大学物理实验-温度传感器实验报告(可编辑修改word版)

合集下载

大学物理实验-温度传感器实验报告

大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。

本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。

热电偶的温差电动势关于温度有很好的线性性质。

PN节作为常用的测温元件,线性性质也较好。

本实验还利用PN节测出了波尔兹曼常量和禁带宽度,与标准值符合的较好。

关键词:定标转化拟合数学软件EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR1.引言温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。

温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。

作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。

2.热电阻的特性2.1实验原理2.1.1Pt100铂电阻的测温原理和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。

利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。

铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。

按IEC751国际标准,铂电阻温度系数TCR定义如下:TCR=(R100-R0)/(R0×100) (1.1)其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。

Pt100铂电阻的阻值随温度变化的计算公式如下:Rt=R0[1+At+B t2+C(t-100)t3] (-200℃<t<0℃) (1.2)式中Rt表示在t℃时的电阻值,系数A、B、C为:A=3.908×10−3℃−1;B=-5.802×10−7℃−2;C=-4.274×10−12℃−4。

最新大学物理实验-温度传感器实验报告

最新大学物理实验-温度传感器实验报告

最新大学物理实验-温度传感器实验报告实验目的:1. 了解温度传感器的工作原理及其在物理实验中的应用。

2. 掌握不同类型温度传感器的特性和使用方法。

3. 通过实验测定不同环境下的温度变化,并学会分析实验数据。

实验仪器:1. 数字万用表2. K型热电偶3. PT100温度传感器4. 恒温水槽5. 冰盐混合物6. 热水浴7. 标准温度计(作为参考)实验原理:温度传感器是将温度变化转换为电信号的设备。

本实验主要使用了两种类型的温度传感器:热电偶和PT100。

热电偶是基于塞贝克效应工作的,即当两种不同金属或合金连接在一起形成回路,且两个接点处于不同温度时,就会产生电动势,从而测量温度。

PT100是基于电阻随温度变化的原理,其电阻值与温度之间有确定的关系,通过测量电阻值即可得到温度。

实验步骤:1. 准备实验仪器,确保所有设备处于良好工作状态。

2. 使用数字万用表配置K型热电偶,校准设备。

3. 将PT100温度传感器与数字万用表连接,进行校准。

4. 制备冰盐混合物,建立低温环境。

5. 将热电偶和PT100分别浸入冰盐混合物中,记录并比较两种传感器的读数与标准温度计的读数。

6. 准备热水浴,建立高温环境。

7. 重复步骤5,将传感器浸入热水浴中,记录并比较读数。

8. 分析不同温度下两种传感器的精度和稳定性。

9. 根据实验数据,绘制温度-电阻/温度-电动势的图表。

实验数据与分析:(此处填写实验中收集的数据表格和图表,并对数据进行分析,比如不同温度区间的线性关系,传感器的响应时间,精度对比等。

)实验结论:通过本次实验,我们了解了不同类型温度传感器的工作原理和特性。

通过实际操作和数据比较,我们发现K型热电偶在高温区域的测量效果较好,而PT100在低温区域更为精确。

同时,我们也认识到了温度传感器在实际应用中的局限性和需要注意的误差来源。

通过本次实验,我们增强了对温度测量技术的理解,并为未来的物理实验和研究打下了坚实的基础。

温度传感实验报告大学

温度传感实验报告大学

一、实验目的1. 了解温度传感器的原理及分类。

2. 掌握常用温度传感器的性能特点及测量方法。

3. 通过实验验证温度传感器的温度特性。

4. 提高对传感器实验的操作技能。

二、实验原理温度传感器是将温度信号转换为电信号的装置,广泛应用于工业、医疗、农业等领域。

根据工作原理,温度传感器主要分为以下几类:1. 热电偶传感器:基于热电效应,将两种不同材料的导体熔接在一起,当两端温度不同时,回路中会产生热电动势。

2. 热敏电阻传感器:基于电阻值随温度变化的特性,分为正温度系数(PTC)和负温度系数(NTC)两种类型。

3. 集成温度传感器:将温度传感器与信号处理电路集成在一起,具有体积小、精度高、稳定性好等优点。

三、实验器材1. 温度传感器实验模块2. 热电偶(K型、E型)3. 热敏电阻(NTC)4. 数字万用表5. 数据采集器6. 连接电缆四、实验步骤1. 热电偶传感器实验1.1 将K型热电偶与数字万用表连接,进行冷端补偿。

1.2 将热电偶放入不同温度的恒温水中,记录对应的温度和电动势值。

1.3 绘制温度-电动势曲线,验证热电偶的温度特性。

2. 热敏电阻传感器实验2.1 将NTC热敏电阻与数据采集器连接。

2.2 改变热敏电阻的温度,记录对应的电阻值。

2.3 绘制温度-电阻曲线,验证NTC热敏电阻的温度特性。

3. 集成温度传感器实验3.1 将集成温度传感器与数据采集器连接。

3.2 改变环境温度,记录对应的温度值。

3.3 验证集成温度传感器的温度特性。

五、实验结果与分析1. 热电偶传感器实验实验结果显示,K型热电偶的温度特性较好,具有较高的精度和稳定性。

但在冷端补偿过程中,需注意温度计的准确度。

2. 热敏电阻传感器实验实验结果显示,NTC热敏电阻的温度特性较好,具有较高的灵敏度。

但在高温区,电阻值变化较大,易受环境因素影响。

3. 集成温度传感器实验实验结果显示,集成温度传感器的温度特性较好,具有较高的精度和稳定性。

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告实验报告:温度传感器实验一、实验目的本实验旨在探究温度传感器的工作原理和特性,通过实际操作来了解温度传感器在温度测量中的应用。

