不等式与不等式组期末专题复习讲义(常考专题)

合集下载

专题2.1 等式与不等式(精讲精析篇)(解析版)

专题2.1 等式与不等式(精讲精析篇)(解析版)

专题2.1等式与不等式(精讲精析篇)提纲挈领点点突破热门考点01 不等式的性质及应用1.比较大小的常用方法(1)作差法一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法一般步骤:①作商;②变形;③判断商与1的大小关系;④结论.*(3)函数的单调性法将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系. 2.判断不等式是否成立的方法(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.(2)在判断一个关于不等式的命题的真假时,可结合不等式的性质,对数函数、指数函数的性质进行判断. 3.求代数式的取值范围利用不等式性质求某些代数式的取值范围时.一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围,是避免错误的有效途径. 4.不等式性质 (1)对称性:a >b ⇔b <a . (2)传递性:a >b ,b >c ⇒a >c . (3)可加性:a >b ⇒a +c >b +c .(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (5)加法法则:a >b ,c >d ⇒a +c >b +d . (6)乘法法则:a >b >0,c >d >0⇒ac >bd . (7)乘方法则:a >b >0⇒a n >b n (n ∈N ,n ≥2). (8)开方法则:a >b >0⇒n a >nb (n ∈N ,n ≥2).【典例1】(2018·上海高考真题)已知R a ∈,则“1a >”是“11a<”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件【答案】A 【解析】a ∈R ,则“a >1”⇒“11a<”, “11a<”⇒“a >1或a <0”, ∴“a >1”是“11a<”的充分非必要条件. 故选:A .【典例2】(2018·上海曹杨二中高一期末)如果,a b c d >>,则下列不等式成立的是( )A.a c b d ->-B.a c b d +>+C.a b d c> D.ac bd >【答案】B 【解析】A 项,当54,31a b c d =>==>=时,2,3a c b d -=-=,则a c b d -<-,故A 项不一定成立; 因为,a b c d >>,两式相加得a c b d +>+,故B 项一定成立;当21,11a b c d =>==>=-时,2,1a bd c =-=,则a b d c<,故C 项不一定成立; D 项,当12,34a b c d =->=-=->=-时,3,8ac bd ==,则ac bd <,故D 项不一定成立;故选:B 【典例3】若,则的大小关系是( )A .B .C .D .【答案】D 【解析】 ∵,∴又,∴∴ 故选:D 【特别提醒】考查的命题角度,主要有三个,比较数(式)值的大小、不等式的性质、不等式的性质与其它知识点的交汇.热门考点02 一元二次不等式的解法1.解一元二次不等式的一般步骤(1)化:把不等式变形为二次项系数大于零的标准形式. (2)判:计算对应方程的判别式.(3)求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根. (4)写:利用“大于取两边,小于取中间”写出不等式的解集. *2.分式不等式的解法求解分式不等式的关键是对原不等式进行恒等变形,转化为整式不等式(组)求解.(1)()()0f x g x >()()()0)00(·f x g x ⇔<><;(2)()()0f x g x ≥ ()0≤⇔()()()0(0)0f x g x g x ≥≤⎧≠⋅⎪⎨⎪⎩3.含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式. (3)对方程的根进行讨论,比较大小,以便写出解集.【典例4】((2019·全国高考真题(理))已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】分析:本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.详解:由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【典例5】(2018·上海曹杨二中高一期末)若集合{}31,2,3,4,0,1x A B xx R x ⎧⎫-==<∈⎨⎬+⎩⎭,则A B ⋂=__________;【答案】{}1,2 【解析】 由301x x -<+⇒ (3)(1)0x x -+< ⇒ 13x ,所以}{13,B x x x R =-<<∈, 又因为{}1,2,3,4A =,所以}{1,2A B ⋂=. 故答案为:{}1,2【典例6】(2015·广东高考真题(文))不等式的解集为 .(用区间表示)【答案】【解析】 由得:,所以不等式的解集为,所以答案应填:.【特别提醒】随着学习的深入,对一元二次不等式的解法解法的独立考查,越来越少,往往作为一种工具、技能,与其它知识点交汇考查.热门考点03 一元二次不等式恒成立问题1.一元二次不等式恒成立问题的求解策略 (1)不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c >0或⎩⎪⎨⎪⎧ a >0,b 2-4ac <0.(2)不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c <0或⎩⎪⎨⎪⎧a <0,b 2-4ac <0.2.一元二次不等式在给定区间上的恒成立问题的求解方法(1)若f (x )>0在集合A 中恒成立,即集合A 是不等式f (x )>0的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围).*(2)转化为函数值域问题,即已知函数f (x )的值域为[m ,n ],则f (x )≥a 恒成立⇒f (x )min ≥a ,即m ≥a ;f (x )≤a 恒成立⇒f (x )max ≤a ,即n ≤a .*3.一元二次不等式在参数某区间上恒成立确定变量x 范围的方法解决恒成立问题一定要清楚选谁为主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解.【典例7】若关于x 的不等式222321x x a a -+>--对一切实数x 都成立,则实数a 的取值范围是______. 【答案】{}13a a -<< 【解析】分析:根据题意可知,只需223x x -+的最小值大于221a a --即可,解不等式即可求出. 详解:因为()2223122y x x x =-+=-+,所以2212a a --<,解得13a -<<.故答案为:{}13a a -<<.【典例8】(2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.【答案】1,28⎡⎤⎢⎥⎣⎦【解析】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤, 整理可得:21122a x x ≥-+, 由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知:当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥; ②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+, 由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知: 当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.【典例9】【2018河南南阳第一中学模拟】已知当11a -≤≤时, ()24420x a x a +-+->恒成立,则实数x 的取值范围是_____________. 【答案】()(),13,-∞⋃+∞【解析】设()()()2244g a x a x x =-+-+,由于()24420x a x a +-+->恒成立,所以()0g a >,因此()()10{ 10g g ->->,整理得22560{ 320x x x x -+>-+>,解得13x x 或,即实数 的取值范围是()(),13,-∞⋃+∞.【总结提升】三道例题,分别代表如下类型:(1)一元二次不等式在R 上的恒成立问题 (2)一元二次不等式在给定区间上的恒成立问题. (3)一元二次不等式给定参数范围的恒成立问题.在这三种类型中,转化与化归思想的应用意识要强,要体会具体转化方法的应用热门考点04 绝对值不等式1.绝对值不等式的解法(1)形如|ax +b|≥|cx +d|的不等式,可以利用两边平方的形式转化为二次不等式求解. (2)形如|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式 ①绝对值不等式|x|>a 与|x|<a 的解集②|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式的解法|ax +b|≤c ⇔-c≤ax +b≤c (c>0), |ax +b|≥c ⇔ax +b≥c 或ax +b≤-c(c>0). 2. 绝对值不等式的应用如果a ,b 是实数,那么|a +b|≤|a|+|b|,当且仅当ab≥0时,等号成立.【典例10】(2019·天津高考真题(理))设x R ∈,则“250x x -<”是“|1|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B 【解析】化简不等式,可知 05x <<推不出11x -<; 由11x -<能推出05x <<,故“250x x -<”是“|1|1x -<”的必要不充分条件, 故选B.【典例11】(2019·上海曹杨二中高一月考)若关于x 的不等式11x x a -++≥的解集为R ,则实数a 的取值范围为______. 【答案】2a ≤ 【解析】由绝对值不等式的性质可得: 1111112-++=-++≥-++=x x x x x x , 又关于x 的不等式11x x a -++≥的解集为R , 即11x x a -++≥恒成立; 所以只需2a ≤. 故答案为: 2a ≤【典例12】解下列不等式:(1)343x ->;(2)523x -≤;(3)115x x ++-≤.【答案】(1)17,,33⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭(2)[]1,4(3)55,22⎡⎤-⎢⎥⎣⎦【解析】分析:根据公式()0x a a x a >>⇔>或x a <-,()0x a a a x a ≤>⇔-≤≤可以解出(1)(2);利用零点分段法可以解出(3).详解:(1)343343x x ->⇔->或343x -<-,解得73x >或13x <,所以不等式的解集为17,,33⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭;(2)5233253x x -≤⇔-≤-≤,解得14x ≤≤,所以不等式的解集为[]1,4; (3)原不等式等价为1115x x x ≥⎧⎨++-≤⎩ 或11115x x x -<<⎧⎨++-≤⎩ 或()1115x x x ≤-⎧⎨-++-≤⎩解得512x ≤≤或11x -<<或512x -≤≤-,即5522x -≤≤,所以不等式的解集为55,22⎡⎤-⎢⎥⎣⎦. 【总结提升】1.绝对值不等式的常用解法有:定义法,公式法,零点分段法,数形结合法,以及平方法.2. 形如|x -a|+|x -b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a ,b],(b ,+∞)(此处设a<b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集. (2)几何法:利用|x -a|+|x -b|>c(c>0)的几何意义:数轴上到点12x a x b =和=的距离之和大于c 的全体,|||||()||.|x a x b x a x b a b ≥-+----=-(3)图象法:作出函数12||||y x a x b y c =-+-和=的图象,结合图象求解.热门考点05 基本(均值)不等式及其应用1.通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形; (2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 2.条件最值的求解通常有三种方法一是“配凑法”.常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数等,以便于应用基本不等式. 二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值. 三是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解. *3. 利用基本不等式求解实际应用题的方法(1)此类型的题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解. 【典例13】(2019·浙江高考真题)若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b +≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【典例14】(2019·上海交大附中高一期末)已知x ,R y *∈,且满足–20xy x y -=,则x y +的最小值为___________.【答案】3+【解析】分析:由题知2xy x y =+,同除xy ,得211x y+=,再借助基本不等式得最小值. 详解:由题知x ,y ,满足20xy x y --=,则2xy x y =+,同除xy ,得211x y+=,212()()3322x yx y x yx y y x +=++=+++,当且仅当2x =1y =时取到等号.故答案为:3+.【典例15】(2019·江苏高一月考)周长为12的矩形,其面积的最大值为( ) A.6 B.7C.8D.9【答案】D 【解析】设矩形的长宽分别为 x ,y , 则2(x +y )=12,化为x +y =6.292x y S xy +⎛⎫∴== ⎪⎝⎭,当且仅当 x =y =3 时取等号.因此面积的最大值是 9.故选:D.【典例16】已知a >0,b >0,a +b =1,求证:11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭. 【答案】见解析【解析】∵0a >,0b >,1a b +=,∴11+=1+=2+a b b a a a+.同理,11+=2+a b b .∴111122b a a b a b ⎛⎫⎛⎫⎛⎫⎛⎫++=++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭=5+25+4=9b a a b ⎛⎫+≥⎪⎝⎭,当且仅当b a a b =,即1a=b=2时取“=”.