由题意知,阴影部分的面积S =⎠⎛12(4-x 2)dx =⎝ ⎛⎭⎪⎫4x -13x 3⎪⎪⎪21=53,所以所求概率P =S S 矩形ABCD =531×4=512.]在棱长为2的正方体ABCD A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.1-π12 [如图,与点O 距离不大于1的点的轨迹是一个半球,其体积V 1=12×43π×13=2π3.事件“点P 与点O 距离大于1的概率”对应的区域体积为23-2π3,根据几何概型概率公式得,点P 与点O 距离大于1的概率P =23-2π323=1-π12.]关键是计算问题的总体积总空间以及事件的体积事件空间,对于某些较复杂的事件也可利用其对立事件去求.跟踪训练] 所示,点是AB 一只蝴蝶在几何体ADF BCE 内自由飞翔,则它飞入几何体F AMCD 内的概率为( )【导学号:79140363】图1065A .34B .23C .13D .12D [由题图可知V F AMCD =13×S AMCD ×DF =14a 3,V ADF BCE =12a 3,所以它飞入几何体F AMCD 内的概率为14a 312a 3=12.]。
北师大版版高考数学一轮复习第十章计数原理概率随机变量及其分布几何概型教学案理
一、知识梳理1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P(A)=错误!常用结论在几何概型中,如果A是确定事件,(1)若A是不可能事件,则P(A)=0肯定成立;如果随机事件所在的区域是一个单点,由于单点的长度、面积和体积都是0,则它出现的概率为0,显然它不是不可能事件,因此由P(A)=0不能推出A是不可能事件.(2)若A是必然事件,则P(A)=1肯定成立;如果一个随机事件所在的区域是从全部区域中扣除一个单点,则它出现的概率是1,但它不是必然事件,因此由P(A)=1不能推出A是必然事件.二、教材衍化1.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()解析:选A.因为P(A)=错误!,P(B)=错误!,P(C)=错误!,P(D)=错误!,所以P(A)>P(C)=P(D)>P(B).2.在线段[0,3]上任投一点,则此点坐标小于1的概率为________.解析:坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为错误!.答案:错误!3.设不等式组错误!表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率为________.解析:如图所示,正方形OABC及其内部为不等式组表示的平面区域D,且区域D的面积为4,而阴影部分表示的是区域D内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4—π.因此满足条件的概率是错误!.答案:1—错误!一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)几何概型中,每一个基本事件都是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.()(2)在几何概型定义中的区域可以是线段、平面图形、立体图形.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)与面积有关的几何概型的概率与几何图形的形状有关.()答案:(1)√(2)√(3)√(4)×二、易错纠偏错误!错误!选用的几何测度不准确导致出错.在区间[—2,4]上随机地取一个数x,若x满足|x|≤m的概率为错误!,则m=________.解析:由|x|≤m,得—m≤x≤m.当0<m≤2时,由题意得错误!=错误!,解得m=2.5,矛盾,舍去.当2<m<4时,由题意得错误!=错误!,解得m=3.答案:3与长度(角度)有关的几何概型(师生共研)记函数f(x)=错误!的定义域为D,在区间[—4,5]上随机取一个数x,则x∈D的概率是________.【解析】由6+x—x2≥0,解得—2≤x≤3,则D=[—2,3],则所求概率为错误!=错误!.【答案】错误!错误!与长度、角度有关的几何概型的求法解答关于长度、角度的几何概型问题,只要将所有基本事件及事件A包含的基本事件转化为相应长度或角度,即可利用几何概型的概率计算公式求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).1.从区间[—2,2]中随机选取一个实数a,则函数f(x)=4x—a·2x+1+1有零点的概率是()A.错误!B.错误!C.错误!D.错误!解析:选A.令t=2x,函数有零点就等价于方程t2—2at+1=0有正根,进而可得错误!⇒a≥1,又a∈[—2,2],所以函数有零点的实数a应满足a∈[1,2],故P=错误!,选A.2.如图,扇形AOB的圆心角为120°,点P在弦AB上,且AP=错误!AB,延长OP交弧AB于点C,现向扇形AOB内投一点,则该点落在扇形AOC内的概率为________.解析:设OA=3,则AB=3错误!,所以AP=错误!,由余弦定理可求得OP=错误!,∠AOP=30°,所以扇形AOC的面积为错误!,扇形AOB的面积为3π,从而所求概率为错误!=错误!.答案:错误!与面积有关的几何概型(多维探究)角度一与平面图形面积有关的几何概型(1)(2020·黑龙江齐齐哈尔一模)随着计算机的出现,图标被赋予了新的含义,有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为三部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3,宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,此点取自图标第三部分的概率为()A.错误!B.错误!C.错误!D.错误!(2)(2020·辽宁五校联考)古希腊数学家阿基米德用穷竭法建立了这样的结论:“任何由直线和抛物线所包围的弓形,其面积都是其同底同高的三角形面积的三分之四.”如图,已知直线x=2交抛物线y2=4x于A,B两点.点A,B在y轴上的射影分别为D,C.从长方形ABCD中任取一点,则根据阿基米德这一理论,该点位于阴影部分的概率为()A.错误!B.错误!C.错误!D.错误!【解析】(1)图标第一部分的面积为8×3×1=24,图标第二部分的面积为π×(32—22)=5π,图标第三部分的面积为π×22=4π,故此点取自图标第三部分的概率为错误!.故选B.(2)在抛物线y2=4x中,取x=2,可得y=±2错误!,所以S矩形ABCD=8错误!,由阿基米德理论可得弓形面积为错误!×错误!×4错误!×2=错误!,则阴影部分的面积为8错误!—错误!=错误!.由概率比为面积比可得,点位于阴影部分的概率为错误!=错误!.故选B.【答案】(1)B (2)B角度二与线性规划交汇命题的几何概型(2020·陕西咸阳模拟)已知集合错误!表示的平面区域为Ω,若在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的概率为()A.错误!B.错误!C.错误!D.错误!【解析】因为集合错误!表示的平面区域为Ω,所以作出平面区域Ω为如图所示的△AOB.直线x+y=0与直线x—y=0垂直,故∠AOB=错误!.联立错误!得点A(1,—1),联立错误!得点B(3,3).OA=错误!=错误!,OB=错误!=3错误!,在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的区域是如图所示的半径为1的错误!圆,即扇形OCD,所以由几何概型得点到坐标原点的距离不大于1的概率P=错误!=错误!=错误!.故选B.【答案】B角度三与定积分交汇命题的几何概型(2020·洛阳第一次联考)如图,圆O:x2+y2=π2内的正弦曲线y=sin x与x轴围成的区域记为M(图中阴影部分),随机往圆O内投一个点A,则点A落在区域M内的概率是()A.错误!B.错误!C.错误!D.错误!【解析】由题意知圆O的面积为π3,正弦曲线y=sin x,x∈[—π,π]与x轴围成的区域记为M,根据图形的对称性得区域M的面积S=2错误!sin x d x=—2cos x错误!=4,由几何概型的概率计算公式可得,随机往圆O内投一个点A,则点A落在区域M内的概率P=错误!,故选B.【答案】B角度四与随机模拟相关的几何概型从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的1圆周率π的近似值为()A.错误!B.错误!C.错误!D.错误!【解析】设由错误!构成的正方形的面积为S,x错误!+y错误!<1构成的图形的面积为S′,所以错误!=错误!=错误!,所以π=错误!,故选C.【答案】C错误!求与面积有关的几何概型的概率的方法(1)确定所求事件构成的区域图形,判断是否为几何概型;(2)分别求出Ω和所求事件对应的区域面积,用几何概型的概率计算公式求解.1.(2020·江西八校联考)小华爱好玩飞镖,现有如图所示的两个边长都为2的正方形ABCD和OPQR构成的标靶图形,如果O点正好是正方形ABCD的中心,而正方形OPQR可以绕点O旋转,则小华随机向标靶投飞镖射中阴影部分的概率是()A.错误!B.错误!C.错误!D.错误!解析:选D.如图,连接OB,OA,可得△OBM与△OAN全等,所以S四边形MONB=S△AOB=错误!×2×1=1,即正方形ABCD和OPQR重叠的面积为1.又正方形ABCD和OPQR构成的标靶图形面积为4+4—1=7,故小华随机向标靶投飞镖射中阴影部分的概率是错误!,故选D.2.(一题多解)如图,线段MN是半径为2的圆O的一条弦,且MN的长为2,在圆O内,将线段MN绕点N按逆时针方向转动,使点M移动到圆O上的新位置,继续将新线段NM绕新点M按逆时针方向转动,使点N移动到圆O上的新位置,依此继续转动,…点M的轨迹所围成的区域是图中阴影部分.若在圆O内随机取一点,则该点取自阴影部分的概率为()A.4π—6错误!B.1—错误!C.π—错误!D.错误!解析:选B.法一:依题意,得阴影部分的面积S=6×[错误!(π×22)—错误!×2×2×错误!]