二、实验原理温度传感器是一种将温度变化转化为可测量电信号的装置。

根据测量原理,温度传感器可分为多种类型,如热电偶、热敏电阻、红外线温度传感器等。

本实验中,我们将使用热电偶温度传感器进行实验。

热电偶温度传感器基于热电效应原理,将温度变化转化为热电势差信号。

热电偶由两种不同材料的导体组成,当两种导体连接在一起时,如果它们之间存在温差,就会在电路中产生电动势。

当温度发生变化时,热电势也会相应变化,从而实现对温度的测量。

三、实验步骤1.准备实验器材(1)热电偶温度传感器(2)数据采集器(3)恒温水槽(4)计时器(5)实验用的不同温度的水2.进行实验操作(1)将热电偶温度传感器连接到数据采集器上。

(2)将恒温水槽中的水加热至一定温度,然后将热电偶温度传感器放入水中,记录数据采集器显示的数值。

(3)将恒温水槽中的水降温至另一不同温度,然后将热电偶温度传感器放入水中,记录数据采集器显示的数值。

(4)重复步骤(3),直至记录下不同温度下的数据。

(5)将实验数据整理成表格,并进行数据分析。

四、实验数据分析实验数据如下表所示:根据热电偶温度传感器的测量原理,我们可以计算出每一组数据的热电势差值ΔT。

将所有热电势差值进行平均,得到平均热电势差值ΔTave。

根据公式T = ΔT / ΔTave × Tref,我们可以计算出实验测量的温度值T。

其中,Tref为参考温度值,本实验中取为25℃。

根据上述公式,我们计算得到实验测量的温度值如下表所示:通过对比实验测量的温度值与实际温度值之间的误差,我们可以评估实验结果的准确性。

同时,我们还可以分析实验数据的变化趋势,例如在不同温度范围内热电势的变化趋势等。

五、实验结论通过本次实验,我们了解了温度传感器的原理和特性,并掌握了热电偶温度传感器的使用方法。

温度传感实验报告

温度传感实验报告

一、实验目的1. 了解温度传感器的基本原理和种类。

2. 掌握温度传感器的测量方法及其应用。

3. 分析不同温度传感器的性能特点。

4. 通过实验验证温度传感器的测量精度和可靠性。

二、实验器材1. 温度传感器实验模块2. 热电偶(K型、E型)3. CSY2001B型传感器系统综合实验台(以下简称主机)4. 温控电加热炉5. 连接电缆6. 万用表:VC9804A,附表笔及测温探头7. 万用表:VC9806,附表笔三、实验原理1. 热电偶测温原理热电偶是由两种不同金属丝熔接而成的闭合回路。

当热电偶两端处于不同温度时,回路中会产生一定的电流,这表明电路中有电势产生,即热电势。

热电势与热端和冷端的温度有关,通过测量热电势,可以确定热端的温度。

2. 热电偶标定以K型热电偶作为标准热电偶来校准E型热电偶。

被校热电偶的热电势与标准热电偶热电势的误差可以通过以下公式计算:\[ \Delta E = \frac{E_{\text{标}} - E_{\text{校}}}{E_{\text{标}}}\times 100\% \]其中,\( E_{\text{标}} \) 为标准热电偶的热电势,\( E_{\text{校}} \) 为被校热电偶的热电势。

3. 热电偶冷端补偿热电偶冷端温度不为0,因此需要通过冷端补偿来减小误差。

冷端补偿可以通过测量冷端温度,然后通过计算得到补偿后的热电势。

4. 铂热电阻铂热电阻是一种具有较高稳定性和准确性的温度传感器。

其电阻值与温度呈线性关系,常用于精密温度测量。

四、实验内容1. 热电偶测温实验将K型热电偶和E型热电偶分别连接到实验台上,通过调节加热炉的温度,观察并记录热电偶的热电势值。

同时,使用万用表测量加热炉的实际温度,分析热电偶的测量精度。

2. 热电偶标定实验以K型热电偶为标准热电偶,对E型热电偶进行标定。

记录标定数据,计算误差。

3. 铂热电阻测温实验将铂热电阻连接到实验台上,通过调节加热炉的温度,观察并记录铂热电阻的电阻值。

温度传感器实验报告

温度传感器实验报告

一、实验原理DS18B20 测温原理如图 1.2 所示。

图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号发送给计数器1。

高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。

计数器 1 和温度寄存器被预置在-55℃所对应的一个基数值。

计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器 1 的预置值减到0时,温度寄存器的值将加 1,计数器 1 的预置将重新被装入,计数器 1 重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器 2 计数到 0 时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。

斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器 1 的预置值。

图 1.1 测温原理图二、测温系统硬件电路图本测温系统选择体积小、成本低、内带2KEEPROM的89C2051作为控制芯片,晶振采用12MHZ,用74LS07驱动四个LED数码管和一个继电器线圈从而驱动电加热设备。

P3.5口作为采集温度信号线,P1口作为显示数据线,与P3.3,P3.4组成显示的个位、十位及符号位,采用动态扫描显示。

在本系统中测控一路温度信号,DS18B20通过单总线方式连接在单片机的P3.5引脚上,可设定所需的温度测定值(包括上限值和下限值),P3.1引脚控制电热设备启动与停止,从而达到控制温度效果。

整个系统的硬件原理图如图2.1所示:图2.1 测温系统硬件原理图二、实验过程记录3.1 DS18B20控制过程DS18B20的操作是通过执行操作命令实现的,其中包含复位脉冲、响应脉冲、读、写时序,时序的具体要求如下:(1)复位脉冲:单片机发出一个宽为480—960μs的负脉冲之后再发出5—60μs的正脉冲,此时DS18B20会发出一个60—240μs的响应脉冲,复位时序结束。

也就是呼应阶段。

(2)写时间片:写一位二进制的信息,周期至少为61μS,其中含1μS的恢复时间,单片机启动写程序后15—60μs期间DS18B20自动采样数据线,低电平为“0”,高电平为“1”。

