31中考数学压轴题之 “新定义题”

合集下载

中考新定义问题(第 2 课时 压轴题部分)

中考新定义问题(第 2 课时 压轴题部分)

中考“新定义”问题(第 2 课时·压轴题部分)※※※ 背景分析“新定义”问题是近年来中考试题中的热点题型,它是基于学生必须掌握的知识及应该具备的能力,通过新定义的方式隐藏问题本源,要求学生在理解新定义的基础上进行拓展,从而灵活运用新知解决问题,主要考查学生现学现用的能力.“新定义”问题的重要意义在于它不仅改变了学生解题的思维方式,而且对教师的课堂教学也起到了良好的导向作用,由于突出了理解定义的内在含义、问题迁移转化等重要环节,所以学生往往遇到“新定义”问题感到畏惧,故教师在教学“新定义”问题的时候要注意教学策略[1].而“新定义”问题的关键则需要学生正确理解其内容、思想和方法,把握其本质,通过类比、猜想、迁移来运用新知识解决实际问题,它全面地考查了学生的阅读理解能力、知识迁移能力和创新能力.※※※ 教学目标分析①、知识与能力目标:使学生能有效地捕捉到“新定义”与“旧知识”的联系,提高学生有效地对知识点迁移的反映能力;培养学生的阅读能力和独立获取新知识、运用新知识、解决新问题的能力.而在解决新问题的过程中又可以产生了许多新方法、新观念,增强了学生创新思维.②、过程与方法目标:使学生通过阅读、观察、思考、分析、综合从而掌握“新定义”.并通过实例,提高学生解决问题的能力,加深对概念的理解.③、情感、态度与价值观目标:使学生感受到在探索“新定义”问题的过程中,体验解决新问题的方法与乐趣,从而培养学生学好数学的兴趣;学生在观察、思考、探究、归纳的过程中,锻炼意志与品质,使学生的个性得到发展.※※※ 学情分析初中阶段的数学学习要求学生初步学会运用数学思维去观察、分析现实社会,去解决日常生活中的问题,增强应用数学的意识,促进学生的全面发展.所以我认为应有意识地使学生能够运用已掌握的知识与方法理解“新定义”,做到“化生为熟”,化难为易,化繁为简,现学现用,提高学生的综合能力.※※※ 教学重点、难点教学重点:理解“新定义”,寻找“新定义”与旧知识点的联系.教学难点:“新定义”的迁移和应用能力.※※※ 教法、学法分析教法:精讲精练,启发诱导教学法.学法:以学生为主体,引导学生讨论,交流合作,启发引导学生领会规律,体会学习“新定义”解决问题的乐趣.※※※ 教学过程设计教学内容教学活动设计说明一、学习任务呈现:1、(2018 年深圳市中考卷,20)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图 1,在△CFE 中,CF=6,CE=12,∠FCE=45°,以点 C 为圆心,以任意长为半径作 AD,再分别以点 A 和点 D 为圆心,大于AD 长为半径作弧,交EF 于点B,AB∥CD.(1)求证:四边形 ACDB 为△FEC的亲密菱形;(2)求四边形 ACDB 的面积.(图1)2、(2018 年景德镇市模拟卷,23)如图,将△ABC 绕点A 逆时针旋转α后,与△ADE 构成位似图形,我们称与互为“旋转位似图形”.(1)知识理解:两个重合了一个顶点且边长不相等的等边三角形(填“是”或“不是”)“旋转位似图形”;如图 2,△ABC 和△ADE 互为“旋转位似图形”,① 若α =26º,∠B=100 º,∠E=29 º,则∠BAE = ;②若AD=6,DE=8,AB=4,则BC = ;(2)知识运用:如图 3,在四边形ABCD 中,∠ADC=90 º,AE⊥BD 于E,∠DAC =∠DBC,求证:△ACD 和△ABE 互为“旋转位似图形”;(3)拓展提高:教师提前把学案发给学生,让学生先学后教,先练后导.(用15 分钟完成第1、第 2小题)限时完成.教师用投影仪投影学生的作答进行分析、讲评,侧重问题的入手分析,提炼解题思路与策限时训练,就是为了激发学生尽快进入上课的精神状态,集中注意力于问题解决当中,同时,也是教师很好地了解学生已有的面对“新定义”知识基础,答题规范等的好举措.让学生先独立完成练习,就是让学生尽快地进入“新定义”问题情境,通过解题回顾应对新知识的反应能力.学生独立完如图 4,△ABC 为等腰直角三角形,点G 为AC 中点,点F 是AB上一点,D是GF延长线上一点,点E在线段GF上,且△ABD 与△AGE 互为“旋转位似图形”,若AC=6,AD=2 2 ,求出DE 和BD 的值. DC DE OBɑEA C(图2)AB(图3)DBFEA G C(图4)二、评价、总结反思问题解决过程约用 7 分钟讲评学生的解答过程,引导学生总结与反思上述问题的解决策略.三、能力提升训练3、(2018 年南通市中考卷,28)【定义】如图 5,A,B 为直线 l 同侧的两点,过点 A 作直线 1 的对称点A′,连接A′B交直线l 于点 P,连接 AP,则称点 P 为点 A,B 关于直线 l 的“等角点”.【运用】如图6,在平面直坐标系xOy 中,已知A(2,),B(﹣2,﹣)两点.(1)C(4,),D(4,),E(4,)三点中,点是点 A,B 关于直线 x=4 的等角点;(2)若直线 l 垂直于 x 轴,点 P(m,n)是点 A,B 关于直线l 的等角点,其中m>2,∠APB=α,求证:tan=;(3)若点 P 是点A,B 关于直线 y=ax+b(a≠0)的等角点,且点 P 位于直线 AB 的右下方,当∠APB=60°时,求 b 的取值范围(直接写出结果).yAl AB oxP A1 B(图5)(图6)yAo xB(备用图)四、提炼“新定义”压轴题部分解决策略(课堂小结)今天学习的“新定义”问题无明确的概念介定,重点是学以致用,能将新旧知识点穿插联系解决新问题.不同的“新定义”要以不变应万变.五、课后作业4、(2017 年·江西·23)我们定义:如图 7,在△ABC中,把 AB绕点 A 顺时针旋转α (0°<α <180°)得到AB′,把 AC 绕通过第3题,教师启发学生总结、反思和提炼“新定义”问题的主要类型、解决问题的策略.问题的能力,提升学生的学习兴趣5、(2017 年海南省中考数学仿真试卷(三),23)定义:若以一条线段为对角线作正方形,则称该正方形为这条线段的“对角线正方形”.例如,图 11 中正方形 ABCD 即为线段 BD 的“对角线正方形”.如图 12,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,点 P 从点 C 出发,沿折线 CA﹣AB 以 5cm/s 的速度运动,当点 P 与点 B 不重合时,作线段 PB 的“对角线正方形”,设点 P 的运动时间为 t(s),线段 PB 的“对角线正方形”的面积为 S(cm2).(1)如图 13,借助虚线的小正方形网格,画出线段 AB 的“对角线正方形”.(2)当线段 PB 的“对角线正方形”有两边同时落在△ABC 的边上时,求 t 的值.(3)当点 P 沿折线 CA﹣AB 运动时,求 S 与 t 之间的函数关系式.(4)在整个运动过程中,当线段 PB 的“对角线正方形”至少有一个顶点落在∠A 的平分线上时,直接写出 t 的值.CPEDA(图11) B(图12)AB (图13)通过课后独立思考及课前的预习让学生自我评价学习效果,学会反思、发现问题,最终形成运用所学知识去分析问题,解决问题的能力.※※※ 教学评价分析本节课通过对“新定义”问题分析解答,课堂问题由中到难,层层深入.在教学思想上既注重了知识迁移形成过程教学,又突出了学生学习方法的指导,探究能力的训练,创新精神的培养.小结应对“新定义”问题的一些感悟:ⅰ、重视阅读理解能力的培养数学阅读是学生自主学习、自主探索问题的途径之一,数学阅读能力是学生可持续发展能力的一个重要标志.新定义问题的解决,阅读能力的大小直接决定对问题的理解程度.因此,数学教学中必须重视数学阅读能力的培养,重点加强学生数学阅读指导,如在平时的检测中有意识地添加阅读型的问题,指导学生如何阅读,在阅读中如何找关键词,使学生掌握科学的数学阅读方法,养成良好的阅读习惯,让学生更好地、更主动地去阅读、理解、掌握数学知识.ⅱ、加强解题策略指导解题是学生掌握和运用数学知识的重要途径和方法,是学生数学综合能力的体现.掌握正确的解题策略,既可以帮助学生快速地找到解题的正确思路,又有利于学生构建知识体系,提高学生的学习效率.因此,教师在教学实践中要引导学生对解题思路、策略进行研究归纳,解决“新定义”问题的解题策略是①、深刻理解“新定义”---明确“新定义”的条件、原理、方法、步骤和结论;②、重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况.③、依据新定义,运用类比、归纳、联想、分类讨论以及数型结合的数学思想方法解决题目中需要解决的问题.ⅲ、注重思想渗透、培养迁移能力新定义问题,考查知识面广,我们不可能通过一一列举的方法对所有问题做分析与解答,这就要求教师在课堂教学中,交给学生解答数学问题的“金钥匙”---数学思想.如分类整合思想、数型结合思想、函数方程思想、化归转化思想等. 在数学教学过程中渗透数学思想也是落实培养初中生核心素养的主要途径[2].【参考文献】[1]曹义钊. 中考数学中“新定义”问题的类型及教学策略[J] 中学课程辅导(教学研究)2016, (24 ) 103-104[2]徐晓红.“新定义”试题 -- 中考压轴题的新走向[J].中学数学杂志(初中版),2013(8):55-57.。

数学专题1——新定义问题---(吴---翔)

数学专题1——新定义问题---(吴---翔)

数学专题1——新定义问题【专题诠释】所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.【经典例题】 类型一:规律题型中的新定义例1.(2009山东枣庄,18,4分)定义:a 是不为1的有理数,我们把11a -称为a 的差倒数.如:2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知a 1=-13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2009= .【分析】:理解差倒数的概念,要根据定义去做.通过计算,寻找差倒数出现的规律,依据规律解答即可.【解】:解:根据差倒数定义可得:2111311413a a ===-+, 321143114a a ===-- 431111143a a ===---. 显然每三个循环一次,又2009÷3=669余2,故a 2009和a 2的值相等.【评注】:此类题型要严格根据定义做,这也是近几年出现的新类型题之一,同时注意分析循环的规律. 类型二:运算题型中的新定义例2.(2011毕节地区,18,3分)对于两个不相等的实数a 、b ,定义一种新的运算如下,*0a b a b a b +=+(>),如:323*2532+==﹣, 那么6*(5*4)= .【分析】:本题需先根据已知条件求出5*4的值,再求出6*(5*4)的值即可求出结果.【评注】:本题主要考查了实数的运算,在解题时要先明确新的运算表示的含义是本题的关键.例3.(2010重庆江津区,15,4分)我们定义ab ad bc cd=-,例如2345=2×5﹣3×4=10﹣12=﹣2,若x ,y 均为整数,且满足1<14xy <3,则x+y 的值是 .【分析】:先根据题意列出不等式,根据x 的取值范围及x 为整数求出x 的值,再把x 的值代入求出y 的值即可.【评注】:此题比较简单,解答此题的关键是根据题意列出不等式,根据x ,y 均为整数求出x 、y 的值即可.类型三:探索题型中的新定义例4.(2009 台州,23, 分)定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,PH=PJ ,PI=PG ,则点P 就是四边形ABCD 的准内点.(1)如图2,∠AFD 与∠DEC 的角平分线FP ,EP 相交于点P .求证:点P 是四边形ABCD的准内点.(2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)(3)判断下列命题的真假,在括号内填“真”或“假”.①任意凸四边形一定存在准内点.( )②任意凸四边形一定只有一个准内点.( )③若P 是任意凸四边形ABCD 的准内点,则PA+PB=PC+PD 或PA+PC=PB+PD .( )【分析】:(1)过点P 作PG ⊥AB ,PH ⊥BC ,PI ⊥CD ,PJ ⊥AD ,由角平分线的性质可知PJ=PH ,PG=PI ;(2)平行四边形对角线的交点,即为平行四边形的准内点;梯形两腰夹角的平分线与梯形中位线的交点,即为梯形的准内点;(3)①当凸四边形为平行四边形时,易知其对角线交点即为其准内点;②当凸四边形不为平。

中考数学复习《新定义新概念问题》

中考数学复习《新定义新概念问题》

中考数学复习新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型例题:(2017甘肃天水)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2= 2 .【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:2同步训练:定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【考点】LO:四边形综合题.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB 时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键.类型2 新定义几何概念型例题:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【考点】FI:一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.同步训练:(2017湖北随州)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x2﹣x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为y=﹣x+,点A的坐标为(﹣2,2),点B的坐标为(1,0);(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B 的坐标;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求得ON的长,可求得N 点坐标;(3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,可证△EFH≌△ACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(﹣1,t),由A、C的坐标可表示出AC 中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标.【解答】解:(1)∵抛物线y=﹣x2﹣x+2,∴其梦想直线的解析式为y=﹣x+,联立梦想直线与抛物线解析式可得,解得或,∴A(﹣2,2),B(1,0),故答案为:y=﹣x+;(﹣2,2);(1,0);(2)如图1,过A作AD⊥y轴于点D,在y=﹣x2﹣x+2中,令y=0可求得x=﹣3或x=1,∴C(﹣3,0),且A(﹣2,2),∴AC==,由翻折的性质可知AN=AC=,∵△AMN为梦想三角形,∴N点在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN===3,∵OD=2,∴ON=2﹣3或ON=2+3,∴N点坐标为(0,2﹣3)或(0,2+3);(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=2,∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F点横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=2﹣=,即E点纵坐标为﹣,∴E(﹣1,﹣);当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,2),∴线段AC的中点坐标为(﹣2.5,),设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=2,∴x=﹣4,y=2﹣t,代入直线AB解析式可得2﹣t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,);综上可知存在满足条件的点F,此时E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.类型3 新内容理解把握例题:(2017湖南岳阳)已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对 B.只有1对C.只有2对D.有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,﹣)关于原点的对称点B(a,﹣)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0 有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.同步训练:(2017湖南株洲)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D专题训练1.(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 .【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:22. (2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.3. (2017湖北宜昌)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT:勾股数;KQ:勾股定理.【分析】由n=1,得到a=(m2﹣1)①,b=m②,c=(m2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,(m2﹣1)=5,解得:m=(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,(m2+1)=5,解得:m=±3,∵m>0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.4. (2017广西百色)阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= (x+3)(3x﹣4).【考点】57:因式分解﹣十字相乘法等.【分析】根据“十字相乘法”分解因式得出3x2+5x﹣12=(x+3)(3x﹣4)即可.【解答】解:3x2+5x﹣12=(x+3)(3x﹣4).故答案为:(x+3)(3x﹣4)5. (2017湖北咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF 是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标.【考点】MR:圆的综合题.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).6.(2017•益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n 的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.【考点】G6:反比例函数图象上点的坐标特征;FA:待定系数法求一次函数解析式;H8:待定系数法求二次函数解析式.【分析】(1)设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,于是得到结论;(2)把M(m,n),N(n,m)代入y=cx+d,即可得到结论;(3)设点A(p,q),则,由直线AB经过点P(,),得到p+q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x2+bx+c得,于是得到结论.【解答】解:(1)不一定,设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,即(a,b)和(b,a)都在反比例函数(k≠0)的图象上;(2)由M(m,n)得N(n,m),设直线MN的表达式为y=cx+d(c≠0).则有解得,∴直线MN的表达式为y=﹣x+m+n;(3)设点A(p,q),则,∵直线AB经过点P(,),由(2)得,∴p+q=1,∴,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x2+bx+c得,∴解得,∴此抛物线的表达式为y=x2﹣2x﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.。

专题31中考热点新定义问题专项训练(原卷版)

专题31中考热点新定义问题专项训练(原卷版)