=4π—6错误!,所求概率P=错误!=1—错误!,故选B.法二:依题意得阴影部分的面积S=π×22—6×错误!×2×2×错误!=4π—6错误!,所求概率P =错误!=1—错误!,故选B.与体积有关的几何概型(师生共研)已知正三棱锥SABC的底面边长为4,高为3,在正三棱锥内任取一点P,使得V PABC<错误! V SABC的概率是()A.错误!B.错误!C.错误!D.错误!【解析】由题意知,当点P在三棱锥的中截面以下时,满足V PABC<错误!V SABC,故使得V PABC<错误! V SABC的概率:P=错误!=错误!.【答案】B错误!与体积有关的几何概型的求法对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解.1.(2020·山西太原五中模拟)已知四棱锥PABCD的所有顶点都在球O的球面上,PA⊥底面ABCD,底面ABCD为正方形,PA=AB=2.现在球O的内部任取一点,则该点取自四棱锥PABCD内部的概率为________.解析:把四棱锥PABCD扩展为正方体,则正方体的体对角线的长是外接球的直径R,即2错误!=2R,R=错误!,则四棱锥的体积为错误!×2×2×2=错误!,球的体积为错误!×π(错误!)3=4错误!π,则该点取自四棱锥PABCD内部的概率P=错误!=错误!.答案:错误!2.一个多面体的直观图和三视图如图所示,点M是AB的中点,一只蝴蝶在几何体ADFBCE内自由飞翔,则它飞入几何体FAMCD内的概率为________.解析:因为V FAMCD=错误!×S四边形AMCD×DF=错误!a3,V ADFBCE=错误!a3,所以它飞入几何体FAMCD内的概率为错误!=错误!.答案:错误![基础题组练]1.(2020·江西九江模拟)星期一,小张下班后坐公交车回家,公交车有1,10两路.每路车都是间隔10分钟一趟,1路车到站后,过4分钟10路车到站.不计停车时间,则小张坐1路车回家的概率是()A.错误!B.错误!C.错误!D.错误!解析:选D.由题意可知小张下班后坐1路公交车回家的时间段是在10路车到站与1路车到站之间,共6分钟.设“小张坐1路车回家”为事件A,则P(A)=错误!=错误!.故选D.2.(2020·河南洛阳二模)在边长为2的正三角形内部随机取一个点,则该点到三角形3个顶点的距离都不小于1的概率为()A.1—错误!B.1—错误!C.1—错误!D.1—错误!解析:选B.若点P到三个顶点的距离都不小于1,则分别以A,B,C为圆心作半径为1的圆,则P 的位置位于阴影部分,如图所示.在三角形内部的三个扇形的面积之和为错误!×3×错误!×12=错误!,△ABC的面积S=错误!×22×sin 60°=错误!,则阴影部分的面积S=错误!—错误!,则对应的概率P=错误!=1—错误!.故选B.3.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1—错误!B.错误!C.错误!D.1—错误!解析:选A.鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π,所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1—错误!,故选A.4.(2020·河北衡水联考)在如图所示的几何图形中,四边形ABCD为菱形,C为EF的中点,EC =CF=3,BE=DF=4,BE⊥EF,DF⊥EF.若在几何图形中任取一点,则该点取自Rt△BCE的概率为()A.错误!B.错误!C.错误!D.错误!解析:选D.因为EC=3,BE=4,BE⊥EC,所以BC=5.又由题可知BD=EF=6,AC=2BE =8,所以S△BCE=S△DFC=错误!×3×4=6,S四边形ABCD=错误!AC·BD=24.由几何概型概率公式可得,所求概率P=错误!=错误!,即该点取自Rt△BCE的概率为错误!.故选D.5.(2020·湖南宁乡一中、攸县一中联考)将一线段AB分为两线段AC,CB,使得其中较长的一段AC是全长AB与另一段CB的比例中项,即满足错误!=错误!=错误!≈0.618,后人把这个数称为黄金分割,把点C称为线段AB的黄金分割点.图中在△ABC中,若点P,Q为线段BC的两个黄金分割点,在△ABC内任取一点M,则点M落在△APQ内的概率为()A.错误!B.错误!—2C.错误!D.错误!解析:选B.所求概率为错误!=错误!=错误!=错误!=错误!—2.故选B.6.如图所示,黑色部分和白色部分图形是由曲线y=错误!,y=—错误!,y=x,y=—x及圆构成的.在圆内随机取一点,则此点取自黑色部分的概率是________.解析:根据图象的对称性知,黑色部分图形的面积为圆面积的四分之一,在圆内随机取一点,则此点取自黑色部分的概率是错误!.答案:错误!7.已知平面区域Ω={(x,y)|0≤x≤π,0≤y≤1},现向该区域内任意掷点,则该点落在曲线y=sin 2x下方的概率是________.解析:y=sin2x=错误!—错误!cos 2x,所以错误!错误!d x=错误!错误!=错误!,区域Ω={(x,y)|0≤x≤π,0≤y≤1}的面积为π,所以向区域Ω内任意掷点,该点落在曲线y=sin2x下方的概率是错误!=错误!.答案:错误!8.已知O(0,0),A(2,1),B(1,—2),C错误!,动点P(x,y)满足0≤错误!·错误!≤2且0≤错误!·错误!≤2,则点P到点C的距离大于错误!的概率为________.解析:因为O(0,0),A(2,1),B(1,—2),C错误!,动点P(x,y)满足0≤错误!·错误!≤2且0≤错误!·错误!≤2,所以错误!如图,不等式组错误!对应的平面区域为正方形OEFG及其内部,|CP|>错误!对应的平面区域为阴影部分.由错误!解得错误!即E错误!,所以|OE|=错误!=错误!,所以正方形OEFG的面积为错误!,则阴影部分的面积为错误!—错误!,所以根据几何概型的概率公式可知所求的概率为错误!=1—错误!.答案:1—错误!9.如图所示,圆O的方程为x2+y2=4.(1)已知点A的坐标为(2,0),B为圆周上任意一点,求错误!的长度小于π的概率;(2)若N(x,y)为圆O内任意一点,求点N到原点的距离大于错误!的概率.解:(1)圆O的周长为4π,所以错误!的长度小于π的概率为错误!=错误!.(2)记事件M为N到原点的距离大于错误!,则Ω(M)={(x,y)|x2+y2>2},Ω={(x,y)|x2+y2≤4},所以P(M)=错误!=错误!.10.已知向量a=(2,1),b=(x,y).(1)若x∈{—1,0,1,2},y∈{—1,0,1},求向量a∥b的概率;(2)若x∈[—1,2],y∈[—1,1],求向量a,b的夹角是钝角的概率.解:(1)设“a∥b”为事件A,由a∥b,得x=2y.所有基本事件为(—1,—1),(—1,0),(—1,1),(0,—1),(0,0),(0,1),(1,—1),(1,0),(1,1),(2,—1),(2,0),(2,1),共12个基本事件.其中A={(0,0),(2,1)},包含2个基本事件.则P(A)=错误!=错误!,即向量a∥b的概率为错误!.(2)设“a,b的夹角是钝角”为事件B,由a,b的夹角是钝角,可得a·b<0,即2x+y<0,且x≠2y.基本事件为错误!所表示的区域,B=错误!,如图,区域B为图中的阴影部分去掉直线x—2y=0上的点,所以,P(B)=错误!=错误!,即向量a,b的夹角是钝角的概率是错误!.[综合题组练]1.(2020·安徽合肥模拟)已知圆C:x2+y2=4与y轴负半轴交于点M,圆C与直线l:x—y +1=0相交于A,B两点,那么在圆C内随机取一点,则该点落在△ABM内的概率为()A.错误!B.错误!C.错误!D.错误!解析:选A.由图可知,由点到直线距离公式得|OC|=错误!=错误!,则|AB|=2错误!=错误!,同理可得|MD|=错误!=错误!,所以S△MAB=错误!|AB|·|MD|=错误!,由几何概型知,该点落在△ABM内的概率为错误!=错误!=错误!,故选A.2.已知P是△ABC所在平面内一点,错误!+错误!+2错误!=0,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是()A.错误!B.错误!C.错误!D.错误!解析:选D.以PB,PC为邻边作平行四边形PBDC,则错误!+错误!=错误!,因为错误!+错误!+2错误!=0,所以错误!+错误!=—2错误!,得错误!=—2错误!,由此可得,P是△ABC边BC上的中线AO的中点,点P到BC的距离等于A到BC距离的错误!,所以S△PBC=错误!S△ABC,所以将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率为错误!=错误!.3.两位同学约定下午5:30~6:00在图书馆见面,且他们在5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,若15分钟后还未见面便离开,则这两位同学能够见面的概率是________.解析:如图所示,以5:30作为原点O,建立平面直角坐标系,设两位同学到达的时刻分别为x,y,设事件A表示两位同学能够见面,所构成的区域为A={(x,y)||x—y|≤15},即图中阴影部分,根据几何概型概率计算公式得P(A)=错误!=错误!.答案:错误!4.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O被函数y=3sin 错误!x的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.解析:根据题意,大圆的直径为函数y=3sin 错误!x的最小正周期T,又T=错误!=12,所以大圆的面积S=π·错误!错误!=36π,一个小圆的面积S′=π·12=π,故在大圆内随机取一点,此点取自阴影部分的概率为P=错误!=错误!=错误!.答案:错误!5.某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6个小组的频数是7.(1)求进入决赛的人数;(2)经过多次测试后发现,甲的成绩均匀分布在8~10米之间,乙的成绩均匀分布在9.5~10.5米之间,现甲、乙各跳一次,求甲比乙跳得远的概率.解:(1)第6小组的频率为1—(0.04+0.10+0.14+0.28+0.30)=0.14,所以总人数为错误!