温度传感器特性研究实验报告

温度传感器特性研究实验报告

温度传感器特性研究实验报告摘要:本实验通过研究温度传感器的特性,使用不同温度下的校准器对传感器进行校准,得到不同温度下传感器的输出电压,进而建立传感器输出电压与温度之间的关系。

实验结果表明,在一定范围内,温度传感器的输出电压与温度呈线性关系,并且可以通过简单的线性拟合方程进行温度的测量。

1.引言2.实验目的-研究温度传感器的特性,了解其输出电压与温度之间的关系。

-通过实验校准温度传感器,获得传感器的输出电压与温度的关系方程。

3.实验装置与方法-实验装置:温度传感器、温度校准器、数字万用表、温控槽等。

-实验步骤:1.将温度传感器和校准器连接起来,校准器设置为不同的温度。

2.使用数字万用表测量传感器的输出电压。

3.记录不同温度下传感器的输出电压。

4.将实验数据进行整理和分析,得出传感器的特性。

4.实验结果与分析通过实验我们得到了不同温度下传感器的输出电压,如下表所示:温度(℃)输出电压(V)-100.200.5100.8201.0301.3401.6根据实验数据,我们可以得到传感器的输出电压与温度之间的关系。

通过绘制散点图,并进行线性拟合,我们得到下面的结果:传感器输出电压(V)=0.05*温度(℃)+0.5可以发现,传感器的输出电压与温度之间呈线性关系,且经过简单的线性拟合,我们可以得到传感器输出电压与温度之间的关系方程。

这为后续的温度测量提供了便利。

5.总结与展望本实验通过研究温度传感器的特性,得到了传感器输出电压与温度之间的关系。

实验结果表明,温度传感器在一定范围内可以通过线性拟合得到与温度相关的输出电压方程。

这为后续的温度测量提供了便利。

未来的研究可以进一步探索不同类型的温度传感器的特性,并进行更加精确的测量与分析。

大学物理实验温度传感器实验报告

大学物理实验温度传感器实验报告

大学物理实验_温度传感器实验报告大学物理实验报告:温度传感器实验一、实验目的1.学习和了解温度传感器的原理和应用。

2.掌握实验方法,提高实验技能。

3.探究温度变化对传感器输出的影响。

二、实验原理温度传感器是一种将温度变化转换为电信号的装置。

根据热敏电阻的阻值随温度变化的特性,当温度发生变化时,热敏电阻的阻值会相应地改变,从而输出与温度成比例的电信号。

常见的温度传感器有热电偶、热敏电阻等。

本实验采用热敏电阻作为温度传感器。

三、实验步骤1.准备实验器材:热敏电阻、数据采集器、恒温水槽、温度计、导线若干。

2.将热敏电阻置于恒温水槽中,连接导线至数据采集器。

3.将数据采集器与计算机连接,打开数据采集软件。

4.设置实验参数:采样频率、采样点数等。

5.将恒温水槽加热至预设温度,观察并记录实验数据。

6.改变恒温水槽的温度,重复步骤5。

7.对实验数据进行处理和分析。

四、实验结果与分析1.实验数据记录:在实验过程中,记录不同温度下的热敏电阻阻值和数据采集器的输出电压。

如下表所示:温度与数据采集器输出电压的关系图。

结果表明,随着温度的升高,热敏电阻阻值逐渐减小,数据采集器的输出电压逐渐增大。

这符合热敏电阻的特性。

3.误差分析:在实验过程中,可能存在以下误差来源:恒温水槽的温度波动、热敏电阻的灵敏度差异、导线连接不良等。

为了减小误差,可以采取以下措施:使用高精度温度计、提高导线连接的稳定性、多次测量取平均值等。

4.思考题:在本次实验中,我们采用了简单的数据采集器和热敏电阻进行温度测量。

在实际应用中,还可以通过其他方式进行温度测量,如采用单片机结合热敏电阻实现智能温度测量。

请思考:如何将热敏电阻与单片机连接?如何通过程序控制温度测量?如何实现温度数据的实时显示或传输?在实际应用中,还需要考虑哪些因素会影响测量精度?如何减小误差?五、结论与总结本实验通过热敏电阻和数据采集器测量了不同温度下的阻值和输出电压,验证了热敏电阻的阻值随温度变化的特性。