∴11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,当且仅当12a b ==时等号成立. 【总结提升】1.基本不等式的综合应用求解策略(1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解. (2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得到参数的值或范围. 2. 基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.热门考点06.二次函数(1)二次函数解析式的三种形式: 一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞) (-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在⎝⎛⎦⎤-∞,-b2a 上单调递减; 在⎣⎡⎭⎫-b2a ,+∞上单调递增 在⎝⎛⎦⎤-∞,-b2a 上单调递增; 在⎣⎡⎭⎫-b2a ,+∞上单调递减 对称性函数的图象关于x =-b2a对称【典例17】(2019·北京临川学校高二期末(文))若函数f(x)=8x 2-2kx -7在[1,5]上为单调函数,则实数k 的取值范围是( ) A .(-∞,8] B .[40,+∞)C .(-∞,8]∪[40,+∞)D .[8,40]【答案】C 【解析】由题意得,函数()2827f x x kx =--图象的对称轴为8kx =,且抛物线的开口向上, ∵函数()2827f x x kx =--在[1,5] 上为单调函数, ∴18k ≤或58k≥, 解得8k ≤或40k ≥,∴实数k 的取值范围是][(),840,∞∞⋃-+. 故选C .【典例18】(浙江省名校新高考研究联盟(Z20)2019届联考)】设函数,当时,记的最大值为,则的最小值为______.【答案】 【解析】 去绝对值,利用二次函数的性质可得,在的最大值为,,,中之一,所以可得,, ,,上面四个式子相加可得即有,可得的最小值为.故答案为.【总结提升】1.研究二次函数单调性的思路(1)二次函数的单调性在其图象对称轴的两侧不同,因此研究二次函数的单调性时要依据其图象的对称轴进行分类讨论.(2)若已知f (x )=ax 2+bx +c (a >0)在区间A 上单调递减(单调递增),则A ⊆⎝⎛⎦⎤-∞,-b 2a ⎝⎛⎭⎫A ⊆⎣⎡⎭⎫-b2a ,+∞,即区间A 一定在函数对称轴的左侧(右侧). 2.二次函数最值问题的类型及求解策略(1)类型:①对称轴、区间都是给定的;②对称轴动、区间固定;③对称轴定、区间变动.(2)解决这类问题的思路:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成.热门考点07. 三个“二次”之间的关系(1)关于x 的一元二次不等式ax 2+bx +c >0(a ≠0)或ax 2+bx +c <0(a ≠0)的解集;若二次函数为f (x )=ax 2+bx +c (a ≠0),则一元二次不等式f (x )>0或f (x )<0的解集,就是分别使二次函数f (x )的函数值为正值或负值时自变量x 的取值的集合. (2)三个“二次”之间的关系:设f (x )=ax 2+bx +c (a >0),方程ax 2+bx +c =0的判别式Δ=b 2-4ac判别式Δ=b 2-4acΔ>0Δ=0Δ<0解不等式f (x )>0求方程f (x )=0的解有两个不等的实数解x 1,x 2有两个相等的实数解x 1=x 2没有实数解或f (x )< 0的步骤画函数y =f (x )的示意图得不等式 的解集f (x )>0__{x |x <x 1 或x >x 2}__ {x |x ≠-b2a} Rf (x )<0__{x |x 1<x <x 2}____∅____∅__【典例19】(2020·宜宾市叙州区第一中学校高一月考(理))已知函数2()1(0)f x x ax a =++>.(1)若()f x 的值域为[0,)+∞,求关于x 的方程()4f x =的解;(2)当2a =时,函数22()[()]2()1g x f x mf x m =-+-在[2,1]-上有三个零点,求m 的取值范围.【答案】(1)3x =-或1x =.(2)(1,2] 【解析】(1)因为()f x 的值域为[)0,+∞,所以()22min 1110242a f x f a a ⎛⎫=-=-+= ⎪⎝⎭. 因为0a >,所以2a =,则()221f x x x =++.因为()4f x =,所以2214x x ++=,即2230x x +-=, 解得3x =-或1x =.(2)()()()2221g x f x mf x m ⎡⎤=-+-⎣⎦在[]2,1-上有三个零点等价于方程()()22210f x mf x m ⎡⎤-+-=⎣⎦在[]2,1-上有三个不同的根. 因为()()22210f x mf x m ⎡⎤-+-=⎣⎦,所以()1f x m =+或()1f x m =-. 因为2a =,所以()221f x x x =++.结合()f x 在[]2,1-上的图象可知,要使方程()()22210f x mf x m ⎡⎤-+-=⎣⎦在[]2,1-上有三个不同的根,则()1f x m =+在[]2,1-上有一个实数根,()1f x m =-在[]2,1-上有两个不等实数根, 即114011m m <+≤⎧⎨<-≤⎩,解得12m <≤.故m 的取值范围为(]1,2.【典例20】(2015·浙江省高考真题(文))设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b时,求函数()f x 在[1,1]-上的最小值()g a 的表达式; (2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>;(2)[3,9--【解析】 (1)当214a b时,2()()12a f x x =++,故其对称轴为2a x =-.当2a ≤-时,2()(1)24a g a f a ==++.当22a -<≤时,()()12a g a f =-=.当2a >时,2()(1)24a g a f a =-=-+.综上,222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>(2)设,s t 为方程()0f x =的解,且11t -≤≤,则{s t ast b+=-=.由于021b a ≤-≤,因此212(11)22t ts t t t --≤≤-≤≤++. 当01t ≤≤时,222222t t t b t t --≤≤++, 由于222032t t --≤≤+和212932t t t --≤≤-+所以293b -≤≤-当10t -≤≤时,222222t t t b t t --≤≤++, 由于22202t t --≤<+和2302t t t --≤<+,所以30b -≤<.综上可知,b 的取值范围是[3,9--. 【规律总结】一元二次不等式ax 2+bx +c >0(a ≠0)的解集的端点值是一元二次方程ax 2+bx +c =0的根,也是函数y =ax 2+bx +c 的图象与x 轴交点的横坐标.巩固提升1.(2017·浙江省高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .2.(2019·上海市吴淞中学高一月考)设集合{}0,1,2,3,4,5U =,{}1,2A =,{}2|230B x Z x x =∈--<,则()A B =U( )A.{}0,1,2,3B.{}5C.{}1,2,4D.{}0,3,4,5【答案】D 【解析】{}{}{}2|230|130,1,2B x Z x x x Z x =∈--<=∈-<<=,所以{}1,2A B =,所以(){}0,3,4,5UA B =,故选:D.3.(2017天津,文2)设x ∈R ,则“20x -≥”是“|1|1x -≤”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】B【解析】20x -≥,则2x ≤,11x -≤,则111,02x x -≤-≤≤≤,{}{}022x x x x ≤≤⊂≤ ,据此可知:“20x -≥”是“11x -≤”的的必要的必要不充分条件,本题选择B 选项.4.(2019·上海曹杨二中高一月考)如果a ,b ,c ,满足c b a <<,且0ac <,那么下列不等式不成立的是( ) A.ab ac > B.()0c b a ->C.2ab ab <D.()0ac a c -<【答案】C 【解析】因为c b a <<,且0ac <,所以0a >,0c <,因此ab ac >;A 正确; 又0b a -<,所以()0c b a ->;B 正确; 当13b =时,219=b ,此时2ab ab >,C 错误; 因为0a c ->,所以()0ac a c -<;D 正确. 故选:C5.(2018·上海市川沙中学高一期末)若2x =是方程222160x ax b ++-=的解,则ab 的最大值是( ) A.16 B.12C.8D.4【答案】D 【解析】因为2x =是方程222160x ax b ++-=的解, 所以822160++-=a b ,即4a b +=,所以242+⎛⎫≤= ⎪⎝⎭a b ab ,当且仅当2a b ==时,取等号. 故选:D6.(2019·上海市吴淞中学高一月考)已知{}|0A x x =≥,{}2|10B x x bx =++=,若AB =∅,则实数b 的取值范围是( ) A.{}|2b b ≥ B.{}|2b b ≥ C.{}|22b b -<< D.{}|2b b >-【答案】D 【解析】 ∵AB =∅,∴方程210x bx ++= 有两负根或无根,则240b b ⎧-⎨-<⎩ 或240b -<, 解得:2b ≥ 或22b -<<, ∴实数b 的取值范围是{}|2b b >- 故选:D7.已知关于x 的不等式210x x a -+-≥在R 上恒成立,则实数a 的取值范围是( ) A.5,4⎛⎫-∞ ⎪⎝⎭B.5,4⎛⎤-∞ ⎥⎝⎦C.5,4⎛⎫+∞ ⎪⎝⎭D.5,4⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】记()21f x x x a =-+-,则原问题等价于二次函数()21f x x x a =-+-的最小值大于或等于0.而()21524f x x a ⎛⎫=-+- ⎪⎝⎭,当12x =时,()min 54f x a =-,所以504a -≥,即54a ≥. 故选:D .8.(2014·全国高考真题(文))不等式组(2)0{1x x x +><的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x >【答案】C 【解析】(2)020{{01111x x x x x x x +>-∴∴<<<-<<或,所以不等式的解集为{|01}x x <<9.若关于x 的不等式2162a b x x b a+<+对任意的0a >,0b >恒成立,则实数x 的取值范围是( ) A.{}20x x -<< B.{|2x x <-或}0x > C.{}42x x -<< D.{|4x x <-或}2x >【答案】C 【解析】因为0a >,0b >,所以161628a b a bb a b a+⋅=(当且仅当4a b =时等号成立),所以由题意,得228x x +<,解得42x -<<,故选:C10.(2019·上海市莘庄中学高一期中)已知,x y R +∈且2xy =,则当x =________时,224x y +取得最小值.【答案】2 【解析】因为2xy =,所以2y x=222222216448x y x x x x ⎛⎫+= =++≥⎝⎭=⎪当且仅当2216x x=,即2x =时,224x y +取得最小值. 故答案为:211.(2018·上海高一期末)设{}2=320A x x x -+≤,(]=,B n -∞,如果AB =∅,则实数n 的取值范围是_________. 【答案】1n < 【解析】 由题知,{}12A x x =≤≤{}B x x n =≤,A B =∅,∴ 作图如下:由图得,n<1. 故答案为:n<112.(2019·上海闵行中学高一期中)若关于x 的不等式0x bx a-<-的解集是(2,3),则a b +=________ 【答案】5 【解析】 因为不等式0x bx a-<-的解集是(2,3) 即2,3x x ==是方程()()0x b x a --=的解 所以2,3b a ==或2,3a b == 则5a b += 故答案为:513.(2019·海南高一期中)设0x >,0y >,且18x y +=,则xy 的最大值为_______. 【答案】81 【解析】0x ,0y >,2x yxy +∴≥ 即2812x y xy +⎛⎫≤= ⎪⎝⎭, 当且仅当9x y ==时等号成立,()max 81xy ∴=. 故答案为:8114.(2020·山东省微山县第一中学高一月考)已知函数2()2(1)4f x x k x =+-+.(1)若函数()f x 在区间[]2,4上具有单调性,求实数k 的取值范围; (2)若()0f x >对一切实数x 都成立,求实数k 的取值范围. 【答案】(1)(,3][1,)-∞-⋃-+∞(2)()1,3-【解析】(1)由函数2()2(1)4f x x k x =+-+知,函数()f x 图象的对称轴为1x k =-.因为函数()f x 在区间[]2,4上具有单调性,所以12k -≤或14k -≥,解得3k ≤-或1k ≥-,所以实数k 的取值范围为(,3][1,)-∞-⋃-+∞.(2)解法一:若()0f x >对—切实数x 都成立,则∆<0,所以24(1)160k --<,化简得2230k k --<,解得13k -<<,所以实数k 的取值范围为()1,3-.解法二:若()0f x >对一切实数x 都成立,则min ()0f x >, 所以2min 164(1)()04k f x --=>, 化简得2230k k --<, 解得13k -<<,所以实数k 的取值范围为()1,3-.15.(2019·上海市吴淞中学高一月考)已知全集U =R ,集合{}2|340A x x x =+-≤,{}|11B x m x m =-≤≤+.(1)若1m =,求()U A B ;(2)若B A ⊆,求m 的取值范围.【答案】(1)(){}|40U B A x x =-≤<;(2)[]3,0- 【解析】(1)若1m =,则{}|02B x x =≤≤,所以{|0U B x x =<或}2x >,又因为{}|41A x x =-≤≤,所以(){}|40U B A x x =-≤< .(2)由(1)得,{}|41A x x =-≤≤,又因为B A ⊆,所以1411m m -≥-⎧⎨+≤⎩ ,解得[]3,0m ∈-. 16.(2019·上海曹杨二中高一月考)若关于x 的不等式()()21120k x k x -+-+>的解集为R ,求k 的取值范围.【答案】[)1,9【解析】当10k -=,即1k =时,原不等式可化为20>,显然恒成立,满足题意;当10k -≠,即1k ≠时,由不等式()()21120k x k x -+-+>的解集为R , 可得:()()2101810k k k ->⎧⎪⎨∆=---<⎪⎩,即1(1)(9)0k k k >⎧⎨--<⎩,解得:19k <<. 综上,k 的取值范围是[)1,9.。