专题31 中考热点新定义问题专项训练(原卷版)专题诠释:新定义题型是近几年来中考的热点问题。

它常集合数形结合思想,类比思想,转化思想,分类讨论思想,方程思想,函数思想于一体。

常以压轴题身份出现。

本专题精选新定义问题共20条,欢迎使用。

一.选择题1.(2021•河北模拟)对于实数x,y,我们定义符号max{x,y}的意义:当x≥y时,max{x,y}=x,当x<y时,max{x,y}=y.例如max{﹣1,﹣2}=﹣1,max{3,π}=π,则关于x的函数y=max{3x,x+2}的图象为()A.B.C.D.二.填空题2.(2021•深圳模拟)用“●”“□”定义新运算:对于数a,b,都有a●b=a和a□b=b.例如3●2=3,3□2=2,则(2020□2021)●(2021□2020)=.3.(2021•碑林区校级模拟)(正多边形的每个内角都相等)如图,在正八边形ABCDEFGH中,对角线BF 的延长线与边DE的延长线交于点M,则∠M的大小为.4.(2019•福田区三模)对于m,n(n≥m)我们定义运算A n m=n(n﹣1)(n﹣2)(n﹣3)…(n﹣(m﹣1)),A73=7×6×5=210,请你计算A42=.6.(2022秋•魏县期中)若x是不等于1的实数,我们把11−x 称为x的差倒数,如2的差倒数是11−2=−1,﹣1的差倒数为11−(−1)=12,现已知x1=13,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2022的值为.三.解答题7.(2021秋•汉阳区期中)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出两个“极数”,;(2)猜想任意一个“极数”是否是99的倍数,请说明理由;(3)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=m33,则满足D(m)是完全平方数的所有m的值是.8.(2022秋•胶州市期末)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2022是否是“纯数”?请说明理由;(2)请直接写出2023到2050之间的“纯数”;(3)不大于100的“纯数”的个数为.9.(2021•任城区二模)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做“半高三角形”.这条高称为“半高”.如图1,对于△ABC,BC边上的高AD等于BC的一半,△ABC就是“半高三角形”.此时,称△ABC是“BC边半高三角形”,AD是“BC边半高”;如图2,对于△EFG,EF边上的高GH等于EF的一半,△EFG就是半高三角形,此时,称△EFG是EF边半高三角形,GH 是“EF边半高”.(1)在Rt△ABC中,∠ACB=90°,AB=10cm,若ABC是“BC边半高三角形”,则AC=cm;(2)若一个三角形既是等腰三角形又是半高三角形,且“半高”长为2cm,则该等腰三角形底边长的所有可能值为.(3)如图3,平面直角坐标系内,直线y=x+2与抛物线y=x2交于R,S两点,点P是抛物线y=x2上的一个动点,点Q是坐标系内一点,且使得△RSQ为“RS边半高三角形”.当点P介于点R与点S之间,且PQ取得最小值时,求点P的坐标.10.(2022春•梁平区期末)在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=a+c3,y=b+d3那么称点T是点A,B的融合点.例如:A=(﹣1,8),B=(4,﹣2),当点T(x,y)满足x=−1+43=1,y=8+(−2)3=2时,则点T(1,2)是点A,B的融合点.(1)已知点A(﹣1,5),B(7,7),C(2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D(3,0),点E(t,2t+3)是直线l:y=2x+3上任意一点,点T(x,y)是点D,E的融合点.①试确定y与x的关系式.②若直线ET交x轴于点H,当∠TDH为直角时,求直线ET的解析式.11.(2019•浙江)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=﹣(x ﹣m)2+m+2的顶点.(1)当m=0时,求该抛物线下方(包括边界)的好点个数.(2)当m=3时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.12.(2022•亭湖区校级三模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=4BE,QB=6,求邻余线AB的长.13.(2021•南丰县模拟)如果一个四边形的对角线把四边形分成两个三角形,一个是等边三角形,另一个是该对角线所对的角为60°的三角形,我们把这条对角线叫做这个四边形的理想对角线,这个四边形称为理想四边形.(1)如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB,E为BC中点,连接DE.求证:四边形ADEC为理想四边形;(2)如图2,△ABD是等边三角形,若BD为理想对角线,为使四边形ABCD为理想四边形,小明同学给出了他的设计图(见设计后的图),其中圆心角∠BOD=120°;请你解释他这样设计的合理性.(3)在(2)的条件下,①若△BCD为直角三角形,BC=3,求AC的长度;②如图3,若CD=x,BC=y,AC=z,请直接写出x,y,z之间的数量关系.14.(2020•朝阳区一模)在平面直角坐标系xOy中,点A(t,0),B(t+2,0),C(n,1),若射线OC上存在点P,使得△ABP是以AB为腰的等腰三角形,就称点P为线段AB关于射线OC的等腰点.(1)如图,t=0,①若n=0,则线段AB关于射线OC的等腰点的坐标是;②若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1,求n的取值范围;(2)若n=√33,且射线OC上只存在一个线段AB关于射线OC的等腰点,则t的取值范围是.15.(2022•房山区模拟)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M,N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(√3,0),D(0,﹣1),E(0,1),点P在线段CE上运动(点P可以与点C,E重合),连接OP,DP.①线段OP的最小值为,最大值为;线段DP的取值范围是;②在点O,点D中,点与线段DE满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点F横坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,2为半径作圆得到⊙H 和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.16.(2022•西城区校级模拟)点P (x 1,y 1),Q (x 2,y 2)是平面直角坐标系中不同的两个点,且x 1≠x 2.若存在一个正数k ,使点P ,Q 的坐标满足|y 1﹣y 2|=k |x 1﹣x 2|,则称P ,Q 为一对“限斜点”,k 叫做点P ,Q 的“限斜系数”,记作k (P ,Q ).由定义可知,k (P ,Q )=k (Q ,P ).例:若P (1,0),Q (3,12),有|0−12|=14|1﹣3|,所以点P ,Q 为一对“限斜点”,且“限斜系数”为14. 已知点A (1,0),B (2,0),C (2,﹣2),D (2,12). (1)在点A ,B ,C ,D 中,找出一对“限斜点”: ,它们的“限斜系数”为 ;(2)若存在点E ,使得点E ,A 是一对“限斜点”,点E ,B 也是一对“限斜点”,且它们的“限斜系数”均为1.求点E 的坐标;(3)⊙O 半径为3,点M 为⊙O 上一点,满足MT =1的所有点T ,都与点C 是一对“限斜点”,且都满足k (T ,C )≥1,直接写出点M 的横坐标x M 的取值范围.17.(2020•密云区一模)对于平面直角坐标系xOy 中的任意一点P ,给出如下定义:经过点P 且平行于两坐标轴夹角平分线的直线,叫做点P 的“特征线”.例如:点M (1,3)的特征线是y =x +2和y =﹣x +4;(1)若点D 的其中一条特征线是y =x +1,则在D 1(2,2)、D 2(﹣1,0)、D 3(﹣3,4)三个点中,可能是点D 的点有 ;(2)已知点P (﹣1,2)的平行于第二、四象限夹角平分线的特征线与x 轴相交于点A ,直线y =kx +b (k ≠0)经过点P ,且与x 轴交于点B .若使△BP A 的面积不小于6,求k 的取值范围;(3)已知点C (2,0),T (t ,0),且⊙T 的半径为1.当⊙T 与点C 的特征线存在交点时,直接写出t 的取值范围.18.(2022秋•西城区校级期中)已知函数y=x2+bx+c(x≥2)的图象过点A(2,1),B(5,4).(1)直接写出y=x2+bx+c(x≥2)的解析式;(2)如图,请补全分段函数y={−x2+2x+1(x<2)x2+bx+c(x≥2)的图象(不要求列表).并回答以下问题:①写出此分段函数的一条性质:;②若此分段函数的图象与直线y=m有三个公共点,请结合函数图象直接写出实数m的取值范围;(3)横、纵坐标都是整数的点叫做整点,记(2)中函数的图象与直线y=12x−1围成的封闭区域(不含边界)为“W区域”,请直接写出区域内所有整点的坐标.20.(2021春•丰台区校级月考)在平面直角坐标系xOy中,过⊙T(半径为r)外一点P引它的一条切线,切点为Q,若0<PQ≤2r,则称点P为⊙T的伴随点.(1)当⊙O的半径为1时,①在点A(﹣3,0),B(﹣1,√3),C(2,﹣1)中,⊙O的伴随点是;②点D在直线y=﹣x+3上,且点D是⊙O的伴随点,求点D的横坐标d的取值范围;(2)⊙M的圆心为M(m,0),半径为3,直线y=2x+3与x轴,y轴分别交于点E,F.若线段EF上的所有点都是⊙M的伴随点,直接写出m的取值范围.19.(2020•丰台区校级开学)已知:点P为图形M上任意一点,点Q为图形N上任意一点,若点P与点Q 之间的距离PQ始终满足PQ>0,则称图形M与图形N相离.(1)已知点A(1,2)、B(0,﹣5)、C(2,﹣1)、D(3,4).①与直线y=3x﹣5相离的点是;②若直线y=3x+b与△ABC相离,求b的取值范围;(2)设直线y=x+3、直线y=﹣x+3及直线y=﹣3围成的图形为W,正方形T的对角线长为2,两条对角线分别平行于坐标轴,该正方形对角线的交点坐标为(t,0),直接写出正方形T与图形W相离的t 的取值范围.。

中考数学押轴题备考复习 新定义、新情境型问题

中考数学押轴题备考复习 新定义、新情境型问题

新定义、新情境型问题1.定义新的运算“⊕”如下:当a ≥b 时,a ⊕b=ab+b, 当a<b 时,a ⊕b=ab-a,若(2x -1)⊕(x+2)=0,则x=_________.【解题思路】分类讨论:当2x-1≥x+2时,当2x-1<x+2时,分别列出方程进行计算。

答案:-1或21 【点评】本题中的新定义运算主要是检测学生学习新知识的能力。

本题难度较大。

2.定义一种运算☆,其规则为a ☆b=1a +1b,根据这个规则、计算2☆3的值是( ) A.56 B. 15C.5D.6 【解题思路】由定义可知,原式=1123+=56 【答案】A【点评】定义型运算题关键在于抓住定义的实质。

难度较小。

3.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A.1,2B.1,3 .C.4,2D.4,3【解题思路】第一个数是6,左手伸出1根。

第二个数是7,右手伸出2根。

可以计算为:6×7=10×3+4×3=42.【答案】A【点评】本题属于创新型问题,考察学生的学习能力。

理解计算的过程,难度中等。

4.对于任意不相等的两个实数a 、b ,定义运算※如下:a ※b=ba b a -+,如3※2=32532+=-.那么8※12= . 【解题思路】本例是一个“定义新运算”的题目,只要搞清运算规则就可以了.【答案】-52. 【点评】本题是在已有知识的基础上,设计一个陌生的数学情景,或定义一个概念,或规定一种运算,或给出一个规则,通过阅读相关信息,根据题目引入新内容进行解答的一类新题型.它主要考查符号语言、文字语言、图形图象语言间的转译能力及推理运算能力,解题关键是读懂题意,注意将新的信息向已有知识的转化,这有利于培养和考查学生在具体情景中应用新知识的能力.是“学生的可持续发展”理念的体现.难度较大.。