=50.由图易知第4,5,6组的学生均进入决赛,人数为(0.28+0.30+0.14)×50=36,即进入决赛的人数为36.(2)设甲、乙各跳一次的成绩分别为x,y米,则基本事件满足错误!,设事件A为“甲比乙跳得远”,则x>y,作出可行域如图中阴影部分所示.所以由几何概型得P(A)=错误!=错误!,即甲比乙跳得远的概率为错误!.6.已知关于x的二次函数f(x)=ax2—4bx+1.(1)设集合P={1,2,3}和Q={—1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)设点(a,b)是区域错误!内的随机点,求函数y=f(x)在区间[1,+∞)上是增函数的概率.解:(1)因为函数f(x)=ax2—4bx+1的图象的对称轴为x=错误!,要使f(x)=ax2—4bx +1在区间[1,+∞)上为增函数,当且仅当a>0且错误!≤1,即2b≤a.若a=1,则b=—1;若a=2,则b=—1,1;若a=3,则b=—1,1.所以事件包含基本事件的个数是1+2+2=5,因为事件“分别从集合P和Q中随机取一个数作为a和b”的个数是15.所以所求事件的概率为错误!=错误!.(2)由(1)知当且仅当2b≤a且a>0时,函数f(x)=ax2—4bx+1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为错误!,构成所求事件的区域为如图所示的三角形BOC部分.由错误!得交点坐标C错误!,故所求事件的概率P=错误!=错误!=错误!.。
统计与概率总复习(教案)2023-2024学年数学六年级上册北师大版
统计与概率总复习(教案)20232024学年数学六年级上册北师大版在今天的课堂上,我们将对整个学期的统计与概率知识进行一次全面的复习。
希望通过这次复习,大家能对统计与概率有一个更深入的理解和掌握。
一、教学内容我们使用的教材是北师大版六年级上册的数学教材。
今天我们将复习第108页至第111页的内容,包括统计图表的绘制,如何通过图表来分析数据,以及如何利用概率来解决实际问题。
二、教学目标通过这次复习,我希望大家能够掌握各种统计图表的绘制方法,能通过图表来分析数据,并能够运用概率知识解决一些实际问题。
三、教学难点与重点今天的教学难点是如何通过统计图表来分析数据,以及如何运用概率知识解决实际问题。
重点则是各种统计图表的绘制方法和概率的基本概念。
四、教具与学具准备为了让大家更好地理解统计图表的绘制,我准备了一些图表的模板,大家也可以带自己的尺子和圆规来绘制图表。
同时,我会准备一些实际问题的案例,供大家讨论和练习。
五、教学过程六、板书设计我会根据讲解的内容,适时在黑板上画出统计图表,并标注出重要的概率公式和概念。
七、作业设计今天的作业是完成第112页的练习题,这些题目涵盖了今天复习的所有内容,希望大家能够认真完成。
八、课后反思及拓展延伸通过今天的复习,我希望大家能够对统计与概率有一个更深的理解。
在课后,大家可以尝试找一些实际问题,利用统计与概率的知识来解决,这样能更好地巩固今天的学习内容。
同时,对于那些觉得还有困难的同学,可以多做一些相关的练习题,或者来找我讨论,我会尽力帮助大家。
重点和难点解析在上述的教学设计中,有几个重点和难点是我认为大家需要特别关注的。
一、统计图表的绘制方法统计图表的绘制是统计学的基础,也是数据分析的重要工具。
在教学中,我准备了图表的模板,这是为了让大家能够更好地理解和掌握图表的绘制方法。
我希望大家能够通过实际操作,掌握条形图、折线图、饼图等常见图表的绘制方法。
同时,我会在黑板上示范如何绘制这些图表,并标注出重要的统计指标,如均值、中位数、众数等。
六年级数学上册教案-总复习——统计与概率-北师大版
六年级数学上册教案:总复习——统计与概率(北师大版)教学目标1. 知识与技能:使学生能够熟练运用平均数、中位数、众数等统计量来描述数据集的特征,并能够根据数据绘制相应的统计图表。
2. 过程与方法:通过实际问题,培养学生运用统计方法分析问题和解决问题的能力,增强数据解读和批判性思维能力。
3. 情感态度与价值观:激发学生对统计与概率的兴趣,认识到其在日常生活中的重要性,培养学生的合作意识和科学态度。
教学内容1. 数据收集与整理:复习如何收集和整理数据,包括数据的来源、分类和记录方法。
2. 统计图表:回顾条形图、折线图、饼图等常见统计图表的绘制和应用。
3. 平均数、中位数与众数:复习这些统计量的定义、计算方法及其在描述数据时的作用。
4. 概率初步:理解事件的确定性和不确定性,掌握简单概率的计算方法。
教学重点与难点- 重点:正确计算平均数、中位数和众数,并能根据数据绘制相应的统计图表。
- 难点:理解统计量的实际意义,能够运用统计方法解决实际问题,以及正确理解和计算事件的概率。
教具与学具准备- 教具:多媒体教学设备、统计图表和实例数据集。
- 学具:练习本、计算器、直尺、彩笔等绘图工具。
教学过程1. 导入:通过展示一些日常生活中的统计数据,引发学生对统计与概率的思考,激发学习兴趣。
2. 知识回顾:系统地复习数据收集与整理的方法,各类统计图表的绘制,以及平均数、中位数、众数的计算和应用。
3. 案例分析:分析一些实际问题,让学生动手操作,绘制统计图表,计算统计量,并解释其意义。
4. 小组讨论:分组讨论不同统计量的适用场景,探讨如何利用统计量做出合理的决策。
5. 概率初步:介绍事件的确定性和不确定性,通过实例讲解概率的计算方法。
6. 课堂练习:进行课堂练习,巩固所学知识,即时反馈和解答学生的疑问。
7. 总结与反思:总结本节课的重点内容,引导学生反思学习过程,提出改进意见。
板书设计- 板书将清晰展示数据收集与整理的方法、统计图表的绘制步骤、平均数、中位数、众数的计算公式,以及概率的基本概念和计算方法。
高三数学北师大版通用,理总复习讲义 几何概型
§12.3几何概型1.几何概型向平面上有限区域(集合)G内随机地投掷点M,若点M落在子区域G1G的概率与G1的面积成正比,而与G的形状、位置无关,即P(点M落在G1)=错误!,则称这种模型为几何概型.2.几何概型中的G也可以是空间中或直线上的有限区域,相应的概率是体积之比或长度之比.3.借助模拟方法可以估计随机事件发生的概率.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.(√)(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.(√)(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.(√)(4)随机模拟方法是以事件发生的频率估计概率.(√)2.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,则某人到达路口时看见的是红灯的概率是()A.错误!B.错误!C.错误!D.错误!答案B解析以时间的长短进行度量,故P=错误!=错误!.3.点A为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧的长度小于1的概率为________.答案错误!解析如图可设=1,则由几何概型可知其整体事件是其周长3,则其概率是错误!.4.在区间[—1,2]上随机取一个数x,则x∈[0,1]的概率为________.答案错误!解析如图,这是一个长度型的几何概型题,所求概率P=错误!=错误!.5.已知直线y=x+b,b∈[—2,3],则直线在y轴上的截距大于1的概率是________.答案错误!解析区域D为区间[—2,3],d为区间(1,3],而两个区间的长度分别为5,2.故所求概率P=错误!.题型一与长度、角度有关的几何概型例1(1)在区间[—1,1]上随机取一个数x,求cos 错误!x的值介于0到错误!之间的概率.(2)如图所示,在△ABC中,∠B=60°,∠C=45°,高AD=错误!,在∠BAC内作射线AM交BC于点M,求BM<1的概率.思维启迪寻找所考查对象活动的范围.解(1)由函数y=cos 错误!x的图像知,当—1<x<—错误!或错误! <x<1时,0<cos 错误!x<错误!.由概率的几何概型知:cos 错误!x的值介于0到错误!之间的概率为错误!=错误!.(2)因为∠B=60°,∠C=45°,所以∠BAC=75°,在Rt△ABD中,AD=错误!,∠B=60°,所以BD=错误!=1,∠BAD=30°.记事件N为“在∠BAC内作射线AM交BC于点M,使BM<1”,则可得∠BAM<∠BAD时事件N 发生.由几何概型的概率公式,得P(N)=错误!=错误!.思维升华解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围.当考查对象为点,点的活动范围在线段上时,用线段长度比计算;当考查对象为线时,一般用角度比计算.事实上,当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.(1)若在例1(2)中“在∠BAC内作射线AM交BC于点M”改为“在线段BC上找一点M”则结果为________.(2)在半径为1的圆内一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率是________.答案(1)错误!(2)错误!解析(1)由∠B=60°,∠C=45°,AD=错误!得,BD=错误!=1,DC=AD=错误!,则BM<1的概率为P=错误!=错误!.(2)记事件A为“弦长超过圆内接等边三角形的边长”,如图,不妨在过等边三角形BCD的顶点B的直径BE上任取一点F作垂直于直径的弦,当弦为CD时,就是等边三角形的边长(此时F为OE中点),弦长大于CD的充要条件是圆心O到弦的距离小于OF,由几何概型公式得:P(A)=错误!=错误!.题型二与面积、体积有关的几何概型例2(1)(2012·北京)设不等式组错误!表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A.错误!B.错误!C.错误!D.错误!(2)有一个底面圆的半径为1、高为2的圆柱,点O为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P,则点P到点O的距离大于1的概率为________.