专题07 不等式与不等式组重难点突破讲义(解析版)

专题07 不等式与不等式组重难点突破讲义(解析版)

专题07 不等式与不等式组重难点突破讲义【典例解析】题型一、不等式及其性质【例1】(2020·嵊州市期中)式子:①35;②450x +>;③3x =;④2x x +;⑤4x ≠-;⑥21x x +≥+.其中是不等式的有( ). A .2个 B .3个C .4个D .5个【答案】C.【解析】解:①3<5;②4x+5>0;⑤x≠-4;⑥x+2≥x+1是不等式, ∴共4个不等式. 故答案为:C .【例2-1】(2021·浙江杭州模拟)若x y >,则( ) A .22x y < B .1x y >+C .2222x y --<--D .11x y -<-【答案】C.【解析】解:A .∵x>y ,∴2x>2y , A 不正确;B .∵x>y ,∴x+1>y+1, B 不正确;C .∵x>y ,∴-2x-2<-2y-2, C 正确;D .∵x>y ,∴x-1>y-1, D 不正确; 故答案为:C .【例2-2】(2019·云南玉溪期末)已知a <b ,则下列不等式一定成立的是( ) A .20182018a b< B .﹣2a <﹣2b C .a ﹣2018>b ﹣2018 D .a+2018>b+2018【答案】A.【解析】解:A 、∵a<b ,2018>0, ∴20182018a b<,正确; B 、∵a<b ,-2<0,∴ -2a>-2b ,错误; C 、∵a<b ,∴a-2018<b-2018,错误; D 、∵a<b ,∴a+2018<b+2018,错误; 故答案为:A .【例3】若不等式(2)2a x a ->-的解是1x <,则a 的取值范围是( ) A .0a < B .2a >C .2a <D .2a <-【答案】C.【解析】解:不等式(a -2)x >a -2的解集为x <1, ∴a -2<0, 解得:a <2, 故答案为:C .【例4】(2020·山西期中)李明乘车驶入地下车库时,发现车库入口处有几个标志码(如图1),其中第一个标志(如图2)表示“限高2m”.若设车的高度为x m ,则以下几个不等式中对此标志解释准确的是 ( )A .2x ≥B .2x >C .2x ≤D .2x <【答案】C.【例5】(2020·成武县期中)关于x 的不等式2x-a≤-1的解集为x≤1,则a 的值是( ) A .4B .3C .2D .1【答案】B.【解析】解:2x−a≤−1,2x≤a−1,x≤12a -, ∵x≤1, ∴12a -=1, 解得:a =3, 故答案为:B .【例6】(2020·哈尔滨月考)若关于x 的不等式(-1) 1m x m <-的解集为1x >,则m 的取值范围是( ) A .1m B .1m <C .1m ≠D .1m =【答案】B.【解析】解:∵不等式(m-1)x <m-1的解集为x >1, ∴m-1<0,即m <1, 故答案为:B . 题型二、含参数类【例7-1】(2020·湖南株洲市)关于x 的不等式30x a -≤只有两个正整数解,则a 的取值范围是_______ 【答案】6≤a <9.【解析】解:原不等式解得x≤3a, 解集中只有两个正整数解,这两个正整数解是1,2, ∴2≤3a<3, 解得:6≤a <9. 故答案为:6≤a <9.【例7-2】(2020·广西南宁市期末)若关于x 的不等式2x +a ≤0只有两个正整数解,则a 的取值范围是( ) A .﹣6≤a ≤﹣4 B .﹣6<a ≤﹣4C .﹣6≤a <﹣4D .﹣6<a <﹣4【答案】B.【解析】解:解不等式2x +a ≤0,得:x ≤﹣2a,不等式只有两个正整数解,这两个正整数解为1、2, 则2≤﹣2a<3, 解得:﹣6<a ≤﹣4, 故答案为:B .【变式7-1】(2021·北京专题练习)已知关于x 的不等式21x m x -<-的正整数解是1,2,3,则m 的取值范围是( ) A .34m < B .34m <C .811m <D .811m <【答案】C.【解析】解原不等式得:13m x +<不等式的正整数解为1,2,3,∴1343m +<解得:8<m≤11 故答案为:C.【变式7-2】(2021·中山大学附属中学)若关于x 的不等式3x +1<m 的正整数解是1,2,3,则整数m 的最大值是_____. 【答案】13.【解析】解:解不等式3x +1<m ,得13m x -<. ∵关于x 的不等式3x +1<m 的正整数解是1,2,3, ∴1343m -<≤, ∴1013m <≤,∴整数m 的最大值是13. 故答案为:13.【变式7-3】(2020·海淀区期中)已知关于x 的不等式2x ﹣k >3x 只有两个正整数解,则k的取值范围为_____. 【答案】-3≤k <-2. 【解析】解:∵2x -k >3x , ∴2x -3x >k , ∴x <-k ,因为只有两个正整数解,则2<-k ≤3, ∴-3≤k <-2, 故答案为:-3≤k <-2.【变式7-4】若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<- B .74a -≤≤-C .74a -≤<-D .74a -<≤-【答案】D.【例8-1】(2021·陕西西安市月考)不等式组9511x x x m +<+⎧⎨>+⎩的解集是2x >,则m 的取值范围是( ) A .2m B .1mC .1mD .1m <【答案】C.【解析】解:解不等式①得x>2,解不等式②得:x>m+1, ∵不等式组的解集是x>2, ∴m+1≤2 解得:m≤1, 故答案为:C .【例8-2】(2020·浙江期末)若关于x 的不等式组11x x m <⎧⎨>-⎩无解,则m 的取值范围是( )A .2m <B .2m >C .2m ≥D .2m ≤【答案】C.【解析】解:∵不等式组11x x m <⎧⎨>-⎩无解,∴m -1≥1, 解得:m ≥2, 故答案为:C .【例8-3】若不等式组5300x x m -≥⎧⎨-≥⎩有实数解.则实数m 的取值范围是 ( )A .53m ≤B .5<3m C .53m >D .53m ≥【答案】A.【解析】解:5300x x m -≥⎧⎨-≥⎩①②由①,得x 53≤;由②,得x ≥m , ∵不等式组有实数解, ∴m 53≤. 故答案为:A .【例8-4】(2020·宁波市期末)若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( ) A .68m << B .67≤<mC .67m ≤≤D .67m <≤【答案】D. 【解析】解:解不等式0721x m x -<⎧⎨-≤⎩①②,由①式得,x<m ,由②式得x≥3,故m 的取值范围是:6<m≤7, 故答案为:D .【变式8-1】若关于x 的一元一次不等式组2132x x x m ->+⎧⎨<⎩的解集是3x <-,则m 的取值范围是( ) A .3m ≥- B .3m >-C .3m ≤-D .3m <-【答案】A.【解析】解:解不等式2x -1>3x +2,得:x <-3, ∵不等式组2132x x x m->+⎧⎨<⎩的解集为x <-3,∴m ≥-3. 故答案为:A .【变式8-2】若关于x 的一元一次不等式组12x x m<≤⎧⎨>⎩有解,则m 的取值范围为( )A .2m <B .2m ≤C .1m <D .12m ≤<【答案】A.【解析】解:∵不等式组12x x m <≤⎧⎨>⎩有解,∴m <2, 故答案为:A .【变式8-3】已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________. 【答案】2≤m <3.【解析】解:由题意得:符合题意的整数解为5,4,3 ∴m 不能取值3,可以取值2 ∴2≤m <3故答案为:2≤m <3. 题型三、不等式组及其解法【例9】(2020·成都市锦江区月考)若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x my m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为______.【答案】m >2.【解析】解:方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩,可转换为1112221(2)21(2)2a x y b x y c a x y b x y c ⎧⎛⎫+++= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++= ⎪⎪⎝⎭⎩,∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解集为3x my m =⎧⎨=+⎩,∴方程组1112221(2)21(2)2a x yb x yc a x y b x y c ⎧⎛⎫+++= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++= ⎪⎪⎝⎭⎩的解为:1223x y m x y m ⎧+=⎪⎨⎪+=+⎩①②,由②-①得:x=2把x=2代入①得:y=m -1, ∴x+y=m+1>3, ∴m>2, 故答案为:m>2.【例10】(2021·武城县四女寺镇明智中学九年级一模)不等式组1124223122x x x x ⎧+>-⎪⎪⎨⎪-≤⎪⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】A.【解析】解:1124223122x x x x ⎧+>-⎪⎪⎨⎪-≤⎪⎩①②,由①得:x >-3,由②得:x ≤1, ∴不等式组的解为:-3<x ≤1,在数轴上表示如下:故答案为:A .【例11】(2020·山东枣庄月考)若关于,x y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足 3x y +>-,求出满足条件的m 的所有正整数数值.【答案】1、2、3、4.【解析】解:由23224x y m x y +=-+⎧⎨+=⎩①② ①+②得:3x+3y=-3m+6即x+y=-m+2>-3 ∴m<5满足条件的m 的所有正整数数值是1、2、3、4. 【例12】(2021·天津河西区)解不等式组321251x x x ≤+⎧⎨+≥-⎩①②请结合题意填空,完成本题的解答. (1)解不等式①,得________; (2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.【答案】(1)1x ≤;(2)3x ≥-;(3)见解析;(4)31x -≤≤【例13】(2021·江西模拟)解不等式组:3(2)41213x x x x --≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示它的解集.【答案】x ≤1.【解析】解:3(2)4?121?3x x x x --≥-⎧⎪⎨+>-⎪⎩①②,∵解不等式①得:x ≤1,解不等式②得:x <4, ∴不等式组的解集为:x ≤1, 在数轴上表示不等式组的解集为:.【例14】如果一元一次方程的解是一元一次不等式组的一个解,则称该一元一次方程为该不等式组的一个关联方程.如一元一次方程213x -=的解是2x =,一元一次不等式组21354x x >⎧⎨-<⎩的解集是132x <<,我们就说一元一次方程213x -=是一元一次不等式组21354x x >⎧⎨-<⎩的一个关联方程. (1)在方程①310x -=,②240x -=,③(21)7x x +-=-中,不等式组52322x x x x -<-+⎧⎨->-+⎩的关联方程是 ;(填序号)(2)若不等式组112132x x x ⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数,则这个关联方程可以是 ;(写出一个即可)(3)若方程92x x -=,132()2x x +=+都是关于x 的不等式组22x x mx m <-⎧⎨-⎩的关联方程,直接写出m 的取值范围.【答案】(1)②;(2)x-1=0;(3)1≤m <2. 【解析】解:(1)解不等式组52322x x x x -<-+⎧⎨->-+⎩得:712x <<, ∵方程①的解为13x =;方程②的解为x=2;方程③的解为:x=-2,∴不等式组的关联方程是②,故答案为:②;(2)解不等式组112132x x x ⎧-<⎪⎨⎪+>-+⎩ 得:1342x <<, 所以不等式组的整数解为:x=1,故答案为:x-1=0;(3)解不等式组22x x m x m<-⎧⎨-⎩ 得:2m x m <+.方程9-x=2x 的解为:x=3, 方程132()2x x +=+的解为:x=2, 其是关于x 的不等式组22x x m x m<-⎧⎨-⎩的关联方程, ∴m 222m 323m m <⎧⎪+≥⎪⎨<⎪⎪+≥⎩, 解得:1≤m <2∴m 的取值范围是1≤m <2.题型四、实际应用【例15】(2020·安徽合肥)春节期间某商场为促销,将定价为50元/件的商品如下销售:一次性购买不超过5件按照原价销售;一次性购买超过5件则按原价的八折出售.旗旗现在有290元,则最多可购买这种商品( )件.A .6B .7C .8D .9【答案】B.【解析】解:设旗旗可以购买x 件商品,∵290>250,∴旗旗购买的商品超过5件,50×0.8x≤290,解得:x≤714. ∵x 为整数,∴x 的最大值为7.故答案为:B .【例16】(2021·合肥市期中)阿慧在店内购买两种蛋糕当伴手礼,如图为蛋糕的价目表.已知阿慧共购买10盒蛋糕,花费的金额不超过500元.若他将蛋糕分给75位同事,每人至少能拿到一个蛋糕,则阿慧花多少元购买蛋糕?( )A .430B .450C .460D .490【答案】D. 【解析】解:设阿慧购买x 盒桂圆蛋糕,则购买(10-x )盒金枣蛋糕,则()()7040105001261075x x x x ⎧+-≤⎪⎨+-≥⎪⎩, 解得:122≤x ≤133, ∵x 是整数,∴x =3,70×3+40×(10-3)=490(元).故答案为:D .【例17-1】(2020·河南驻马店期中)阅读以下结论:(1)若|x |=a (a ≥0),则x =±a . (2)若|x |>a (a >0),则x >a 或x <﹣a ;若|x |<a (a >0),则﹣a <x <a .(3)若(x ﹣a )(x ﹣b )>0(0<a <b ),则x >b 或x <a ;若(x ﹣a )(x ﹣b )<0(0<a <b ),则a <x <b .根据上述结论,解答下面问题:(1)解方程:|3x ﹣2|﹣4=0.(2)解不等式:|3x ﹣2|﹣4>0.(3)解不等式:|3x ﹣2|﹣4<0.(4)解不等式:(x ﹣2)(x ﹣5)>0.(5)解不等式:(2x ﹣3)(2x ﹣5)<0.【答案】(1)x =2或x =﹣23;(2)x >2或x <﹣23;(3)﹣23<x <2;(4)x >5或x <2;(5)32<x <52. 【解析】(1)解:|3x ﹣2|﹣4=0,3x ﹣2=4或3x ﹣2=﹣4,解得x =2或x =23-; (2)解:|3x ﹣2|﹣4>0,3x ﹣2>4或3x ﹣2<﹣4,解得x >2或x <23-; (3)解:|3x ﹣2|﹣4<0,﹣4<3x ﹣2<4, 解得23-<x <2; (4)解:(x ﹣2)(x ﹣5)>0,x ﹣5>0或x ﹣2<0,解得x >5或x <2;(5)解不等式:(2x ﹣3)(2x ﹣5)<0,3<2x <5, 解得32<x <52. 【例17-2】(2020·北京通州区期末)对于一个数x ,我们用(]x 表示小于x 的最大整数,例如: (](](]2.62,34,109=-=-=.(1)填空:(]2020___________-=,(]2.4___________-=,(]0.7___________=; (2)如果,a b 都是整数,(]a 和(]b 互为相反数,求代数式224a b b -+的值;(3)如果(]3x =,求x 的取值范围.【答案】(1)-2021,-3,0;(2)4;(3)-3<x ≤-2或3<x ≤4.【解析】解:(1)(-2020]=-2021,(-2.4]=-3,(0.7]=0;故答案为:-2021,-3,0.(2)∵a ,b 都是整数,且(a]和(b]互为相反数,∴a-1+b-1=0,∴a+b=2,∴a 2-b 2+4b=(a-b )(a+b )+4b=2(a-b )+4b=2(a+b )=2×2=4;(3)当x <0时,∵|(x]|=3,∴x >-3,∴-3<x≤-2;当x >0时,∵|(x]|=3,∴x >3,∴3<x≤4.故x 的范围取值为-3<x≤-2或3<x≤4.【例18】(2020·四川南充期末)已知方程组2331x y k x y k +=+⎧⎨-=--⎩的解中,x 是非负数,y 是正数.(1)求k 的取值范围;(2)化简:21k k --+;(3)当k 为何整数时,不等式221x k kx +<+的解集为1x >.【答案】(1)425k -<≤;(2)-2k+1;(3)1或2.【解析】解:(1)解方程组2331x y k x y k +=+⎧⎨-=--⎩①②①+②,得 22x k =-+ ∴12kx =-+①-②,得 254y k =+ ∴522ky =+ 已知102k x =-+,且5202ky =+>∴k 2≤且45k >- ∴425k -<≤(2)∵425k -<≤∴20k -≤且10k +>. ∴21k k --+(2)(1)k k =---+21k =-+ 即21k k --+21k =-+;(3)∵221x k kx +<+∴221kx x k ->-∴(21)21k x k ->-∵解集为 1x >,∴210k ->. ∴12k > 结合425k -<≤ 得122k <≤.∴整数k=1或k=2.【例19】某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A ,B 两种树苗,共21棵,已知A 种树苗每棵90元,B 种树苗每棵70元.设购买A 种树苗x 棵,购买两种树苗所需费用为y 元.(1)求y 与x 的函数表达式,其中0≤x ≤21;(2)若购买B 种树苗的数量少于A 种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【答案】见解析.【解析】解:(1)根据题意,得:y =90x +70(21﹣x )=20x +1470,所以函数解析式为:y =20x +1470;(2)∵购买B 种树苗的数量少于A 种树苗的数量,∴21﹣x <x ,解得:x >10.5,又∵y =20x +1470,且x 取整数,∴当x =11时,y 有最小值=1690,∴使费用最省的方案是购买B 种树苗10棵,A 种树苗11棵,所需费用为1690元.【例20】(2021·河南郑州市期中)某班对期中考试进步的同学进行表彰,若购买百乐笔15支,晨光笔20支,需花费250元;若购买百乐笔10支,晨光笔25支,需花费225元. (1)求百乐笔、展光笔的单价;(2)如果再次购买百乐笔、晨光笔共35支,并且购买两种笔的总费用不超过300元,求至多购买多少支百乐笔?【答案】见解析.【解析】解:(1)设百乐笔的单价为x 元/支、展光笔的单价为y 元/支,根据题意得,15202501025225x y x y +=⎧⎨+=⎩,整理得:34502545x y x y +=⎧⎨+=⎩①② ①×2-②×3得:y=5把y=5代入①得:x=10105x y =⎧∴⎨=⎩答:百乐笔的单价为10元、展光笔的单价为5元.(2)设购买百乐笔m 支,则晨光笔(35-m )支,由题意得:()10535300m m +-≤,解得:m ≤25,答:至多购买25支百乐笔.【例21】某学校为了增强学生体质,加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元. (1)求购买一根跳绳和一个毽子分别需要多少元;(2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买方案.【答案】见解析.【解析】解:(1)设购买一根跳绳需要x 元,购买一个毽子需要y 元,依题意,得:25324336x y x y +=⎧⎨+=⎩, 解得:64x y =⎧⎨=⎩. 答:购买一根跳绳需要6元,购买一个毽子需要4元;(2)设购买m 根跳绳,则购买(54−m )个毽子,由题意,得:()645426020m m m ⎧+-≤⎨>⎩,解得:20<m ≤22.∵m 为正整数,∴m 可以为21,22.∴共有2种购买方案,方案1:购买21根跳绳,33个毽子;方案2:购买22根跳绳,32个毽子.。