2023年中考数学压轴题专题32 四边形与新定义综合问题【含答案】

2023年中考数学压轴题专题32 四边形与新定义综合问题【含答案】

专题32四边形与新定义综合问题【例1】(2022•汇川区模拟)定义:有一组对角互补的四边形叫做“对补四边形”,例如:四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.【概念理解】(1)如图1,四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D=度.②若∠B=90°.且AB=3,AD=2时.则CD2﹣CB2=.【类比应用】(2)如图2,在四边形ABCD中,AB=CB,BD平分∠ADC.求证:四边形ABCD是“对补四边形”.【例2】.(2022•赣州模拟)我们定义:有一组邻角相等的凸四边形做“等邻角四边形”,例如:如图1,∠B=∠C,则四边形ABCD为等邻角四边形.(1)定义理解:已知四边形ABCD为等邻角四边形,且∠A=130°,∠B=120°,则∠D =度.(2)变式应用:如图2,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC.①求证:四边形ABDE为等邻角四边形;②若∠A+∠C+∠E=300°,∠BDC=∠C,请判断△BCD的形状,并明理由.(3)深入探究:如图3,在等邻角四边形ABCD中,∠B=∠BCD,CE⊥AB,垂足为E,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,判断PM+PN与CE的数量关系?请说明理由.(4)迁移拓展:如图4,是一个航模的截面示意图.四边形ABCD是等邻角四边形,∠A =∠ABC,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.【例3】(2022•常州二模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图I,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上;(3)如图3,已知四边形ABCD是以AB为邻余线的邻余四边形,AB=15,AD=6,BC=3,∠ADC=135°,求CD的长度.【例4】(2022•工业园区模拟)【理解概念】如果一个矩形的一条边与一个三角形的一条边能够重合,且三角形的这条边所对的顶点恰好落在矩形这条边的对边上,则称这样的矩形为这个三角形的“矩形框”.如图①,矩形ABDE 即为△ABC的“矩形框”.(1)三角形面积等于它的“矩形框”面积的;(2)钝角三角形的“矩形框”有个;【巩固新知】(3)如图①,△ABC的“矩形框”ABDE的边AB=6cm,AE=2cm,则△ABC周长的最小值为cm;(4)如图②,已知△ABC中,∠C=90°,AC=4cm,BC=3cm,求△ABC的“矩形框”的周长;【解决问题】(5)如图③,锐角三角形木板ABC的边AB=14cm,AC=15cm,BC=13cm,求出该木板的“矩形框”周长的最小值.一.解答题(共20题)1.(2022•罗湖区模拟)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF(填“是”或“不是”)“直等补”四边形;(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,过点B作BE⊥AD于E.①过C作CF⊥BF于点F,试证明:BE=DE,并求BE的长;②若M是AD边上的动点,求△BCM周长的最小值.2.(2022•越秀区校级模拟)有一组对边平行,一个内角是它对角的两倍的四边形叫做倍角梯形.(1)已知四边形ABCD是倍角梯形,AD∥BC,∠A=100°,请直接写出所有满足条件的∠D的度数;(2)如图1,在四边形ABCD中,∠BAD+∠B=180°,BC=AD+CD.求证:四边形ABCD 是倍角梯形;(3)如图2,在(2)的条件下,连结AC,当AB=AC=AD=2时,求BC的长.3.(2022•嘉祥县一模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.4.(2021•任城区校级三模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子:;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD 绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.5.(2022春•曾都区期末)定义:我们把对角线相等的凸四边形叫做“等角线四边形”.(1)在已经学过的“①平行四边形;②矩形;③菱形;④正方形”中,一定是“等角线四边形”的是(填序号);(2)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,且EC=DF,连接EF,AF,求证:四边形ABEF是等角线四边形;(3)如图2,已知在△ABC中,∠ABC=90°,AB=4,BC=3,D为线段AB的垂直平分线上一点,若以点A,B,C,D为顶点的四边形是等角线四边形,求这个等角线四边形的面积.6.(2022春•南浔区期末)定义:我们把一组对边平行另一组对边相等且不平行的四边形叫做等腰梯形.【性质初探】如图1,已知,▱ABCD,∠B=80°,点E是边AD上一点,连结CE,四边形ABCE恰为等腰梯形.求∠BCE的度数;【性质再探】如图2,已知四边形ABCD是矩形,以BC为一边作等腰梯形BCEF,BF=CE,连结BE、CF.求证:BE=CF;【拓展应用】如图3,▱ABCD的对角线AC、BD交于点O,AB=2,∠ABC=45°,过点O作AC的垂线交BC的延长线于点G,连结DG.若∠CDG=90°,求BC的长.7.(2022春•长汀县期末)在平面直角坐标系中,如果点p(a,b)满足a+1>b且b+1>a,则称点p为“自大点”:如果一个图形的边界及其内部的所有点都不是“自大点”,则称这个图形为“自大忘形”.(1)判断下列点中,哪些点是“自大点”,直接写出点名称;p 1(1,0),,.(2)如果点N(2x+3,2)不是“自大点”,求出x的取值范围.(3)如图,正方形ABCD的初始位置是A(0,6),B(0,4),C(2,4),D(2,6),现在正方形开始以每秒1个单位长的速度向下(y轴负方向)平移,设运动时间为t秒(t>0),当正方形成为“自大忘形”时,求t的取值范围.8.(2022春•江北区期末)定义:对于一个四边形,我们把依次连结它的各边中点得到的新四边形叫做原四边形的“中点四边形”.如果原四边形的中点四边形是个正方形,我们把这个原四边形叫做“中方四边形”.概念理解:下列四边形中一定是“中方四边形”的是.A.平行四边形B.矩形C.菱形D.正方形性质探究:如图1,四边形ABCD是“中方四边形”,观察图形,写出关于四边形ABCD的两条结论:;.问题解决:如图2,以锐角△ABC的两边AB,AC为边长,分别向外侧作正方形ABDE和正方形ACFG,连结BE,EG,GC.求证:四边形BCGE是“中方四边形”;拓展应用:如图3,已知四边形ABCD是“中方四边形”,M,N分别是AB,CD的中点,(1)试探索AC与MN的数量关系,并说明理由.(2)若AC=2,求AB+CD的最小值.9.(2022春•铜山区期末)新定义;若四边形的一组对角均为直角,则称该四边形为对直四边形.(1)下列四边形为对直四边形的是(写出所有正确的序号);①平行四边形;②矩形;③菱形,④正方形.(2)如图,在对直四边形ABCD中,已知∠ABC=90°,O为AC的中点.①求证:BD的垂直平分线经过点O;②若AB=6,BC=8,请在备用图中补全四边形ABCD,使四边形ABCD的面积取得最大值,并求此时BD的长度.10.(2022春•盐田区校级期末)给出如下定义:有两个相邻内角互余的四边形称为“邻余四边形”,这两个角的夹边称为“邻余线”.(1)如图1,格点四边形ABCD是“邻余四边形”,指出它的“邻余线”;(2)如图2,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是“邻余四边形”;(3)如图3,四边形ABCD是“邻余四边形”,AB为“邻余线”,E,F分别是AB,CD的中点,连接EF,AD=4,BC=6.求EF的长.11.(2022春•玄武区期末)【概念认识】在四边形ABCD中,∠A=∠B.如果在四边形ABCD内部或边AB上存在一点P,满足∠DPC=∠A,那么称点P是四边形ABCD的“映角点”.【初步思考】(1)如图①,在四边形ABCD中,∠A=∠B,点P在边AB上且是四边形ABCD的“映角点”.若DA∥CP,DP∥CB,则∠DPC的度数为°;(2)如图②,在四边形ABCD中,∠A=∠B,点P在四边形ABCD内部且是四边形ABCD 的“映角点”,延长CP交边AB于点E.求证:∠ADP=∠CEB.【综合运用】在四边形ABCD中,∠A=∠B=α,点P是四边形ABCD的“映角点”,DE、CF分别平分∠ADP、∠BCP,当DE和CF所在直线相交于点Q时,请直接写出∠CQD与α满足的关系及对应α的取值范围.12.(2022春•北仑区期末)定义:对角线相等的四边形称为对美四边形.(1)我们学过的对美四边形有、.(写出两个)(2)如图1,D为等腰△ABC底边AB上的一点,连结CD,过C作CF∥AB,以B为顶点作∠CBE=∠ACD交CF于点E,求证:四边形CDBE为对美四边形.(3)如图2,对美四边形ABCD中,对角线AC、BD交于点O,AC=BD,DC∥AB.①若∠AOB=120°,AB+CD=6,求四边形ABCD的面积.②若AB⋅CD=6,设AD=x,BD=y,试求出y与x的关系式.13.(2022春•玄武区校级期中)如图1,∠A=∠B=∠C=∠D=∠E=∠F=90°,AB、EF、CD为铅直方向的边,AF、DE、BC为水平方向的边,点E在AB、CD之间,且在AF、BC之间,我们称这样的图形为“L图形”,若一条直线将该图形的面积分为面积相等的两部分,则称此直线为该“L图形”的等积线.(1)如图2所示四幅图中,直线L是该“L图形”等积线的是(填写序号).(2)如图3,直线m是该“L图形”的等积线,与边BC、AF分别交于点M、N,过MN 中点O的直线分别交边BC、AF于点P、Q,则直线PQ(填“是”或“不是”)该图形的等积线.(3)在图4所示的“L图形”中,AB=6,BC=10,AF=2.①若CD=2,在图中画出与AB平行的等积线l(在图中标明数据);②在①的条件下,该图形的等积线与水平的两条边DE、BC分别交于P、Q,求PQ的最大值;③如果存在与水平方向的两条边DE、BC相交的等积线,则CD的取值范围为.14.(2022•姑苏区一模)定义:有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,则∠B+∠C=°;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,在OA上取点E,使得DE=OE,连接DE并延长交AC于点F,∠AED=3∠EAF.求证:四边形BCFD 是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,OH=2,DH =6.①连接OC,若将扇形OBC围成一个圆锥的侧面,则该圆锥的底面半径为;②求△ABC的面积.15.(2022•江北区开学)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,CD=3BE,QB=6,求邻余线AB的长.16.(2022春•西城区校级期中)平面直角坐标系xOy中,正方形ABCD的四个顶点坐标分别为:A(﹣,),B(﹣,﹣),C(,﹣),D(,),P、Q是这个正方形外两点,且PQ=1.给出如下定义:记线段PQ的中点为T,平移线段PQ得到线段P'Q'(其中P',Q'分别是点P,Q的对应点),记线段P'Q'的中点为T.若点P'和Q'分别落在正方形ABCD的一组邻边上,或线段P'Q'与正方形ABCD的一边重合,则称线段TT'长度的最小值为线段PQ到正方形ABCD的“回归距离”,称此时的点T'为线段PQ到正方形ABCD 的“回归点”.(1)如图1,平移线段PQ,得到正方形ABCD内两条长度为1的线段P1Q1和P2Q2,这两条线段的位置关系为;若T1,T2分别为P1Q1和P2Q2的中点,则点(填T1或T2)为线段PQ到正方形ABCD的“回归点”;(2)若线段PQ的中点T的坐标为(1,1),记线段PQ到正方形ABCD的“回归距离”为d1,请直接写出d1的最小值:,并在图2中画出此时线段PQ到正方形ABCD的“回归点”T'(画出一种情况即可);(3)请在图3中画出所有符合题意的线段PQ到正方形ABCD的“回归点”组成的图形.17.(2022秋•福田区期中)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.如图1,∠ABC=∠ADC=90°,四边形ABCD 是损矩形,则该损矩形的直径是线段AC.同时我们还发现损矩形中有公共边的两个三角形角的特点:在公共边的同侧的两个角是相等的.如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC.(1)请在图1中再找出一对这样的角来:=;(2)如图2,△ABC中,∠ABC=90°,以AC为一边向外作菱形ACEF,D为菱形ACEF 对角线的交点,连接BD.①四边形ABCD损矩形(填“是”或“不是”);②当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由;③若∠ACE=60°,AB=4,BD=5,求BC的长.18.(2022春•江阴市校级月考)定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF,BE上,折痕为CD.则四边形ABCD为矩形.(1)证明:四边形ABCD为矩形;(2)在题(1)的矩形ABCD中,点M是边AB上一动点.①如图b,O是对角线AC的中点,若点N在边BC上,OM⊥ON,连接MN.求tan∠OMN 的值;②若AM=AD,点N在边BC上,当△DMN的周长最小时,求的值;③连接CM,作BR⊥CM,垂足为R.若AB=4,则DR的最小值=.19.(2022春•柯桥区月考)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.(1)阅读与理解:如图1,四边形内接于⊙O,点A为弧BD的中点.四边形ABCD(填“是”或“不是”)等补四边形.(2)探究与运用:①如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由;②如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,若CD=10,AF=5,求DF的长.(3)思考与延伸:在等补四边形ABCD中,AB=AD=3,∠BAD=120°,当对角线AC长度最大时,以AC 为斜边作等腰直角三角形ACP,直接写出线段DP的长度.20.(2021秋•荔湾区期末)如图,共顶点的两个三角形△ABC,△AB′C′,若AB=AB',AC=AC',且∠BAC+∠B′AC′=180°,我们称△ABC与△AB′C'互为“顶补三角形”.(1)如图2,△ABC是等腰三角形,△ABE,△ACD是等腰直角三角形,连接DE;求证:△ABC与△ADE互为顶补三角形.(2)在(1)的条件下,BE与CD交于点F,连接AF并延长交BC于点G.判断DE与AG 的数量关系,并证明你的结论.(3)如图3,四边形ABCD中,∠B=40°,∠C=50°.在平面内是否存在点P,使△PAD 与△PBC互为顶补三角形,若存在,请画出图形,并证明;若不存在,请说明理由.【例1】2022•汇川区模拟)定义:有一组对角互补的四边形叫做“对补四边形”,例如:四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.【概念理解】(1)如图1,四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D=90度.②若∠B=90°.且AB=3,AD=2时.则CD2﹣CB2=5.【类比应用】(2)如图2,在四边形ABCD中,AB=CB,BD平分∠ADC.求证:四边形ABCD是“对补四边形”.【分析】(1)①设∠A=3x°,则∠B=2x°,∠C=x°,利用“对补四边形”的定义列出方程,解方程即可求得结论;②连接AC,利用“对补四边形”的定义和勾股定理解答即可得出结论;(2)在DC上截取DE=DA,连接BE,利用全等三角形的判定与性质,等腰三角形的性质和“对补四边形”的定义解答即可.【解答】(1)解:①∵∠A:∠B:∠C=3:2:1,∴设∠A=3x°,则∠B=2x°,∠C=x°,∵四边形ABCD是“对补四边形”,∴∠A+∠C=180°,∴3x+x=180,∴x=45°.∴∠B=2x=90°.∵四边形ABCD是“对补四边形”,∴∠B+∠D=180°,∴∠D=90°.故答案为:90;②连接AC,如图,∵∠B=90°,∴AB2+BC2=AC2.∵四边形ABCD是“对补四边形”,∴∠B+∠D=180°.∴∠D=90°.∴AD2+CD2=AC2.∴AB2+BC2=AD2+CD2,∴CD2﹣CB2=AB2﹣AD2,∵AB=3,AD=2,∴CD2﹣CB2=32﹣22=5.故答案为:5;(2)证明:在DC上截取DE=DA,连接BE,如图,∵BD平分∠ADC,∴∠ADB=∠EDB.在△ADB和△EDB中,,∴△ADB≌△EDB(SAS),∴∠A=∠DEB,AB=BE,∵AB=CB,∴BE=BC,∴∠BEC=∠C.∵∠DEB+∠BEC=180°,∴∠DEB+∠C=180°,∴∠A+∠C=180°,∴四边形ABCD是“对补四边形”.【例2】(2022•赣州模拟)我们定义:有一组邻角相等的凸四边形做“等邻角四边形”,例如:如图1,∠B=∠C,则四边形ABCD为等邻角四边形.(1)定义理解:已知四边形ABCD为等邻角四边形,且∠A=130°,∠B=120°,则∠D =55度.(2)变式应用:如图2,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC.①求证:四边形ABDE为等邻角四边形;②若∠A+∠C+∠E=300°,∠BDC=∠C,请判断△BCD的形状,并明理由.(3)深入探究:如图3,在等邻角四边形ABCD中,∠B=∠BCD,CE⊥AB,垂足为E,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,判断PM+PN与CE的数量关系?请说明理由.(4)迁移拓展:如图4,是一个航模的截面示意图.四边形ABCD是等邻角四边形,∠A =∠ABC,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.【分析】(1)由等邻角四边形的定义和四边形内角和定理可求解;(2)①由角平分线的性质和平行线的性质可得∠EDB=∠ABD,可得结论;②由三角形内角和定理和四边形内角和定理可求∠C=60°,即可求解;(3)由面积关系可求解;(4)由直角三角形的性质可得AM=DM=ME,EN=NB=CN,由勾股定理可求DG=1,BG=6,即可求解.【解答】(1)解:∵四边形ABCD为等邻角四边形,∠A=130°,∠B=120°,∴∠C=∠D,∴∠D=55°,故答案为:55;(2)①证明:∵BD平分∠ABC,∴∠ABD=∠DBC,∵ED∥BC,∴∠EDB=∠DBC,∴∠EDB=∠ABD,∴四边形ABDE为等邻角四边形;②解:△BDC是等边三角形,理由如下:∵∠BDC=∠C,∴BD=BC,∠DBC=180°﹣2∠C,∵∠A+∠E+∠ABD+∠BDE=360°,∴∠A+∠E=360°﹣2∠ABD,∵∠A+∠C+∠E=300°,∴300°﹣∠C=360°﹣2(180°﹣2∠C),∴∠C=60°,又∵BD=BC,∴△BDC是等边三角形;(3)解:PM+PN=CE,理由如下:如图,延长BA,CD交于点H,连接HP,∵∠B=∠BCD,∴HB=HC,=S△BPH+S△CPH,∵S△BCH∴×BH×CE=×BH×PM+×CH×PN,∴CE=PM+PN;(4)解:如图,延长AD,BC交于点H,过点B作BG⊥AH于G,∵ED⊥AD,EC⊥CB,M、N分别为AE、BE的中点,∴AM=DM=ME,EN=NB=CN,∵AB2=BG2+AG2,BD2=BG2+DG2,∴52﹣(3+DG)2=37﹣DG2,∴DG=1,∴BG==6,由(3)可得DE+EC=BG=6,∴△DEM与△CEN的周长之和=ME+DM+DE+EC+EN+CN=AE+BE+BG=AB+BG=(6+2)dm.【例3】(2022•常州二模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图I,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上;(3)如图3,已知四边形ABCD是以AB为邻余线的邻余四边形,AB=15,AD=6,BC=3,∠ADC=135°,求CD的长度.【分析】(1)根据邻余四边形的定义证明结论即可;(2)连接AB,在∠A+∠B=90°的基础上选择合适的E点和F点连接作图即可;(3)邻余四边形的定义可得∠H=90°,由勾股定理可求解.【解答】(1)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)解:如图所示(答案不唯一),(3)解:如图3,延长AD,CB交于点H,∵四边形ABCD是以AB为邻余线的邻余四边形,∴∠A+∠B=90°,∵∠ADC=135°,∴∠HDC=45°,∴∠HDC=∠HCD=45°,∴CH=DH,∵AB2=AH2+BH2,∴225=(6+DH)2+(3+DH)2,∴DH=6(负值舍去),∴CD=6.【例4】(2022•工业园区模拟)【理解概念】如果一个矩形的一条边与一个三角形的一条边能够重合,且三角形的这条边所对的顶点恰好落在矩形这条边的对边上,则称这样的矩形为这个三角形的“矩形框”.如图①,矩形ABDE 即为△ABC的“矩形框”.(1)三角形面积等于它的“矩形框”面积的;(2)钝角三角形的“矩形框”有1个;【巩固新知】(3)如图①,△ABC的“矩形框”ABDE的边AB=6cm,AE=2cm,则△ABC周长的最小值为(6+2)cm;(4)如图②,已知△ABC中,∠C=90°,AC=4cm,BC=3cm,求△ABC的“矩形框”的周长;【解决问题】(5)如图③,锐角三角形木板ABC的边AB=14cm,AC=15cm,BC=13cm,求出该木板的“矩形框”周长的最小值.【分析】(1)利用同底等高的面积关系求解即可;(2)根据钝角三角形垂线的特点进行判断即可;(3)作A点关于DE的对称点F,连接BF,则△ABC周长≥AC+BF,求出BF+AC即可求解;(4)以三角形三边分别为矩形的一边作“矩形框”,分别求出周长即可;(5)以三角形三边分别为矩形的一边作“矩形框”,分别求出周长,取最小值即可.=×AB×AE,S矩形ABDE=AB×AE,【解答】解:(1)∵S△ABC=S矩形ABDE,∴S△ABC故答案为:;(2)由定义可知,钝角三角形以钝角所对的边为矩形一边,能够构造出一个“矩形框”,故答案为:1;(3)如图①,作A点关于DE的对称点F,连接BF,∴CF=AC,∴AC+BC≥BF,∴△ABC周长=AB+AC+BC≥AC+BF,∵AB=6cm,AE=2cm,在Rt△ABF中,BF=2,∴△ABC周长的最小值(6+2)cm,故答案为:(6+2);(4)如图②﹣1,以AB边为矩形一边时,作“矩形框”ABDE,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,=×3×4=×5×AE,∵S△ABC∴AE=,∴矩形ABDE的周长=2×(5+)=(cm);如图②﹣2,以BC边为矩形一边时,作“矩形框”BCAF,∴矩形BCAF的周长=2×(3+4)=14(cm);同理,以AB为矩形一边时,“矩形框”的周长为14cm;综上所述:△ABC的“矩形框”的周长为cm或14cm;(5)如图③﹣1,以AB为一边作“矩形框”ABDE,过点C作CG⊥AB交于G,∴CG2=AC2﹣AG2=BC2﹣BG2,AG+BG=AB,又∵AB=14cm,AC=15cm,BC=13cm,∴AG=9cm,BG=5cm,∴CG=12cm,∴“矩形框”ABDE的周长=2×(14+12)=52cm;如图③﹣2,以BC为一边作“矩形框”BCNM,过点A作AH⊥CB交于H,=×CG×AB=×12×14=×AH×BC,∵S△ABC∴AH=cm,∴“矩形框”BCNM的周长=2×(13+)=cm;如图③﹣3,以AC为矩形一边,作“矩形框”ACTS,过点B作BK⊥AC交于点K,=×CG×AB=×12×14=×BK×AC,∵S△ABC∴BK=cm,∴“矩形框”ACTS的周长=2×(15+)=cm;∵<52<,∴该木板的“矩形框”周长的最小值为cm.一.解答题(共20题)1.(2022•罗湖区模拟)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF是(填“是”或“不是”)“直等补”四边形;(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,过点B作BE⊥AD于E.①过C作CF⊥BF于点F,试证明:BE=DE,并求BE的长;②若M是AD边上的动点,求△BCM周长的最小值.【分析】(1)由旋转的性质可得∠ABF=∠CBE,BF=BE,根据正方形的性质得∠ABC=∠D=90°,可得出∠EBF=∠D=90°,即可得出答案;(2)①首先证明四边形CDEF是矩形,则DE=CF,EF=CD=2,再证△ABE≌△BCF,根据全等三角形的判定和性质可得BE=CF,AE=BF,等量代换即可得BE=DE;由AE=BF,EF=CD=2可得AE=BE﹣2,设BE=x,根据勾股定理求出x的值即可;②延长CD到点G,使DG=CD,连接BG交AD于点M′,过点G作GH⊥BC,交BC的延长线于点H,证明△ABE∽△CGH,根据相似三角形的性质求出CH、HG的值,在Rt△BHG中,根据勾股定理求出BG,即可求解.【解答】解:(1)∵将△BCE绕B点旋转,BC与BA重合,点E的对应点F在DA的延长线上,∴∠ABF=∠CBE,BF=BE,∵四边形ABCD是正方形,∴∠ABC=∠D=90°,∴∠ABE+∠CBE=90°,∴∠ABE+∠ABF=90°,即∠EBF=∠D=90°,∴∠EBF+∠D=180°,∵∠EBF=90°,BF=BE,∴四边形BEDF是“直等补”四边形.故答案为:是;(2)①证明:∵四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,∴∠ABC=90°,∠ABC+∠D=180°,∴∠D=90°,∵BE⊥AD,CF⊥BE,∴∠DEF=90°,∠CFE=90°,∴四边形CDEF是矩形,∴DE=CF,EF=CD=2,∵∠ABE+∠A=90°,∠ABE+∠CBE=90°,∴∠A=∠CBF,∵∠AEB=∠BFC=90°,AB=BC,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵DE=CF,∴BE=DE;∵四边形CDEF是矩形,∴EF=CD=2,∵△ABE≌△BCF,∴AE=BF,∴AE=BE﹣2,设BE=x,则AE=x﹣2,在Rt△ABE中,x2+(x﹣2)2=102,解得:x=8或x=﹣6(舍去),∴BE的长是8;②∵△BCM周长=BC+BM+CM,∴当BM+CM的值最小时,△BCM的周长最小,如图,延长CD到点G,使DG=CD,连接BG交AD于点M′,过点G作GH⊥BC,交BC的延长线于点H,∵∠ADC=90°,∴点C与点G关于AD对称,∴BM+CM=BM+MG≥BG,即BM+CM≥BM′+M′C,∴当点M与M′重合时,BM′+M′C的值最小,即△BCM的周长最小,在Rt△ABE中,AE===6,∵四边形ABCD是“直等补”四边形,∴∠A+∠BCD=180°,∵∠BCD+∠GCH=180°,∴∠A=∠GCH,∵∠AEB=∠H=90°,∴△ABE∽△CGH,∴===,即=,∴GH=,CH=,∴BH=BC+CH=10+=,∴BG===2,∴△BCM周长的最小值为2+10.2.(2022•越秀区校级模拟)有一组对边平行,一个内角是它对角的两倍的四边形叫做倍角梯形.(1)已知四边形ABCD是倍角梯形,AD∥BC,∠A=100°,请直接写出所有满足条件的∠D的度数;(2)如图1,在四边形ABCD中,∠BAD+∠B=180°,BC=AD+CD.求证:四边形ABCD 是倍角梯形;(3)如图2,在(2)的条件下,连结AC,当AB=AC=AD=2时,求BC的长.【分析】(1)由题意得出∠D=2∠B或∠B=2∠D或∠A=2∠C,根据梯形的性质可得出答案;(2)过点D作DE∥AB,交BC于点E,证明四边形ABED为平行四边形,得出AD=BE,∠B=∠DEC=∠ADE,证出∠ADC=2∠B,则可得出结论;(3)过点E作AE∥DC交BC于点E,由等腰三角形的性质求出∠B=∠ACB=36°,证明△ABE∽△CBA,由相似三角形的性质得出,设AE=BE=CD=x,得出方程22=x (x+2),求出x=﹣1,则可得出答案.【解答】解:(1)∵AD∥BC,∴∠A+∠B=180°,∵∠A=100°,∴∠B=80°,∵四边形ABCD是倍角梯形,∴∠D=2∠B或∠B=2∠D或∠A=2∠C,若∠D=2∠B,则∠D=160°;若∠B=2∠D,则∠D=40°,若∠A=2∠C,则∠C=50°,∴∠D=130°,故所有满足条件的∠D的度数为160°或40°或130°;(2)证明:过点D作DE∥AB,交BC于点E,∵∠BAD+∠B=180°,∴AD∥BC,∵DE∥AB,∴四边形ABED为平行四边形,∴AD=BE,∠B=∠DEC=∠ADE,∵BC=BE+CE,∴BC=AD+CE,又∵BC=AD+CD,∴CE=CD,BC>AD,∴∠CDE=∠DEC,∴∠ADC=∠ADE+∠CDE=2∠B,∴四边形ABCD是倍角梯形;(3)过点E作AE∥DC交BC于点E,∵AB=AC,∴∠B=∠ACB,∵AD=AC,∴∠ACD=∠D,∵AD∥BC,∴∠ACB=∠DAC,设∠B=α,则∠D=2α,∵∠DAC+∠D+∠ACD=180°,∴α+2α+2α=180°,∴α=36°,∴∠B=∠ACB=36°,∴∠BAC=∠AEB=108°,∵∠B=∠B,∴△ABE∽△CBA,∴,设AE=BE=CD=x,则BC=2+x,∴22=x(x+2),∴x=﹣1(负值舍去),∴CD=﹣1.∴BC=AD+CD=2+﹣1=+1.3.(2022•嘉祥县一模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【分析】(1)由等腰三角形的三线合一定理先证AD⊥BC,再证∠DAB+∠DBA=90°,由邻余四边形定义即可判定;(2)由等腰三角形的三线合一定理先证BD=CD,推出CE=5BE,再证明△DBQ∽△ECN,推出==,即可求出NC,AC,AB的长度.【解答】(1)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FBA与∠EBA互余,∴四边形ABEF是邻余四边形;(2)解:∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴==,∵QB =3,∴NC =5,∵AN =CN ,∴AC =2CN =10,∴AB =AC =10.4.(2021•任城区校级三模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子:矩形或正方形;(2)问题探究;如图1,在等邻角四边形ABCD 中,∠DAB =∠ABC ,AD ,BC 的中垂线恰好交于AB 边上一点P ,连结AC ,BD ,试探究AC 与BD 的数量关系,并说明理由;(3)应用拓展;如图2,在Rt △ABC 与Rt △ABD 中,∠C =∠D =90°,BC =BD =3,AB =5,将Rt △ABD 绕着点A 顺时针旋转角α(0°<∠α<∠BAC )得到Rt △AB ′D ′(如图3),当凸四边形AD ′BC 为等邻角四边形时,求出它的面积.【分析】(1)矩形或正方形邻角相等,满足“等邻角四边形”条件;(2)结论:AC =BD ,证明△APC ≌△DPB (SAS );(3)分两种情况考虑:Ⅰ、当∠AD ′B =∠D ′BC 时,延长AD ′,CB 交于点E ,如图1,由S 四边形ACBD ′=S △ACE ﹣S △BED ′,求出四边形ACBD ′面积;Ⅱ、当∠D ′BC =∠ACB =90°时,过点D ′作D ′E ⊥AC 于点E ,如图2,由S 四边形ACBD ′=S △AED ′+S 矩形ECBD ′,求出四边形ACBD ′面积即可.【解答】解:(1)矩形或正方形是一个等邻角四边形.故答案为:矩形,正方形;(2)结论:AC=BD,理由:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴PA=PD,PC=PB,∴∠PAD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠PAD,∠APC=2∠PBC,即∠PAD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴=,即=,解得:D′F=,∴S △ACE =AC ×EC =×4×(3+4.5)=15;S △BED ′=×BE ×D ′F =××4.5×=,则S 四边形ACBD ′=S △ACE ﹣S △BED ′=15﹣=;(ii )当∠D ′BC =∠ACB =90°时,过点D ′作D ′E ⊥AC 于点E ,如图3(ii )所示,∴四边形ECBD ′是矩形,∴ED ′=BC =3,在Rt △AED ′中,根据勾股定理得:AE ==,∴S △AED ′=×AE ×ED ′=××3=,S 矩形ECBD ′=CE ×CB =(4﹣)×3=12﹣3,则S 四边形ACBD ′=S △AED ′+S 矩形ECBD ′=+12﹣3=12﹣.5.(2022春•曾都区期末)定义:我们把对角线相等的凸四边形叫做“等角线四边形”.(1)在已经学过的“①平行四边形;②矩形;③菱形;④正方形”中,一定是“等角线四边形”的是②④(填序号);(2)如图1,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且EC =DF ,连接EF ,AF ,求证:四边形ABEF 是等角线四边形;(3)如图2,已知在△ABC 中,∠ABC =90°,AB =4,BC =3,D 为线段AB 的垂直平分线上一点,若以点A ,B ,C ,D 为顶点的四边形是等角线四边形,求这个等角线四边形的面积.。

中考数学压轴选择填空专题——新定义问题(有答案)

中考数学压轴选择填空专题——新定义问题(有答案)