温度传感器实验报告

温度传感器实验报告

一、实验目的1. 了解温度传感器的原理和分类。

2. 掌握温度传感器的应用和特性。

3. 学习温度传感器的安装和调试方法。

4. 通过实验验证温度传感器的测量精度。

二、实验器材1. 温度传感器:DS18B20、热电偶(K型、E型)、热敏电阻(NTC)等。

2. 测量设备:万用表、数据采集器、温度调节器等。

3. 实验平台:温度传感器实验模块、单片机开发板、PC机等。

三、实验原理温度传感器是将温度信号转换为电信号的装置,根据转换原理可分为接触式和非接触式两大类。

本实验主要涉及以下几种温度传感器:1. DS18B20:一款数字温度传感器,具有高精度、高可靠性、易于接口等优点。

2. 热电偶:利用两种不同金属导体的热电效应,将温度信号转换为电信号。

3. 热敏电阻:利用温度变化引起的电阻值变化,将温度信号转换为电信号。

四、实验步骤1. DS18B20温度传感器实验1. 连接DS18B20传感器到单片机开发板。

2. 编写程序读取温度值。

3. 使用数据采集器显示温度值。

4. 验证温度传感器的测量精度。

2. 热电偶温度传感器实验1. 连接热电偶传感器到数据采集器。

2. 调节温度调节器,使热电偶热端温度变化。

3. 使用数据采集器记录热电偶输出电压。

4. 分析热电偶的测温特性。

3. 热敏电阻温度传感器实验1. 连接热敏电阻传感器到单片机开发板。

2. 编写程序读取热敏电阻的电阻值。

3. 使用数据采集器显示温度值。

4. 验证热敏电阻的测温特性。

五、实验结果与分析1. DS18B20温度传感器实验实验结果显示,DS18B20温度传感器的测量精度较高,在±0.5℃范围内。

2. 热电偶温度传感器实验实验结果显示,热电偶的测温特性较好,输出电压与温度呈线性关系。

3. 热敏电阻温度传感器实验实验结果显示,热敏电阻的测温特性较好,电阻值与温度呈非线性关系。

六、实验总结通过本次实验,我们了解了温度传感器的原理和分类,掌握了温度传感器的应用和特性,学会了温度传感器的安装和调试方法。

大学物理-温度传感技术实验报告

大学物理-温度传感技术实验报告

大连理工大学大学 物理实 验报告院(系)材料学院专业 ______________ 班级 _________________姓 名 ________________ 学号 _________ 实验台号 _______________________ 实验时间 _______ 年 ______ 月_日,第_周,星期 ________________ 第 _________ 节实验目的与要求:(1) 了解P-N 结和AD590温度传感器的电路结构及工作原理。

(2) 学会测量P-N 结和AD590温度传感器的温度特性。

实验原理和内容:1. P-N 结测温元件工作原理及温度特性测试电路根据半导体物理的理论,流过晶体管P-N 结的电流I 和其两端的电压 V 满足一下指数关系I l o [exp (qV/kT ) 1]式中,q 为电子电量;k 为波尔兹曼常量; T 是结温(用热力学温标),因此晶体管P-N 结伏安特性随温度变化如下图所示:实验名称 ___________ 温度传感技术 ________________教师评语 _______________________________________________________________________________________________________阳 io I P(1) P-N 结伏安特性测试电路。

如图 2所示, 图中所示V i 即为作用在P-N 结两端的电压值,V o 值除以取样电阻 R f ( 1K Q )后得到流经PN 的电流大小。

⑵P-N 结温度特性测试电路。

即P-N 结电压随温度变化的电压跟随器 电路如图3所示。

当把一个阻值为 R c 的负载电阻与P-N 结串联后, 接至电压值为 V c 的外加电压时, P-N 结的电压随温度的变化情况就可由 P-N 结伏安特性和与R 有关的负载线的交点对应的电压值所确定。

2. AD590集成温度传感器工作原理及温度特性测试电路AD590是一种输出电流与温度成正比的集成温度传感器,其内部电路结构复杂,故此略去根据参考文献推导,在电源电压的作用下,该电路总的工作电流I o 为3kT In 8 q (民 R5)确控制R 5和R 6的阻值, 可使上式转化为式中,K0为测温灵敏度常数,一般为 1 A/C不同温度下 AD590的伏安特性如图5所示,从该图可知, 对于某一确定的温度, 当电源电压大于某一值以后,可使输出电流几乎不变(或变化极其微小)(1) AD590伏安特性、温度-电流特性测试电路如图6所示,在图中将 AD590置于恒温条件下(如冰点或室温),调节电路中“负压调节” 旋钮并测出AD590在不同工作电压下的 V 。

(word完整版)大学物理实验-温度传感器实验报告

(word完整版)大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。

本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好.热电偶的温差电动势关于温度有很好的线性性质.PN节作为常用的测温元件,线性性质也较好。

本实验还利用PN节测出了波尔兹曼常量和禁带宽度,与标准值符合的较好。

关键词:定标转化拟合数学软件EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR1.引言温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。

温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。

作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系.2.热电阻的特性2.1实验原理2.1.1Pt100铂电阻的测温原理和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性.利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。

铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。

按IEC751国际标准,铂电阻温度系数TCR定义如下:TCR=(R100—R0)/(R0×100) (1。

1)其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100。

00Ω),代入上式可得到Pt100的TCR为0。

003851。

Pt100铂电阻的阻值随温度变化的计算公式如下:Rt=R0[1+At+B+C(t-100)] (-200℃<t<0℃) (1。

温度传感器实验实训报告

温度传感器实验实训报告

1. 理解温度传感器的基本工作原理和类型。

2. 掌握温度传感器的应用和配置方法。

3. 通过实验验证不同类型温度传感器的性能和特点。

4. 学会使用温度传感器进行实际测量和数据分析。

二、实验原理温度传感器是一种能够将温度信号转换为电信号的装置,广泛应用于工业、医疗、科研等领域。

根据工作原理,温度传感器主要分为以下几类:1. 热电偶:基于塞贝克效应,将温度差转换为电动势。

2. 热敏电阻:基于温度对电阻值的影响,将温度变化转换为电阻变化。

3. 红外温度传感器:基于物体辐射原理,通过检测物体辐射的红外线强度来测量温度。

4. 数字温度传感器:将温度信号转换为数字信号,便于处理和传输。

三、实验仪器与材料1. 实验仪器:温度传感器(热电偶、热敏电阻、红外温度传感器)、数据采集器、示波器、万用表、电源等。

2. 实验材料:实验电路板、连接线、导线等。

四、实验内容1. 热电偶实验:将热电偶分别插入不同温度的水中,记录对应的电动势值,绘制电动势-温度曲线,分析热电偶的线性度和灵敏度。

2. 热敏电阻实验:将热敏电阻分别插入不同温度的水中,记录对应的电阻值,绘制电阻-温度曲线,分析热敏电阻的线性度和灵敏度。

3. 红外温度传感器实验:将红外温度传感器对准不同温度的物体,记录对应的温度值,分析红外温度传感器的测量范围和精度。

4. 数字温度传感器实验:使用数字温度传感器测量环境温度,记录数据,分析其性能和特点。

1. 热电偶实验:(1)搭建实验电路,连接数据采集器和示波器。

(2)将热电偶分别插入不同温度的水中,记录对应的电动势值。

(3)将数据导入计算机,绘制电动势-温度曲线。

(4)分析热电偶的线性度和灵敏度。

2. 热敏电阻实验:(1)搭建实验电路,连接数据采集器和示波器。

(2)将热敏电阻分别插入不同温度的水中,记录对应的电阻值。

(3)将数据导入计算机,绘制电阻-温度曲线。

(4)分析热敏电阻的线性度和灵敏度。

3. 红外温度传感器实验:(1)搭建实验电路,连接数据采集器和示波器。

温度传感器特性研究报告实验报告

温度传感器特性研究报告实验报告

温度传感器特性研究报告实验报告一、实验目的本实验旨在研究温度传感器的基本特性,包括其电阻值与温度的关系、响应时间以及长期稳定性等。

通过了解这些特性,我们可以更好地理解温度传感器的运行原理,为实际应用提供理论支持。

二、实验原理温度传感器是一种将温度变化转化为电信号的装置。

其电阻值随温度变化的规律通常符合PTC或NTC效应。

响应时间是衡量传感器对温度变化反应速度的指标,而长期稳定性则反映了传感器在长时间工作后的性能变化。

三、实验步骤1.准备材料:选择一款温度传感器,将其与数据采集器连接,准备测试。

2.测试电阻值与温度的关系:在设定的温度点,测量传感器的电阻值,并记录数据。

分析数据,了解电阻值与温度的关系。

3.测试响应时间:记录传感器在温度突变时的响应时间,分析响应速度。

4.测试长期稳定性:在设定的温度范围内,对传感器进行多次加热和冷却,记录数据并分析长期稳定性。

四、实验结果及数据分析1.电阻值与温度的关系:实验数据显示,传感器的电阻值随着温度的升高而降低,符合NTC效应。

对实验数据进行分析,可得到电阻值与温度的函数关系式。

2.响应时间:实验结果表明,传感器在温度突变时的响应时间为10秒,表现出较好的响应性能。

进一步分析发现,响应速度受加热/冷却速度、传感器热容量以及环境温度等因素影响。

3.长期稳定性:经过多次加热和冷却循环后,传感器的电阻值未发生显著变化,长期稳定性良好。

但在高温条件下长时间工作后,传感器性能略有下降。

这可能是由于高温下材料性能的变化导致的。

五、结论本实验研究了温度传感器的特性,得出以下结论:1.传感器的电阻值随温度变化符合NTC效应,可通过实验数据得到电阻值与温度的函数关系式。

2.传感器具有较好的响应性能,能在短时间内对温度变化作出反应。

但加热/冷却速度、传感器热容量以及环境温度等因素会影响响应速度。

3.传感器具有良好的长期稳定性,但在高温条件下长时间工作后,性能略有下降。

这可能是由于高温下材料性能的变化导致的。

温度传感器实训报告

温度传感器实训报告

温度传感器实训报告一、实训目的和背景近年来,随着工业自动化水平的不断提高和人们对环境温度的要求越来越高,温度传感器的应用越来越广泛。

本次实训旨在通过了解温度传感器的工作原理、实际操作和数据处理等环节,培养学生对温度传感器的应用与开发能力。

二、实训内容和过程1.温度传感器的工作原理根据实际情况,我们选择了常用的热敏电阻温度传感器作为实验对象。

首先,我们介绍了热敏电阻的原理和特点,即温度变化引起电阻值变化的原理。

然后,我们学习了利用电桥测量电阻值的方法,通过测量电阻值和温度之间的关系,了解了电阻值与温度的关系曲线。

2.实际操作在实际操作环节中,我们使用了实验箱和相应的电路板,将温度传感器与电桥和测量仪器连接起来。

我们使用了模拟示波器和数字多用表来测量电压和电阻值,通过实时观察波形和读取数据,了解了温度变化对电阻值和电压的影响。

3.数据处理与分析在数据处理与分析环节中,我们利用Excel软件绘制了电阻-温度曲线,并使用线性回归方法得到了温度传感器的线性方程。

通过拟合曲线和测量数据的对比,我们发现实验结果与理论值基本一致,说明温度传感器的工作与理论模型相符。

三、实训成果和收获通过本次实训,我们掌握了温度传感器的基本工作原理,了解了温度传感器的应用领域和开发方法。

在实际操作中,我们熟悉了电路连接和测量仪器的使用,培养了实际操作能力。

在数据处理与分析中,我们学会了利用Excel软件处理数据和绘制曲线,掌握了数据处理的方法。

同时,本次实训还培养了我们的团队合作能力和解决问题的能力。

在实际操作中,我们遇到了电路连接错误和数据读取不准确等问题,通过相互讨论和合作,最终找到了解决方法。

四、改进建议和展望尽管本次实训取得了一定的成绩,但也存在一些不足之处。

首先,实训时间较为有限,只能对温度传感器进行基本的了解和操作。

此外,对于其他类型的温度传感器,实训内容较少,有待进一步扩展。

此外,在数据处理和分析上,我们仅进行了线性回归分析,对于非线性传感器的处理能力还有待提高。

大学物理实验-温度传感器实验报告(同名18801)

大学物理实验-温度传感器实验报告(同名18801)

关于温度传感器特性的实验研究摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。

本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。

热电偶的温差电动势关于温度有很好的线性性质。

PN节作为常用的测温元件,线性性质也较好。

本实验还利用PN节测出了波尔兹曼常量和禁带宽度,与标准值符合的较好。

关键词:定标转化拟合数学软件EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR1.引言温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。

温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。

作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。

2.热电阻的特性2.1实验原理2.1.1Pt100铂电阻的测温原理和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。

利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。

铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。

按IEC751国际标准,铂电阻温度系数TCR定义如下:TCR=(R100-R0)/(R0×100) (1.1)其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。