不等式与不等式组知识点归纳

不等式与不等式组知识点归纳

第九章 不等式与不等式组一、知识结构图二、知识要点(一、)不等式的概念1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。

不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。

3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。

4、解不等式:求不等式的解集的过程,叫做解不等式。

⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(3215、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。

规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。

(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。

用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式。

人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)

人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)

专题05 一元一次不等式及不等式组知识框架重难突破一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。

2.一元一次不等式的解及解集(1)使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。

(2) 一元一次不等式的所有解组成的集合是一元一次不等式的解集。

(3)解集在数轴上表示3、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

备注:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变)a a a a < > ≤ ≥合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 例1.(2019·湖南广益实验中学初一期中)下列不等式中,是一元一次不等式的是( )A .1x >3B .x 2<1C .x +2y >0D .x <2x +1【答案】D【解析】解:A 、1x 是分式,因此1x>3不是一元一次不等式,故此选项不合题意; B 、x 2是2次,因此x 2<1不是一元一次不等式,故此选项不合题意;C 、x +2y >0含有2个未知数,因此不是一元一次不等式,故此选项不合题意;D 、x <2x +1是一元一次不等式,故此选项符合题意;故选:D .练习1.(2018·六安市裕安中学初一期中)下列不等式中,一元一次不等式有( )①2x 32x +> ②130x -> ③ x 32y -> ④x 15ππ-≥ ⑤ 3y 3>- A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】详解:①不是,因为最高次数是2;②不是,因为是分式;③不是,因为有两个未知数;④是;⑤是.综上,只有2个是一元一次不等式.故选B .例2.(2019·洋县教育局初二期中)若437m x -+≤是关于x 的一元一次不等式,则m =__________.【答案】3【解析】解:∵437m x -+≤是关于x 的一元一次不等式,∴4-m =1,∴m=3,故答案为:3.练习1.(2019·山东省初二期中)已知12(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±3【答案】A【解析】根据题意|m|﹣3=1且m+4≠0解得:|m|=4,m≠﹣4所以m=4.故选:A.例3.(2018·浙江省初二期中)一元一次不等式2(x﹣1)≥3x﹣3的解在数轴上表示为()A.B.C.D.【答案】B【解析】解: 2(x﹣1)≥3x﹣3去括号, 得2x-2≥3x-3,移项, 合并同类项, 得-x≥-1,得:x≤1故在数轴上表示为:故选B.练习1.(2020·万杰朝阳学校初一期中)如图,张小雨把不等式3x>2x-3的解集表示在数轴上,则阴影部分盖住的数字是____.【答案】-3【解析】由3x>2x-3,解得:x>-3,∴阴影部分盖住的数字是:-3.故答案是:-3.例4.(2020·监利县新沟新建中学初一期中)解不等式:14232-+->-x x . 【答案】x <−2【解析】解:去分母:2(x −1)−3(x +4)>−12,去括号:2x −2−3x −12>−12,合并同类项:−x >2,系数化1:x <−2. 练习1.(2018·福建省永春第二中学初一期中)解不等式3(21)x +<13(43)x --,并把解集在数轴上表示出来.【答案】x <2,数轴见解析【解析】去括号,得 6x +3<13-4+3x ,移项,得 6x -3x <13-4-3,即3x <6,两边同除以3,得x <2,在数轴上表示不等式的解集如下:例5.(2019·重庆市凤鸣山中学初一期中)关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4- 【答案】A【解析】解:解不等式22x a -+≥,得22a x- ,∵由数轴得到解集为x ≤-1, ∴212a -=- ,解得:a =0. 故选:A .练习1.(2019·陕西省初二期中)不等式-4x -k ≤0的负整数解是-1,-2,那么k 的取值范围是( ) A .812k ≤<B .812k <≤C .23k ≤<D .23k <≤ 【答案】A【解析】解:∵-4x -k ≤0,∴x ≥-4k , ∵不等式的负整数解是-1,-2,∴-3<-4k ≤-2, 解得:8≤k <12,故选:A .二、一元一次不等式组1、一元一次不等式组定义: 含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(附答案)

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(附答案)

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(一)不等式过关训练➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<20202.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<22.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<53.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<125.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是.(二)不等式组过关训练➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=22.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<196.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.219.(2022•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.3610.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤32.若关于x的不等式组的解集是x≤a,则a的取值范围是()二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣364.若关于x的不等式组无解,则a的取值范围是.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.16.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤17.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.18.(2022秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.109.(2022秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()A.7B.8C.9D.1010.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是.(三)方程与不等式组综合过关训练➢典例精讲1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.62.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()A.﹣22B.﹣18C.11D.123.(2021秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.304.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10➢课后训练1.(2022秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.102.(2022秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.103.(2021春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为.参考答案与试题解析➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<2020【解答】解:∵不等式(a+2020)x﹣a>2020的解集为x<1,∴a+2020<0,解得,a<﹣2020,故选:B.2.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为x<﹣.【解答】解:∵不等式(a+3b)x>a﹣b的解集是x<﹣,∴a+3b<0,即a<﹣3b,∵,即8a=﹣12b,,∵a+3b<0,2a+3b=0,则a>0,b<0,∴bx﹣a>0的解集为x<﹣.故答案为:x<﹣.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是x >﹣1.【解答】解:ax<﹣bx+b,(a+b)x<b,∵关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,∴=,且a+b<0,∴a=b<0,∴ax>2bx+b变为﹣bx>b,∴x>﹣1,故答案为x>﹣1.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个【解答】解:解不等式3x﹣2a<4﹣5x得:x<,∵关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,是1,2,3,∴3<≤4,解得:10<a≤14,∴整数a可以是11,12,13,14,共4个,故选:B.5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是﹣6≤a<﹣1.【解答】解:解不等式得:x>,∵负整数解是﹣1,﹣2,∴﹣3≤<﹣2.∴﹣6≤a<﹣1.故答案为:﹣6≤a<﹣1.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<2【解答】解:根据题意得:2﹣a<0,解得:a>2.故选:C.2.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<5【解答】解:不等式(2m﹣n)x﹣m>5n,变形得:(2m﹣n)x>5n+m,根据已知解集为x<,得到=,且2m﹣n<0,即2m<n,整理得:4m+20n=26m﹣13n,即33n=22m,整理得:3n=2m,即m=1.5n,n<0,代入所求不等式得:0.5nx>2.5n,解得:x<5.故选:D.3.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为x≤2.【解答】解:不等式移项得:3(a﹣b)x>5b﹣a,由不等式的解集为x<1,得到a﹣b<0,且=1,整理得:a<b,且4a=8b,即a=2b,∴a<0,则不等式ax≥4b变形得:x≤=2,故答案为:x≤2.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<12【解答】解:移项,得:3x≤m,系数化为1,得:x≤,∵不等式的正整数解为1,2,3,∴3≤<4,解得:9≤m<12,故选:D.5.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是﹣8<m≤﹣6.【解答】解:∵2x﹣m≥0,∴2x≥m,∴x≥,∵不等式组的负整数解为﹣1,﹣2.﹣3,∴﹣4<≤﹣3,则﹣8<m≤﹣6,故答案为:﹣8<m≤﹣6.➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=2【解答】解:,解x﹣m>0,得:x>m,解5﹣2x≤1,得:x≥2,∵不等式组的解集是x≥2,∴m<2,故选:C.2.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2【解答】解:解不等式组,由①可得:x<2,由②可得:x<a,因为关于x的不等式组的解集是x<2,所以,a≥2,故选:A.二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥【解答】解:,解不等式①得:x≥1,解不等式②得:x≤4a,又∵不等式组有解,∴4a≥1,解得:a≥,故选:D.4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8【解答】解:解不等式<﹣1得:x>8,又∵不等式组无解,∴m≤8,故选:A.三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<19【解答】解:不等式组整理得:,解得:a﹣2<x<21,由不等式组恰有4个整数解,得到整数解为17,18,19,20,∴16≤a﹣2<17,解得:18≤a<19,故选:B.6.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<m+5,∴原不等式组的解集为﹣1≤x<m+5,由不等式组的整数解只有4个,得到整数解为﹣1,0,1,2,∴2<m+5≤3,∴﹣2<m≤﹣故答案为﹣2<m≤﹣.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.【解答】解:解不等式x﹣a≤0,得:x≤a,解不等式2x+3a≥0,得:x≥﹣a,则不等式组的解集为﹣a≤x≤a,∵不等式至少有6个整数解,则a+a≥5,解得a≥2.a的最小值是2.故选:B.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.21【解答】解:解不等式组,得﹣1<x≤,∵至多有4个整数解,<4,解得m<7;∴故满足条件的所有非负整数m的值之和为0+1+2+3+4+5+6=21,故选:D.9.(2019•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.36【解答】解:解不等式组,得:﹣<x<,∵不等式组有且仅有2个奇数解,∴-1<≤1,解得:0<m≤8,所以所有满足条件的整数m的值为1,2,3,4,5,6,7,8,和为36.故选:D.10.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是7≤a<9或﹣3≤a<﹣1.【解答】解:,∵解不等式①得:x,解不等式②得:x≤4,∴不等式组的解集为<x≤4,∵关于x的不等式组的所有整数解的和为7,∴当时,这两个整数解一定是3和4,∴,∴7≤a<9,当时,整数解是﹣2,﹣1,0,1,3和4,∴﹣3,∴﹣3≤a<﹣1,∴a的取值范围是7≤a<9或﹣3≤a<﹣1.故答案为:7≤a<9或﹣3≤a<﹣1.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤3【解答】解:解不等式3(x+1)>12,得:x>3,∵不等式组的解集为x>3,∴m≤3,故选:D.2.若关于x的不等式组的解集是x≤a,则a的取值范围是()A.a≤2B.a>﹣2C.a<﹣2D.a≤﹣2【解答】解:解不等式﹣2x﹣1>3,得:x<﹣2,解不等式a﹣x≥0,得:x≤a,∵不等式组的解集为x≤a,∴a<﹣2,故选:C.二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣36【解答】解:不等式组整理得:,由不等式组有解,得到a﹣1>﹣37,解得:a>﹣36.故选:D.4.(2020春•陇西县期末)若关于x的不等式组无解,则a的取值范围是a≥﹣2.【解答】解:,解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥﹣2.故答案是:a≥﹣2.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.1【解答】解:解不等式组得:<x<2,由关于x的不等式组恰好只有2个整数解,得﹣1≤<0,即0≤a<4,满足条件的整数a的值为0、1、2、3,整数a的值之和是0+1+2+3=6,故选:C.6.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤1【解答】解:,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有三个整数解,∴整数解为1,2,3,∴0≤m<1.故选:C.7.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.1【解答】解:,解①得x≤2a,解②得x>﹣a.则不等式组的解集是﹣a<x≤2a.∵不等式至少有7个整数解,则2a+a>7,解得a>2.整数a的最小值是3.故选:B.8.(2019秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.10【解答】解:不等式组的解为,∵至多5个整数解,∴<5,∴m<,故选:B.9.(2020秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()【解答】解:不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个奇数解,得到奇数解为3,1,∴﹣1≤<1,∴﹣3≤a<5,则满足题意a的值有﹣3,﹣2,﹣1,0,1,2,3,4,5四个,则符合条件的所有整数a的和是9.故选:C.10.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是﹣3<m≤﹣2或2<m≤3.【解答】解:解不等式+3>﹣1,得:x>﹣4.5,∵不等式组的整数解的和为﹣7,∴不等式组的整数解为﹣4、﹣3或﹣4、﹣3、﹣2、﹣1、0、1、2,则﹣3<m≤﹣2或2<m≤3,故答案为:﹣3<m≤﹣2或2<m≤3.➢典例精讲方程与不等式综合含参问题1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.6【解答】解:解方程3﹣2x=3(k﹣2)得x=,∵方程的解为非负整数,∴≥0,即k≤3,即非负整数k=1,3,不等式组整理得:,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,当k=0时,x=4.5,不是整数;当x=2时,k=1.5,不是整数,两个k的值不符合题意,舍去;综上,k=1,3,则符合条件的整数k的值的和为4.故选:C.2.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()【解答】解:去分母得:3ax+3=﹣14x﹣6,解得:x=﹣,∵关于x的方程=﹣﹣1有非负数解,∴3a+14<0,∴a<﹣,不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个偶数解,得到偶数解为2,0,∴﹣2≤<﹣1,∴﹣7≤a<﹣3,则满足题意a的值有﹣7,﹣6,﹣5,则符合条件的所有整数a的和是﹣18.故选:B.3.(2019秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.30【解答】解:解方程组得:,∵方程组的解为正整数,∴a﹣3=1或a﹣3=2或a﹣3=5或a﹣3=10,解得a=4或a=5或a=8或a=13;解不等式(2x+8)≥7,得:x≥10,解不等式x﹣a<2,得:x<a+2,∵不等式组无解,∴a+2≤10,即a≤8,综上,符合条件的a的值为4、5、8,则所有满足条件的a的和为17,故选:C.4.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10【解答】解:解不等式>0,得:x>m,解不等式﹣x<﹣4,得:x>4,∵不等式组的解集为x>4,∴m≤4,解方程组得,∵x,y均为整数,∴m=4或m=10或m=2或m=﹣4,又m≤4,∴m=﹣4或m=4或m=2,则符合条件的所有整数m的和是2,故选:B.➢课后训练1.(2019秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.10【解答】解:解方程x+2a=1得:x=1﹣2a,∵方程的解为负数,∴1﹣2a<0,解得:a>0.5,∵解不等式①得:x<a,解不等式②得:x≥4,又∵不等式组无解,∴a≤4,∴a的取值范围是0.5<a≤4,∴整数和为1+2+3+4=10,故选:D.2.(2020秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.10【解答】解:解不等式≤2x,得:x≥,解不等式2x+7≤4(x+1),得:x≥,∵不等式组的解集为x≥,∴≤,解得m≤5,解方程3y﹣2=,得:y=,∵方程的解为非负整数,∴符合m≤5的m的值为2和5,则符合条件的所有整数m的积为10,故选:D.3.(2019春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为5.【解答】解:,①﹣②得:3y=7﹣m,解得:y=,把y=代入①得:x=,由方程组的解为正整数,得到7﹣m与8+m都为3的倍数,∴m=1,4,不等式组整理得:,即﹣1≤t≤m,由不等式组有解,得到m=1,4,综上,符合条件的整数m的值的和为1+4=5.故答案为:5.。