新定义问题例题精讲例 1.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数 y=14(x −4)2的图象与两坐标轴所围成的图形最接近的面积是( ) A. 5 B. 225 C. 4 D. 17﹣4π 【答案】 A【解析】【解答】解:如图,设抛物线与坐标轴的交点为A 、B ,则有: A (4,0),B (0,4);作直线l∥AB ,易求得直线AB :y=﹣x+4,所以设直线l :y=﹣x+h ,当直线l 与抛物线只有一个交点(相切)时,有: ﹣x+h=14(x ﹣4)2 ,整理得:14x 2﹣x+4﹣h=0, ∥=1﹣4×14(4﹣h )=0,即h=3;所以直线l :y=﹣x+3;设直线l 与坐标轴的交点为C 、D ,则C (3,0)、D (0,3),因抛物线的图象与两坐标轴所围成的图形面积大于S ∥OCD 小于S ∥OAB S ∥OCD =12×3×3=4.5. S ∥OAB =12×4×4=8, 故抛物线的图象与两坐标轴所围成的图形面积在4.5<S <8的范围内,选项中符合的只有A , 故选A .例2.定义一种对正整数n 的“F”运算: ①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为 n2k (其中k 是使 n2k 为奇数的正整数),并且运算重复进行. 例如,取n=26,那么当n=26时,第2016次“F 运算”的结果是________.【答案】 62【解析】【解答】解:根据题意,得 当n=26时,第1次的计算结果是262=13,第2次的计算结果是13×3+5=44, 第3次的计算结果是 4422 =11, 第4次的计算结果是11×3+5=38, 第5次的计算结果是382 =19,第6次的计算结果是19×3+5=62, 第7次的计算结果是622=31,第8次的计算结果是31×3+5=98, 第9次的计算结果是982=49,第10次的计算结果是49×3+5=152, 第11次的计算结果是15223=19,以下每6次运算一循环,∥(2016﹣4)÷6=335…2,∥第2016次“F 运算”的结果与第6次的计算结果相同,为62, 故答案为:62.例3.观察下列运算过程:S=1+3+32+33+…+32017+32018 ①, ①×3得3S=3+32+33+…+32018+32019 ②, ②﹣①得2S=32019﹣1,S=32019−12.运用上面计算方法计算:1+5+52+53+…+52018=________. 【答案】52019−14【解析】【解答】设S=1+5+52+53+…+52018 ①, 则5S=5+52+53+54…+52019②, ②﹣①得:4S=52019﹣1,所以S= 52019−14,故答案为:52019−14.例4.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S= √14[a 2b 2−(a 2+b 2−c 22)2] .现已知∥ABC 的三边长分别为1,2, √5 ,则∥ABC 的面积为________. 【答案】1【解析】【解答】解:∥S= √14[a 2b 2−(a 2+b 2−c 22)2] ,∥∥ABC 的三边长分别为1,2, √5 ,则∥ABC 的面积为: S= √14(12+22−(√5)22)=1,故答案为:1.例5.设双曲线 y =kx (k >0) 与直线 y =x 交于 A , B 两点(点 A 在第三象限),将双曲线在第一象限的一支沿射线 BA 的方向平移,使其经过点 A ,将双曲线在第三象限的一支沿射线 AB 的方向平移,使其经过点 B ,平移后的两条曲线相交于点 P , Q 两点,此时我称平移后的两条曲线所围部分(如图中(k>0)的眸径为6时,k的值为阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”当双曲线y=kx________.【答案】【解析】【解答】解:∥双曲线是关于原点成中心对称,点P、Q关于原点对称和直线AB对称∥四边形PAQB是菱形∥PQ=6∥PO=3根据题意可得出∥APB是等边三角形∥在Rt∥POB中,OB=tan30°×PO=√3×3= √33设点B的坐标为(x,x)∥2x2=3x2= 3=k2故答案为:32习题练习一、单选题1.在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x).如f(2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于()A.(7,6)B.(7,﹣6)C.(﹣7,6)D.(﹣7,﹣6)2.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是()A.√5−12B.√5+12C.1D.03.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+ 1x(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是1x,矩形的周长是2(x+ 1x );当矩形成为正方形时,就有x= 1x(0>0),解得x=1,这时矩形的周长2(x+ 1x)=4最小,因此x+ 1x (x>0)的最小值是2.模仿张华的推导,你求得式子x2+9x(x>0)的最小值是()A.2B.1C.6D.104.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3B.1,1,√2C.1,1,√3D.1,2,√35.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S= 610−15,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A.a2014−1a−1B.a2015−1a−1C.a2014−1aD.a2014﹣16.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∥MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2 √2)D.(50°,2 √2)7.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3B.4C.5D.68.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC∥BD;②AO=CO= 12AC;③∥ABD∥∥CBD,其中正确的结论有()A.0个B.1个C.2个D.3个9.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.12B.23C.25D.3510.对于两个不相等的实数a、b ,我们规定符号Max{a ,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x} =2x+1x的解为().A.1﹣√2B.2﹣√2C.1+ √2或1﹣√2D.1+ √2或﹣111.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③12.宽与长的比是√5−12(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH∥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH13.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为()A.23B.1 C.43D.5314.已知点A在函数y1=−1x(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上,若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.只有1对或2对B.只有1对C.只有2对D.只有2对或3对15.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距√5的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13B.14C.15D.1616.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]= 12x2的解为()#N.A. 0或 √2B. 0或2C. 1或 −√2D. √2 或﹣ √2 二、填空题17.对非负实数x“四舍五入”到个位的值记为(x ).即当n 为非负整数时,若n ﹣ 12 ≤x <n+ 12 ,则(x )=n .如(0.46)=0,(3.67)=4. 给出下列关于(x )的结论:①(1.493)=1;②(2x )=2(x );③若( 12x −1 )=4,则实数x 的取值范围是9≤x <11;④当x≥0,m 为非负整数时,有(m+2013x )=m+(2013x );⑤(x+y )=(x )+(y );其中,正确的结论有________(填写所有正确的序号).18.若x 是不等于1的实数,我们把11−x称为x 的差倒数,如2的差倒数是11−2=﹣1,﹣1的差倒数为11−(−1)=12,现已知x 1=﹣ 13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2017=________.19.在∥ABC 中,P 是AB 上的动点(P 异于A 、B ),过点P 的直线截∥ABC ,使截得的三角形与∥ABC 相似,我们不妨称这种直线为过点P 的∥ABC 的相似线,简记为P (l x )(x 为自然数).(1)如图①,∥A=90°,∥B=∥C ,当BP=2PA 时,P (l 1)、P (l 2)都是过点P 的∥ABC 的相似线(其中l 1∥BC ,l 2∥AC ),此外,还有________条;(2)如图②,∥C=90°,∥B=30°,当BPBA =________时,P (l x )截得的三角形面积为∥ABC 面积的14 .20.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号) ①当x=1.7时,[x]+(x )+[x )=6; ②当x=﹣2.1时,[x]+(x )+[x )=﹣7;③方程4[x]+3(x )+[x )=11的解为1<x <1.5;④当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有两个交点.21.阅读理解:如图1,∥O 与直线a 、b 都相切,不论∥O 如何转动,直线a 、b 之间的距离始终保持不变(等于∥O 的直径),我们把具有这一特性的图形成为“等宽曲线”,图2是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力既可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.拓展应用:如图3所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线c ,d 之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线c ,d 之间的距离等于2cm ,则莱洛三角形的周长为________cm .22.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是∥ABC 的“和谐分割线”,∥ACD为等腰三角形∥CBD和∥ABC相似,∥A =46°,则∥ACB的度数为________.答案解析部分一、单选题1.【答案】C【解析】【解答】解:∥f(﹣6,7)=(7,﹣6),∥g(f(﹣6,7))=g(7,﹣6)=(﹣7,6).故选C.2.【答案】A【解析】【解答】解:在同一坐标系xOy中,画出函数二次函数y=﹣x2+1与正比例函数y=﹣x的图象,如图所示.设它们交于点A、B.令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x= 1+√52或1−√52,∥A(1−√52,√5−12),B(1+√52,−1−√52).观察图象可知:①当x≤ 1−√52时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而增大,其最大值为√5−12;②当1−√52<x<1+√52时,min{﹣x2+1,﹣x}=﹣x,函数值随x的增大而减小,其最大值为√5−12;③当x≥ 1+√52时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而减小,最大值为−1−√52.综上所示,min{﹣x2+1,﹣x}的最大值是√5−12.故选:A.3.【答案】C【解析】【解答】解:∥x>0,∥在原式中分母分子同除以x,即x 2+9x=x+ 9x,在面积是9的矩形中设矩形的一边长为x,则另一边长是9x,矩形的周长是2(x+ 9x);当矩形成为正方形时,就有x= 9x,(x>0),解得x=3,这时矩形的周长2(x+ 9x)=12最小,因此x+ 9x(x >0)的最小值是6.故答案为:C 4.【答案】D【解析】【解答】解:A 、∥1+2=3,不能构成三角形,故选项错误; B 、∥12+12=( √2 )2 , 是等腰直角三角形,故选项错误;C 、底边上的高是 (√32) = 12 ,可知是顶角120°,底角30°的等腰三角形,故选项错误;D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确. 故选:D . 5.【答案】B【解析】【解答】解:设S=1+a+a 2+a 3+a 4+…+a 2014 , ① 则aS=a+a 2+a 3+a 4+…+a 2014+a 2015 , ②, ②﹣①得:(a ﹣1)S=a 2015﹣1, ∥S= a 2015−1a−1,即1+a+a 2+a 3+a 4+…+a 2014= a 2015−1a−1.故答案为:B . 6.【答案】 A【解析】【解答】解:如图,设正六边形的中心为D ,连接AD ,∥∥ADO=360°÷6=60°,OD=AD , ∥∥AOD 是等边三角形, ∥OD=OA=2,∥AOD=60°, ∥OC=2OD=2×2=4,∥正六边形的顶点C 的极坐标应记为(60°,4). 故选:A .7.【答案】 C【解析】【解答】如图所示,∥ (a +b)2=21 ,∥ a 2+2ab +b 2 =21,∥大正方形的面积为13,2ab=21﹣13=8,∥小正方形的面积为13﹣8=5.故答案为:C . 8.【答案】 D【解析】【解答】解:在∥ABD 与∥CBD 中, {AD =CD AB =BC DB =DB, ∥∥ABD∥∥CBD (SSS ), 故③正确; ∥∥ADB=∥CDB ,在∥AOD 与∥COD 中,{AD =CD∠ADB =∠CDB OD =OD,∥∥AOD∥∥COD (SAS ),∥∥AOD=∥COD=90°,AO=OC , ∥AC∥DB ,故①②正确; 故选D9.【答案】 C【解析】【解答】解:列表得:∥与7组成“中高数”的概率是:1230=25 .故选C .10.【答案】 D【解析】【分析】根据x 与﹣x 的大小关系,取x 与﹣x 中的最大值化简所求方程,求出解即可.【解答】当x <﹣x , 即x <0时,所求方程变形得:﹣x= ,去分母得:x 2+2x+1=0,即x=﹣1;当x >﹣x , 即x >0时,所求方程变形得:x= ,即x 2﹣2x=1,解得:x=1+或x=1﹣(舍去), 经检验x=﹣1与x=1+都为分式方程的解.故选:D .11.【答案】C【解析】【解答】解:①根据题意得:a@b=(a+b )2﹣(a ﹣b )2 ∥(a+b )2﹣(a ﹣b )2=0,整理得:(a+b+a ﹣b )(a+b ﹣a+b )=0,即4ab=0, 解得:a=0或b=0,正确;②∥a@(b+c )=(a+b+c )2﹣(a ﹣b ﹣c )2=4ab+4aca@b+a@c=(a+b )2﹣(a ﹣b )2+(a+c )2﹣(a ﹣c )2=4ab+4ac , ∥a@(b+c )=a@b+a@c 正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∥a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∥a2+b2+2ab≥4ab,∥4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∥a@b最大时,a=b,故④正确,故选C.12.【答案】D【解析】【解答】解:设正方形的边长为2,则CD=2,CF=1 在直角三角形DCF中,DF= √12+22= √5∥FG= √5∥CG= √5﹣1∥ CGCD = √5−12∥矩形DCGH为黄金矩形故选D.13.【答案】D【解析】【解答】解:由题意得:{y=2x−1y=−x+3,解得:{x=43y=53,当2x﹣1≥﹣x+3时,x≥ 43,∥当x≥ 43时,y=min{2x﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为53;当2x﹣1<﹣x+3时,x<43,∥当x<43时,y=min{2x﹣1,﹣x+3}=2x﹣1,由图象可知:此时该函数的最大值为53;综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x= 43所对应的y的值,如图所示,当x= 43时,y= 53,故答案为:D.14.【答案】A【解析】【解答】解:设A(a,−1a ),根据题意点A关于坐标原点对称的点B(-a,1a)在直线y 2 = k x + 1 + k上,∥1a=-ak+1+k,整理得:ka2-(k+1)a+1=0 ①,即(a-1)(ka-1)=0,∥a-1=0或ka-1=0,则a=1或ka-1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=1k,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上所述,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.15.【答案】B【解析】【解答】解:如图1,连接AC,CF,则AF=3 √2,∥两次变换相当于向右移动3格,向上移动3格,又∥MN=20 √2,∥20 √2÷3 √2= 203,(不是整数)∥按A﹣C﹣F的方向连续变换10次后,相当于向右移动了10÷2×3=15格,向上移动了10÷2×3=15格,此时M位于如图所示的5×5的正方形网格的点G处,再按如图所示的方式变换4次即可到达点N处,∥从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是14次,故选:B.16.【答案】A【解析】【解答】解:当1≤x<2时,12x2=1,解得x1= √2,x2=﹣√2;当x=0,12x2=0,x=0;当﹣1≤x <0时, 12x 2=﹣1,方程没有实数解;当﹣2≤x <﹣1时, 12 x 2=﹣1,方程没有实数解; 所以方程[x]= 12 x 2的解为0或 √2 .二、填空题17.【答案】 ①③④【解析】【解答】解:①(1.493)=1,正确;②(2x )≠2(x ),例如当x=0.3时,(2x )=1,2(x )=0,故②错误; ③若( 12x −1 )=4,则4﹣ 12 ≤ 12 x ﹣1<4+ 12 ,解得:9≤x <11,故③正确;④m 为整数,故(m+2013x )=m+(2013x ),故④正确;⑤(x+y )≠(x )+(y ),例如x=0.3,y=0.4时,(x+y )=1,(x )+(y )=0,故⑤错误; 综上可得①③正确. 故答案为:①③④ 18.【答案】−13【解析】【解答】解:由题意可得, x 1=﹣ 13 ,x 2= 11−(−13)=34 ,x 3=11−34=4 ,x 4= 11−4=−13 , 2017÷3=672…1, ∥x 2017= −13 , 故答案为: −13 . 19.【答案】 1 ;12或34或√34【解析】【解答】(1)存在另外 1 条相似线.如图1所示,过点P 作l 3∥BC 交AC 于Q ,则∥APQ∥∥ABC ; 故答案为:1;(2)设P (l x )截得的三角形面积为S ,S=14S ∥ABC , 则相似比为1:2.如图2所示,共有4条相似线:①第1条l 1 , 此时P 为斜边AB 中点,l 1∥AC ,∥BP BA =12;②第2条l 2 , 此时P 为斜边AB 中点,l 2∥BC ,∥BP BA =12;③第3条l 3 , 此时BP 与BC 为对应边,且BP BA =12, ∥BP BA=BPBC COS30o=√34;④第4条l 4 , 此时AP 与AC 为对应边,且AP AC =12, ∥AP AB=APAC sin30o=14, ∥BP BA =34.故答案为:12或12或√34.20.【答案】②③【解析】【解答】解:①当x=1.7时, [x]+(x )+[x )=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=﹣2.1时, [x]+(x )+[x )=[﹣2.1]+(﹣2.1)+[﹣2.1)=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;③当1<x <1.5时, 4[x]+3(x )+[x ) =4×1+3×2+1 =4+6+1=11,故③正确;④∥﹣1<x <1时,∥当﹣1<x <﹣0.5时,y=[x]+(x )+x=﹣1+0+x=x ﹣1, 当﹣0.5<x <0时,y=[x]+(x )+x=﹣1+0+x=x ﹣1, 当x=0时,y=[x]+(x )+x=0+0+0=0,当0<x <0.5时,y=[x]+(x )+x=0+1+x=x+1,当0.5<x <1时,y=[x]+(x )+x=0+1+x=x+1,∥y=4x ,则x ﹣1=4x 时,得x= −13;x+1=4x 时,得x= 13;当x=0时,y=4x=0,∥当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有三个交点,故④错误, 故答案为:②③. 21.【答案】2π【解析】【解答】解:如图3,由题意知AB=BC=AC=2cm , ∥∥BAC=∥ABC=∥ACB=60°,∥ AB̂ 在以点C 为圆心、2为半径的圆上, ∥ AB̂ 的长为 60⋅π⋅2180= 2π3, 则莱洛三角形的周长为2π3×3=2π,故答案为:2π.22.【答案】113°或92°.【解析】【解答】∥△BCD ∼△BAC , ∥∥BCD=∥A=46°,∥△ACD 为等腰三角形,∥ADC>∥BCD , ∥∥ADC>∥A , ∥AC ≠CD ,①当AC=AD 时,∥ACD=∥ADC=12(180°-46°)=67°, ∥∥ACB=67°+46°=113°.②当DA=DC 时,∥ACD=∥A=46°,。

二次函数压轴题之新定义问题(一)(讲义及答案)

二次函数压轴题之新定义问题(一)(讲义及答案)

二次函数压轴题之新定义问题(一)(讲义) 知识点睛新定义问题是在已学知识基础上,以未接触过的新定义为载体,现学现用,侧重考查理解、分析、应用等能力的问题。

此类问题的一般思路:①结合图形,理解新定义关键词;②借助题目正反举例,理解新定义实质,尝试“化生为熟”;③结合背景信息,借助新定义求解.精讲精练1.如图,边长为8的正方形OABC的两边在坐标轴上,以C为顶点的抛物线经过点A,P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F.点D,E的坐标分别为(0,6),(-4,0),连接PD,PE,DE.(1)请直接写出抛物线的解析式.(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值.进而猜想:对于任意一点P,PD与PF的差为定值.请你判断该猜想是否正确,并说明理由.(3)小明进一步探究得出结论:若将使△PDE的面积为整数的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE的周长最小时“好点”的坐标.2.已知抛物线2y ax bx c =++,若a ,b ,c 满足b =a +c ,则称抛物线2y ax bx c =++为“恒定”抛物线.(1)求证:“恒定”抛物线2y ax bx c =++必过x 轴上的一个定点A ;(2)已知“恒定”抛物线233y x =-的顶点为P ,与x 轴的另一个交点为B ,是否存在以Q 为顶点,与x 轴另一个交点为C 的“恒定”抛物线,使得以PA ,CQ 为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.3.如图1,P 为∠MON 的平分线上一点,以P 为顶点的角的两边分别与射线OM ,ON 交于点A ,B ,如果∠APB 绕点P 旋转时始终满足2OA OB OP ⋅=,我们就把∠APB 叫做∠MON 的智慧角.(1)如图2,已知∠MON =90°,P 为∠MON 的平分线上一点,以P 为顶点的角的两边分别与射线OM ,ON 交于点A ,B ,且∠APB =135°,求证:∠APB 是∠MON 的智慧角;(2)如图1,已知∠MON =α(0°<α<90°),OP =2,若∠APB 是∠MON 的智慧角,连接AB ,用含α的式子分别表示∠APB 的度数和△AOB 的面积;(3)如图3,C 是函数30y x x=>()的图象上一点,过点C 的直线与x 轴、y 轴分别交于点A ,B ,且BC =2AC ,请求出∠AOB 的智慧角∠APB 的顶点P 的坐标.图1图2图34.在平面直角坐标系中,我们不妨将横坐标、纵坐标均为整数的点称之为“中国结”.(1)求函数32y x =+的图象上的所有“中国结”的坐标;(2)若函数0k y k k x=≠(,为常数)的图象上有且只有两个“中国结”,试求出常数k 的值与相应“中国结”的坐标;(3)若二次函数2222(32)(241)y k k x k k x k k =-++-++-(k 为常数)的图象与x 轴相交得到两个不同的“中国结”,则该函数的图象与x 轴所围成的平面图形中(含边界),一共包含多少个“中国结”?【参考答案】1.(1)2188y x =-+(2)为定值2;(3)“好点”个数为11,当△PDE 的周长最小时,“好点”坐标为:(-4,6)2.(1)必过点(-1,0)(2)存在;234333y x x =++或233y x =-+3.(1)证明略(2)∠APB =180°2α-;△AOB 的面积为2sin α(3)3232()22,或33()22-,4.(1)(0,2)(2)k =1时,“中国结”的坐标为(1,1),(-1,-1);k =-1时,“中国结”的坐标为(-1,1),(1,-1);(3)一共包含6个“中国结”:(-2,0),(-3,0),(-1,0),(-1,1),(0,0),(1,0)。

中考数学复习专项练习卷_新定义型问题(含答案解析)

中考数学复习专项练习卷_新定义型问题(含答案解析)

中考数学二轮复习精品资料附参考答案新定义型问题一、中考专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考典例剖析考点一:规律题型中的新定义例2 (2013•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1==-5。