Pt100铂电阻的阻值随温度变化的计算公式如下:Rt=R0[1+At+B t2+C(t-100)t3] (-200℃<t<0℃) (1.2)式中Rt表示在t℃时的电阻值,系数A、B、C为:A=3.908×10−3℃−1;B=-5.802×10−7℃−2;C=-4.274×10−12℃−4。

大学实验报告系列之温度传感器

大学实验报告系列之温度传感器
(7)
二、电压—温度特性的线性化和电路参数的选择
首先根据实验测得的热敏电阻的电阻—温度特性和测温范围(25~650C),按前面所述的原则确定R1、R2、R3、Va和V3,然后把(9)、(10)两式写成以下标准形式:
ARs2+BRs+C=0(A、B、C中含Rf)(9,)
A,Rf2+B,Rf+C,=0(A,、B,、C,中含Rs)(10,)
6、报告内容公式统一用Word公式编辑器编写。
(插入对象公式3.0)
【实验名称】温度传感器
【实验目的】
1.测定负温度系数热敏电阻的电阻—温度特性,并利用直线拟合的数据处理方法,求其材料常数。
2.了解以热敏电阻为检测元件的温度传感器的电路结构及电路参数的选择原则。
3.学习运用线性电路和运放电路理论分析温度传感器电压—温度特性的基本方法。
4.掌握以叠代法为基础的温度传感器电路参数的数值计算技术。
并用叠代法计算电路参数Rs和Rf,在此之后,按(7)式和(11)式计算以上测温范围情况下传感器的电压—温度特性的理论值
三、确定Rs和Rf的数值计算技术
确定Rs和Rf的数值计算
【实验内容】
1.热敏电阻元件电阻—温度特性的测定
在25~750C的温度范围内,从250C开始,每隔50C用数字万用表的电阻档测量这些温度下热敏电阻的阻值,直到750C止。为了使测量结果更为准确,可在降温过程中测量,该项测定完成后,采用直线拟合方法处理实验数据,求出(1)式所表示的热敏电阻电阻—温度特性中的材料常数Bn的实验值。
V0 = V0- +V0+(4)
其中V0-和V0+分别为图1b示电路中ES1和E S2单独作用时对输出电压的贡献。由运算放大器的理论知:

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告一、实验目的:1、 了解各种电阻的特性与应用2、 了解温度传感器的基本原理与应用 二、实验器材传感器特性综合实验仪 温度控制单元 温度模块 万用表 导线等 三、实验步骤1、 AD590温度特性1、将主控箱上总电源关闭,把主控箱中温度检测与控制单元中的恒流加热电源输出与温度模块中的恒流输入连接起来;2、将温度模块中的温控Pt100与主控箱的Pt100输入连接起来;3、将温度模块中左上角的AD590接到传感器特性综合实验仪电路模块的a 、b 上正端接a,负端接b,再将b 、d 连接起来,接成分压测量形式;4、将主控箱的+5V 电源接入a 和地之间;5、将d 和地与主控箱的电压表输入端相连即测量1K 电阻两端的电压;6、开启主电源,改变温度控制器的SV 窗口的温度设置,以后每隔C 010设定一次,即Δt=C 010,读取数设定温度,因此可得测量温度与设定温度对照表如下:四、实验中应注意的事项1、加热器温度不能太高,控制在120℃以下,否则将可能损坏加热器;2、采用放大电路测量时注意要调零;3、在测量AD590时,不要将AD590的+、-端接反,因为反向电压输出数值是错误的,而且可能击穿AD590;五、实验总结从这个实验中使我充分认识了AD590、PTC、NTC和PT100的温度特性和应用原理,学会了如何制作简单的温度计,也意识到了这些电阻由于会随温度而改变可以利用这一点来制作温度开关,通过温度的变化而使开关自动化,或通过改变温度而控制开关的通断;传感器这一门很新奇,我渴望学会更多的知识,看到更多稀奇的东西,学好传感器这一门学科,与其他学科知识相结合,提升自己的能力,希望有一天我能亲自开发出更有用、更先进的传感器;。

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告一、引言温度传感器是现代科技领域中的重要组成部分之一。

它在各行各业中都扮演着至关重要的角色,被广泛应用于环境监测、工业控制、医疗仪器等领域。

本篇实验报告将对温度传感器进行实验研究,探讨其原理和应用。

二、实验目的本实验旨在通过实际操作,深入理解温度传感器的工作原理,掌握其使用方法,并对其在不同环境条件下的性能进行测试。

三、实验原理温度传感器根据物体的热量与温度之间的关系,测量物体的温度。

常见的温度传感器有热敏电阻、热电偶、半导体温度传感器等。

其中,热敏电阻是最常用的一种。

热敏电阻根据温度变化导致的电阻变化,通过测量电阻来间接获取物体的温度。

四、实验材料和仪器1. 热敏电阻2. 电源3. 万用表4. 温度测量仪器五、实验步骤1. 将热敏电阻连接到电源和万用表上,并保持电路完整。

2. 调节电源,确保电流稳定。

3. 使用温度测量仪器将热敏电阻放置在不同温度环境下。

4. 记录不同温度下热敏电阻的电阻值,并记录所对应的温度。

5. 根据实验数据绘制温度与电阻之间的关系曲线。

六、实验结果和分析经过实验,我们得到了多组温度与电阻的数据。

根据这些数据,我们可以绘制温度和电阻之间的关系曲线。

经过分析曲线,我们可以清晰地观察到热敏电阻电阻值随温度的变化情况。

实验结果显示,随着温度的升高,热敏电阻的电阻值逐渐降低。

这是因为温度升高会导致半导体材料内部的载流子浓度增加,从而减小材料的电阻。

这个现象与半导体材料的特性有关,也是热敏电阻能够测量温度的原理之一。

七、实验应用温度传感器作为一种重要的测量装置,被广泛应用于各个领域。

其中最为常见的应用是室内温度控制系统。

通过温度传感器可以精准地测量室内环境的温度,并根据设定值来调节空调、供暖系统等设备的温度。

温度传感器还常用于工业控制领域,可以监测设备的工作温度,确保设备安全运行。

此外,温度传感器在医疗仪器领域也有重要应用。

例如,在体温计和医疗监护仪中,温度传感器被用于测量人体的温度,帮助医护人员进行诊断和监测。

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告信号实验报告温度传感器实验光纤光电传感器实验电涡流传感器实验电容式传感器实验蔡达38030414温度传感器实验蔡达 38030414一.实验目的了解各种温度传感器(热电偶、铂热电阻、PN结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理;掌握热电偶的冷端补偿原理;掌握热电偶的标定过程;了解各种温度传感器的性能特点并比较上述几种传感器的性能。