思维启迪平面区域内的几何概型,一般用面积求概率,空间区域内的几何概型,一般用体积求概率.答案(1)D (2)错误!解析(1)根据题意作出满足条件的几何图形求解.如图所示,正方形OABC及其内部为不等式组表示的区域D,且区域D的面积为4,而阴影部分表示的是区域D内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4—π.因此满足条件的概率是错误!,所以选D.(2)先求点P到点O的距离小于或等于1的概率,圆柱的体积V圆柱=π×12×2=2π,以O为球心,1为半径且在圆柱内部的半球的体积V半球=错误!×错误!π×13=错误!π.则点P到点O的距离小于或等于1的概率为错误!=错误!,故点P到点O的距离大于1的概率为1—错误!=错误!.思维升华求解几何概型的概率问题,一定要正确确定试验的全部结果构成的区域,从而正确选择合理的测度,进而利用概率公式求解.(1)在区间[—π,π]内随机取出两个数分别记为a,b,则函数f(x)=x2+2ax—b 2+π2有零点的概率为()A.1—错误!B.1—错误!C.1—错误!D.1—错误!(2)在棱长为2的正方体ABCD—A1B1C1D1中,点O为底面ABCD的中心,在正方体ABCD—A1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为________.答案(1)B (2)1—错误!解析(1)由函数f(x)=x2+2ax—b2+π2有零点,可得Δ=(2a)2—4(—b2+π2)≥0,整理得a2+b2≥π2,如图所示,(a,b)可看成坐标平面上的点,试验的全部结果构成的区域为Ω={(a,b)|—π≤a≤π,—π≤b≤π},其面积SΩ=(2π)2=4π2.事件A表示函数f(x)有零点,所构成的区域为M={(a,b)|a2+b2≥π2},即图中阴影部分,其面积为S M=4π2—π3,故P(A)=错误!=错误!=1—错误!,所以选B.(2)V正=23=8,V半球=错误!×错误!π×13=错误!π,错误!=错误!=错误!,∴P=1—错误!.题型三生活中的几何概型问题例3甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率.思维启迪当基本事件受两个连续变量控制时,一般是把两个连续变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决.解这是一个几何概型问题.设甲、乙两艘船到达码头的时刻分别为x与y,A为“两船都不需要等待码头空出”,则0≤x≤24,0≤y≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1h以上或乙比甲早到达2h以上,即y—x≥1或x—y≥2.故所求事件构成集合A={(x,y)|y—x≥1或x—y≥2,x∈[0,24],y∈[0,24]}.A为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部.所求概率为P(A)=错误!=错误!=错误!=错误!.思维升华生活中的几何概型度量区域的构造方法:(1)审题:通过阅读题目,提炼相关信息.(2)建模:利用相关信息的特征,建立概率模型.(3)解模:求解建立的数学模型.(4)结论:将解出的数学模型的解转化为题目要求的结论.张先生订了一份报纸,送报人在早上6:30—7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00—8:00之间,则张先生在离开家之前能得到报纸的概率是________.答案错误!解析以横坐标x表示报纸送到时间,以纵坐标y表示张先生离家时间,建立平面直角坐标系,因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意只要点落到阴影部分,就表示张先生在离开家前能得到报纸,即所求事件A发生,所以P(A)=错误!=错误!.混淆长度型与面积型几何概型致误典例:(12分)在长度为1的线段上任取两点,将线段分成三段,试求这三条线段能构成三角形的概率.易错分析不能正确理解题意,无法找出准确的几何度量来计算概率.规范解答解设x、y表示三段长度中的任意两个.因为是长度,所以应有0<x<1,0<y<1,0<x+y<1,即(x,y)对应着坐标系中以(0,1)、(1,0)和(0,0)为顶点的三角形内的点,如图所示.[4分]要形成三角形,由构成三角形的条件知错误!所以x<错误!,y<错误!,且x+y>错误!,故图中阴影部分符合构成三角形的条件.[8分]因为阴影部分的三角形的面积占大三角形面积的错误!,故这三条线段能构成三角形的概率为错误!. [12分]温馨提醒解决几何概型问题时,还有以下两点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.方法与技巧1.区分古典概型和几何概型最重要的是看基本事件的个数是有限个还是无限多个.2.转化思想的应用对一个具体问题,可以将其几何化,如建立坐标系将试验结果和点对应,然后利用几何概型概率公式.(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在坐标轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系建立与体积有关的几何概型.失误与防范1.准确把握几何概型的“测度”是解题关键;2.几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果.A组专项基础训练(时间:35分钟)一、选择题1.“抖空竹”是中国的传统杂技,表演者在两根直径约8~12毫米的杆上系一根长度为1m的绳子,并在绳子上放一空竹,则空竹与两端距离都大于0.2m的概率为()A.错误!B.错误!C.错误!D.错误!答案B解析与两端都大于0.2m即空竹的运行范围为(1—0.2—0.2)m=0.6 m,记“空竹与两端距离都大于0.2m”为事件A,则所求概率满足几何概型,即P(A)=错误!=错误!.2.(2012·辽宁)在长为12cm的线段AB上任取一点C,现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20 cm2的概率为()A.错误!B.错误!C.错误!D.错误!答案C解析根据题意求出矩形面积为20 cm2时的各边长,再求概率.设AC=x,则BC=12—x,所以x(12—x)=20,解得x=2或x=10.故P=错误!=错误!.3.如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.错误!B.错误!C.错误!D.错误!答案C解析∵S阴影=ʃ错误!(错误!—x)d x=错误!错误!=错误!—错误!=错误!,又S正方形OABC=1,∴由几何概型知,P恰好取自阴影部分的概率为错误!=错误!.4.已知△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,则使△ABD为钝角三角形的概率为()A.错误!B.错误!C.错误!D.错误!答案C解析如图,当BE=1时,∠AEB为直角,则点D在线段BE(不包含B、E点)上时,△ABD为钝角三角形;当BF=4时,∠BAF为直角,则点D在线段CF(不包含C、F点)上时,△ABD为钝角三角形.所以△ABD为钝角三角形的概率为错误!=错误!.5.(2012·湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1—错误!B.错误!—错误!C.错误!D.错误!答案A解析设分别以OA,OB为直径的两个半圆交于点C,OA的中点为D,如图,连接OC,DC.不妨令OA=OB=2,则OD=DA=DC=1.在以OA为直径的半圆中,空白部分面积S1=错误!+错误!×1×1—错误!=1,所以整体图形中空白部分面积S2=2.又因为S扇形OAB=错误!×π×22=π,所以阴影部分面积为S3=π—2.所以P=错误!=1—错误!.二、填空题6.在长为10 cm的线段AB上任取一点G,以AG为半径作圆,则圆的面积介于36π cm2到64π cm 2的概率是________.答案错误!解析如图,以AG为半径作圆,圆面积介于36π~64π cm2,则AG的长度应介于6~8 cm之间.∴所求概率P(A)=错误!=错误!.7.(2013·湖北)在区间[—2,4]上随机地取一个数x,若x满足|x|≤m的概率为错误!,则m=________.答案3解析由|x|≤m,得—m≤x≤m.当m≤2时,由题意得错误!=错误!,解得m=2.5,矛盾,舍去.当2<m<4时,由题意得错误!=错误!,解得m=3.即m的值为3.8.在区间[1,5]和[2,4]上分别各取一个数,记为m和n,则方程错误!+错误!=1表示焦点在x轴上的椭圆的概率是________.答案错误!解析∵方程错误!+错误!=1表示焦点在x轴上的椭圆,∴m>n.如图,由题意知,在矩形ABCD内任取一点Q(m,n),点Q落在阴影部分的概率即为所求的概率,易知直线m=n恰好将矩形平分,∴所求的概率为P=错误!.9.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于错误!,则周末去看电影;若此点到圆心的距离小于错误!,则去打篮球;否则,在家看书.则小波周末不.在家看书的概率为________.答案错误!解析∵去看电影的概率P1=错误!=错误!,去打篮球的概率P2=错误!=错误!,∴不在家看书的概率为P=错误!+错误!=错误!.三、解答题10.已知向量a=(—2,1),b=(x,y).(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a·b=—1的概率;(2)若x,y在连续区间[1,6]上取值,求满足a·b<0的概率.解(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36(个);由a·b=—1有—2x+y=—1,所以满足a·b=—1的基本事件为(1,1),(2,3),(3,5),共3个;故满足a·b=—1的概率为错误!=错误!.