(1)求(-2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.思路分析:(1)按照定义新运算a⊕b=a(a-b)+1,求解即可;(2)先按照定义新运算a⊕b=a(a-b)+1,得出3⊕x,再令其小于13,得到一元一次不等式,解不等式求出x的取值范围,即可在数轴上表示.解:(1)∵a⊕b=a(a-b)+1,∴(-2)⊕3=-2(-2-3)+1=10+1=11;(2)∵3⊕x<13,∴3(3-x)+1<13,9-3x+1<13,-3x<3,x>-1.在数轴上表示如下:例3 (2013•钦州)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.5思路分析:“距离坐标”是(1,2)的点表示的含义是该点到直线l1、l2的距离分别为1、2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,它们有4个交点,即为所求.解:如图,∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.故选C.点评:本题考查了点到直线的距离,两平行线之间的距离的定义,理解新定义,掌握到一条直线的距离等于定长k的点在与已知直线相距k的两条平行线上是解题的关键.-CE PC PC a s2考点四:开放题型中的新定义例4 (2013•宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.思路分析:(1)要证明BD是四边形ABCD的和谐线,只需要证明△ABD和△BDC是等腰三角形就可以;»BC上任意一点构成的四边形(2)根据扇形的性质弧上的点到顶点的距离相等,只要D在ABDC就是和谐四边形;连接BC,在△BAC外作一个以AC为腰的等腰三角形ACD,构成的四边形ABCD就是和谐四边形,(3)由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD 的度数.解:(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADB=∠DBC.∵∠BAD=120°,∴∠ABC=60°.∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABD=∠ADB,∴△ADB是等腰三角形.在△BCD中,∠C=75°,∠DBC=30°,∴∠BDC=∠C=75°,∴△BCD为等腰三角形,∴BD是梯形ABCD的和谐线;(2)由题意作图为:图2,图3(3)∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图4,当AD=AC时,A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点思路分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=-x+k上.解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=-x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.对应训练5.(2013•天门)一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.(1)判断与操作:如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.(2)探究与计算:已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形四、中考真题演练一、选择题1.(2013•成都)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=-x+3 B.y= 5xC.y=2x D.y=-2x2+x-71.C2.(2013•绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°2.DA.40 B.45 C.51 D.563.C4.(2013•乌鲁木齐)对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=()A.(5,-9)B.(-9,-5)C.(5,9)D.(9,5)4.D5.(2013•常德)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是()A.B.C.D.5.C二、填空题6.(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.6.30°7.(2013•宜宾)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.三、解答题10.(2013•莆田)定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.(3)作EF ⊥AB 于F ,EG ⊥AD 于G ,EH ⊥CD 于H ,∴∠BFE =∠CHE =90°.∵AE 平分∠BAD ,DE 平分∠ADC ,∴EF =EG =EH ,在Rt △EFB 和Rt △EHC 中BE CE EF EH=⎧⎨=⎩, ∴Rt △EFB ≌Rt △EHC (HL ),∴∠3=∠4.∵BE =CE ,∴∠1=∠2.∴∠1+∠3=∠2+∠4即∠ABC =∠DCB ,∵ABCD 为AD 截某三角形所得,且AD 不平行BC ,∴ABCD 是“准等腰梯形”.当点E 不在四边形ABCD 的内部时,有两种情况:如图4,当点E 在BC 边上时,同理可以证明△EFB ≌△EHC ,∴∠B =∠C ,∴ABCD 是“准等腰梯形”.如图5,当点E 在四边形ABCD 的外部时,同理可以证明△EFB ≌△EHC ,∴∠EBF =∠ECH .∵BE =CE ,∴∠3=∠4,∴∠EBF -∠3=∠ECH -∠4,即∠1=∠2,。

中考数学压轴题之新定义经典题型

中考数学压轴题之新定义经典题型

中考数学压轴题之新定义经典题型【01】.在平面直角坐标系xOy 中,C 的半径为r ,P 是与圆心C 不重合的点,点P 关于O 的反称点的定义如下:若在射线CP 上存在一点P ',满足2CP CP r '+=,则称P '为点P 关于C 的反称点,下图为点P 及其关于C 的反称点P '的示意图。

(1)当O 的半径为1时。

①分别判断点(2,1)M ,3(,0)2N ,(1,3)T 关于O 的反称点是否存在,若存在?求其坐标;②点P 在直线2y x =-+上,若点P 关于O 的反称点P '存在,且点P '不在x 轴上,求点P 的横坐标的取值范围; (2)当C 的圆心在x 轴上,半径为1,直线3y x =-+x 轴,y 轴分别交于点A ,B ,若线段AB 上存在点P ,使得点P 关于C 的反称点P '在C 的内部,求圆心C 的横坐标的取值范围。

【02】.在平面直角坐标系xOy 中,点P 的坐标为()11,x y ,点Q 的坐标为()22,x y ,且12x x ≠,12y y ≠,若,P Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P Q ,的“相关矩形”.下图为点,P Q 的“相关矩形”的示意图.(1)已知点A 的坐标为()10,,①若点B 的坐标为()31,,求点,A B 的“相关矩形”的面积; ②点C 在直线3x =上,若点,A C 的“相关矩形”为正方形,求直线AC 的表达式;(2)O ⊙的半径为点M 的坐标为(),3m .若在O ⊙上存在一点N ,使得点,M N的“相关矩形”为正方形,求m 的取值范围.【03】.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若存在过点P 的直线l交⊙C于异于点P的A,B两点,在P,A,B三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P为⊙C的相邻点,直线l为⊙C 关于点P的相邻线.(1)当⊙O的半径为1时,○1分别判断在点D(,14),E(0,,F(4,0)中,是⊙O的相邻点有__________;○2请从○1中的答案中,任选一个相邻点,在图1中做出⊙O关于它的一条相邻线,并说明你的作图过程.○3点P在直线3y x=-+上,若点P为⊙O的相邻点,求点P横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线3y x=-+与x轴,y轴分别交于点M,N,若线段..MN上存在⊙C的相邻点P,直接写出圆心C的横坐标的取值范围.21图1 备用图1 备用图2【04】.定义:y 是一个关于x 的函数,若对于每个实数x ,函数y 的值为三数2+x ,12+x ,205+-x 中的最小值,则函数y 叫做这三数的最小值函数.(1)画出这个最小值函数的图象,并判断点A (1, 3)是否为这个最小值函数图象上的点;(2)设这个最小值函数图象的最高点为B ,点A (1, 3),动点M (m ,m ).①直接写出△ABM 的面积,其面积是 ; ②若以M 为圆心的圆经过B A ,两点,写出点M 的坐标;③以②中的点M 为圆心,以2为半径作圆. 在此圆上找一点P ,使2PA PB +的值最小,直接写出此最小值.【05】.在平面直角坐标系xOy 中,对于点P 和图形W ,如果线段OP 与图形W 无公共点,则称点P 为关于图形W 的“阳光点”;如果线段OP 与图形W 有公共点,则称点P 为关于图形W 的“阴影点”. (1)如图1,已知点()13A ,,()11B ,,连接AB①在()11,4P ,()21,2P ,()32,3P ,()42,1P 这四个点中,关于线段AB 的“阳光点”是;②线段11A B AB ;11A B 上的所有点都是关于线段AB 的“阴影点”,且当线段11A B 向上或向下平移时,都会有11A B 上的点成为关于线段AB 的“阳光点”.若11A B 的长为4,且点1A 在1B 的上方,则点1A 的坐标为___________________; (2)如图2,已知点()13C ,,C 与y 轴相切于点D .若E 的半径为32,圆心E在直线l y =+:上,且E 上的所有点都是关于C 的“阴影点”,求圆心E 的横坐标的取值范围;(3)如图3,M 的半径是3,点M 到原点的距离为5.点N 是M 上到原点距离最近的点,点Q 和T 是坐标平面内的两个动点,且M 上的所有点都是关于NQT ∆的“阴影点”,直接写出NQT ∆的周长的最小值.图1 图2 图3xx11【06】.给出如下规定:在平面直角坐标系xOy 中,对于点P (x ,y ),以及两个无公共点的图形1W 和2W ,若在图形1W 和2W 上分别存在点M (1x ,1y )和N (2x ,2y ),使得P 是线段MN 的中点,则称点M 和N 被点P “关联”,并称点P 为图形1W 和2W 的一个“中位点”,此时P ,M ,N 三个点的坐标满足122x x x +=,122y yy +=. (1)已知点(0,1),(4,1),(3,1),(3,2)A B C D --,连接AB ,CD .①对于线段AB 和线段CD ,若点A 和C 被点P “关联”,则点P 的坐标为__________;②线段AB 和线段CD 的一个“中位点”是1(2,)2Q -,求这两条线段上被点Q “关联”的两个点的坐标;(2)如图1,已知点R (-2,0)和抛物线1W :22y x x =-,对于抛物线1W 上的每一个点M ,在抛物线2W 上都存在点N ,使得点N 和M 被点R “关联”,请在图1中画出符合条件的抛物线2W ;(3)正方形EFGH 的顶点分别是(4,1),(4,1),(2,1),(2,1)E F G H ------,⊙T 的圆心为(3,0)T ,半径为1.请在图2中画出由正方形EFGH 和⊙T 的所有“中位点”组成的图形(若涉及平面中某个区域时可以用阴影表示),并直接写出该图形的面积.图2【06】.在平面直角坐标系中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的限距点的定义如下:若为直线PC 与⊙C 的一个交点,满足,则称为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限距点的示意图.(1)当⊙O 的半径为1时.①分别判断点M ,N ,T 关于⊙O 的限距点是否存在?若存在,求其坐标;②点D 的坐标为(2,0),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的边上.若点P 关于⊙O 的限距点存在,求点的横坐标的取值范围;(2)保持(1)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E 的方向运动,⊙C 的圆心C 的坐标为(1,0),半径为r .请从下面两个问题中任选一个作答.温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.问题1问题2若点P 关于⊙C 的限距点存在,且随点P 的运动所形成的路径长为,则r 的最小值为__________.若点P 关于⊙C 的限距点不存在,则r 的取值范围为________.xOy P '2r PP r '≤≤P 'P '(3,4)5(,0)2(1,2)P 'P 'P 'P 'r πP '【07】.对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p ,则称p 为这个函数的不变值. 在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为零.例如,下图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数1y x =-,1y x=,2y x =有没有不变值?如果有,直接写出其不变长度;(2)函数22y x bx =-.①若其不变长度为零,求b 的值;②若13b ≤≤,求其不变长度q 的取值范围;(3)记函数22()y x x x m =-≥的图象为1G ,将1G 沿x=m 翻折后得到的函数图象记为2G .函数G 的图象由 1G 和2G 两部分组成,若其不变长度q 满足03q ≤≤,则m 的取值范围为 .【08】.P 是⊙O 内一点,过点P 作⊙O 的任意一条弦AB ,我们把PA PB ⋅的值称为点P 关于⊙O 的“幂值”. (1)⊙O 的半径为5,OP = 3.①如图1,若点P 恰为弦AB 的中点,则点P 关于⊙O 的“幂值”为________; ②判断当弦AB 的位置改变时,点P 关于⊙O 的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P 关于⊙O 的“幂值”的取值范围.(2)若⊙O 的半径为r ,OP = d ,请参考(1)的思路,用含r 、d 的式子表示点P 关于⊙O 的“幂值”或“幂值”的取值范围________; (3)在平面直角坐标系xOy 中,⊙O 的半径为4,若在直线3y x b =+上存在点P ,使得点P 关于⊙O 的“幂值”为13,请写出b 的取值范围________.图1POBAO备用图【09】.在平面直角坐标系xOy 中,图形W 在坐标轴上的投影长度定义如下:设点),(11y x P ,),(22y x Q 是图形W 上的任意两点.若21x x -的最大值为m ,则图形W 在x 轴上的投影长度m l x =;若21y y -的最大值为n ,则图形W 在y 轴上的投影长度n l y =.如图,图形W 在x 轴上的投影长度213=-=x l ;在y 轴上的投影长度404=-=y l .(1)已知点)3,3(A ,)1,4(B .如图1所示,若图形W 为△OAB ,则=x l ,=y l .(2)已知点)0,4(C ,点D 在直线26y x =-+上,若图形W 为△OCD .当yx l l =时,求点D 的坐标.(3)若图形W 为函数2x y =)(b x a ≤≤的图象,其中0a b ≤<.当该图形 满足1≤=y x l l 时,请直接写出a 的取值范围.图1【10】.在平面直角坐标系xOy 中,对图形W 给出如下定义:若图形W 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,下图中的矩形ABCD 的坐标角度是90°.(1)已知点)3,0(-A ,)1,1(--B ,在点)0,2(C ,)0,1(-D ,)2,2(-E 中,选一点,使得以该点及点A ,B 为顶点的三角形的坐标角度为90°,则满足条件的点为 ;(2)将函数2ax y =)31(≤≤a 的图象在直线1=y 下方的部分沿直线1=y 向上翻折,求所得图形坐标角度m 的取值范围;(3)记某个圆的半径为r ,圆心到原点的距离为l ,且)1(3-=r l ,若该圆的坐标角度︒≤≤︒9060m .直接写出满足条件的r 的取值范围.。

中考数学压轴题之新定义经典题型

中考数学压轴题之新定义经典题型

中考数学压轴题之新定义经典题型【01】.在平面直角坐标系xOy 中,C 的半径为r ,P 是与圆心C 不重合的点,点P 关于O 的反称点的定义如下:若在射线CP 上存在一点P ¢,满足2CP CP r ¢+=,则称P ¢为点P 关于C 的反称点,下图为点P 及其关于C 的反称点P ¢的示意图。

的示意图。

(1)(1)当当O 的半径为1时。

时。

①分别判断点(2,1)M ,3(,0)2N ,(1(1,,3)T 关于O 的反称点是否存在,若存在?在?求其坐标;求其坐标;②点P 在直线2y x =-+上,若点P 关于O 的反称点P ¢存在,且点P ¢不在x 轴上,求点P 的横坐标的取值范围;的横坐标的取值范围; (2)(2)当当C 的圆心在x 轴上,轴上,半径为半径为1,直线3233y x =-+与x 轴,轴,y y 轴分别交于点A ,B ,若线段AB 上存在点P ,使得点P 关于C 的反称点P ¢在C 的内部,求圆心C 的横坐标的取值范围。

的横坐标的取值范围。

yPOCx1 1【02】.在平面直角坐标系xOy 中,点P 的坐标为()11,x y ,点Q 的坐标为()22,x y ,且12x x ¹,12y y ¹,若,P Q 为某个矩形的两个顶点,为某个矩形的两个顶点,且该矩形的边均与某条坐标轴且该矩形的边均与某条坐标轴垂直,则称该矩形为点P Q ,的“相关矩形”的“相关矩形”..下图为点,P Q 的“相关矩形”的示意图意图. .(1)已知点A 的坐标为()10,,①若点B 的坐标为()31,,求点,A B 的“相关矩形”的面积;的“相关矩形”的面积;②点C 在直线3x =上,若点,A C 的“相关矩形”为正方形,求直线AC 的表达式;式;(2)O ⊙的半径为2,点M 的坐标为(),3m .若在O ⊙上存在一点N ,使得点,M N的“相关矩形”为正方形,求m 的取值范围的取值范围. .【03】对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若存在过点P 的直线l 交⊙C 于异于点P 的A ,B 两点,在P ,A ,B 三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P 为⊙C 的相邻点,直线l 为⊙C 关于点P 的相邻线的相邻线. . (1)当⊙O 的半径为1时,时, ○1分别判断在点D (,14),E (0,-3),F (4,0)中,是⊙O 的相邻点有____________________;;○2请从○1中的答案中,任选一个相邻点,在图1中做出⊙O 关于它的一条相邻线,并说明你的作图过程相邻线,并说明你的作图过程. .○3点P 在直线3y x =-+上,若点P 为⊙O 的相邻点,求点P 横坐标的取值范围;范围;(2)⊙C 的圆心在x 轴上,半径为1,直线3233y x =-+与x 轴,y 轴分别交于点M ,N ,若线段..MN 上存在⊙C 的相邻点P ,直接写出圆心C 的横坐标的取值范围.范围.21备用图1备用图2 图1【04】定义:y 是一个关于x 的函数,若对于每个实数x ,函数y 的值为三数2+x ,12+x ,205+-x 中的最小值,则函数y 叫做这三数的最小值函数.(1)画出这个最小值函数的图象,并判断点A (1, 3)是否为这个)是否为这个最小值函数图象上的点;图象上的点;(2)设这个最小值函数图象的最高点为B ,点A (1, 3),动点M (m ,m ).①直接写出△ABM 的面积,其面积是的面积,其面积是 ; ②若以M 为圆心的圆经过B A ,两点,写出点M 的坐标;的坐标;③以②中的点M 为圆心,以2为半径作圆为半径作圆. . 在此圆上找一点P ,使22PA PB +的值最小,直接写出此最小值的值最小,直接写出此最小值. .【05】在平面直角坐标系xOy 中,对于点P 和图形W ,如果线段OP 与图形W 无公共点,则称点P 为关于图形W 的“阳光点”;如果线段OP 与图形W 有公共点,则称点P 为关于图形W 的“阴影点”. (1)如图1,已知点()13A ,,()11B ,,连接AB①在()11,4P ,()21,2P ,()32,3P ,()42,1P 这四个点中,关于线段AB 的“阳光点”是;是;②线段11A B AB P ;11A B 上的所有点都是关于线段AB 的“阴影点”,且当线段11A B 向上或向下平移时,都会有11A B 上的点成为关于线段AB 的“阳光点”.若11A B 的长为4,且点1A 在1B 的上方,则点1A 的坐标为的坐标为_________________________________________________________;; (2)如图2,已知点()13C ,,C e 与y 轴相切于点D .若E e 的半径为32,圆心E 在直线343l y x =-+:上,且E e 上的所有点都是关于C e 的“阴影点”,求圆心E 的横坐标的取值范围;的横坐标的取值范围;(3)如图3,M e 的半径是3,点M 到原点的距离为5.点N 是M e 上到原点距离最近的点,点Q 和T 是坐标平面内的两个动点,且M e 上的所有点都是关于NQT D 的“阴影点”,直接写出NQT D 的周长的最小值.的周长的最小值.图1 图2 图3yxB A OyxCOD yx11O【06】给出如下规定:在平面直角坐标系xOy 中,对于点P (x ,y ),以及两个无公共点的图形1W 和2W ,若在图形1W 和2W 上分别存在点M (1x ,1y )和N (2x ,2y ),使得P 是线段MN 的中点,则称点M 和N 被点P “关联”,并称点P 为图形1W 和2W 的一个“中位点”,此时P ,M ,N 三个点的坐标满足122x x x +=,122y yy +=.(1)已知点(0,1),(4,1),(3,1),(3,2)A B C D --,连接AB ,CD .①对于线段AB 和线段CD ,若点A 和C 被点P “关联”,则点P 的坐标为____________________;; ②线段AB 和线段CD 的一个“中位点”是1(2,)2Q -,求这两条线段上被点Q “关联”的两个点的坐标;“关联”的两个点的坐标;(2)如图1,已知点R (-(-2,02,02,0)和抛物线)和抛物线1W :22y x x =-,对于抛物线1W 上的每一个点M ,在抛物线2W 上都存在点N ,使得点N 和M 被点R “关联”,请在图1中画出符合条件的抛物线2W ;(3)正方形EFGH 的顶点分别是(4,1),(4,1),(2,1),(2,1)E F G H ------,⊙T 的圆心为(3,0)T ,半径为1.请在图2中画出由正方形EFGH 和⊙T 的所有“中位点”组成的图形(若涉及平面中某个区域时可以用阴影表示),并直接写出该图形的面积.并直接写出该图形的面积.图1 图2R【06】在平面直角坐标系中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的限距点的定义如下:若为直线PC 与⊙C 的一个交点,满足,则称为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限距点的示意图.的示意图. (1)当⊙O 的半径为1时.时.①分别判断点M ,N ,T 关于⊙O 的限距点是否存在?若存在,求其坐标;在?若存在,求其坐标;②点D 的坐标为(的坐标为(2,02,02,0)),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的边上的边上..若点P 关于⊙O 的限距点存在,求点的横坐标的取值范围;取值范围;(2)保持()保持(11)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E的方向的方向运动,⊙C 的圆心C 的坐标为(1,01,0)),半径为r .请从下面两个问题中任选一个作答一个作答. .温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.问题1问题2若点P 关于⊙C 的限距点存在,且随点P 的运动所形成的路径长为,则r 的最小值为的最小值为______________________________.. 若点P 关于⊙C 的限距点不存在,则r 的取值范围为的取值范围为________. ________.xOy P ¢2r PP r ¢££P ¢P¢(3,4)5(,0)2(1,2)P ¢P ¢P ¢P ¢r p P¢【07】对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p ,则称p 为这个函数的不变值. 在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为零为零..例如,下图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数1y x =-,1y x=,2y x =有没有不变值?如果有,直接写出其不变长度;其不变长度;(2)函数22y x bx =-.①若其不变长度为零,求b 的值;的值;②若13b ££,求其不变长度q 的取值范围;的取值范围;(3)记函数22()y x x x m =-³的图象为1G ,将1G 沿x=m 翻折后得到的函数图象记为2G .函数G 的图象由 1G 和2G 两部分组成,若其不变长度q 满足03q ££,则m 的取值范围为的取值范围为 . .【08】P 是⊙O 内一点,过点P 作⊙O 的任意一条弦AB ,我们把P A PB ×的值称为点P 关于⊙O 的“幂值”.(1)⊙O 的半径为5,OP = 3.①如图1,若点P 恰为弦AB 的中点,则点P 关于⊙O 的“幂值”为________________;; ②判断当弦AB 的位置改变时,点P 关于⊙O 的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P 关于⊙O 的“幂值”的取值范围.的取值范围.(2)若⊙O 的半径为r ,OP = d ,请参考(,请参考(11)的思路,用含r 、d 的式子表示点P 关于⊙O 的“幂值”或“幂值”的取值范围的“幂值”或“幂值”的取值范围________________________;; (3)在平面直角坐标系xOy 中,⊙O 的半径为4,若在直线33y x b =+上存在点P ,使得点P 关于⊙O 的“幂值”为1313,,请写出b 的取值范围的取值范围________________________..图1POBAO备用图备用图【09】在平面直角坐标系xOy 中,中,图形图形W 在坐标轴上的投影长度定义如下:设点),(11y x P ,),(22y x Q 是图形W 上的任意两点.若21x x -的最大值为m ,则图形W 在x 轴上的投影长度m l x =;若21y y -的最大值为n ,则图形W 在y 轴上的投影长度n l y =.如图,图形W 在x 轴上的投影长度213=-=xl ;在y 轴上的投影长度404=-=y l .(1)已知点)3,3(A ,)1,4(B .如图1所示,若图形W 为△OAB ,则=xl ,=y l .(2)已知点)0,4(C ,点D 在直线26y x =-+上,若图形W 为△OCD .当y x l l =时,求点D 的坐标.的坐标.(3)若图形W 为函数2x y =)(b x a ££的图象,其中0a b £<.当该图形.当该图形满足1£=y x l l 时,请直接写出a 的取值范围.的取值范围.x yO BA 1234123x y O 1231234图1【10】.在平面直角坐标系xOy 中,对图形W 给出如下定义:若图形W 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,下图中的矩形ABCD 的坐标角度是9090°.°.°.(1)已知点)3,0(-A ,)1,1(--B ,在点)0,2(C ,)0,1(-D ,)2,2(-E 中,选一点,使得以该点及点A ,B 为顶点的三角形的坐标角度为9090°,则满足条件°,则满足条件的点为的点为 ; (2)将函数2ax y =)31(££a 的图象在直线1=y 下方的部分沿直线1=y 向上翻折,求所得图形坐标角度m 的取值范围;的取值范围;(3)记某个圆的半径为r ,圆心到原点的距离为l ,且)1(3-=r l ,若该圆的,若该圆的坐标角度°££°9060m .直接写出满足条件的r 的取值范围.的取值范围. O xy D C B A –1–2–312312345。