不等式组全章复习课件

不等式组全章复习课件

科学中的不等式问题
80%
物理实验数据处理
通过不等式确定实验数据的可信 区间和误差范围。
100%
环境监测与保护
比较不同地区的环境质量,制定 相应的环境保护措施。
80%
生物医学研究
分析不同药物或治疗方法的效果 ,为临床决策提供依据。
05
综合练习与解答
综合练习题
练习题1
解不等式组$left{ begin{array}{l} 3(x + 1) > x 1 2x > 3x - 2 end{array} right.$

提高数学思维能力和解决复杂 问题的能力。
THANK YOU
感谢聆听
下一步学习计划与展望
01
学习计划
02
深入理解不等式组的性质和解题技巧。
学习不等式组的实际应用案例,提高解决实际问题的能力。
03
下一步学习计划与展望
• 通过练习题和模拟题巩固所学知识。
下一步学习计划与展望
01
展望
02
03
04
进一步学习不等式的其他类型 和解题方法。
学习如何将不等式与其他数学 知识点结合,如代数、几何等
练习题2
解不等式组$left{ begin{array}{l} frac{x + 1}{2} > 2 x - 3 < 4 end{array} right.$
练习题3
解不等式组$left{ begin{array}{l} 3(x - 1) < x + 5 frac{x + 9}{3} > x + 1 end{array} right.$
不等式组全章复习课件

专题1.2 一元一次不等式与不等式组章末重难点题型(举一反三)(沪科版)(解析版)

专题1.2  一元一次不等式与不等式组章末重难点题型(举一反三)(沪科版)(解析版)

专题1.2 一元一次不等式与不等式组章末重难点题型【沪科版】【考点1 不等式的基本性质】【方法点拨】不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

【例1】(2019春•南平期中)下列四个不等式:(1)ac>bc;(2)﹣ma<mb;(3)ac2>bc2;(4)>1,一定能推出a>b的有()A.1个B.2个C.3个D.4个【分析】根据不等式的性质逐个判断即可求得答案.【答案】解:在(1)中,当c<0时,则有a<b,故不能推出a>b,在(2)中,当m>0时,则有﹣a<b,即a>﹣b,故不能推出a>b,在(3)中,由于c2>0,则有a>b,故能推出a>b,在(4)中,当b<0时,则有a<b,故不能推出a>b,综上可知一定能推出a>b的只有(3),故选:A.【点睛】本题主要考查不等式的性质,掌握不等式的性质是解题的关键,特别是在不等式的两边同时乘或除以一个不为0的数或因式时,需要确定该数或因式的正负.【变式1-1】(2018春•江汉区期末)若a>b,则下列结论:①a+x>b+x;②>;③ax2>bx2;④ab<b2;⑤﹣|a|<﹣|b|.其中一定成立的个数是()A.1 B.2 C.3 D.4【分析】根据不等式的基本性质逐项判断即可.【答案】解:①∵a>b,∴根据不等式的基本性质1可得:a+x>b+x;所以,正确的个数为1个;②当x<0时,>不成立;③ax2>bx2;④当b>0时,ab<b2不成立;⑤当0>a>b时,﹣|a|<﹣|b|不成立.故选:A.【点睛】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【变式1-2】(2019春•冠县期末)下列式子正确的是()A.若<,则x<y B.若bx>by,则x>yC.若=,则x=y D.若mx=my,则x=y【分析】根据不等式的基本性质,以及等式的性质,逐项判断即可.【答案】解:∵若<,则a>0时,x<y,a<0时,x>y,∴选项A不符合题意;∵若bx>by,则b>0时,x>y,b<0时,x<y,∴选项B不符合题意;∵若=,则x=y,∴选项C符合题意;∵若mx=my,且m=0,则x=y或x≠y,∴选项D不符合题意.故选:C.【点睛】此题主要考查了不等式的基本性质,以及等式的性质,要熟练掌握,解答此题的关键是要明确:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变【变式1-3】(2019春•宜宾县校级期中)若ab<0,且a<b,下列解不等式正确的是()A.由ax<b,得x<B.由(a﹣b)x>2,得x>C.由bx<a,得x>D.由(b﹣a)x<2,得x<【分析】先求出a,b的大小关系,再运用不等式的基本性质判定.【答案】解:∵ab<0,且a<b,∴a<0<b.A、由ax<b,得x>,故A选项错误;B、由(a﹣b)x>2,得x<,故B选项错误;C、由bx<a,得x<),故C选项错误;D、由(b﹣a)x<2,得x<,故D选项正确.故选:D.【点睛】本题主要考查了不等式的基本性质,解题的关键是确定x系数的正负值.【考点2 由实际问题抽象出一元一次不等式】【方法点拨】由实际问题抽象出一元一次不等式组,关键是正确理解题意,找出题目中的不等关系.【例2】(2019春•湘桥区期末)某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打()A.6折B.7折C.8折D.9折【分析】设该商品打x折销售,根据利润=销售价格﹣进价结合利润率不低于5%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【答案】解:设该商品打x折销售,依题意,得:900×﹣600≥600×5%,解得:x≥7.故选:B.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.【变式2-1】(2019春•威远县校级期中)将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A.8(x﹣1)<5x+12<8 B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8 D.8x<5x+12<8【分析】设有x人,由于每位小朋友分5个苹果,则还剩12个苹果,则苹果有(5x+12)个;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果,就是苹果数﹣8(x﹣1)大于0,并且小于8,根据不等关系就可以列出不等式【答案】解:设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选:C.【点睛】此题主要考查由实际问题抽象出一元一次不等式组,关键是正确理解题意,找出题目中的不等关系.【变式2-2】(2019春•肥城市期中)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2016﹣2017赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(32﹣x)≥48 B.2x﹣(32﹣x)≥48C.2x+(32﹣x)≤48 D.2x≥48【分析】根据题意表示出胜与负所得总分数大于等于48,进而得出不等关系.【答案】解:这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是:2x+(32﹣x)≥48.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确得出不等关系是解题关键.【变式2-3】(2019•江北区一模)某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A.3×5+3×0.8x≤27 B.3×5+3×0.8x≥27C.3×5+3×0.8(x﹣5)≤27 D.3×5+3×0.8(x﹣5)≥27【分析】设小聪可以购买该种商品x件,根据总价=3×5+3×0.8×超出5件的部分结合总价不超过27元,即可得出关于x的一元一次不等式,此题得解.【答案】解:设小聪可以购买该种商品x件,根据题意得:3×5+3×0.8(x﹣5)≤27.故选:C.【点睛】本题考查了由实际问题抽象出一元一次不等式,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.【考点3 解一元一次不等式】【方法点拨】解一元一次不等式组的步骤:(1)求出每个不等式的解集;(2)求出每个不等式的解集的公共部分;(一般利用数轴)(3)用代数符号语言来表示公共部分。

七年级数学拓展第五讲不等式与不等式组讲义

七年级数学拓展第五讲不等式与不等式组讲义
例 19. 已 知 x1, x2 ,, x7 为 正 整 数 , 且 x1 x2 x3 x6 x7 , 如 果 x1 x2 x3 x7 2012 ,那么 x1 x2 x3 的最大可能值是多少?
例 16.(2010 江苏)近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”、“豆 你玩”.以绿豆为例,5 月上旬某市绿豆的市场价已达 16 元/千克。市政府决定采取价格临时 干预措施,调进绿豆以平抑市场价格。经市场调硏预测,该市每调进 100 吨绿豆,市场价格 就下降 1 元/千克。为了即能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市 场价格控制在 8 元汘千克到 10 元/汘克之间(含 8 元/千克和 10 元/千克)。问调进绿豆的吨 数应在什么范围内为宜?
例 17.某工厂现有甲种原料 36 千克,乙种原料 20 千克,计划用这两种原料生产 A、B 两种 产品共 12 件。已知生产一件 A 种产品需甲种原料 3 千克,乙种原料 1 千克;生 B 种产品需 甲种原料 2 千克乙种原料 5 千克 (1)设生产 x 件 A 种产品,写出 x 应满足的不等式组 (2)请你设计出符合题意的几种生产方案
第五讲 不等式与不等式组
不等式的概念
1.不等式的概念
用不等号表示不相等关系的式子,叫做不等式,例如:
5 2, a 3 4 1, x 1 0,| x | 0,3a 4a
等都是不等式
常见的不等号有 5 种: " "," "," "," "," "
2.不等式的性质
(1)基本性质 1:不等式两边都加上(或减去)同一个数或是同一个整式,不等号方向不 变
其中空心点用来表示“>”和“<”,实心点用来表示“≥”和“≤”

第9讲 《不等式与不等式组 》复习讲义

第9讲    《不等式与不等式组    》复习讲义

16.(12分)某商场用36万元购进A、B两种商品,销售完后共获利6万 元,其进价和售价如下表:
A
B
进价(元/件)
1 200
1 000
售价(元/件)
1 380
1 200
(1)该商场购进A、B两种商品各多少件? (2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不 变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B
题型三:列不等式组 某中学有若干名住读生,如果每间宿舍住4人,则有20人没宿舍住;
如果每间住8人,则有一间宿舍住不满,求住读生的人数及宿舍的间数.
题型四 增长率问题(理解增长关系,会列增长后的表达式)
.据统计,连云港港口2002年、2003年的内外贸吞吐总量分别为 3300万吨和3760万吨,其中2003年外贸和内贸吞吐量分别较2002年增长 10%和20%.
14.(9分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答 都扣5分.小明得分要超过90分,他至少要答对多少道题?
15.(12分)小武新家装修,在装修客厅时,购进彩色地砖和单色地砖 共100块,共花费5 600元.已知彩色地砖的单价是80元/块,单色地砖的 单价是40元/块. (1)两种型号的地砖各采购了多少块? (2)如果厨房也铺设这两种型号的地砖共60块,且采购地砖的费用不超 过3 200元,那么彩色地砖最多能采购多少块?
A、 B、
C、 D、
考点二 不等式的解法及表示
1.下列不等式中,与≤-1同解的不等式是 ( )
A.3-2x≥5 B.2x-3≥5 C.3-2x≤5 D.x≤4
2.不等式4-3x≥2x-6的非负整数解有( )
A.1 个 B. 2 个 C. 3个 D. 4个

不等式讲义知识点详解+例题+习题(含详细答案)(最新整理)

不等式讲义知识点详解+例题+习题(含详细答案)(最新整理)