(2)若x,y在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x,y)|1≤x≤6,1≤y≤6};满足a·b<0的基本事件的结果为A={(x,y)|1≤x≤6,1≤y≤6且—2x+y<0};画出图形如图,矩形的面积为S矩形=25,阴影部分的面积为S阴影=25—错误!×2×4=21,故满足a·b<0的概率为错误!.B组专项能力提升(时间:30分钟)1.在区间[—1,1]上随机取一个数x,则sin 错误!的值介于—错误!与错误!之间的概率为()A.错误!B.错误!C.错误!D.错误!答案D解析∵—1≤x≤1,∴—错误!≤错误!≤错误!.由—错误!≤sin 错误!≤错误!,得—错误!≤错误!≤错误!,即—错误!≤x≤1.故所求事件的概率为错误!=错误!.2.如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96,则以此实验数据为依据可以估算出椭圆的面积约为()A.7.68 B.16.32C.17.32D.8.68答案B解析根据几何概型的概率公式得黄豆落在椭圆内的概率P=错误!,而P=错误!=0.68,S矩形=24,故S椭圆=P·S矩形=0.68×24=16.32.3.已知点A在坐标原点,点B在直线y=1上,点C(3,4),若AB≤错误!,则△ABC的面积大于5的概率是()A.错误!B.错误!C.错误!D.错误!答案C解析设B(x,1),根据题意知点D(错误!,1),若△ABC的面积小于或等于5,则错误!×DB×4≤5,即DB≤错误!,所以点B的横坐标x∈[—错误!,错误!],而AB≤错误!,所以点B的横坐标x∈[—3,3],所以△ABC的面积小于或等于5的概率为P=错误!=错误!,所以△ABC的面积大于5的概率是1—P=错误!.4.在面积为S的△ABC内部任取一点P,△PBC的面积大于错误!的概率为________.答案错误!解析如图,假设当点P落在EF上时(EF∥BC),恰好满足△PBC的面积等于错误!,作PG⊥BC,AH⊥BC,则易知错误!=错误!.符合要求的点P可以落在△AEF内的任一部分,其概率为P=错误!=错误!.5.平面内有一组平行线,且相邻平行线间的距离为3cm,把一枚半径为1cm的硬币任意投掷在这个平面内,则硬币不与任何一条平行线相碰的概率是________.答案错误!解析如图所示,当硬币中心落在阴影区域时,硬币不与任何一条平行线相碰,故所求概率为错误!.6.在区间[0,2]上任取两个实数a,b,求函数f(x)=x3+ax—b在区间[—1,1]上有且仅有一个零点的概率.解因为f′(x)=3x2+a,由于a≥0,故f′(x)≥0恒成立,故函数f(x)在[—1,1]上单调递增,故函数f(x)在区间[—1,1]上有且只有一个零点的充要条件是错误!即错误!设点(a,b),则基本事件所在的区域是错误!画出平面区域,如图所示,根据几何概型的意义,所求的概率等于以图中阴影部分的面积与以2为边长的正方形的面积的比值,这个比值是错误!.7.身处广州的姐姐和身处沈阳的弟弟在春节前约定分别乘A、B两列火车在郑州火车站会面,并约定先到者等待时间不超过10分钟.当天A、B两列火车正点到站的时间是上午9点,每列火车到站的时间误差为±15分钟,不考虑其他因素,求姐弟俩在郑州火车站会面的概率.解设姐姐到的时间为x,弟弟到的时间为y,建立坐标系如图,由题意可知,当y≤x±错误!时,姐弟俩会面,又正方形的面积为错误!,阴影部分的面积为错误!,所求概率P=错误!=错误!.。
高考数学一轮复习 第十章 概率与统计 课时58 古典概型学案 文 北师大版
课时58 古典概型(课前预习案)班级:姓名:一、高考考纲要求1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件数及事件发生的概率.二、高考考点回顾1.基本事件的特点(1)任何两个基本事件是的.(2)任何事件(除不可能事件)都可以表示成基本事件的.2.古典概型的特点:—————————————————————————————3.古典概型的计算公式:三、课前检测1 .若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.23B.25C.35D.9102. 从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.错误!未找到引用源。
B.错误!未找到引用源。
C.14错误!未找到引用源。
D.16课时58古典概型(课内探究案)班级姓名:考点一:基本事件个数的求解【典例1】连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面. (1)写出这个试验的所有基本事件;(2)“恰有两枚正面向上”这一事件包含哪几个基本事件?【变式1】一个口袋内装有2个白球和3个黑球,从中任意取出3个球. (1)写出这个试验的所有基本事件(2)写出“取出的3个球至少有1个是黑球”的所有基本事件.考点二古典概型的求解【典例2】抛掷两颗骰子,求:(1)点数之和出现7点的概率;(2)出现两个4点的概率.【变式2】袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【当堂检测】1. 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为()A.12B.13C.14D.162. 在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是()A.310B.15C.110D.1123.盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ _ _.4.若将一颗质地均匀的骰子(一种六个面分别注有1,2,3,4,5,6的正方体玩具)先后抛掷2次,则出现向上的点数之和为4的概率为.课后巩固案班级姓名 : ____________ 完成时间:30分钟1.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______.2.从3男3女共6名学生中任选2名(每名同学被选中的机会相等),则2名都是女同学的概率等于_________.3.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2n m <+的概率.4.现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(I)所取的2道题都是甲类题的概率; (II)所取的2道题不是同一类题的概率.1. 设集合{12}{123}A B ==,,,,,分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点()P a b ,,记“点()P a b ,落在直线x y n +=上”为事件(25)n C n n ≤≤∈N ,,若事件n C 的概率最大,则n 的所有可能值为( ) A .3 B .4C .2和5D .3和42.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是3.现有编号分别为1,2,3,4,5的五道不同的物理题和编号分别为6,7,8,9的四道不同的化学题.甲同学从这九道题中一次随机抽取两道题,每题被抽到的概率是相等的,用符号(,)x y 表示事件“抽到的两题的编号分别为x 、y ,且x y <”.(1)共有多少个基本事件?并列举出来;(2)求甲同学所抽取的两题的编号之和小于17但不小于11的概率.参考答案 课前检测 1.D 2.B【典例1】(1)(正正正)、(正反正)、(正正反)、(反正正)、(正反反)、(反正反)、(反反正)、 (反反反).(2)(正正反)、(正反正)、(反正正).【变式1】(1)记白球分别为12,A A ,黑球分别为123,,B B B .则基本事件有:121{,,}A A B ,122{,,}A A B ,123{,,}A A B ,112{,,}A B B ,113{,,}A B B ,123{,,}A B B ,212{,,}A B B ,213{,,}A B B ,223{,,}A B B ,123{,,}B B B .(2)121{,,}A A B ,122{,,}A A B ,123{,,}A A B ,112{,,}A B B ,113{,,}A B B ,123{,,}A B B ,212{,,}A B B ,213{,,}A B B ,223{,,}A B B ,123{,,}B B B .【典例2】(1)16;(2)136. 【变式2】(1)310;(2)815. 【当堂检测】 1.B 2.A 3.12 4.112.1.1 52. 1 53.(1)13;(2)1316.4.(1)25;(2)815.1.D2.3 103.(1)36个基本事件;略(2)5 12.。
2020版高考数学总复习第十章统计与统计案例、概率第6节几何概型课件文北师大版
足 VP-ABC<12VS-ABC,又 V 锥 S-A′B′C′=12×14V 锥 S-ABC=18V 锥 S-ABC.
∴
事
件
“VP
-
ABC<
1 2
VS
-
ABC”
的
概
率
P
=
V台体A′B′C′-ABC V锥S-ABC
=
V锥S-AVBC锥-S-VAB锥CS-A′B′C′=78.
答案 A
[思维升华] 1.区分古典概型和几何概型最重要的是看基本事件的个数是有限个还是无限个. 2.判断几何概型中的几何度量形式的方法:
考点一 与长度(角度)有关的几何概型
【例1】 (1)(2019·宜春期末)在区间[-1,4]内任取一个实数a,使得关于x的方程x2+2 =a有实数根的概率为( )
2
2
3
3
A.3
B.5
C.5
D.4
(2)如图,四边形 ABCD 为矩形,AB= 3,BC=1,以 A 为圆
心,1 为半径作四分之一个圆弧D︵E,在∠DAB 内任作射线 AP,
1
π
1
π
A.4
B.8
C.2
D.4
x-y+1≥0, (2)(2018·石家庄调研)在满足不等式组x+y-3≤0,的平面内随机取一点 M(x0,y0),
y≥0
设事件 A=“y0<2x0”,那么事件 A 发生的概率是( )
1
3
1
2
A.4
B.4
C.3
D.3
解析 (1)设正方形的边长为2,则面积S正方形=4. 又正方形内切圆的面积S=π×12=π. 所以根据对称性,黑色部分的面积 S 黑=π2.