2023年中考数学压轴题专题31 三角形与新定义综合问题【含答案】

2023年中考数学压轴题专题31 三角形与新定义综合问题【含答案】

专题31三角形与新定义综合问题【例1】(2022•淮安区模拟)我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图1,在△ABC中,AB=AC,底角∠B的邻对记作canB,这时canB==.容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)can30°=,若canB=1,则∠B=°.=48,求△ABC的周长.(2)如图2,在△ABC中,AB=AC,canB=,S△ABC【例2】(2022•柯城区校级三模)定义:若三角形的一条边上的高线与这条边相等,则称这个三角形为“标准三角形”.如:在△ABC,CD⊥AB于点D,AB=CD,则△ABC为标准三角形.【概念感知】判断:对的打“√”,错的打“×”.(1)等腰直角三角形是标准三角形.(2)顶角为30°的等腰三角形是标准三角形.【概念理解】若一个等腰三角形为标准三角形,则此三角形的三边长之比为.【概念应用】(1)如图,若△ABC为标准三角形,CD⊥AB于点D,AB=CD=1,求CA+CB的最小值.(2)若一个标准三角形的其中一边是另一边的倍,求最小角的正弦值.【例3】(2020•五华区校级三模)爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是ABC的中线,AM⊥BN于点P,像ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.【特例探究】(1)如图1,当∠PAB=45°,c=时,a=,b=;如图2,当∠PAB =30°,c=2时,a2+b2=;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,在▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.【例4】(2020•岳麓区校级二模)定义:在△ABC中,若有两条中线互相垂直,则称△ABC 为中垂三角形,并且把AB2+BC2+CA2叫做△ABC的方周长,记作L,即L=AB2+BC2+CA2.(1)如图1,已知△ABC是中垂三角形,BD,AE分别是AC,BC边上的中线,若AC=BC,求证:△AOB是等腰直角三角形;(2)如图2,在中垂三角形ABC中,AE,BD分别是边BC,AC上的中线,且AE⊥BD于点O,试探究△ABC的方周长L与AB2之间的数量关系,并加以证明;(3)如图3,已知抛物线y=与x轴正半轴相交于点A,与y轴相交于点B,经过点B的直线与该抛物线相交于点C,与x轴负半轴相交于点D,且BD=CD,连接AC交y轴于点E.①求证:△ABC是中垂三角形;②若△ABC为直角三角形,求△ABC的方周长L的值.【例5】(2020•安徽模拟)通过学习锐角三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值是一一对应的,因此,两条边长的比值与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图(1)在△ABC中,AB=AC,底角B的邻对记作canB,这时canB=,容易知道一个角的大小与这个角的邻对值也是一一对应的.根据上述角的邻对的定义,解下列问题:(1)can30°=;=24,求△ABC的周长.(2)如图(2),已知在△ABC中,AB=AC,canB=,S△ABC一.解答题(共20题)1.(2022秋•如皋市期中)定义:一个内角等于另一个内角两倍的三角形,叫做“倍角三角形”.(1)下列三角形一定是“倍角三角形”的有(只填写序号).①顶角是30°的等腰三角形;②等腰直角三角形;③有一个角是30°的直角三角形.(2)如图1,在△ABC中,AB=AC,∠BAC≥90°,将△ABC沿边AB所在的直线翻折180°得到△ABD,延长DA到点E,连接BE.①若BC=BE,求证:△ABE是“倍角三角形”;②点P在线段AE上,连接BP.若∠C=30°,BP分△ABE所得的两三角形中,一个是等腰三角形,一个是“倍角三角形”,请直接写出∠E的度数.2.(2022秋•义乌市校级月考)【概念认识】如图①所示,在∠ABC中,若∠ABD=∠DBE =∠EBC,则BD,BE叫做∠ABC的“三分线”,其中,BD是“邻AB三分线“,BE是“邻BC三分线”.【问题解决】(1)如图②所示.在△ABC中.∠A=80°,∠ABC=45°.若∠ABC的三分线BD交AC于点D.求∠BDC的度数.(2)如图③所示,在△ABC中.BP,CP分别是∠ABC的邻BC三分线和∠ACB的邻BC 三分线,且∠BPC=140°.求∠A的度数.【延伸推广】(3)在△ABC中,∠ACD是△ABC的外角,∠ABC的三分线所在的直线与∠ACD的三分线所在的直线交于点P,若∠A=m°(m>54),∠ABC=54°.求出∠BPC的度数.(用含m的式子表示)3.(2022春•石嘴山校级期末)[问题情境]我们知道:在平面直角坐标系中有不重合的两点A(x1,y1)和点B(x2,y2),若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|.[拓展]现在,若规定:平面直角坐标系中任意不重合的两点M(x1,y1)、N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|.例如:图中,点M(﹣1,1)与点N(1,﹣2).之间的折线距离d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5,[应用]解决下列问题:(1)已知点E(3,2),点F(1.﹣2),求d(E,F)的值;(2)已知点E(3,1),H(﹣1,n),若d(E,H)=6,求n的值;(3)已知点P(3,4),点Q在y轴上,O为坐标系原点,且△OPQ的面积是4.5,求d(P,Q)的值.4.(2022春•镇江期末)定义:在一个三角形中,如果有一个角是另一个角的2倍,我们称这两个角互为“开心角”,这个三角形叫做“开心三角形”.例如:在△ABC中,∠A=70°,∠B=35°,则∠A与∠B互为“开心角”,△ABC为“开心三角形”.【理解】(1)若△ABC为开心三角形,∠A=144°,则这个三角形中最小的内角为°;(2)若△ABC为开心三角形,∠A=70°,则这个三角形中最小的内角为°;(3)已知∠A是开心△ABC中最小的内角,并且是其中的一个开心角,试确定∠A的取值范围,并说明理由;【应用】如图,AD平分△ABC的内角∠BAC,交BC于点E,CD平分△ABC的外角∠BCF,延长BA和DC交于点P,已知∠P=30°,若∠BAE是开心△ABE中的一个开心角,设∠BAE=∠α,求∠α的度数.5.(2022春•崇川区期末)定义:如果三角形的两个内角α与β满足α+2β=100°,那么我们称这样的三角形为“奇妙三角形”.(1)如图1,△ABC中,∠ACB=80°,BD平分∠ABC.求证:△ABD为“奇妙三角形”(2)若△ABC为“奇妙三角形”,且∠C=80°.求证:△ABC是直角三角形;(3)如图2,△ABC中,BD平分∠ABC,若△ABD为“奇妙三角形”,且∠A=40°,直接写出∠C的度数.6.(2022春•亭湖区校级月考)定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连接AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×3网格图的格点,请仅用直尺画出(或在图中直接描出)AB边上的所有“好点”点D;(2)△ABC中,BC=7,,tan C=1,点D是BC边上的“好点”,求线段BD的长;(3)如图3,△ABC是⊙O的内接三角形,点H在AB上,连结CH并延长交⊙O于点D.若点H是△BCD中CD边上的“好点”.①求证:OH⊥AB;②若OH∥BD,⊙O的半径为r,且r=3OH,求的值.7.(2021秋•如皋市期末)【了解概念】定义:如果一个三角形一边上的中线等于这个三角形其中一边的一半,则称这个三角形为半线三角形,这条中线叫这条边的半线.【理解运用】(1)如图1,在△ABC中,AB=AC,∠BAC=120°,试判断△ABC是否为半线三角形,并说明理由;【拓展提升】(2)如图2,在△ABC中,AB=AC,D为BC的中点,M为△ABC外一点,连接MB,MC,若△ABC和△MBC均为半线三角形,且AD和MD分别为这两个三角形BC边的半线,求∠AMC的度数;(3)在(2)的条件下,若MD=,AM=1,直接写出BM的长.8.(2021秋•顺义区期末)我们定义:在等腰三角形中,腰与底的比值叫做等腰三角形的正度.如图1,在△ABC中,AB=AC,的值为△ABC的正度.已知:在△ABC中,AB=AC,若D是△ABC边上的动点(D与A,B,C不重合).(1)若∠A=90°,则△ABC的正度为;(2)在图1,当点D在腰AB上(D与A、B不重合)时,请用尺规作出等腰△ACD,保留作图痕迹;若△ACD的正度是,求∠A的度数.(3)若∠A是钝角,如图2,△ABC的正度为,△ABC的周长为22,是否存在点D,使△ACD具有正度?若存在,求出△ACD的正度;若不存在,说明理由.9.(2021秋•丹阳市期末)梅涅劳斯(Menelaus)是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如图(1),如果一条直线与△ABC的三边AB,BC,CA或它们的延长线交于F、D、E三点,那么一定有=1.下面是利用相似三角形的有关知识证明该定理的部分过程:证明:如图(2),过点A作AG∥BC,交DF的延长线于点G,则有,,∴=1.请用上述定理的证明方法解决以下问题:(1)如图(3),△ABC三边CB,AB,AC的延长线分别交直线l于X,Y,Z三点,证明:=1.请用上述定理的证明方法或结论解决以下问题:(2)如图(4),等边△ABC的边长为2,点D为BC的中点,点F在AB上,且BF=2AF,CF与AD交于点E,则AE的长为.(3)如图(5),△ABC的面积为2,F为AB中点,延长BC至D,使CD=BC,连接FD 交AC于E,则四边形BCEF的面积为.10.(2021秋•洪江市期末)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,∠A=44°,CD是△ABC的完美分割线,且AD=CD,求∠ACB 的度数;(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC 的完美分割线;(3)如图3,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.11.(2021秋•石景山区期末)在Rt△ACB中,∠ACB=90°,CA=CB=6,点P是线段CB 上的一个动点(不与点B,C重合),过点P作直线l⊥CB交AB于点Q.给出如下定义:若在AC边上存在一点M,使得点M关于直线l的对称点N恰好在△ACB的边上,则称点M是△ACB的关于直线l的“反称点”.例如,图1中的点M是△ACB的关于直线l的“反称点”.(1)如图2,若CP=1,点M1,M2,M3,M4在AC边上且AM1=1,AM2=2,AM3=4,AM4=6.在点M1,M2,M3,M4中,是△ACB的关于直线l的“反称点”为;(2)若点M是△ACB的关于直线l的“反称点”,恰好使得△ACN是等腰三角形,求AM 的长;(3)存在直线l及点M,使得点M是△ACB的关于直线l的“反称点”,直接写出线段CP 的取值范围.12.(2021秋•鄞州区期末)【问题提出】如图1,△ABC中,线段DE的端点D,E分别在边AB和AC上,若位于DE上方的两条线段AD和AE之积等于DE下方的两条线段BD和CE之积,即AD×AE=BD×CE,则称DE 是△ABC的“友好分割”线段.(1)如图1,若DE是△ABC的“友好分割”线段,AD=2CE,AB=8,求AC的长;【发现证明】(2)如图2,△ABC中,点F在BC边上,FD∥AC交AB于D,FE∥AB交AC于E,连结DE,求证:DE是△ABC的“友好分割”线段;【综合运用】(3)如图3,DE是△ABC的“友好分割”线段,连结DE并延长交BC的延长线于F,过点A画AG∥DE交△ADE的外接圆于点G,连结GE,设=x,=y.①求y关于x的函数表达式;②连结BG,CG,当y=时,求的值.13.(2021秋•鼓楼区校级期末)定义1:如图1,若点H在直线l上,在l的同侧有两条以H为端点的线段MH、NH,满足∠1=∠2,则称MH和NH关于直线l满足“光学性质”;定义2:如图2,在△ABC中,△PQR的三个顶点P、Q、R分别在BC,AC、AB上,若RP 和QP关于BC满足“光学性质”,PQ和RQ关于AC满足“光学性质”,PR和QR关于AB 满足“光学性质”,则称△PQR为△ABC的光线三角形.阅读以上定义,并探究问题:在△ABC中,∠A=30°,AB=AC,△DEF三个顶点D、E、F分别在BC、AC,AB上.(1)如图3,若FE∥BC,DE和FE关于AC满足“光学性质”,求∠EDC的度数;(2)如图4,在△ABC中,作CF⊥AB于F,以AB为直径的圆分别交AC,BC于点E,D.①证明:△DEF为△ABC的光线三角形;②证明:△ABC的光线三角形是唯一的.14.(2021秋•丰台区期末)对于平面直角坐标系xOy中的线段AB及点P,给出如下定义:若点P满足PA=PB,则称P为线段AB的“轴点”,其中,当0°<∠APB<60°时,称P 为线段AB的“远轴点”;当60°≤∠APB<180°时,称P为线段AB的“近轴点”.(1)如图1,点A,B的坐标分别为(﹣2,0),(2,0),则在P1(﹣1,3),P2(0,2),P3(0,﹣1),P4(0,4)中,线段AB的“轴点”是;线段AB的“近轴点”是.(2)如图2,点A的坐标为(3,0),点B在y轴正半轴上,∠OAB=30°.若P为线段AB的“远轴点”,请直接写出点P的横坐标t的取值范围.15.(2022秋•长沙期中)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角开中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念:(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用:(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC 的等角分割线.动手操作:(3)在△ABC中,若∠A=50°,CD是△ABC的等角分割线,请求出所有可能的∠ACB 的度数.16.(2022春•华州区期末)阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)理解并填空:①根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?(填“是”或“不是”)②若某三角形的三边长分别为1、、2,则该三角形(填“是”或“不是”)奇异三角形.(2)探究:在Rt△ABC,两边长分别是a、c,且a2=50,c2=100,则这个三角形是否是奇异三角形?请说明理由.17.(2022•任城区三模)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=.(2)sad90°=.(3)如图②,已知sin A=,其中∠A为锐角,试求sadA的值.18.(2021•柯城区模拟)定义:若三角形的一条边上的高线与这条边相等,则称这个三角形为“等底高三角形”,这条边叫做等底线,这条边上的高叫做等高线.如图:在△ABC,CD ⊥AB于点D,且AB=CD,则△ABC为等底高三角形,AB叫等底线,CD叫等高线.【概念感知】判断:对的打“√”,错的打“×”.(1)等边三角形不可能是等底高三角形.(2)等底高三角形不可能是钝角三角形.【概念理解】若一个等腰三角形为等底高三角形,则此三角形的三边长之比为.【概念应用】(1)若△ABC为等底高三角形,等底线长为2,求三角形的周长的最小值.(2)若一个等底高三角形的其中一边是另一边的倍,求最小角的正弦值.19.(2021•宁波模拟)在三角形的三边中,若其中两条边的积恰好等于第三边的平方,我们把这样的三角形叫做有趣三角形,这两条边的商叫正度,记为k(0<k≤1).(1)求证:正度为1的有趣三角形必是等边三角形.(2)如图①,四边形ABCD中,AD∥BC,BD平分∠ABC,∠ACD=∠ABC,求证:△ABC 是有趣三角形.(3)如图②,菱形ABCD中,点E,F是对角线BD的三等分点,DE=DC.延长BD到P,使DP=BE.求证:△BCE,△FCP,△BCP是具有相同正度的有趣三角形.20.(2021•临海市一模)在三角形中,一个角两夹边的平方和减去它对边的平方所得的差,叫做这个角的勾股差.(1)概念理解:在直角三角形中,直角的勾股差为;在底边长为2的等腰三角形中,底角的勾股差为;(2)性质探究:如图1,CD是△ABC的中线,AC=b,BC=a,AB=2c,CD=d,记△ACD 中∠ADC的勾股差为m,△BCD中∠BDC的勾股差为n;①求m,n的值(用含a,b,c,d的代数式表示);②试说明m与n互为相反数;(3)性质应用:如图2,在四边形ABCD中,点E与F分别是AB与BC的中点,连接BD,DE,DF,若=,且CD⊥BD,CD=AD,求的值.