不等式讲义最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a +b |≤|a |+|b |(a ,b ∈R ).(2)|a -b |≤|a -c |+|c -b |(a ,b ∈R ).2.会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ,|ax +b |≥c ,|x -c |+|x -b |≥a .3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法.1.含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ;(2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解.2.含有绝对值的不等式的性质|a |-|b |≤|a ±b |≤|a |+|b |.问题探究:不等式|a |-|b |≤|a ±b |≤|a |+|b |中,“=”成立的条件分别是什么?提示:不等式|a |-|b |≤|a +b |≤|a |+|b |,右侧“=”成立的条件是ab ≥0,左侧“=”成立的条件是ab ≤0且|a |≥|b |;不等式|a |-|b |≤|a -b |≤|a |+|b |,右侧“=”成立的条件是ab ≤0,左侧“=”成立的条件是ab ≥0且|a |≥|b |.3.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立.定理2:如果a 、b 为正数,则≥,当且仅当a =b 时,等号成立.a +b 2ab 定理3:如果a 、b 、c 为正数,则≥,当且仅当a =b =c 时,a +b +c 33abc 等号成立.定理4:(一般形式的算术—几何平均值不等式)如果a 1、a 2、…、a n 为n 个正数,则≥,当且仅当a 1=a 2=…=a n 时,等号成立.a 1+a 2+…+a nn n a 1a 2…a n 4.柯西不等式(1)柯西不等式的代数形式:设a ,b ,c ,d 为实数,则(a 2+b 2)·(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)若a i ,b i (i ∈N *)为实数,则()()≥(i b i )2,当且仅当b i =0(i =n ∑i =1a 2i n ∑i =1b 2i n ∑i =1a 1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立.1.判断正误(在括号内打“√”或“×”)(1)对|a +b |≥|a |-|b |当且仅当a >b >0时等号成立.( )(2)对|a -b |≤|a |+|b |当且仅当ab ≤0时等号成立.( )(3)|ax +b |≤c (c >0)的解等价于-c ≤ax +b ≤c .( )(4)不等式|x -1|+|x +2|<2的解集为Ø.( )(5)若实数x 、y 适合不等式xy >1,x +y >-2,则x >0,y >0.( )[答案] (1)× (2)√ (3)√ (4)√ (5)√2.不等式|2x -1|-x <1的解集是( )A .{x |0<x <2}B .{x |1<x <2}C .{x |0<x <1}D .{x |1<x <3}[解析] 解法一:x =1时,满足不等关系,排除C 、D 、B ,故选A.解法二:令f (x )=Error!则f (x )<1的解集为{x |0<x <2}.[答案] A3.设|a |<1,|b |<1,则|a +b |+|a -b |与2的大小关系是( )A .|a +b |+|a -b |>2B .|a +b |+|a -b |<2C .|a +b |+|a -b |=2D .不能比较大小[解析] |a +b |+|a -b |≤|2a |<2.[答案] B4.若a ,b ,c ∈(0,+∞),且a +b +c =1,则++的最大值为( )a b c A .1 B . 2C. D .23[解析] (++)2=(1×+1×+1×)2≤ (12+12+12)(a +b +c )a b c a b c =3.当且仅当a =b =c =时,等号成立.13∴(++)2≤3.a b c ++的最大值为.故应选C.a b c 3[答案] C5.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________.[解析] 利用数轴及不等式的几何意义可得x 到a 与到1的距离和小于3,所以a 的取值范围为-2≤a ≤4.[答案] -2≤a ≤4考点一 含绝对值的不等式的解法解|x -a |+|x -b |≥c (或≤c )型不等式,其一般步骤是:(1)令每个绝对值符号里的代数式为零,并求出相应的根.(2)把这些根由小到大排序,它们把定义域分为若干个区间.(3)在所分区间上,去掉绝对值符号组成若干个不等式,解这些不等式,求出它们的解集.(4)这些不等式解集的并集就是原不等式的解集.解绝对值不等式的关键是恰当的去掉绝对值符号.(1)(2015·山东卷)不等式|x -1|-|x -5|<2的解集是( )A .(-∞,4)B .(-∞,1)C .(1,4)D .(1,5)(2)(2014·湖南卷)若关于x 的不等式|ax -2|<3的解集为Error!,则a =________.[解题指导] 切入点:“脱掉”绝对值符号;关键点:利用绝对值的性质进行分类讨论.[解析] (1)当x <1时,不等式可化为-(x -1)+(x -5)<2,即-4<2,显然成立,所以此时不等式的解集为(-∞,1);当1≤x ≤5时,不等式可化为x -1+(x -5)<2,即2x -6<2,解得x <4,又1≤x ≤5,所以此时不等式的解集为[1,4);当x >5时,不等式可化为(x -1)-(x -5)<2,即4<2,显然不成立,所以此时不等式无解.综上,不等式的解集为(-∞,4).故选A.(2)∵|ax -2|<3,∴-1<ax <5.当a >0时,-<x <,与已知条件不符;1a 5a当a =0时,x ∈R ,与已知条件不符;当a <0时,<x <-,又不等式的解集为Error!,故a =-3.5a 1a[答案] (1)A (2)-3用零点分段法解绝对值不等式的步骤:(1)求零点;(2)划区间、去绝对值号;(3)分别解去掉绝对值的不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端点值.对点训练已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.[解] (1)当a =-3时,f (x )=Error!当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4;所以f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].考点二 利用绝对值的几何意义或图象解不等式对于形如|x -a |+|x -b |>c 或|x -a |+|x -b |<c 的不等式,利用绝对值的几何意义或者画出左、右两边函数的图象去解不等式,更为直观、简捷,它体现了数形结合思想方法的优越性.|x -a |+|x -b |的几何意义是数轴上表示x 的点与点a 和点b 的距离之和,应注意x 的系数为1.(1)(2014·重庆卷)若不等式|x -1|+|x +2|≥a 2+a +2对任意实数x 恒成立,12则实数a 的取值范围是________.(2)不等式|x +1|-|x -2|>k 的解集为R ,则实数k 的取值范围是__________.[解题指导] 切入点:绝对值的几何意义;关键点:把恒成立问题转化为最值问题.[解析] (1)∵|x -1|+|x +2|≥|(x -1)-(x -2)|=3,∴a 2+a +2≤3,解得≤a ≤.12-1174-1+174即实数a 的取值范围是.[-1-174,-1+174](2)解法一:根据绝对值的几何意义,设数x ,-1,2在数轴上对应的点分别为P ,A ,B ,则原不等式等价于PA -PB >k 恒成立.∵AB =3,即|x +1|-|x -2|≥-3.故当k <-3时,原不等式恒成立.解法二:令y =|x +1|-|x -2|,则y=Error!要使|x+1|-|x-2|>k恒成立,从图象中可以看出,只要k<-3即可.故k<-3满足题意.[答案] (1) (2)(-∞,-3)[-1-174,-1+174]解含参数的不等式存在性问题,只要求出存在满足条件的x即可;不等式的恒成立问题,可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.对点训练(2015·唐山一模)已知函数f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|.(1)若当g(x)≤5时,恒有f(x)≤6,求a的最大值;(2)若当x∈R时,恒有f(x)+g(x)≥3,求a的取值范围.[解] (1)g(x)≤5⇔|2x-1|≤5⇔-5≤2x-1≤5⇔-2≤x≤3;f(x)≤6⇔|2x-a|≤6-a⇔a-6≤2x-a≤6-a⇔a-3≤x≤3.依题意有,a-3≤-2,a≤1.故a的最大值为1.(2)f(x)+g(x)=|2x-a|+|2x-1|+a≥|2x-a-2x+1|+a=|a-1|+a,当且仅当(2x-a)(2x-1)≤0时等号成立.解不等式|a-1|+a≥3,得a的取值范围是[2,+∞).考点三 不等式的证明与应用不等式的证明方法很多,解题时既要充分利用已知条件,又要时刻瞄准解题目标,既不仅要搞清是什么,还要搞清干什么,只有兼顾条件与结论,才能找到正确的解题途径.应用基本不等式时要注意不等式中等号成立的条件.(2015·新课标全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则+>+;a b c d (2)+>+是|a -b |<|c -d |的充要条件.a b c d [解题指导] 切入点:不等式的性质;关键点:不等式的恒等变形.[证明] (1)因为(+)2=a +b +2,(+)2=c +d +2,a b ab c d cd 由题设a +b =c +d ,ab >cd 得(+)2>(+)2.a b c d +>+.a b c d (2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1)得+>+.a b c d +>+,则(+)2>(+)2,即a b c d a b c d a +b +>c +d +2.ab cd 因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |.+>+是|a -b |<|c -d |的充要条件.a b c d分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.对点训练(2014·新课标全国卷Ⅱ)设a 、b 、c 均为正数,且a +b +c =1.证明:(1)ab +bc +ac ≤;13(2)++≥1.a 2b b 2c c 2a[证明] (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤.13(2)因为+b ≥2a ,+c ≥2b ,+a ≥2c ,a 2b b 2c c 2a故+++(a +b +c )≥2(a +b +c ),a 2b b 2c c 2a即++≥a +b +c .a 2b b 2c c 2a所以++≥1.a 2b b 2c c 2a———————方法规律总结————————[方法技巧]1.绝对值不等式求解的根本方向是去除绝对值符号.2.绝对值不等式在求与绝对值运算有关的最值问题时需灵活运用,同时还要注意等号成立的条件.3.在证明不等式时,应根据命题提供的信息选择合适的方法与技巧.如在使用柯西不等式时,要注意右边为常数.[易错点睛]1.对含有参数的不等式求解时,分类要完整.2.应用基本不等式和柯西不等式证明时要注意等号成立的条件.课时跟踪训练(七十)一、填空题1.不等式|2x -1|<3的解集为__________.[解析] |2x -1|<3⇔-3<2x -1<3⇔-1<x <2.[答案] (-1,2)2.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =__________.[解析] ∵|kx -4|≤2,∴-2≤kx -4≤2,∴2≤kx ≤6.∵不等式的解集为{x |1≤x ≤3},∴k =2.[答案] 23.不等式|2x +1|+|x -1|<2的解集为________.[解析] 当x ≤-时,原不等式等价为-(2x +1)-(x -1)<2,即-3x <2,x >-12,此时-<x ≤-.当-<x <1时,原不等式等价为(2x +1)-(x -1)<2,即x <0,23231212此时-<x <0.当x ≥1时,原不等式等价为(2x +1)+(x -1)<2,即3x <2,x <,此1223时不等式无解,综上,原不等式的解为-<x <0,即原不等式的解集为.23(-23,0)[答案] (-23,0)4.已知关于x 的不等式|x -1|+|x |≤k 无解,则实数k 的取值范围是__________.[解析] ∵|x -1|+|x |≥|x -1-x |=1,∴当k <1时,不等式|x -1|+|x |≤k 无解,故k <1.[答案] (-∞,1)5.(2015·西安统考)若关于实数x 的不等式|x -5|+|x +3|<a 无解,则实数a 的取值范围是________.[解析] |x -5|+|x +3|≥|(x -5)-(x +3)|=8,故a ≤8.[答案] (-∞,8]6.(2015·重庆卷)若函数f (x )=|x +1|+2|x -a |的最小值为5,则实数a =__________.[解析] 当a =-1时,f (x )=3|x +1|≥0,不满足题意;当a <-1时,f (x )=Error!f (x )min =f (a )=-3a -1+2a =5,解得a =-6;当a >-1时,f (x )=Error!f (x )min =f (a )=-a +1+2a =5,解得a =4.[答案] -6或47.若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是__________.[解析] ∵f (x )=|x +1|+|x -2|=Error!∴f (x )≥3.要使|a |≥|x +1|+|x -2|有解,∴|a |≥3,即a ≤-3或a ≥3.[答案] (-∞,-3]∪[3,+∞)8.已知关于x 的不等式|x -a |+1-x >0的解集为R ,则实数a 的取值范围是__________.[解析] 若x -1<0,则a ∈R ;若x -1≥0,则(x -a )2>(x -1)2对任意的x ∈[1,+∞)恒成立,即(a -1)[(a +1)-2x ]>0对任意的x ∈[1,+∞)恒成立,所以Error!(舍去)或Error!对任意的x ∈[1,+∞]恒成立,解得a <1.综上,a <1.[答案] (-∞,1)9.设a ,b ,c 是正实数,且a +b +c =9,则++的最小值为__________.2a 2b 2c[解析] ∵(a +b +c )(2a +2b +2c )=[()2+()2+()2]a b c [(2a )2+(2b )2+(2c )2]≥2=18,(a ·2a +b ·2b +c ·2c )∴++≥2,∴++的最小值为2.2a 2b 2c 2a 2b 2c[答案] 210.(2014·陕西卷)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则 m 2+n 2的最小值为________.[解析] 由柯西不等式,得(a 2+b 2)(m 2+n 2)≥(am +bn )2,即5(m 2+n 2)≥25,∴m 2+n 2≥5,当且仅当an =bm 时,等号成立.∴的最小值为.m 2+n 25[答案] 511.对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为__________.[解析] ∵|x -1|+|x |+|y -1|+|y +1|=(|1-x |+|x |)+(|1-y |+|1+y |)≥|(1-x )+x |+|(1-y )+(1+y )|=1+2=3,当且仅当(1-x )·x ≥0,(1-y )·(1+y )≥0,即0≤x ≤1,-1≤y ≤1时等号成立,∴|x -1|+|x |+|y -1|+|y +1|的最小值为3.[答案] 312.若不等式|x +1|-|x -4|≥a +,对任意的x ∈R 恒成立,则实数a 的取4a值范围是________.[解析] 只要函数f (x )=|x +1|-|x -4|的最小值不小于a +即可.由于||x +1|4a-|x -4||≤|(x +1)-(x -4)|=5,所以-5≤|x +1|-|x -4|≤5,故只要-5≥a +即4a可.当a >0时,将不等式-5≥a +整理,得a 2+5a +4≤0,无解;当a <0时,4a将不等式-5≥a +整理,得a 2+5a +4≥0,则有a ≤-4或-1≤a <0.综上可知,4a实数a 的取值范围是(-∞,-4]∪[-1,0).[答案] (-∞,-4]∪[-1,0)二、解答题13.已知不等式2|x -3|+|x -4|<2a .(1)若a =1,求不等式的解集;(2)若已知不等式的解集不是空集,求a 的取值范围.[解] (1)当a =1时,不等式即为2|x -3|+|x -4|<2,若x ≥4,则3x -10<2,x <4,∴舍去;若3<x <4,则x -2<2,∴3<x <4;若x ≤3,则10-3x <2,∴<x ≤3.83综上,不等式的解集为Error!.(2)设f (x )=2|x -3|+|x -4|,则f (x )=Error!作出函数f (x )的图象,如图所示.由图象可知,f (x )≥1,∴2a >1,a >,即a 的取值范围为.12(12,+∞)14.(2015·新课标全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0.(1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围.[解] (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解;当-1<x <1时,不等式化为3x -2>0,解得<x <1;23当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为Error!.(2)由题设可得,f (x )=Error!所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ,B (2a +1,0),C (a ,a +1),△ABC 的面积为(a +1)2.(2a -13,0)23由题设得(a +1)2>6,故a >2.23所以a 的取值范围为(2,+∞).15.设函数f (x )=|x -1|+|x -a |.(1)若a =-1,解不等式f (x )≥3;(2)如果∀x ∈R ,f (x )≥2,求a 的取值范围.[解] (1)当a =-1时,f (x )=|x -1|+|x +1|,f (x )=Error!作出函数f (x )=|x -1|+|x +1|的图象.由图象可知,不等式f (x )≥3的解集为Error!.(2)若a =1,f (x )=2|x -1|,不满足题设条件;若a <1,f (x )=Error!f (x )的最小值为1-a ;若a >1,f (x )=Error!f (x )的最小值为a -1.∴对于∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2,∴a 的取值范围是(-∞,-1]∪[3,+∞).16.(2015·福建卷)已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4.(1)求a +b +c 的值;(2)求a 2+b 2+c 2的最小值.1419[解] (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c ,当且仅当-a ≤x ≤b 时,等号成立.又a >0,b >0,所以|a +b |=a +b ,所以f (x )的最小值为a +b +c .又已知f (x )的最小值为4,所以a +b +c =4.(2)由(1)知a +b +c =4,由柯西不等式得(4+9+1)≥(14a 2+19b 2+c 2)2=(a +b +c )2=16,(a 2×2+b 3×3+c ×1)即a 2+b 2+c 2≥.141987当且仅当==,12a 213b 3c 1即a =,b =,c =时等号成立.8718727故a 2+b 2+c 2的最小值为.141987。