北师大版数学高三下册概率与统计教案
北师大版数学高三下册概率与统计教案一、教学目标通过本节课的学习,使学生能够:1. 理解概率与统计的基本概念和应用场景;2. 掌握事件、样本空间、概率等基本概念的定义与计算方法;3. 运用概率与统计的理论解决实际问题;4. 培养学生的逻辑思维和数学建模能力。
二、教学重点1. 概率的概念与性质;2. 事件与样本空间的关系;3. 概率计算的基本方法;4. 统计数据的收集、整理与分析。
三、教学难点1. 概率与统计的应用;2. 概率计算的复杂问题;3. 统计数据的处理与解读。
四、教学准备1. 教材《数学高三下册》北师大版;2. 黑板、粉笔、教具等;3. 复习资料、试题集。
五、教学过程1. 导入(5分钟)教师引入概率与统计的学习内容,通过提问与学生进行互动,激发学生的思维和兴趣,为接下来的学习做好铺垫。
2. 概率基础知识讲解(15分钟)- 介绍概率的定义,即某个事件发生的可能性;- 讲解样本空间与事件的关系,样本空间是所有可能结果的集合,事件是样本空间的子集;- 引入概率的计算方法,包括频率法和几何法。
3. 概率计算方法演练(20分钟)教师结合具体的问题,进行概率计算方法的演示,并让学生通过课堂练习独立完成相关的计算题目。
4. 统计基础知识讲解(15分钟)- 介绍统计的概念和作用,统计是用来描述和分析数据的方法;- 引导学生了解统计的常见应用领域,如调查、样本抽样等;- 讲解常见统计指标的计算方法,包括均值、中位数、众数等。
5. 统计数据处理方法演练(20分钟)教师提供一些实际数据,让学生进行数据的整理、汇总和分析,提取有效信息,进行相关的统计计算,并思考实际问题的解决方法。
6. 深化拓展(10分钟)教师给予学生一些拓展问题,要求学生运用概率与统计的知识,解决实际问题,培养学生的数学建模和解决实际问题的能力。
7. 总结与反思(5分钟)教师对本节课的学习内容进行总结,并与学生一起回顾学习的要点和难点,鼓励学生反思学习过程中的问题和收获。
(江西版)高考数学总复习 第十章10.2 古典概型与几何概型教案 理 北师大版
2013年高考第一轮复习数学北师(江西版)理第十章10.2 古典概型与几何概型 考纲要求1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件数及事件发生的概率.3.了解随机数的意义,能运用模拟方法估计概率.4.了解几何概型的意义.知识梳理1.基本事件有如下特点:(1)任何两个基本事件是______的;(2)任何事件(除不可能事件)都可以表示成____________.2.古典概型一般地,一次试验有下面两个特征:(1)有限性,即在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性,每个基本事件发生的可能性是相等的,称具有这两个特点的概率模型为古典概型.判断一个试验是否是古典概型,在于该试验是否具有古典概型的两个特征:试验结果的有限性和每一个试验结果出现的等可能性.3.古典概型的概率公式如果一次试验中所有可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是______;如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=______.4.几何概型向平面上有限区域(集合)G 内随机地投掷点M ,若点M 落在子区域G 1G 的概率与G 1的________成正比,而与G 的形状、位置无关,即P (点M 落在G 1)=____________, 则称这种模型为几何概型.几何概型中的G 也可以是空间中或直线上的有限区域,相应的概率是________之比或________之比.5.几何概型的特点一是__________,即在一次试验中,基本事件的个数是无限的;二是________,即每一个事件发生的可能性是均等的.6.几何概型的试验中,事件A 的概率P (A )只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关.求试验中几何概型的概率,关键是求得事件所占区域和整个区域Ω的几何度量,然后代入公式即可求解.7.用随机数估计事件发生的概率:利用计算机或计算器产生一些满足一定条件的数,其中每一个数产生的机会是一样的,通过模拟一些试验,可以替代我们进行大量的重复试验,从而估计得到事件的概率.基础自测1.有100张卡片(从1号到100号),从中任取1张,取到卡号是7的倍数的概率为( ). A .750 B .7100 C .748 D .151002.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( ).A .45B .35C .25D .153.一根木棒长5米,从任意位置砍断,则截得两条木棒都大于2米的概率为( ).A .15B .25C .35D .454.有一杯1 L 的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1 L 水,则小杯水中含有这个细菌的概率为( ).A .0B .0.1C .0.01D .15.四边形ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ).A .π4B .1-π4C .π8D .1-π86.盒子中共有大小相同的3个白球,1个黑球,若从中随机摸出两个球,则它们颜色不同的概率是__________.思维拓展1.是不是所有的试验都是古典概型?提示:不是.在一次试验中,可能出现的结果是有限个,并且每个试验结果出现的可能性是均等的,这样的试验才是古典概型.2.怎样理解古典概型中每个基本事件的等可能性?提示:就是试验的每种结果出现的可能性是均等的.例如先后抛掷两枚均匀的硬币,共出现“正、正”,“正、反”,“反、正”,“反、反”这四种等可能的结果.如果认为只有“两个正面”,“两个反面”、“一正一反”这三种结果,那么显然这三种结果不是等可能的.3.几何概型与古典概型有何区别与联系?提示:几何概型与古典概型的区别在于它的试验结果不是有限个,其特点是它的试验结果在一个区域内均匀分布,所以几何概型的概率的大小与该事件所在区域的形状和位置无关,只与该区域的大小有关.利用几何概型的概率公式P (A )=A 的测度Ω的测度,求概率的思路与古典概型的概率求解思路一样,都属于“比例解法”.一、古典概型及其概率计算【例1】袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?方法提炼1.判断一个概率问题是否为古典概型,关键是看它是否同时满足两个特征:有限性和等可能性,同时满足这两个特征的概率模型才是古典概型.2.求古典概型的概率时,一般是先用列举法把试验所包含的基本事件一一列举出来,然后再找出所求事件A 所包含的基本事件的个数,利用公式P (A )=m n即可求得事件A 的概率.请做[针对训练]1二、古典概型的应用【例2-1】甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i ,j )分别表示甲、乙抽到的牌的数字,写出甲、乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜,你认为此游戏是否公平,说明你的理由.【例2-2】设平面向量a m =(m,1),b n =(2,n ),其中m ,n ∈{1,2,3,4}.(1)请列出有序数组(m ,n )的所有可能结果;(2)记“使得a m ⊥(a m -b n )成立的(m ,n )”为事件A ,求事件A 发生的概率.方法提炼列举法可以使我们明确基本事件的构成情况,该法适用于基本事件的个数较少的情况.列举时要按规律分类列举,以避免重复或遗漏的情况出现.请做[针对训练]2三、几何概型及其应用【例3-1】在铸铁过程中,经常出现铸件里面混入气泡的情况,但是如果在加工过程中气泡不暴露在表面,对产品就不会造成影响,否则产品就会不合格.在一个棱长为4 cm 的正方体铸件中不小心混入一个半径为0.1 cm 的球形气泡,在加工这个铸件的过程中,如果将铸件去掉0.5 cm 的厚度后产品外皮没有麻眼(即没有露出气泡),产品就合格,问产品合格的概率是多少?【例3-2】已知关于x 的一元二次方程x 2-2(a -2)x -b 2+16=0.(1)若a ,b 是一枚骰子先后投掷两次所得到的点数,求方程有两个正实数根的概率;(2)若a ∈[2,6],b ∈[0,4],求一元二次方程没有实数根的概率.方法提炼1.几何概型的特征:一是基本事件的无穷性,二是基本事件的等可能性.常见的几何概型问题有:与长度有关的几何概型,与面积有关的几何概型,与体积有关的几何概型.2.解决几何概型问题的一般步骤:(1)明确取点的区域Ω;(2)确定所求概率的事件中的点的区域A ;(3)计算区域Ω和区域A 的几何度量μΩ和μA ;(4)计算所求问题的概率P (A )=μA μΩ. 请做[针对训练]3考情分析从近三年的高考试题来看,古典概型与几何概型是高考中经常考查的内容.其中,古典概型还是考查概率知识的重点.题型可以涉及选择题、填空题和解答题等多种形式,题目难度以中低档为主.针对训练1.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为( ).A .0.35B .0.25C .0.20D .0.152.(2011陕西高考,理10)甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( ).A .136B .19C .536D .163.(2011福建高考,理4)如图,矩形ABCD 中,点E 为边CD 的中点.若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( ).A .14B .13C .12D .234.设关于x 的一元二次方程x 2+2ax +b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.参考答案基础梳理自测知识梳理1.(1)互斥 (2)基本事件的和3.1n m n4.面积 G 1的面积G 的面积体积 长度 5.无限性 等可能性基础自测1.A 解析:有100张卡片(从1号到100号),从中任取1张,有100种取法,而卡号是7的倍数的有14种,所以概率为750. 2.D 解析:基本事件共有5×3=15种,其中满足b >a 的有b =2,a =1;b =3,a =1;b =3,a =2,共3种,所以b >a 的概率为315=15. 3.A 解析:满足条件的砍断点应落在2<x <3的位置上,即1米长的线段上,故所求事件的概率为15. 4.B 解析:小杯水含有这个细菌的概率为P =0.11=0.1. 5.B 解析:如图,要使图中的点到O 的距离大于1,则该点需取在图中阴影部分,故概率为P =2-π22=1-π4. 6.12解析:基本事件总数为6种情况,其中颜色不同的共有3种情况,所以所求概率为P =36=12. 考点探究突破【例1】解:(1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸中白球的可能性为511,同理可知摸中黑球、红球的可能性均为311,显然这三个基本事件出现的可能性不相等,所以以颜色为划分基本事件的依据的概率模型不是古典概型.【例2-1】解:(1)甲、乙二人抽到的牌的所有情况(方片4用4′表示,红桃2,红桃3,红桃4分别用2,3,4表示)为:(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4)共12种不同情况.