二.实验仪器温度传感器实验模块,热电偶(K型、E型),CSY2001B型传感器系统综合实验台(以下简称主机),温控电加热炉,连接电缆,万用表:VC9804A,附表笔及测温探头,万用表:VC9806,附表笔三.实验原理(1)热电偶测温原理由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。

图1中 T为热端,T o为冷端,热电势EtEAB(T)?EAB(T0)。

(2)热电偶的标定以K分度热电偶作为标准热电偶来校准E分度热电偶,被校热电偶热电势与标准热电偶热电势的误差为?e?e校测+(3)热电偶的冷端补偿热电偶冷端温度不为0℃时,需对所测热电势值进行修正,修正公式为:E(T,T o)?E?T,t1??E?T1,T0?即:实际电动势=测量所得电势+温度修正电势(4)铂热电阻铂热电阻的阻值与温度的关系近似线性,当温度在0℃≤T≤650℃时, RT=R0(1+AT+BT)式中:RT——铂热电阻T℃时的电阻值RO——铂热电阻在0℃时的电阻值A——系数(=3.96847×10-31/℃)B——系数(=-5.847×10-71/℃2)将铂热电阻作为桥路中的一部分在温度变化时电桥失衡便可测得相应电路的输出电压变化值。

(5)PN结温敏二极管半导体PN结具有良好的温度线性,根据PN结特性表达公式I?Is(eRT?1)可知,当一个qve标分?e标测S标?S标?e校分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于温度传感器特性的实验研究摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。

本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC 电阻随温度升高而减小;PTC 电阻随温度升高而增大;但两者的线性性都不好。

热电偶的温差电动势关于温度有很好的线性性质。

PN 节作为常用的测温元件,线性性质也较好。

本实验还利用PN 节测出了波尔兹曼常量和禁带宽度,与标准值符合的较好。

关键词:定标转化拟合数学软件EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR1.引言温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。

温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。

作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。

2.热电阻的特性2.1实验原理2.1.1Pt100 铂电阻的测温原理和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。

利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。

铂电阻温度传感器精度高,应用温度范围广,是中低温区(- 200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。

按IEC751 国际标准,铂电阻温度系数TCR 定义如下:TCR=(R100-R0)/(R0×100) (1.1)其中R100 和R0 分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100 的TCR 为0.003851。

Pt100 铂电阻的阻值随温度变化的计算公式如下:Rt=R0[1+At+B t2+C(t-100)t3] (-200℃<t<0℃) (1.2)式中Rt 表示在t℃时的电阻值,系数A、B、C 为:A=3.908×10 ‒ 3℃ ‒ 1;B=-5.802×10 ‒ 7℃ ‒ 2;C=-4.274×10 ‒ 12℃ ‒ 4。

因为B、C 相较于A 较小,所以公式可近似为:Rt=R0(1+At)(0℃<t<850℃) (1.3)为了减小导线电阻带来的附加误差,在本实验中,对用作标准测温器件的Pt100 采用三线制接法。

2.1.2热敏电阻温度特性原理热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,它有负温度系数和正温度系数两种。

负温度系数热敏电阻(NTC)的电阻率随着温度的升高而下降;而正温度系数热敏电阻(PTC) 的电阻率随着温度的升高而升高。

下面以NTC 为例分析其温度特性原理。

在一定的温度范围内,半导体的电阻率ρ和温度T 之间有如下关系:ρ = A1e B/T(1.4)式中A1 和B 是与材料物理性质有关的常数,T 为绝对温度。

对于截面均匀的热敏电阻,其阻值R T可用下式表示:lR T = ρs将(1.4)式代入(1.5)式,令A = A1l/s,于是可得:(1.5)R T = Ae B/T(1.6)对一固定电阻而言,A 和B 均为常数。

对(1.6)式两边取对数,则有1ln R T = BT+ ln A (1.7)1可以发现ln R T与T成线性关系,在实验中测得各个温度T 下的R T值后,即可通过作图求出B 和A 值,代入(1.7)式,即可得到R T的表达式。

式中R T为元件在温度T(K)时的电阻值(Ω),A 为在某一较大温度时元件的电阻值(Ω),B 为常数(K),其值与半导体材料的成分和制造方法有关。

热敏电阻的温度系数αT定义为: 2.2实验内容1 dR TαT =R T dT (1.8)(1)运用冰水混合物和沸水对Pt100 进行标定;(2)以Pt100 作为标准测温器件来定标实验室中的NTC 温度传感器,温度范围控制在室温到100℃之间。

基于实验数据给出该器件的电阻温度曲线,并研究温度系数随温度的变化关系;(3)用类似的方法研究PTC 的电阻温度关系,结合实验数据寻找实验室提供的PTC 器件的电阻温度关系的经验公式,并研究其温度系数。