不等式与不等式组(知识总结-试题和答案)

不等式与不等式组(知识总结-试题和答案)

不等式与不等式组(知识总结-试题和答案)初中精品数学精选精讲学科:数学任课教师:授课时间:年⽉姓名年级课时教学课题不等式与不等式组教学⽬标(知识点、考点、能⼒、⽅法)知识点:不等式及性质,⼀元⼀次不等式,⼀元⼀次不等式组。

考点:不等式的解集,⼀元⼀次不等式及⼀元⼀次不等式组的解法,列⼀元⼀次不等式组解实际问题。

能⼒:能判断及解不等式组及不等式组,通过具体实例建⽴不等式,探索不等式的基本性质。

⽅法:了解⼀般不等式的解、解集以及解不等式的概念;然后具体研究⼀元⼀次不等式、⼀元⼀次不等式组的解、解集、难点重点⼀元⼀次不等式及⼀元⼀次不等式组的解法.实际问题与⼀元⼀次不等式(组)课堂教学过程课前检查作业完成情况:优□良□中□差□建议______________________________________________ ⼀、知识点⼤集锦不等式与不等式组1.熟悉知识体系2.不等式与不等式组的概念不等式:⽤“⼤于号”、“⼩于号”、“不等号”、“⼤于等于”或“⼩于等于”连接并具有⼤⼩关系的式⼦,叫做不等式。

不等式组:⼏个不等式联⽴起来,叫做不等式组.(注意:当有A3.⼀元⼀次不等式:只含有⼀个未知数,并且未知数的最⾼次数是⼀次,这样的不等式,叫做⼀元⼀次不等式.4.不等式的基本性质:性质l:不等式的两边都加上(或减去)同⼀个数(或式⼦),不等号的⽅向不变;性质2:不等式的两边都乘以(或除以)同⼀个正数,不等号的⽅向不变;性质3:不等式的两边都乘以(或除以)同⼀个负数,不等号的⽅向改变2.5.解不等式组解不等式组,可以先把其中的不等式逐条算出各⾃的解集,然后分别在数轴上表⽰出来。

(1)求出不等式组中每个不等式的解集(2)借助数轴找出各解集的公共部分(3)写出不等式组的解集求公共部分的规律:⼤⼤取⼤,⼩⼩取⼩,⼤⼩⼩⼤取中间,⼤⼤⼩⼩⽆解.以两条不等式组成的不等式组为例,①若两个未知数的解集在数轴上表⽰同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同⼩取⼩”②若两个未知数的解集在数轴上表⽰同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同⼤取⼤”③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。

专题05 不等式与不等式组专题详解(解析版)

专题05 不等式与不等式组专题详解(解析版)

专题05 不等式与不等式组专题详解专题05 不等式与不等式组专题详解 (1)9.1 不等式 (3)知识框架 (3)一、基础知识点 (3)知识点1 不等式及其解集 (3)知识点2 不等式的基本性质 (4)二、典型题型 (5)题型1 不等式的概念 (5)题型2 根据数量关系列不等式 (5)题型3不等式的解(集) (6)题型4 不等式性质的运用 (6)题型5 实际问题与不等式 (7)三、难点题型 (8)题型1 不等式性质的综合应用 (8)题型2 用作差法比较大小 (9)9.2 一元一次不等式 (10)知识框架 (10)一、基础知识点 (10)知识点1 一元一次不等式的解法 (10)知识点2 列不等式解应用题 (11)二、典型题型 (13)题型1 一元一次不等式的判定 (13)题型2 解一元一次不等式 (13)题型3 列不等式,求取值范围 (14)题型4 一元一次不等式的应用 (14)三、难点题型 (16)题型1 含参数的不等式 (16)题型2 不等式的整数解 (16)题型3 方程与不等式 (17)题型4 含绝对值的不等式 (18)9.3 一元一次不等式组 (19)知识框架 (19)一、基础知识点 (19)知识点1 一元一次不等式组及解集的定义 (19)知识点2 一元一次不等式组解集的确定及解法 (19)知识点3 双向不等式及解法 (21)二、典型题型 (23)题型1 一元一次不等式组的判定 (23)题型2 一元一次不等式组的解集 (23)题型3 解一元一次不等式组 (24)题型4 一元一次不等式组的应用 (25)一、用不等式组解决实际问题 (25)二、方案设计 (26)三、最值问题 (27)三、难点题型 (29)题型1 由不等式组确定字母的取值 (29)题型2 不等式组中的数学思想 (30)一、整体思想 (30)二、数形结合 (31)三、分类讨论 (31)题型3 不等式的应用 (32)题型4 不等式的综合 (33)9.1 不等式知识框架{基础知识点{不等式及其解集不等式的基本性质典型题型{ 不等式的概念根据数量关系列不等式不等式的解(集)不等式性质的运用实际问题与不等式难点题型{不等式性质的综合应用作差法比较大小 一、基础知识点知识点1 不等式及其解集1)不等式:用不等符号表示不等关系的式子。

《不等式与不等式组( 复习课)》优质课课件

《不等式与不等式组( 复习课)》优质课课件
答:A 种型号健身器材至少要购买 37 套.
【变式训练】
4. 若关于 x 的不等式 x+m<1 只有 3 个正整数解,则 m-3≤m<-2的值范围是___________.
分析:关于 x 的不等式只有 3 个正整数解
x 的上限 1 - m 在 3 与 4 之间
解:解不等式 x+m<1,得 x<1-m.
(3)根据公共部分写出不等式组的解集,若没有公共
部分,则说明不等式组无解。
知识点四 一元一次不等式组
4.不等式(组)在实际生活中的应用
当应用题中出现以下的关键词,如大,小,多,少,不小于,不大于,至少,至多等,应属
列不等式(组)来解决的问题,而不能列方程(组)来解.
5.列一元一次不等式组解应用题的一般步骤:
a
b

).
c
c
知识点一 不等式
不等式的其他性质:
(1)对称性( 反身性):若 a>b,则 b<a;
(2)传递性:若 a>b,b>c,则 a>c.
知识点一 不等式
3、不等式的解
使不等式成立的未知数的值叫做不等式的解.
判断一个数是不是不等式的解的方法
判断一个数是否为不等式的解,就是将这个数代替不等式中的未知数,
在一起,就组成一个一元一次不等式组.
一元一次不等式组必须同时满足三个条件:
①每个不等式都是一元一次不等式;
②含有同一个未知数;
③不等式的个数不少于2.
知识点四 一元一次不等式组
2.一元一次不等式组的解集
一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组
的解集.
注意!
“公共部分”是指同时满足不等式组中每一个不等式的解集的部分.如

不等式(组)的知识点

不等式(组)的知识点

不等式与不等式组知识点总结一、知识导航图二、课标要求一元一次不等式(组)的应用一元一次不等式(组)的解法一元一次不等式(组)解集的含义一元一次不等式(组)的概念不等式的性质一元一次不等式和一元一次不等式组三、知识梳理考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。

常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

不等式的解集可以在数轴上直观的表示出来,具体表示方法是:①确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;②确定方向:大向右,小向左。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

考点二、不等式基本性质(3~5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

如果a>b,那么a+c>b+c,a-c>b-c.2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

如果a >b ,并且c >0,那么a c >b c3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

如果a >b ,并且c <0,那么a c <b c4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式 (6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x 项的系数化为1说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!) 移 项,得 23663-+≤-x x (移项要变号)合并同类项,得 73≤-x (计算要正确) 系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了)考点四、一元一次不等式组 (8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

不等式与不等式组知识点归纳

不等式与不等式组知识点归纳

第九章 不等式与不等式知识点归纳一、不等式及其解集和不等式的性质用不等好表示不等关系的式子叫做不等式。

常见不等号有:“<” “>” “≤” “≥”“ ≠ ”。

一个不等式所有解组成的这个不等式的解的集合,简称解集。

不等式有三个性质:①②③; 注:①在数轴上表示不等式解集时,有等号用实心,无等号用空心圆点。

②方向:大向右。

小向左。

例1 、用不等式表示下列式子。

(1)a 与1的和是正数; (2)x 的21与y 的31的差是非负数;(3)x 的2倍与1的和大于3; (4)a 的一半与4的差的绝对值不小于a .(5)x 的2倍减去1不小于x 与3的和; (6)a 与b 的平方和是非负数; 例2、写出下图所表示的不等式的解集(用x 表示)..(3)______________________。

例3、写出满足条件的解。

(1)满足5.2≤x 的非负整数解是____________,(2)满足32<≤-x 的整数解是 _____________。

例4、若a<b ,用不等号填空 ①a -b 0 ; ②a -5 b -5 ; ③-2a -2b ; ④31+a 21+b ;⑤22___bm am 例5、①由a ax <,可得1>x 可得____a ,②由122-≥-≤-x m x mx 可得,那么______m 。

③已知33-m 是一个负数,那么____m , 例6、使不等式x-5>4x-1成立的值中的最大整数是 _________________。

例7、.不等式x x 228)2(5-≤+的非负整数解的个数是__________________。

例8、已知方程012=+ax 的解是3=x ,则不等式6)2(-<+x a 的解集为_____________。

例9 、已知点P (x ,y )位于第二象限,并且y x x y ,4,+≥为整数,写出一个符合上述条件P 点坐标___________。

不等式与不等式组复习讲义

不等式与不等式组复习讲义

第八讲 不等式与不等式组一、知识网络结构图二、考点精析考点一:不等式基本性质运用1.由x<y,得ax≥ay 的条件是( ).A .a≥0 B. a≤0 C. a>0 D. a<02. 不等式(2a -1)x<2(2a -1)的解集是x>2,则a 的取值范围是( )A .a<0 B. a<12 C. a<-12 D. a>-123. 若a>b,则下列不等式中,不成立的是( )A .a -3>b -3 B. -3a>-3b C.33a b D. -a<-b 4. 下列各不等式中,错误的是( ).A .若a+b>b+c,则a>c B. 若a>b,则a -c>b -cC. 若ab>bc,则a>cD. 若a>b,则2c+a>2c+b5.若a <b <0,则下列答案中,正确的是( ) A、a <b B B 、a >b C、2a <2b D 、a 3>b 26. 按要求填空:(1)∵2a>3a,∴a 是_____数; (2)∵32aa ,∴a 是_____数; (3)∵ax<a 且x>1,∴a 是_____数.7.如果关于x 的不等式(a+1)x>a+1的解集为x<1,求a 的取值范围。

注:解这类题型的不等式,关键看不等号的方向是否发生变化,若发生变化,则说明未知数的系数是负数(<0),若未发生变化,则说明未知数的系数是正数(>0)考点二:整数解相关1.若不等式03≤-a x 有6个正整数解,求a 的取值范围2. 若不等式03<-a x 有6个正整数解,求a 的取值范围3. 不等式732122x x --+<的负整数解有__________个. 4. 不等式3x -4≥4+2(x -2)的最小整数解是________.5. 不等式17-3x>2的正整数解的个数有__________个.6. (1)53x -≥的解集为______,其中正整数的解为____________.(2)13x -≥-的解集为______,其中负整数的解为____________.7. 当x_____时,x -4的值大于12x +4的值. 8. 关于x 的方程3(x+2)=k+2的解是正数,则k 的取值范围是_______.9. 当y 为何值时,22y -的值不大于33y -的值?10. 如果代数式4x+2的值不小于3x+12,求x 的取值范围,并求出满足这一条件的最大负整数和最小正整数.11. 不等式组3100,482x x x +>⎧⎨-≤-⎩的整数解的个数是( ). A .9 B. 8 C. 7 D. 61.12. 不等式组20,30x x -<⎧⎨->⎩的正整数解是( ). A .0,1 B. 2,3 C. 1,3 D. 1,213. 不等式组2,3482x x x⎧>-⎪⎨⎪-≤-⎩的最小整数解为( ). A .-1 B. 0 C. 1 D. 414. 求不等式组2(6)3,2151132x x x x -<-⎧⎪-+⎨-≤⎪⎩的整数解.0-1D x ≠ 101C x ≠ 001B x>1A x ≤ 2210201-19题图(2)-210(1)01215. 解不等式组2(2)33,1,34x x x x +≤+⎧⎪+⎨<⎪⎩并写出不等式组的整数解.考点三:绝对值非负性1.若1212-=-x x ,求x 的取值范围2.若x x 2112-=-,求x 的取值范围3.若1212->-x x ,求x 的取值范围4.若0=+x x ,求x 的取值范围( )A .x≤0 B. x<0 C. x>0 D. x≥05.若a a -=-则有( )(A) a≥ 0 (B) a≤ 0 (C) a≥-1 (D) -1≤a≤0考点四:解集的表示1.下列各项表示的是不等式的解集,其中错误的是( ).2.已知关于x 的不等式x>a,如图表示在数轴上,则a 的值为( ).A .1 B. 2 C. -1 D.-2 3.写出下列数轴上表示的解集:(3)03-24、已知,关于x 的不等式23x a -≥-的解集如图所示,则a 的值等于( )A 、 0B 、1C 、-1D 、25.已知点M (-35-P,3+P )是第三象限的点,则P 的取值范围是 。