(2)甲抽到3,乙抽到的牌只能是2或4或4′,因此乙抽到的牌的数字大于3的概率为23. (3)由甲抽到的牌比乙大的有(3,2),(4,2),(4,3),(4′,2),(4′,3)5种,甲胜的概率为P 1=512,乙胜的概率为P 2=712,∵512<712,∴此游戏不公平. 【例2-2】解:(1)有序数组(m ,n )的所有可能结果为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.(2)由a m ⊥(a m -b n )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个.又基本事件的总数为16,故所求的概率为P (A )=216=18. 【例3-1】解:记产品合格为事件A ,试验的全部结果所构成的区域是棱长为4 cm 的正方体.由条件可以发现要使产品合格,球心距离正方体表面要大于0.6 cm ,所以球心必须在正方体内的一个棱长为2.8 cm 的正方体内部才符合题意,所以构成事件A 的区域是棱长为2.8 cm 的正方体,这样产品合格的概率P (A )=2.8343=0.343. 【例3-2】解:(1)基本事件(a ,b )共有36个,且a ,b ∈{1,2,3,4,5,6},方程有两个正实数根等价于a -2>0,16-b 2>0,△≥0,即a >2,-4<b <4,(a -2)2+b 2≥16.设“一元二次方程有两个正实数根”为事件A ,则事件A 所包含的基本事件数为(6,1),(6,2),(6,3),(5,3)共4个,故所求的概率为P (A )=436=19. (2) 试验的全部结果构成区域Ω={(a ,b )|2≤a ≤6,0≤b ≤4},其面积为S (Ω)=16. 设“一元二次方程无实数根”为事件B ,则构成事件B 的区域为B ={(a ,b )|2≤a ≤6,0≤b ≤4,(a -2)2+b 2<16},其面积为S (B )=14×π×42=4π, 故所求的概率为P (B )=4π16=π4. 演练巩固提升针对训练1.B 解析:由题意可知,在20组随机数中表示三次投篮恰有两次命中的随机数为191,271,932,812,393,共5组随机数,故所求概率为520=0.25. 2.D 解析:∵甲、乙参观每一个景点是随机且独立的,∴在最后一个小时参观哪一个景点是等可能的,∴甲有6种可能性,乙也有6种可能性,基本事件空间总数n =36,事件“二人同在一个景点参观”的基本事件数m =6,由古典概型概率公式得P =m n =16. 3.C 解析:由题意知,该题考查几何概型,故P =ABE ABCDS S 矩形=12AB ·BC AB ·BC =12. 4.解:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为P (A )=912=34. (2)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}.构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }.所以所求的概率为P (A )=3×2-12×223×2=23.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学总复习第十章统计与统计案例概率第6节几何概型教案文含解析北师大版第6节 几何概型最新考纲 1.了解随机数的意义,能运用模拟方法估计概率;2.了解几何概型的意义.知 识 梳 理1.几何概型的定义向平面上有限区域(集合)G 内随机地投掷点M ,若点M 落在子区域G 1G 的概率与G 1的面积成正比,而与G 的形状、位置无关,即P (点M 落在G 1)=G 1的面积G 的面积,则称这种模型为几何概型.2.几何概型的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性. 3.几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)随机模拟方法是以事件发生的频率估计概率.( ) (2)从区间[1,10]内任取一个数,取到1的概率是110.( )(3)概率为0的事件一定是不可能事件.( )(4)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) 答案 (1)√ (2)× (3)× (4)√2.(必修3P153B2改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析 如题干选项中图,各种情况的概率都是其面积比,中奖的概率依次为P (A )=38,P (B )=28,P (C )=26,P (D )=13,所以P (A )>P (C )=P (D )>P (B ). 答案 A3.(必修3P150讲解引申改编)如图,正方形的边长为2,向正方形ABCD 内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积的估计值为____________.解析 由题意可得正方形面积为4,设不规则图形的面积为S ,由几何概型概率公式可得S4=30200,∴S =0.6. 答案 0.64.(2016·全国Ⅱ卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.710B.58C.38D.310解析 至少需要等待15秒才出现绿灯的概率为40-1540=58.答案 B5.(2018·渭南模拟)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( ) A.18B.16C.127D.38解析 由题意知小蜜蜂的安全飞行范围为以这个正方体的中心为中心,且棱长为1的小正方体内.这个小正方体的体积为1,大正方体的体积为27,故安全飞行的概率为p =127.答案 C6.(2018·全国Ⅰ卷)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A.p 1=p 2B.p 1=p 3C.p 2=p 3D.p 1=p 2+p 3解析 不妨设△ABC 为等腰直角三角形,AB =AC =2,则BC =22,所以区域Ⅰ的面积即△ABC 的面积,为S 1=12×2×2=2,区域Ⅲ的面积S 3=π×(2)22-S 1=π-2.区域Ⅱ的面积为S 2=π·⎝ ⎛⎭⎪⎫222-S 3=2.根据几何概型的概率计算公式,得p 1=p 2=2π+2,p 3=π-2π+2,所以p 1≠p 3,p 2≠p 3,p 1≠p 2+p 3.答案 A考点一 与长度(角度)有关的几何概型【例1】 (1)(2019·宜春期末)在区间[-1,4]内任取一个实数a ,使得关于x 的方程x 2+2=a 有实数根的概率为( ) A.23B.25C.35D.34(2)如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ︵,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.解析 (1)若方程x 2+2=a 有实根,可知a -2≥0,即a ≥2,那么p =4-24-(-1)=25.(2)连接AC ,如图所示tan∠CAB =CB AB=13=33,所以∠CAB =π6,满足条件的事件是直线AP 在∠CAB 内且AP 与BC 相交时,即直线AP与线段BC 有公共点,所以所求事件的概率p =∠CAB ∠DAB =π6π2=13.答案 (1)B (2)13规律方法 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.(1)第(2)题易出现“以线段BD 为测度”计算几何概型的概率,导致错求p =12.(2)当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 【训练1】 (1)(2016·全国Ⅰ卷)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A.13B.12C.23D.34(2)如图所示,在直角坐标系内,射线OT 落在π6角的终边上,任作一条射线OA ,则射线OA落在∠yOT 内的概率为________.解析 (1)如图所示,画出时间轴:小明到达的时间会随机的落在图中线段AB 上,而当他的到达时间落在线段AC 或DB 上时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率p =10+1040=12.(2)因为射线OA 在坐标系是等可能分布的,所以OA 落在∠yOT 内的概率为p =π2-π62π=16.答案(1)B (2)16考点二 与面积有关的几何概型 多维探究角度1 与平面图形面积有关的问题【例2-1】 (1)(2019·烟台诊断)七巧板是我国古代劳动人民的发明之一,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的,如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率是( )A.14B.18C.38D.316(2)(2018·黄冈、黄石联考)若张三每天的工作时间在6小时至9小时之间随机均匀分布,则张三连续两天平均工作时间不少于7小时的概率是( ) A.29B.13C.23D.79解析 (1)不妨设小正方形的边长为1,则两个小等腰直角三角形的边长分别为1,1,2,两个大等腰直角三角形的边长为2,2,22,即最大正方形的边长为22,则较大等腰直角三角形的边长分别为2,2,2,故所求概率p =1-12×2×2+1×1×2+12×22×228=18.(2)设第一天工作的时间为x 小时,第二天工作的时间为y小时,则⎩⎪⎨⎪⎧6≤x ≤9,6≤y ≤9,因为连续两天平均工作时间不少于7小时,所以x +y2≥7,即x +y ≥14,⎩⎪⎨⎪⎧6≤x ≤9,6≤y ≤9表示的区域面积为9,其中满足x +y ≥14的区域面积为9-12×2×2=7,∴张三连续两天平均工作时间不少于7小时的概率是79.答案 (1)B (2)D角度2 与线性规划有关的问题【例2-2】 (2019·上饶期末)关于x ,y 的不等式组⎩⎪⎨⎪⎧x ≤4,y ≥2,x -y +2≥0所表示的平面区域记为M ,不等式(x -4)2+(y -3)2≤1所表示的平面区域记为N ,若在M 内随机取一点,则该点取自N 的概率为( ) A.π16B.π8C.14D.12解析 关于实数x ,y 的不等式组⎩⎪⎨⎪⎧x ≤4,y ≥2,x -y +2≥0所表示的平面区域记为M ,面积为12×4×4=8,不等式(x -4)2+(y -3)2≤1所表示的区域记为N ,且满足不等式组⎩⎪⎨⎪⎧x ≤4,y ≥2,x -y +2≥0的面积为12π,所以在M 内随机取一点,则该点取自N 的概率为12π8=π16.答案 A规律方法 (1)几何概型与平面几何的交汇问题:要利用平面几何的相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率; (2)几何概型与线性规划的交汇问题:先根据约束条件作出可行域,再确定形状,求面积大小,进而代入公式求概率.【训练2】 (1)(2017·全国Ⅰ卷)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4(2)(2018·石家庄调研)在满足不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0的平面内随机取一点M (x 0,y 0),设事件A =“y 0<2x 0”,那么事件A 发生的概率是( ) A.14B.34C.13D.23解析 (1)设正方形的边长为2,则面积S 正方形=4. 