【例1】(2022•淮安区模拟)我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图1,在△ABC中,AB=AC,底角∠B的邻对记作canB,这时canB==.容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)can30°=,若canB=1,则∠B=60°.=48,求△ABC的周长.(2)如图2,在△ABC中,AB=AC,canB=,S△ABC【分析】(1)根据定义,要求can30°的值,想利用等腰三角形的三线合一性质,想到过点A作AD⊥BC,垂足为D,根据∠B=30°,可得:BD=AB,再利用等腰三角形的三线合一性质,求出BC即可解答,根据定义,canB=1,可得底边与腰相等,所以这个等腰三角形是等边三角形,从而得∠B =60°;(2)根据定义,想利用等腰三角形的三线合一性质,想到过点A作AD⊥BC,垂足为D,canB=,所以设BC=8x,AB=5x,然后利用勾股定理表示出三角形的高,再利用S△ABC =48,列出关于x的方程即可解答.【解答】解:(1)如图:过点A作AD⊥BC,垂足为D,∵AB=AC,AD⊥BC,∴BC=2BD,∵∠B=30°,∴BD=AB cos30°=AB,∴BC=2BD=AB,∴can30°===,若canB=1,∴canB==1,∴BC=AB,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形,∴∠B=60°,故答案为:,60;(2)过点A作AD⊥BC,垂足为D,∵canB=,∴=,∴设BC=8x,AB=5x,∵AB=AC,AD⊥BC,∴BD=BC=4x,∴AD==3x,=48,∵S△ABC∴BC•AD=48,∴•8x•3x=48,∴x2=4,∴x=±2(负值舍去),∴x=2,∴AB=AC=10,BC=16,∴△ABC的周长为36,答:△ABC的周长为36.【例2】(2022•柯城区校级三模)定义:若三角形的一条边上的高线与这条边相等,则称这个三角形为“标准三角形”.如:在△ABC,CD⊥AB于点D,AB=CD,则△ABC为标准三角形.【概念感知】判断:对的打“√”,错的打“×”.(1)等腰直角三角形是标准三角形.√(2)顶角为30°的等腰三角形是标准三角形.×【概念理解】若一个等腰三角形为标准三角形,则此三角形的三边长之比为1:1:或::2.【概念应用】(1)如图,若△ABC为标准三角形,CD⊥AB于点D,AB=CD=1,求CA+CB的最小值.(2)若一个标准三角形的其中一边是另一边的倍,求最小角的正弦值.【分析】【概念感知】(1)根据等腰直角三角形的两条直角边互相垂直且相等,即可判断;(2)作出图形,分别对底边上的高和腰上的高进行讨论,即可求解;【概念理解】当△ABC是等腰直角三角形时,AC:AB:BC=1:1:;当△ABC是等腰三角形,AB=AC,AE⊥BC,AE=BC,设BE=x,则AE=2x,求出AB=x,则AB:AC:BC=::2;【概念应用】(1)过C点作AB的平行线,作A点关于该平行线的对称点A',连接A'B,当A'、B、C三点共线时,AC+BC=A'B,此时AC+BC的值最小,求出A'B即可;(2)分两种情况讨论:①当AC=AB时,AC=CD,过点B作BE⊥AC交于E,设CD=AB=a,则AC=a,由等积法求出BE=a,用勾股定理分别求出AD=2a,BD=a,BC=a,则可求sin∠BCE=;②当BC=AB时,BC=DC,过点B作BE⊥AC交于E,设CD=AB=a,则BC=a,由勾股定理分别求出BD=2a,AD=3a,AC=a,再由等积法求出BE=a,即可求sin∠BCE=.【解答】解:【概念感知】(1)如图1:等腰直角三角形ABC中,AB⊥AC,∵AB=AC,∴等腰直角三角形是标准三角形,故答案为:√;(2)如图2,在等腰三角形ABC中,∠BAC=30°,AB=AC,CD⊥AB,∵∠A=30°,∴CD=AC,∵CA=AB,∴CD=AB,∴△ABC不是标准三角形;如图3,在等腰三角形ABC中,∠BAC=30°,AB=AC,AE⊥BC,此时AE>BC,∴△ABC不是标准三角形;故答案为:×;【概念理解】如图1,当△ABC是等腰直角三角形时,AC:AB:BC=1:1:;如图4,当△ABC是等腰三角形,AB=AC,AE⊥BC,AE=BC,∴BE=EC=BC=AE,设BE=x,则AE=2x,在Rt△ABE中,AB=x,∴AB:AC:BC=::2;故答案为:1:1:或::2;【概念应用】(1)如图5,过C点作AB的平行线,作A点关于该平行线的对称点A',连接A'B,当A'、B、C三点共线时,AC+BC=A'B,此时AC+BC的值最小,∵AB=CD=1,∴AA'=2,在Rt△ABA'中,A'B=,∴AC+BC的最小值为;(2)在△ABC中,AB=CD,AB⊥CD,∴AC>CD,BC>CD,∴AC>AB,BC>AB,∴△ABC的最小角为∠ACB,①如图6,当AC=AB时,AC=CD,过点B作BE⊥AC交于E,设CD=AB=a,则AC=a,=×AB×CD=×AC×BE,∵S△ABC∴BE=a,在Rt△ACD中,AD=2a,∴BD=AD﹣AB=a,在Rt△BCD中,BC=a,在Rt△BCE中,sin∠BCE=;②如图7,当BC=AB时,BC=DC,过点B作BE⊥AC交于E,设CD=AB=a,则BC=a,在Rt△BCD中,BD=2a,∴AD=3a,在Rt△ACD中,AC=a,=×AB×CD=×AC×BE,∵S△ABC∴BE=a,在Rt△BCE中,sin∠BCE=;综上所述:最小角的正弦值为或.【例3】(2020•五华区校级三模)爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是ABC的中线,AM⊥BN于点P,像ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.【特例探究】(1)如图1,当∠PAB=45°,c=时,a=4,b=4;如图2,当∠PAB =30°,c=2时,a2+b2=20;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,在▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.【分析】(1)根据等腰直角三角形的性质分别求出PA、PB,根据三角形中位线定理得到MN∥AB,根据相似三角形的性质分别求出PM、PN,根据勾股定理计算即可;(2)连接MN,设PN=x,PM=y,利用勾股定理分别用x、y表示出a、b、c,得到答案;(3)取AB的中点H,连接FH并延长交DA的延长线于点P,证明△ABF为“中垂三角形”,根据(2)中结论计算即可.【解答】解:(1)在Rt△APB中,∠PAB=45°,c=,则PA=PB=c=4,∵M、N分别为CB、CA的中点,∴MN=AB=2,MN∥AB,∴△APB∽△MPN,∴===,∴PM=PN=2,∴BM==2,∴a=2BM=4,同理:b=2AN=4,如图2,连接MN,在Rt△APB中,∠PAB=30°,c=2,∴PB=c=1,∴PA==,∴PN=,PM=,∴BM==,AN==,∴a=,b=,∴a2+b2=20,故答案为:4;4;20;(2)a2+b2=5c2,理由如下:如图3,连接MN,设PN=x,PM=y,则PB=2PN=2x,PA=2PM=2y,∴BM==,AN==,∴a=2,b=2,∴a2+b2=20(x2+y2),∵c2=PA2+PB2=4(x2+y2),∴a2+b2=5c2;(3)取AB的中点H,连接FH并延长交DA的延长线于点P,∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴△AHP∽△BHF,∴==1,∴AP=BF,∵AD=3AE,BC=3BF,AD=3,∴AE=BF=,∴PE=FC,∴四边形PFCE为平行四边形,∵BE⊥CE,∴BG⊥FH,∵AE∥BF,AE=BF,∴AG=GF,∴△ABF为“中垂三角形”,∴AB2+AF2=5BF2,即32+AF2=5×()2,解得:AF=4.【例4】(2020•岳麓区校级二模)定义:在△ABC中,若有两条中线互相垂直,则称△ABC 为中垂三角形,并且把AB2+BC2+CA2叫做△ABC的方周长,记作L,即L=AB2+BC2+CA2.(1)如图1,已知△ABC是中垂三角形,BD,AE分别是AC,BC边上的中线,若AC=BC,求证:△AOB是等腰直角三角形;(2)如图2,在中垂三角形ABC中,AE,BD分别是边BC,AC上的中线,且AE⊥BD于点O,试探究△ABC的方周长L与AB2之间的数量关系,并加以证明;(3)如图3,已知抛物线y=与x轴正半轴相交于点A,与y轴相交于点B,经过点B的直线与该抛物线相交于点C,与x轴负半轴相交于点D,且BD=CD,连接AC交y轴于点E.①求证:△ABC是中垂三角形;②若△ABC为直角三角形,求△ABC的方周长L的值.【分析】(1)先利用“SAS“证明△BAD≌△ABE,然后根据△ABC是中垂三角形即可证明;(2)先判断出AC=2AD,BC=2BE,再利用勾股定理,即可得出结论;(3)①利用二次函数先求出点B、点A和点C的坐标,然后根据点A和点C的坐标确定E 是AC的中点,最后根据中垂三角形的定义即可证明;②先由点A(4,0),B(0,﹣2a),C(﹣4,2a)的坐标得到k AB=a,k AC=﹣a,k BC =﹣a,然后分情况讨论即可求解;或结合射影定理分情况讨论进行求解即可.【解答】(1)证明:AC=BC,BD,AE分别是AC,BC边上的中线,∴AD=BE,∠BAD=∠ABE,∴△BAD≌△ABE(SAS),∴∠ABD=∠BAE,∴OA=OB.∵△ABC是中垂三角形,且AC=BC,∴∠AOB=90°,∴△AOB是等腰直角三角形.(2)L=6AB2.证明:如图,连接DE.∵AE,BD分别是边BC,AC上的中线,∴AC=2AD,BC=2BE,DE=AB,∴AC2=4AD2,BC2=4BE2,DE2=AB2.在Rt△AOD中,AD2=OA2+OD2,在Rt△BOE中,BE2=OB2+OE2,∴AC2+BC2=4(AD2+BE2)=4(OA2+OD2+OB2+OE2)=4(AB2+DE2)=4(AB2+AB2)=5AB2,∴L=AB2+AC2+BC2=AB2+5AB2=6AB2.(3)①证明:在y=中,当x=0时,y=﹣2a,∴点B(0,﹣2a).y=0时,=0,整理得3x2﹣4x﹣32=0,解得x1=﹣(舍),x2=4,∴点A(4,0).∵BD=CD,y C=﹣y B=2a,将y=2a代人y=,解得x1=(舍),x2=﹣4,∴C(﹣4,2a).由点A(4,0),C(﹣4,2a)可知,E是AC的中点.又∵BD=CD,∴AD,BE都是△ABC的中线.又∵∠AOB=90°,∴AD⊥BE,∴△ABC是中垂三角形.②解法一:由点A(4,0),B(0,﹣2a),C(﹣4,2a)可得k AB=a,k AC=﹣a,k BC =﹣a,∵∠C<∠AOB,∴∠C≠90°.当∠ABC=90°时,k AB•k BC=﹣1,解得a=(负值舍去),∴点B(0,﹣2),∴L=6AB2=6×24=144.当∠BAC=90°时,k AB•k CA=﹣1,解得a=2(负值舍去),∴点B(0,﹣4),∴L=6AB2=6×48=288.综上所述,△ABC的方周长L的值为144或288.解法二:由点A(4,0),B(0,﹣2a),C(﹣4,2a),∵点D是BC的中点,点E是AC的中点,∴点D(﹣2,0),E(0,a).∵∠C<∠AOB,∴∠C≠90°.当∠ABC=90°时,在△ABD中,由射影定理得OB2=OA•OD,∴4a2=8,解得α=(负值舍去),∴点B(0,﹣2),∴L=6AB2=6×24=144.当∠BAC=90°时,在△ABE中,由射影定理得OA2=OB•OE,∴16=2a2,解得a=2(负值舍去),∴点B(0,﹣4),∴L=6AB2=6×48=288.综上所述,△ABC的方周长L的值为144或288.【例5】(2020•安徽模拟)通过学习锐角三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值是一一对应的,因此,两条边长的比值与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图(1)在△ABC中,AB=AC,底角B的邻对记作canB,这时canB=,容易知道一个角的大小与这个角的邻对值也是一一对应的.根据上述角的邻对的定义,解下列问题:(1)can30°=;=24,求△ABC的周长.(2)如图(2),已知在△ABC中,AB=AC,canB=,S△ABC【分析】(1)过点A作AD⊥BC于点D,根据∠B=30°,可得出BD=AB,结合等腰三角形的性质可得出BC=AB,继而得出canB;=24,(2)过点A作AE⊥BC于点E,根据canB=,设BC=8x,AB=5x,再由S△ABC可得出x的值,继而求出周长.【解答】解:(1)过点A作AD⊥BC于点D,∵∠B=30°,∴cos∠B==,∴BD=AB,∵△ABC是等腰三角形,∴BC=2BD=AB,故can30°==;(2)过点A作AE⊥BC于点E,∵canB=,则可设BC=8x,AB=5x,∴AE==3x,=24,∵S△ABC∴BC×AE=12x2=24,解得:x=,故AB=AC=5,BC=8,从而可得△ABC的周长为18.一.解答题(共20题)1.(2022秋•如皋市期中)定义:一个内角等于另一个内角两倍的三角形,叫做“倍角三角形”.(1)下列三角形一定是“倍角三角形”的有②③(只填写序号).①顶角是30°的等腰三角形;②等腰直角三角形;③有一个角是30°的直角三角形.(2)如图1,在△ABC中,AB=AC,∠BAC≥90°,将△ABC沿边AB所在的直线翻折180°得到△ABD,延长DA到点E,连接BE.①若BC=BE,求证:△ABE是“倍角三角形”;②点P在线段AE上,连接BP.若∠C=30°,BP分△ABE所得的两三角形中,一个是等腰三角形,一个是“倍角三角形”,请直接写出∠E的度数.【分析】(1)利用“倍角三角形”的定义依次判断可求解;(2)①由折叠的性质和等腰三角形的性质可求∠BAE=2∠ADB,由等腰三角形的性质可得∠BDE=∠E,可得结论;②分两种情况讨论,由三角形内角和定理和“倍角三角形”的定义可求解.【解答】(1)解:若顶角是30°的等腰三角形,∴两个底角分别为75°,75°,∴顶角是30°的等腰三角形不是“倍角三角形”,若等腰直角三角形,∴三个角分别为45°,45°,90°,∵90°=2×45°,∴等腰直角三角形是“倍角三角形”,若有一个是30°的直角三角形,∴另两个角分别为60°,90°,∵60°=2×30°,∴有一个30°的直角三角形是“倍角三角形”,故答案为:②③;(2)①证明:∵AB=AC,∴∠ABC=∠ACB,∵将△ABC沿边AB所在的直线翻折180°得到△ABD,∴∠ABC=∠ABD,∠ACB=∠ADB,BC=BD,∴∠BAE=2∠ADB,∵BE=BC,∴BD=BE,∴∠E=∠ADB,∴∠BAE=2∠E,∴△ABE是“倍角三角形”;②解:由①可得∠BAE=2∠BDA=2∠C=60°,如图,若△ABP是等腰三角形,则△BPE是“倍角三角形”,∴△ABP是等边三角形,∴∠APB=60°,∴∠BPE=120°,∵△BPE是“倍角三角形”,∴∠BEP=2∠EBP或∠PBE=2∠BEP,∴∠BEP=20°或40°;若△BPE是等腰三角形,则△ABP是“倍角三角形”,∴∠ABP=∠BAP=30°或∠APB=∠BAE=30°或∠ABP=2∠APB或∠APB=2∠ABP,∴∠APB=90°或30°或40°或80°,∴∠BPE=90°或150°或140°或100°,∵△BPE是等腰三角形,∴∠BEP=45°或15°或20°或40°,综上所述:∠BPE的度数为45°或15°或20°或40°.2.(2022秋•义乌市校级月考)【概念认识】如图①所示,在∠ABC中,若∠ABD=∠DBE =∠EBC,则BD,BE叫做∠ABC的“三分线”,其中,BD是“邻AB三分线“,BE是“邻BC三分线”.【问题解决】(1)如图②所示.在△ABC中.∠A=80°,∠ABC=45°.若∠ABC的三分线BD交AC于点D.求∠BDC的度数.(2)如图③所示,在△ABC中.BP,CP分别是∠ABC的邻BC三分线和∠ACB的邻BC 三分线,且∠BPC=140°.求∠A的度数.【延伸推广】(3)在△ABC中,∠ACD是△ABC的外角,∠ABC的三分线所在的直线与∠ACD的三分线所在的直线交于点P,若∠A=m°(m>54),∠ABC=54°.求出∠BPC的度数.(用含m的式子表示)【分析】(1)分BD是邻AB的三分线和BD是邻BC的三分线两种情况解答即可;(2)由∠BPC=140°,得∠PBC+∠PCB=40°,故∠ABC+∠ACB=40°,可得∠ABC+∠ACB=120°,从而∠A=60°;(3)分四种情况分别解答即可.【解答】解:(1)当BD是“邻AB三分线”时,∠ABD=∠ABC=15°,则∠BDC=∠ABD+∠A=15°+80°=95°,当BD′是“邻BC三分线”时,∠ABD′=∠ABC=30°,则∠BD′C=∠ABD′+∠A=30°+80°=110°,综上所述,∠BDC的度数为95°或110°;(2)∵∠BPC=140°,∴∠PBC+∠PCB=40°,∵BP,CP分别是∠ABC的邻BC三分线和∠ACB的邻BC三分线,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠ABC+∠ACB=40°,∴∠ABC+∠ACB=120°,∴∠A=60°;(3)如图:。