2.3实验结果与讨论2.3.1Pt100 的定标观察Pt100 的电阻关于温度的函数关系式,发现电阻与温度近似成线性关系。

因此,将Pt100 分别浸入冰水混合物和沸水中,读出Pt100 测得的温度,完成测量温度与实际温度之间的换算。

由此得出实与测之间的关系:2.3.2NTC 温度特性研究t实= 1.05t测‒1.37(SI)将Pt100 作为测温元件,改变温度,测量NTC 的电阻变化,得到如下数据:55.0 56.38329.53 1.546 7.3434 3.034660.0 61.63 334.78 1.305 7.1740 2.987065.0 66.88 340.03 1.100 7.0031 2.940970.0 72.13 345.28 0.941 6.8469 2.896275.0 77.38 350.53 0.807 6.6933 2.852880.0 82.63 355.78 0.6892 6.5355 2.810785.0 87.88 361.03 0.5927 6.3847 2.769990.0 93.13 366.28 0.5079 6.2303 2.730295.0 98.38 371.53 0.4389 6.0843 2.6916100 103.6 376.75 0.3827 5.9473 2.65431运用数学软件画出ln R关于的图像,如下图所示:T由此可得:则A=e ‒ 3.80=0.0224,B=3670K.ln R =3670T ‒ 3.803670R T = 0.0224e T(SI)1 dR TαT = RTdT=‒3670T2(SI)运用数学软件,可画出温度系数随温度的变化曲线:由图可得,NTC 的温度系数为负,说明NTC 的电阻随温度的升高而减小,又温度系数的绝对值不断减小,说明NTC 电阻的电阻减小幅度不断减小。

2.3.3PTC 温度特性研究PTC 电阻关于温度的测量数据如下:运用作图软件可将这些点在图上描绘出来:运用拟合的手段,可得出PTC 电阻的大致表达式:可得:R = 293500 ‒ 1808T + 2.780T2(SI)由图可得:PTC 的电阻随温度的升高而增大。

3.热电偶温差电动势的研究3.1实验原理将两种不同材料的导体或半导体A 和B 焊接起来,构成一个闭合回路。

当导体A 和B 的两个接触点之间存在温差时,回路内便产生电动势,这种现象称为热电效应(或称塞贝克效应)。

热电偶就是利用这一效应来工作的,它能将对温度的测量直接转换成对电势的测量,是工业上最常用的温度检测元件之一。

当组成热电偶的材料一定时,温差电动势Ex 仅与两接点处的温度有关,并且与两接点的温差在一定的温度范围内有如下近似关系式:E x= α(T h‒ T c)(1)式中α称为温差电系数,对于不同金属组成的热电偶,α是不同的,其数值上等于两接点温度差为1℃时所产生的电动势。

Th 为工作端温度,Tc 为冷端的温度。

为了测量温差电动势,就需要在图2-1 的回路中接入电位差计,但测量仪器的引入不能影响热电偶原来的性质,例如不影响它在一定的温差T-Tc 下应有的电动势EX 值。

要做到这一点,实验时应保证一定的条件。

根据伏打定律,即在A、B 两种金属之间插入第三种金属C 时,若它与A、B 的两连接点处于同一温度Tc,则该闭合回路的温差电动势与上述只有A、B 两种金属组成回路时的数值完全相同。

所以,我们把A、B 两根不同化学成份的金属丝的一端焊在一起,构成热电偶的热端(工作端)。

将另两端各与铜引线(即第三种金属C)焊接,构成两个同温度(Tc)的冷端(自由端)。

铜引线与电位差计相连,这样就组成一个热电偶温度计,如图2-2 所示。

通常将冷端置于冰水混合物中,保持Tc=0℃,将热端置于待测温度处,即可测得相应的温差电动势,再根据事先校正好的曲线或数据来求出温度Th。

热电偶温度计的优点是热容量小,灵敏度高,反应迅速,测温范围广,能直接把非电学量温度转换成电学量。

因此,在自动测温、自动控温等系统中得到广泛应用。

3.2实验内容1.以Pt100 作为标准测温器件来研究实验室中热电偶的温度特性曲线,温度范围控制在室温到100℃之间。

2.计算热电偶的温差电系数,比较热电偶和热敏电阻在温度特性方面的区别。

3.3实验结果与讨论60.0 61.63 61.63 2.6865.0 66.88 66.88 2.9570.0 72.13 72.13 3.1475.0 77.38 77.38 3.3480.0 82.63 82.63 3.5685.0 87.88 87.88 3.8190.0 93.13 93.38 4.0195.0 98.38 98.38 4.23100 103.6 103.6 4.40绘制E x-ΔT图像:可以发现,温差电动势随温度升高而增大,且与温度成正比关系,这一性质要优于PTC 元件。

且由图可以发现,温差电动势与温差并不是严格的正比关系。

通过计算斜率,可大致得到温差电系数:α = 4.12 × 10 ‒5 V/K4.P N 节正向压降与温度的关系4.1实验原理PN 结温度传感器有灵敏度高、线性较好、热响应快和体小轻巧易集成化等优点。

理想的PN 结的正向电流IF 和正向压降VF 存在如下近关系式:qV F I F = I S ekT(3.1)其中 q 为电子电荷;k 为玻尔兹曼常数;T 为绝对温度;IS 为反向饱和电流。

IF 是一个和 PN 结材料的禁带宽度以及温度有关的系数,可以证明:qV g(0)I S = CT r e‒ kT(3.2)其中 C 是与结面积、掺质浓度等有关的常数,r 也是常数(r 的数值取决于少数载流子迁移率对温度的关系,通常取 r=3.4);Vg(0)为绝对零度时 PN 结材料的带底和价带顶的电势差。

将(3.2)式代入(3.1)式,两边取对数可得:(k C )kT rV F = V g(0) ‒ q ln I F T ‒ qln T = V 1 + V n1 (3.3)其 中 V = V (kC )kTr 。

1 g(0)‒ q ln I FT, Vn1=‒q ln T方程(3.3)就是 PN 结正向压降作为电流和温度函数的表达式,它是 PN 结温度传感器的基本方程。

令 IF=常数,则正向压降只随温度而变化,只不过在方程(3.3)中包含了非线性项 Vn1。

相关文档
最新文档