2022-2023人教版七年级下册数学期末复习——专题5不等式与不等式组

2022-2023人教版七年级下册数学期末复习——专题5不等式与不等式组

2022-2023人教版七年级下册数学期末复习专题5 不等式与不等式组4.一个不等式的解在数轴上表示如图,则这个不等式可以是( )A .30x +>B .30x -<C .26x ≥D .30x -<化简.过程如图所示:接力中,自己负责的一步出现错误的是( )则m 的范围在数轴上可表示为( )A .B .C.D.8.对于三个数a、b、c的最小的数可以给出符号来表示,我们规定{min a,b,}c 这三个数中最小的数,42}2x,则B.2 3 -二、填空题9.小明、小林和小华三人在一起讨论一个一元一次不等式组:小明:它的所有解都为非负数;小林:其中一个不等式的解集为4x≤;小华:其中有一个不等式在求解过程中需要改变不等号的方向.请你写出一个同时符合上述3个条件的不等式组:_______________________.10.若不等式组21>125x ax x-⎧⎨-≥-⎩无解,则a的取值范围是_____.11.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价_________元.12.某班数学兴趣小组对不等式组2xx m>⎧⎨≤⎩的解集进行讨论,得到以下结论:①若m = 4,则不等式组的解集为 2<x ≤ 4;②若m = 1,则不等式组无解;③若原不等式组无解,则m 的取值范围为m<2;④若 7 ≤m<8,则原不等式组有 5 个整数解.其中,结论正确的有______.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1不等式与不等式组期末复习讲义常考专题一 不等式的性质主要考查利用不等式的性质判断不等式的变形是否正确,题型以选择题为主.例1 :下列式子中,一元一次不等式有( )①314x -≥;②1263x +;③136x-;④0xπ;⑤132362x x -+-;⑥2x xy y +≥;⑦0x.A .6个B .5个C .4个D .3个解析:③中1x不是整式,⑥中含2个未知数,所以③⑥不是一元一次不等式,①②④⑤⑦都是一元一次不等式,故选B .例2: 若a b >,则下列不等式不一定成立的是( ) A .a m b m +>+ B .()()2211a m b m +>+ C .22a b -<-D .22a b >解析:根据不等式的性质针对四个选项进行分析即可.A .根据不等式的基本性质1,可知a m b m +>+一定成立;B .根据不等式的基本性质2,∵210m +>,∴()()2211a m b m +>+一定成立;C .根据不等式的基本性质3,∵102-<,∴22a b-<-一定成立;D .根据不等式的基本性质3,a ,b 若都为负数,则22a b >不成立.思维点拨 本题主要考查了不等式的基本性质,熟记不等式的基本性质是解题的关键.此类题目也可以用举反例的方法排除.常考专题二 一元一次不等式(组)的解法解一元一次不等式(组)是数学学习中必须掌握的基本运算技能,是解决实际问题的基础,解不等式(组)时,要严格依据不等式的性质按照解不等式(组)的步骤进行.例3: 解下列不等式或不等式组,并把解集在数轴上表示出来:(1)672x x ≤-;(2)()5431,121.25x x x x +<+⎧⎪⎨--≤⎪⎩①②分析:(1)解不等式并把解集在数轴上表示出来;(2)分别解不等式,并把解集在数轴上表示出来.解:(1)解不等式得2x ≥,在数轴上表示如下:(2)解不等式①,得12x <-,解不等式②,得3x ≤, 在数轴上表示如下:故不等式组的解集为12x <-. 思维点拨 一元一次不等式与一元一次不等式组的解法是整章的重点,要熟悉它们的解法,一方面要注意每个步骤的易错之处,另一方面要正确地画出数轴,找出解集,进一步确定特殊解.2常考专题三 一元一次不等式(组)的特殊解例4: 若m 是不等式组()218,32163x x x x -<+⎧⎪⎨--<⎪⎩①②的最大整数解.求220161m m m ++++…的值.分析:先求出不等式组的解集,在解集中找出最大整数解,即是m 的值,再把m 的值代入所求代数式求值即可.解:由不等式①,得2x >-. 由不等式②,得0x <.所以不等式组的解集为20x -<<. 解集中最大的整数为1-,所以1m =-.把1m =-代入220161m m m ++++…中,得 原式()()()220161111=+-+-++-…11111=-+-++… 1=.思路归纳 求不等式(组)的特殊解时,先求出解集,再找满足条件的解,一般是求最大(小)整数解,非负(正)整数解,正(负)整数解.常考专题四 求解不等式(组)中的字母参数问题当不等式(组)与方程(组)、字母参数这些知识综合时,要认真理解题意,寻求解决的方法.类型1 已知不等式的一个解,求字母的取值例5: 已知3x =是关于x 的不等式22323ax xx +->的解,求a 的取值范围.分析:先根据不等式的解的定义,将3x =代入不等式,得到32922a +->,解此不等式,即可求出x 的取值范围. 解:∵3x =是关于x 的不等式22323ax xx +->的解,∴32922a +->,解得4a <.思维点拨 本题考查了不等式的解的定义及一元一次不等式的解法,比较简单,根据不等式的解的定义得出32922a +->是解题的关键.例6: 已知关于x 的不等式组0,325x a x +≤⎧⎨+>⎩①②的整数解共有3个,求a的取值范围.分析:先求出不等式的解集,用含有a 的代数式表示出来,再根据整数解的个数,确定a 的取值范围.解:由不等式①,得x a ≤-. 由不等式②,得1x >. 因为不等式组有解,所以该不等式组的解集为1x a <≤-. 又因为只有3个整数解,即为2,3,4. 所以a -的取值范围为45a ≤-<, 则54a -<≤-.思维点拨 解此类问题时应特别注意不等式中等号的取舍.3类型2 根据二元一次方程组和解不等式求字母取值例7: 关于x ,y 的二元一次方程组5323,x y x y p+=⎧⎨+=⎩的解是正整数,则整数p 的值为____.解析:把p 看成常数,求出方程组的解,再根据题意转化成关于p 的不等式组,求解即可.解方程组5323,x y x y p +=⎧⎨+=⎩得233,25232p x p y -⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 是正整数,∴2330,25230,2pp -⎧>⎪⎪⎨-⎪>⎪⎩解得232353p <<,∵p 为整数,∴5p =或6或7,又∵x ,y 是正整数,∴6p =时,x ,y 不是整数,不合题意舍去,∴5p =或7.答案:5或7解题方法 本题运用了常量法,常量法是将题中的某一未知字母视为常数,用这个字母表示未知数,再根据未知数的取值范围来确定未知字母的取值.在不等式(组)与方程(组)的综合应用中,常会用到常量法,将方程(组)的问题转化为解不等式(组),求字母取值的问题.例8: 已知关于x 、y 的的方程组3,26x y x y a -=⎧⎨+=⎩的解满足不等式3x y +<,求实数a 的取值范围.分析:先解方程组,求得x 、y 的值,再根据3x y +<,解不等式即可.解:由3,26x y x y a -=⎧⎨+=⎩可得21,2 2.x a y a =+⎧⎨=-⎩∵3x y +<,∴21223a a ++-<,∴1a <.思维点拨 本题是一元一次不等式和二元一次方程组的综合题,用a 分别表示出x ,y ,再解不等式是解题的关键.类型3 已知不等式组解集的情况求字母的取值例9: 已知关于x 的不等式组521,0x x a -≥-⎧⎨->⎩①②无解,求a 的取值范围.分析:把a 看成常数,解不等式组,再根据原不等式组无解,求出a 的取值范围.解:解不等式①,得3x ≤, 解不等式②,得x a >,因为该不等式组无解,所以不等式①和②的解集在数轴上的表示如图所示:所以3a >.当3a =时,代入不等式组,解得3x ≤,且3x >, 此时,不等式组无解,满足题意. 所以a 的取值范围为3a ≥.思维点拨 “3a =”这种特殊情况易被忽视,检验等号是否满足题意在解题时必不可少.4常考专题五 列一元一次不等式(组)解应用题一元一次不等式(组)的应用是中考考查的重点之一,题型丰富多变,内容多与社会热点相联系,既可单独考查,也可与其他知识综合考查.例10: 某校住校生宿舍有大小两种寝室若干部.据统计,该校高一年级男生740人,使用了大寝室55间和小寝室50间,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间分别住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?分析:(1)设该校的大寝室每间住x 人,小寝室每间住y 人,根据题意列出方程组,再解方程组即可;(2)设这些女生入住大寝室a 间,则小寝室()80a -间,由题意可得80a ≤,再根据“高一新生中有不少于630名女生将入住寝室80间”可列出关于a 的不等式组,解不等式组即可.解:(1)设该校的大寝室每间住x 人,小寝室每间住y 人,由题意,得5550740,5055730.x y x y +=⎧⎨+=⎩解得8,6.x y =⎧⎨=⎩ 答:该校的大寝室每间住8人,小寝室每间住6人.(2)设这些女生入住大寝室a 间,则小寝室()80a -间,由题意,得()86630,80.a a a +-≥⎧⎪⎨≤⎪⎩解得7580a ≤≤. ∴a 可取75或76或77或78或79或80. 答:共有六种安排住宿的方案.思维点拨 本题考查了二元一次方程组及一元一次不等式组的应用,解题的关键是仔细审题,分别找出等量关系与不等关系.思想方法归纳思想方法一 数形结合思想求不等式解集的过程是代数内容,用数轴表示不等式解集的过程,是将代数问题几何化的过程.本章中数形结合思想主要应用于:①将一元一次不等式的解集在数轴上表示出来,或在解不等式组的过程中,在数轴上分别表示各个不等式的解集,并找出公共部分;②利用数轴判断不等式(组)的解集情况,进而求字母取值.例11: 已知关于x 的不等式23x a -<-的解集如图所示,则a 的值为( )A .0B .1-C .1D .2解析:根据数轴可知不等式的解集为1x <-,∵23x a -<-,∴32a x -<,∴312a -=-,∴1a =. 答案:C思想方法 本题运用了数形结合思想.有关不等式的问题中,有些问题需要我们借助图形反馈的信息来解决.思想方法二 方程思想不等式中的方程思想是分析数学问题中变量间的等量关系,构建方程或方程组,或利用方程的性质去分析、转换和解决问题.例12: 若不等式组21,23x a x b -<⎧⎨->⎩的解集为11x -<<,那么5()()11a b +-的值等于____.解析:先用字母a ,b 表示出不等式组的解集:1232a b x ++<<,然后根据已知解集是11x -<<,对应得到关于a 、b 的方程231b +=-,112a +=,解得1a =,2b =-.所以()()()11236a b +-=⨯-=-. 答案:6-思想方法 本题运用了方程思想,根据不等式组的解集构造方程,进而求解,是解决此类问题的基本思路.思想方法三 建模思想本章在解决实际问题中的方案选择、优化设计以及最大利润问题时,会用到建模思想,由实际问题构造不等式(组),从而解决问题.例13: 在校园文化建设中,某学校原计划按每班5幅订购了“名人字画”共90幅.由于新学期班数增加,决定从阅览室中取若干幅“名人字画”一起分发,如果每班分4幅,则剩下17幅;如果每班分5幅,则最后一个班不足3幅,但不少于1幅,可列出不等式组,求出其整数解即可.解:(1)该校原有的班数是90518÷=(个) (2)设新学期所增加的班数是x 个.由题意得:()()()()4181751813,4181751811,x x x x ++-+-<⎧⎪⎨++-+-≥⎪⎩ 解得13x <≤.∵x 为整数,∴2x =或3.答:新学期所增加的班数是2个或3个.思想方法 本题运用了建模思想.解这类题的关键是从问题中找出不等关系,建立不等式(组)的模型,求出不等式(组)的解集后,再根据题目的实际情况确定出未知数的具体值.综合压轴探究综合探究 一元一次不等式(组)的综合应用例14: 在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际情况,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.分析:(1)先设每台电脑x 万元,每台电子白板y 万元,根据购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元列出方程组,求出x ,y 的值即可;(2)先设需购进电脑a 台,则购进电子白板()30a -台,根据总费用不超过30万元,但不低于28万元列出不等式组,求出a 的取值范围,再根据a 只能取整数,得出购买方案,然后根据每台电脑的价格和每台电子白板的价格,算出每种方案的总费用,进行比较,即可得出最省钱的方案.解:(1)设每台电脑x 万元,每台电子白板y 万元,根据题意,得2 3.5,2 2.5x y x y +=⎧⎨+=⎩解得0.5,1.5.x y =⎧⎨=⎩答:每台电脑0.5万元,每台电子白板1.5万元.(2)设需购进电脑a 台,则购进电子白板()30a -台,根据题意,得()()0.5 1.53030,0.5 1.53028a a a a +-≤⎧⎪⎨+-≥⎪⎩ 解得1517a ≤≤,a=,16,17.∵a只能取整数,∴15∴有三种购买方案:方案1:购进电脑15台,购进电子白板15台,所需费用为15.5 1.51530⨯+⨯=(万元);方案2:购进电脑16台,购进电子白板14台,所需费用为⨯+⨯=(万元).160.5 1.51429方案3:购进电脑17台,购进电子白板13台,所需费用为⨯+⨯=(万元).170.5 1.51328答:有3种购买方案,购买17台电脑和13台电子白板时费用最低.思维点拨本题考查了二元一次方程组和一元一次不等式组的应用,解题的关键是读懂题意,找出数量之间的关系,列出二元一次方程组和一元一次不等式组,注意a只能取整数.关于方案设计问题,一般需分情况讨论,另外要检验方案的可操作性.6。

相关文档
最新文档