又正方形内切圆的面积S =π×12=π. 所以根据对称性,黑色部分的面积S 黑=π2.由几何概型的概率公式,概率p =S 黑S 正方形=π8. (2)作出不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0表示的平面区域(即△ABC ),其面积为 4.事件A =“y 0<2x 0”表示的区域为△AOC ,其面积为3.所以事件A 发生的概率是34.答案 (1)B (2)B考点三 与体积有关的几何概型【例3】 (1)在5升水中有一个病毒,现从中随机地取出1升水,含有病毒的概率是________. (2)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,则使四棱锥M -ABCD 的体积小于16的概率为________.解析 (1)“取出1升水,其中含有病毒”这一事件记作事件A ,则P (A )=取出的水的体积所有水的体积=15.从而所求的概率为15. (2)设四棱锥M -ABCD 的高为h ,由于S 正方形ABCD =1,V 正方体=1,且h 3S 正方形ABCD <16.∴h <12,则点M 在正方体的下半部分,故所求事件的概率p =12V 正方体V 正方体=12.答案 (1)15 (2)12规律方法 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.【训练3】 已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P -ABC <12V S -ABC 的概率是( )A.78B.34C.12D.14解析 由题意知,当点P 在三棱锥的中截面A ′B ′C ′以下时,满足V P -ABC <12V S -ABC ,又V 锥S -A ′B ′C ′=12×14V 锥S -ABC =18V 锥S -ABC . ∴事件“V P -ABC <12V S -ABC ”的概率P =V 台体A ′B ′C ′-ABC V 锥S -ABC =V 锥S -ABC -V 锥S -A ′B ′C ′V 锥S -ABC =78.答案 A[思维升华]1.区分古典概型和几何概型最重要的是看基本事件的个数是有限个还是无限个.2.判断几何概型中的几何度量形式的方法: (1)当题干是双重变量问题,一般与面积有关系.(2)当题干是单变量问题,要看变量可以等可能到达的区域;若变量在线段上移动,则几何度量是长度;若变量在平面区域(空间区域)内移动,则几何度量是面积(体积),即一个几何度量的形式取决于该度量可以等可能变化的区域. [易错防范]1.准确把握几何概型的“测度”是解题关键,无论长度、面积、体积,“测度”只与大小有关,而与形状和位置无关.2.几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果.基础巩固题组 (建议用时:35分钟)一、选择题1.(2019·安庆二模)中国人民银行发行了2018中国戊戌(狗)年金银纪念币一套,如图所示是一枚3克圆形金质纪念币,直径为18 mm ,小米同学为了测算图中装饰狗的面积,他用1枚针向纪念币上投掷500次,其中针尖恰有150次落在装饰狗的身体上,据此可估计装饰狗的面积大约是( )A.486π5 mm 2B.243π10 mm 2C.243π5mm 2D.243π20mm 2解析 设装饰狗的面积为S mm 2.由题意得Sπ×⎝ ⎛⎭⎪⎫1822=150500,∴S =243π10mm 2. 答案 B2.已知以原点O 为圆心,1为半径的圆以及函数y =x 3的图像如图所示,则向圆内任意投掷一粒小米(视为质点),该小米落入阴影部分的概率为( )A.12B.14C.16D.18解析 由图形的对称性知,所求概率为14π×12π×12=14.答案 B3.(2018·潍坊一中质检)在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( ) A.34B.23C.13D.14解析 由-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1,得12≤x +12≤2, 解得0≤x ≤32,所以事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为322=34.答案 A4.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A.π8B.π16C.1-π8D.1-π16解析 正方形的面积为82=64,内切圆半径为4,中间黑色大圆的半径为2,黑色小圆的半径为1,所以白色区域的面积为π×42-π×22-4×π×12=8π,所以黑色区域的面积为64-8π,所以在正方形图案上随机取一点,该点取自黑色区域的概率p =64-8π64=1-π8.答案 C5.有一底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.13B.23C.34D.14解析 设点P 到点O 的距离小于等于1的概率为P 1,由几何概型,则p 1=V 半球V 圆柱=2π3×13π×12×2=13. 故点P 到点O 的距离大于1的概率p =1-13=23.答案 B6.在如图所示的圆形图案中有12片树叶,构成树叶的圆弧均相同且所对的圆心角为π3,若在圆内随机取一点,则此点取自树叶(即圆中阴影部分)的概率是( )A .2-33πB .4-63πC.13-32πD.23解析 设圆的半径为r ,根据扇形面积公式和三角形面积公式得阴影部分的面积S =24⎝ ⎛⎭⎪⎫16πr 2-34r 2=4πr 2-63r 2,圆的面积S ′=πr 2,所以此点取自树叶(即图中阴影部分)的概率为S S ′=4-63π. 答案 B7.(2019·西安调研)若函数f (x )=⎩⎪⎨⎪⎧e x,0≤x <1,ln x +e ,1≤x ≤e 在区间[0,e]上随机取一个实数x ,则f (x )的值不小于常数e 的概率是( ) A.1eB.1-1eC.e1+eD.11+e解析当0≤x<1时,恒有f(x)=e x<e,不满足题意.当1≤x≤e时,f(x)=ln x+e.由ln x+e≥e,得1≤x≤e.∴所求事件的概率p=e-1e=1-1e.答案 B8.(2016·全国Ⅱ卷)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nmB.2nmC.4mnD.2mn解析如图,数对(x i,y i)(i=1,2,…,n)表示的点落在边长为1的正方形OABC内(包括边界),两数的平方和小于1的数对表示的点落在半径为1的四分之一圆(阴影部分)内.由几何概型的概率计算公式知p=S扇形S正方形=14πR2R2=π4,又p=mn,所以π4=mn,故π=4mn.答案 C二、填空题9.在等腰Rt△ABC中,∠C=90°,在直角边BC上任取一点M,则∠CAM<30°的概率是________.解析∵点M在直角边BC上是等可能出现的,∴“测度”是长度.设直角边长为a,则所求概率为33aa=33.答案3310.记函数f(x)=6+x-x2的定义域为D.在区间[-4,5]上随机取一个数x,则x∈D的概率是________.解析由6+x-x2≥0,得-2≤x≤3,即D=[-2,3].故所求事件的概率p =3-(-2)5-(-4)=59.答案 5911.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________.解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝ ⎛⎭⎪⎫-12,32.由几何概型的概率公式,所求概率p =S 四边形OACDS △OAB =2-142=78.答案 7812.如图,在长方体ABCD -A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A -A 1BD 内的概率为________.解析 因为V A -A 1BD =V A 1-ABD =13AA 1×S △ABD =16×AA 1×S 矩形ABCD =16V 长方体,故所求概率为V A -A 1BD V 长方体=16.答案 16能力提升题组 (建议用时:15分钟)13.(2018·西北工大附中调研)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( )A.34+12πB.12+1πC.12-1πD.14-12π解析 由|z |≤1得(x -1)2+y 2≤1,由题意作图如图所示,则满足条件的区域为图中阴影部分,∴y ≥x 的概率为π4-12π=14-12π.答案 D14.(2019·石家庄模拟)已知P 是△ABC 所在平面内一点,PB →+PC →+2PA →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( ) A.14B.13C.23D.12解析 以PB ,PC 为邻边作平行四边形PBDC , 则PB →+PC →=PD →,因为PB →+PC →+2PA →=0, 所以PB →+PC →=-2PA →,得PD →=-2PA →,由此可得,P 是△ABC 边BC 上的中线AO 的中点,点P 到BC 的距离等于A 到BC 的距离的12,所以S △PBC =12S △ABC ,所以将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为S △PBC S △ABC =12. 答案 D15.在平面区域⎩⎪⎨⎪⎧x +y -4≤0,x >0,y >0内随机取一点(a ,b ),则函数f (x )=ax 2-4bx +1在区间[1,+∞)上是增函数的概率为________.解析 不等式组表示的平面区域为如图所示的△AOB 的内部及边界AB (不包括边界OA ,OB ),则S △AOB =12×4×4=8.函数f (x )=ax 2-4bx +1在区间[1,+∞)上是增函数,则应满足a >0,且x =4b2a ≤1,满足⎩⎪⎨⎪⎧a >0,a ≥2b ,可得对应的平面区域如图中阴影部分(包括边界OC ,BC ,不包括边界OB),由⎩⎪⎨⎪⎧a=2b,a+b-4=0,解得a=83,b=43,所以S△COB=12×4×43=83,根据几何概型的概率计算公式,可知所求的概率为838=13.答案1316.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h,乙船停泊时间为2 h,则它们中的任意一艘都不需要等待码头空出的概率为________.解析设甲、乙两艘船到码头的时刻分别为x与y,记事件A为“两船都不需要等待码头空出”,则0≤x≤24,0≤y≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h以上或乙比甲早到达2 h以上,即y-x≥1或x-y≥2.故所求事件构成集合A={(x,y)|y -x≥1或x-y≥2,x∈[0,24],y∈[0,24]}.A为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部.所求概率为P(A)=A的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576=1 0131 152.答案1 0131 152。