中考数学难题突破专题--新定义问题

中考数学难题突破专题--新定义问题

中考数学难题突破专题--新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近 年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型例题1、 我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ).在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=p q.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34. (1)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数,求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”;(3)在(2)所得的“吉祥数”中,求F (t )的最大值. 例题分层分析(1)对任意一个完全平方数m ,设m =n 2(n 为正整数),找出m 的最佳分解为________,所以F (m )=________=________;(2)设交换t 的个位上的数与十位上的数得到的新数为t ′,则t ′=________,根据“吉祥数”的定义确定出x 与y 的关系式为________,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F (t )的最大值即可.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键. 类型2 新定义几何概念型例题2、如图Z3-1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED 和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.图Z3-1(1)将▱ABCD纸片按图Z3-2①的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段________,________;S矩形AEFG∶S▱ABCD=________.(2)▱ABCD纸片还可以按图Z3-2②的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长.(3)如图Z3-2③,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD,BC的长.图Z3-2例题分层分析(1)观察图形直接得到操作形成的折痕,根据矩形和平行四边形的面积公式与折叠的轴对称性质可得S矩形AEFG∶S▱ABCD =________;(2)由矩形的性质和勾股定理可求得FH=________,再由折叠的轴对称性质可知HD=________,FC=______,∠AHE=12______,∠CFG=12________,从而可得∠________=∠________,再证得△AEH≌△CGF,可得________,进而求得AD的长;(3)根据叠合矩形定义,画出叠合正方形,然后再求AD,BC的长.解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.专 题 训 练1. 定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x ]的图象如图Z 3-3所示,则方程[x ]=12x 2的解为( )图Z 3-3A .0或 2B .0或2C .1或- 2D .2或- 22. 对于实数a ,b ,定义符号min{a ,b },其意义为:当a ≥b 时,min{a ,b }=b :当a <b 时,min{a ,b }=a .例如min{2,-1}=-1.若关于x 的函数y =min{2x -1,-x +3},则该函数的最大值为( )A.23 B .1 C.43 D .533. 在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(1x ,1y )称为点P 的“倒影点”.直线y =-x +1上有两点A ,B ,它们的倒影点A ′,B ′均在反比例函数y =kx的图象上.若AB =2 2,则k =________.4. 经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图Z 3-4,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为________.图Z 3-45. 对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a -b .例如:5⊗2=2×5-2=8,(-3)⊗4=2×(-3)-4=-10.(1)若3⊗x =-2011,求x 的值; (2)若x ⊗3<5,求x 的取值范围.6. 定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形. (1)如图Z 3-5①,等腰直角四边形ABCD 中,AB =BC ,∠ABC =90°. ①若AB =CD =1,AB ∥CD ,求对角线BD 的长. ②若AC ⊥BD ,求证:AD =CD .(2)如图Z 3-5②,在矩形ABCD 中,AB =5,BC =9,点P 是对角线BD 上一点,且BP =2PD ,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形.求AE 的长.图Z 3-57. 有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图Z 3-6①,在半对角四边形ABCD 中,∠B =12∠D ,∠C =12∠A ,求∠B 与∠C 的度数之和;(2)如图Z 3-6②,锐角三角形ABC 内接于⊙O ,若边AB 上存在一点D ,使得BD =BO ,∠OBA 的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,∠AFE =2∠EAF ,求证:四边形DBCF 是半对角四边形;(3)如图Z 3-6③,在(2)的条件下,过点D 作DG ⊥OB 于点H ,交BC 于点G ,当DH =BG 时,求△BGH 与△ABC 的面积之比.图Z 3-6参考答案类型1 新法则、新运算型 例1 【例题分层分析】 (1)m =n ×n nn 1(2)10y +x y =x +4解:(1)证明:对任意一个完全平方数m , 设m =n 2(n 为正整数),∵|n -n |=0,∴n ×n 是m 的最佳分解, ∴对任意一个完全平方数m ,总有F (m )=nn=1.(2)设交换t 的个位上的数与十位上的数得到的新数为t ′,则t ′=10y +x , ∵t 是“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=36, ∴y =x +4,∵1≤x ≤y ≤9,x ,y 为自然数,∴满足“吉祥数”的为15,26,37,48,59.(3)F (15)=35,F (26)=213,F (37)=137,F (48)=68=34,F (59)=159.∵34>35>213>137>159,∴所有“吉祥数”中,F (t )的最大值是34.类型2 新定义几何概念型 例2 【例题分层分析】 (1)1∶2(2)13 HN FN ∠AHF ∠CFH AHE CFG FC =AH 解:(1)AE ,GF ;1∶2.提示:由折叠的性质,得AD =2AG . ∵S 矩形AEFG =AE ·AG ,S ▱ABCD =AE ·AD , ∴S 矩形AEFG ∶S ▱ABCD =AE·AGAE·AD=1∶2.(2)∵四边形EFGH 是叠合矩形,∴∠FEH =90°, ∴FH =EF 2+EH 2=52+122=13.由折叠的性质可知,HD =HN ,FC =FN ,∠AHE =12∠AHF ,∠CFG =12∠CFH .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠A =∠C ,∴∠AHF =∠CFH ,∴∠AHE =∠CFG . ∵EH =FG ,∴△AEH ≌△CGF ,∴FC =AH , ∴AD =AH +HD =FC +HN =FN +HN =FH =13. (3)本题有以下两种基本折法,如图①,图②.①按图①的折法的解法:由折叠的性质可知,AD =BF ,BE =AE =4,CH =DH =5,FG =CG . ∵四边形EBGH 是叠合正方形,∴HG =BG =4, ∴CG =3,∴FG =CG =3,∴BF =BG -FG =1,BC =BG +CG =4+3=7, ∴AD =1,BC =7. ②按图②的折法的解法: 设AD =x .由折叠的性质可知,AE =EM =BE =4,MH =AD =x ,DN =HN ,HG =CG ,FC =FH . 由DN =HN ,HG =CG ,则GN =12CD =5.∵四边形EFGN 是叠合正方形, ∴EF =FG =GN =5,∴MF =BF =3, ∴FC =FH =x +3.∵∠B =∠EFG =∠CGF =90°,∴∠BEF +∠BFE =∠BFE +∠CFG =90°, ∴∠BEF =∠CFG ,∴△GFC ∽△BEF , ∴FG BE =FC EF ,即54=x +35,解得x =134, ∴AD =134,BC =BF +FC =3+134+3=374.专题训练1.A [解析] 由函数图象可知,当-2≤x <-1时,y =-2,即有[x ]=-2,此时方程无解;当-1≤x <0时,y =-1,即有[x ]=-1,此时方程无解;当0≤x <1时,y =0,即有[x ]=0,此时方程为0=12x 2,解得x =0;当1≤x<2时,y =1,即有[x ]=1,此时方程为1=12x 2,解得x =2或x =-2(不在x 的取值范围内,舍去).综上可知,方程[x ]=12x 2的解为0或 2.2.D [解析] 当2x -1≥-x +3时,x ≥43,y =min {2x -1,-x +3}=-x +3,最大值为53.当2x -1<-x +3时,x <43,y =min {2x -1,-x +3}=2x -1,y 的值都小于53.综上,该函数的最大值为53.3.-43 [解析] A ,B 两点在直线y =-x +1上,设A (a ,-a +1),B (b ,-b +1),∴AB 2=(a -b )2+(-a +1+b -1)2=2(a -b )2=(2 2)2,∴(a -b )2=4,∴a -b =±2.A ,B 两点的“倒影点”分别为A ′(1a ,11-a ),B ′(1b ,11-b). ∵点A ′,B ′均在反比例函数y =k x 的图象上,∴1a ·11-a =k =1b ·11-b ,∴a (1-a )=b (1-b ),变形得(a -b )(1-a -b )=0,∵a -b =±2,∴1-a -b =0.由⎩⎪⎨⎪⎧a -b =2,1-a -b =0解得⎩⎪⎨⎪⎧a =32,b =-12,∴k =1a ·11-a =23×(-2)=-43;由⎩⎪⎨⎪⎧a -b =-2,1-a -b =0解得⎩⎪⎨⎪⎧a =-12,b =32,∴k =1a ·11-a =(-2)×23=-43.综上,k =-43.4.113°或92° [解析] ∵△CBD 和△ABC 相似, ∴∠BCD =∠A =46°.设∠ACB =x ,则∠ACD =x -46°.∵△ACD 是等腰三角形,又∠ADC >∠BCD ,∴∠ADC >∠A ,即AC ≠CD . ①若AC =AD ,则∠ACD =∠ADC =x -46°, ∵46°+x -46°+x -46°=180°, ∴x =113°.②若AD =CD ,则∠ACD =∠A , 即46°=x -46°, ∴x =92°.综上所述,∠ACB 的度数为113°或92°. 5.解:(1)根据题意,得2×3-x =-2011, 解这个方程,得x =2017. (2)根据题意,得2x -3<5, 解得x <4,即x 的取值范围是x <4.6.解:(1)①∵AB =CD =1且AB ∥CD ,∴四边形ABCD 是平行四边形, 又∵AB =BC ,∴四边形ABCD 是菱形. ∵∠ABC =90°,∴四边形ABCD 是正方形, ∴BD =AC =12+12= 2. ②证明:如图①中,连结AC ,BD . ∵AB =BC ,AC ⊥BD ,∴∠ABD =∠CBD , ∵BD =BD ,∴△ABD ≌△CBD ,∴AD =CD .(2)若EF ⊥BC ,则AE ≠EF ,BF ≠EF ,∴四边形ABFE 不表示等腰直角四边形,故不符合条件. 若EF 与BC 不垂直,①当AE =AB 时,如图②,此时四边形ABFE 是等腰直角四边形,∴AE =AB =5.②当BF =AB 时,如图③,此时四边形ABFE 是等腰直角四边形,∴BF =AB =5,∵DE ∥BF ,BP =2PD ,∴BF ∶DE =2∶1,∴DE =2.5,∴AE =9-2.5=6.5.综上所述,满足条件的AE 的长为5或6.5.7.解:(1)在半对角四边形ABCD 中,∠B =12∠D ,∠C =12∠A ,∵∠A +∠B +∠C +∠D =360°,∴3∠B +3∠C =360°,∴∠B +∠C =120°, 即∠B 与∠C 的度数之和为120°. (2)证明:在△BED 和△BEO 中, ⎩⎪⎨⎪⎧BD =BO ,∠EBD =∠EBO,BE =BE ,∴△BED ≌△BEO (SAS ), ∴∠BDE =∠BOE .又∵∠BCF =12∠BOE ,∴∠BCF =12∠BDE .如图,连结OC ,设∠EAF =α,则∠AFE =2α,∴∠EFC =180°-∠AFE =180°-2α. ∵OA =OC ,∴∠OAC =∠OCA =α, ∴∠AOC =180°-2α, ∴∠ABC =12∠AOC =12∠EFC ,∴四边形DBCF 是半对角四边形. (3)如图,作OM ⊥BC 交BC 于点M . ∵四边形DBCF 是半对角四边形,∴∠ABC +∠ACB =120°,∴∠BAC =60°,∴∠BOC =2∠BAC =120°. ∵OB =OC ,∴∠OBC =∠OCB =30°, ∴BC =2BM =3BO =3BD . ∵DG ⊥OB ,∴∠HGB =∠BAC =60°.∵∠DBG =∠CBA ,∴△DBG ∽△CBA , ∴△DBG的面积△ABC的面积=(BD BC )2=13.∵DH =BG ,BG =2HG , ∴DG =3HG , ∴△BHG的面积△BDG的面积=13,∴△BHG的面积△ABC的面积=19.。

2023年中考数学专题《 函数中的新定义问题》试卷含答案解析

2023年中考数学专题《 函数中的新定义问题》试卷含答案解析

考点1 一次函数新定义问题【例1】.定义:我们把一次函数y =kx +b (k ≠0)与正比例函数y =x 的交点称为一次函数y =kx +b (k ≠0)的“不动点”.例如求y =2x ﹣1的“不动点”:联立方程,解得,则y =2x ﹣1的“不动点”为(1,1).(1)由定义可知,一次函数y =3x +2的“不动点”为 (﹣1,﹣1) ;(2)若一次函数y =mx +n 的“不动点”为(2,n ﹣1),求m 、n 的值;(3)若直线y =kx ﹣3(k ≠0)与x 轴交于点A ,与y 轴交于点B ,且直线y =kx ﹣3上没有“不动点”,若P 点为x 轴上一个动点,使得S △ABP =3S △ABO ,求满足条件的P 点坐标.解:(1)联立,解得,∴一次函数y =3x +2的“不动点”为(﹣1,﹣1),故答案为:(﹣1,﹣1);(2)∵一次函数y =mx +n 的“不动点”为(2,n ﹣1),∴n ﹣1=2,∴n =3,∴“不动点”为(2,2),∴2=2m +3,解得m =﹣;(3)∵直线y =kx ﹣3上没有“不动点”,∴直线y =kx ﹣3与直线y =x 平行,∴k =1,例题精讲∴y=x﹣3,∴A(3,0),B(0,﹣3),设P(t,0),∴AP=|3﹣t|,∴S△ABP=×|t﹣3|×3,S△ABO=×3×3,∵S△ABP=3S△ABO,∴|t﹣3|=9,∴t=12或t=﹣6,∴P(﹣6,0)或P(12,0).变式训练【变1-1】.在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.(4)若方程|x2﹣6x|﹣a=0有四个不相等的实数根,则实数a的取值范围是 0<a<9 .解:(1)∵在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1,∴,解得,∴这个函数的表达式是y=|﹣3|﹣4;(2)∵y=|﹣3|﹣4,∴,∴函数y=x﹣7过点(2,﹣4)和点(4,﹣1);函数y=﹣x﹣1过点(0,﹣1)和点(﹣2,2),该函数的图象如图所示,性质:当x>2时,y的值随x的增大而增大;(3)由函数的图象可得,不等式的解集是:1≤x≤4;(4)由|x2﹣6x|﹣a=0得a=|x2﹣6x|,作出y=|x2﹣6x|的图象,由图象可知,要使方程|x2﹣6x|﹣a=0有四个不相等实数根,则0<a<9,故答案为:0<a<9.考点2 反比例函数新定义问题【例2】.探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数y=x+|﹣2x+6|+m性质及其应用的部分过程,请按要求完成下列各小题.x…﹣2﹣1012345…y…654a21b7…(1)写出函数关系式中m及表格中a,b的值;m= ﹣2 ,a= 3 ,b= 4 ;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象;(3)已知函数y=﹣(x﹣2)2+8的图象如图所示,结合你所画的函数图象,不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集为 x<0或x>4. .解:(1)由表格可知,点(3,1)在该函数图象上,∴将点(3,1)代入函数解析式可得:1=3+|﹣2×3+6|+m,解得:m=﹣2,∴原函数的解析式为:y=x+|﹣2x+6|﹣2;当x=1时,y=3;当x=4时,y=4;∴m=﹣2,a=3,b=4,故答案为:﹣2,3,4;(2)通过列表—描点—连线的方法作图,如图所示;(3)要求不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集,实际上求出函数y=x+|﹣2x+6|+m的图象位于函数y=﹣(x﹣2)2+8图象上方的自变量的范围,∴由图象可知,当x<0或x>4时,满足条件,故答案为:x<0或x>4.变式训练【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当AB的长最小时,称这个最小值为图形M与图形N之间的距离.例如,如图1,AB⊥l1,线段AB的长度称为点A与直线l1之间的距离,当l2∥l1时,线段AB 的长度也是l1与l2之间的距离.【应用】(1)如图2,在等腰Rt△BAC中,∠A=90°,AB=AC,点D为AB边上一点,过点D作DE∥BC交AC于点E.若AB=6,AD=4,则DE与BC之间的距离是 ;(2)如图3,已知直线l3:y=﹣x+4与双曲线C1:y=(x>0)交于A(1,m)与B两点,点A与点B之间的距离是 2 ,点O与双曲线C1之间的距离是 ;【拓展】(3)按规定,住宅小区的外延到高速路的距离不超过80m时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南﹣西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于80m.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线l4的函数表达式为y=﹣x,小区外延所在双曲线C2的函数表达式为y=(x>0),那么需要在高速路旁修建隔音屏障的长度是多少?解:(1)如图,过点D作DH⊥BC于点H,∵∠A=90°,AB=AC,∴∠B=45°,∵DH⊥BC,∴△BDH是等腰直角三角形,∴DH=BD,∵AB=6,AD=4,∴BD=AB﹣AD=6﹣4=2,∴DH=×2=;故答案为:;(2)把A(1,m)代入y=﹣x+4中,得:m=﹣1+4=3,∴A(1,3),把A(1,3)代入y=,得:3=,∴k=3,∴双曲线C1的解析式为y=,联立,得:﹣x+4=,即x2﹣4x+3=0,解得:x1=1,x2=3,∴B(3,1),∴AB==2;如图,作FG∥AB,且FG与双曲线y=只有一个交点,设直线FG的解析式为y=﹣x+b,则﹣x+b=,整理得:x2﹣bx+3=0,∴Δ=(﹣b)2﹣4×1×3=b2﹣12=0,∴b=2或b=﹣2(不符合题意,舍去),∴直线FG的解析式为y=﹣x+2,由﹣x+2=,解得:x1=x2=,∴K(,),∴OK==;故答案为:2,;(3)如图,设点S(a,b)是双曲线y=(x>0)上任意一点,且a<b,以点S 为圆心,80为半径作⊙S交l4于E,过点S作SF⊥直线l4于F,交y轴于W,SH⊥x轴于H,SG⊥y轴于G,则SG=a,SH=b,ab=2400,∵直线y=﹣x平分第二、四象限角,∴∠FOW=45°,∵∠OFW=∠SGW=90°,∴∠OWF=90°﹣45°=45°,∴∠SWG=∠OWF=45°,∴△WOF 和△SWG 是等腰直角三角形,∴SW =SG ,WF =OW ,∴SF =SW +WF =SG +OW =a +(b ﹣a )=(a +b ),∵EF====,∵OF =OW =(b ﹣a ),∴OE =(b ﹣a )+,设b ﹣a =m (m >0),则OE =m +≤=40,∴需要在高速路旁修建隔音屏障的长度=2OE =2×40=80,答:需要在高速路旁修建隔音屏障的长度是80米.考点3 二次函数新定义问题【例3】.小爱同学学习二次函数后,对函数y =﹣(|x |﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质: 函数图象关于y轴对称 ;②方程﹣(|x|﹣1)2=﹣1的解为: x=﹣2或x=0或x=2 ;③若方程﹣(|x|﹣1)2=m有四个实数根,则m的取值范围是 ﹣1<m<0 .(2)延伸思考:将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象?写出平移过程,并直接写出当1<y1≤2时,自变量x的取值范围.解:(1)观察探究:①该函数的一条性质为:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=m有四个实数根,则a的取值范围是﹣1<m<0.故答案为:函数图象关于y轴对称;x=﹣2或x=0或x=2;﹣1<m<0.(2)将函数y=﹣(|x|﹣1)2的图象向右平移1个单位,向上平移2个单位可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象,当1<y1≤2时,自变量x的取值范围是﹣1<x<3且x≠1,变式训练【变3-1】.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|ax2+bx+c|的图象(如图所示),下列结论正确的是( )A.图象具有对称性,对称轴是直线x=1.5B.有且只有﹣1≤x≤1时,函数值y随x值的增大而增大C.若a<0,则8a+c>0D.若a<0,则a+b≥m(am+b)(m为任意实数)解:由图象可得,图象具有对称性,对称轴是直线x==1,故选项A错误,不符合题意;当﹣1≤x≤1或x>3时,函数值y随x值的增大而增大,故选项B错误,不符合题意;∵﹣=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c<0,∴4a﹣2b+c=4a﹣2×(﹣2a)+c=4a+4a+c=8a+c<0,故选项C错误,不符合题意;∵y=ax2+bx+c开口向下,对称轴为直线x=1,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥m(am+b)+c,故选项D正确,符合题意;故选:D.【变3-2】.已知抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,交x轴于另一点B.(1)求抛物线解析式;(2)如图1,点P是BD上方抛物线上一点,连接AD,BD,PD,当BD平分∠ADP时,求P点坐标;(3)将抛物线图象绕原点O顺时针旋转90°形成如图2的“心形”图案,其中点M,N 分别是旋转前后抛物线的顶点,点E、F是旋转前后抛物线的交点.①直线EF的解析式是 y=x ;②点G、H是“心形”图案上两点且关于EF对称,则线段GH的最大值是  .解:(1)∵抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,∴,解得,∴抛物线解析式为y=﹣x2+4;(2)过点B作BE⊥x轴交DP延长线于点E,过D作DF⊥x于点F,由y=﹣x2+4,令y=0,则﹣x2+4=0,解得:x1=﹣2,x2=2,则B(2,0),∵DF=3,BF=2﹣(﹣1)=3,∴DF=BF,∴∠DBF=45°,∴∠DBE=45°,又∵DB=DB,BD平分∠ADP,∴△DAB≌△DEB(ASA),∴BA=BE,∵B(2,0),∴E(2,4),设直线DE的解析式为y=kx+b,则,解得,∴直线DE的解析式为y=x+,联立,解得或,则P(,);(3)①∵抛物线关于y轴对称,所以旋转后图形关于x轴对称,∴对于抛物线上任意一点P(a,b)关于原点旋转90°后对应点为P1(b,﹣a)在旋转后图形上,P1(b,﹣a)关于x轴对称的点P2(b,a)在旋转后图形上,∵P(a,b)与P2(b,a)关于y=x对称,∴图形2关于y=x对称,∴直线EF的解析式为y=x,故答案为:y=x;②如图,连接GH,交EF与点K,则GH=2GK,过点G作x轴的垂线,交EF于点I,∴当GK最大时,△GFE面积最大,又∵S△GFE=GI•(x E﹣x F),设G(m,﹣m2+4),则I(m,m),∴GI=y G﹣y I=﹣m2+4﹣m=﹣(m+)2+,∴当m=﹣时,△GFE面积最大,∴G(﹣,),由①可知G(﹣,)关于y=x的对称点H(,﹣),∴K(,),∴GK==,∴GH=2GK=,∴GH的最大值为,故答案为:.1.对于实数a,b,定义符号max|a,b|,其意义为:当a≥b时,max|a,b|=a,当a<b时,max|a,b|=b.例如max|2,﹣1|=2,若关于x的函数y=max|2x﹣1,﹣x+5|,则该函数的最小值为( )A.B.1C.D.3解:当2x﹣1≥﹣x+5时,即x≥2,y=max|2x﹣1,﹣x+5|=2x﹣1,此时x=2时,y有最小值,最小值为2×2﹣1=3;当2x﹣1≤﹣x+5时,即x≤2,y=max|2x﹣1,﹣x+5|=﹣x+5,此时x=2时,y有最小值,最小值为﹣2+5=3;综上所述,该函数的最小值为3.故选:D.2.在平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(ka+b,a+)(其中k为常数且k≠0),则称点P′为点P的“k关联点”.已知点A在反比例函数y=的图象上运动,且点A是点B的“关联点”,当线段OB最短时,点B的坐标为 (,)或(﹣,﹣) .解:设B(x,y),∵点A是点B的“关联点”,∴A(x+y,x+)∵点A在函数y=(x>0)的图象上,∴(x+y)(x+)=,即:x+y=或x+y=﹣,当点B在直线y=﹣x+上时,设直线y=﹣x+与x轴、y轴相交于点M、N,则M(1,0)、N(0,),当OB⊥MN时,线段OB最短,此时OB==,由∠NMO=60°,可得点B(,);设直线y=﹣x﹣时,同理可得点B(﹣,﹣);故答案为:(,)或(﹣,﹣).3.定义:由a,b构造的二次函数y=ax2+(a+b)x+b叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数y=ax2+(a+b)x+b的“本源函数”(a,b为常数,且a≠0).若一次函数y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,那么二次函数y=ax2﹣3x+a+1的“本源函数”是 y=﹣2x﹣1 .解:∵y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,∴ax2﹣3x+a+1=ax2+(a+b)x+b,即,解得,∴y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1,故答案为:y=﹣2x﹣1.4.在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”.例如(﹣3,﹣3)、(1,1)、(2023,2023)都是“不动点”.已知双曲线.(1)下列说法不正确的是 C .A.直线y=x的图象上有无数个“不动点”B.函数的图象上没有“不动点”C.直线y=x+1的图象上有无数个“不动点”D.函数y=x2的图象上有两个“不动点”(2)求双曲线上的“不动点”;。

中考数学新定义问题

中考数学新定义问题

例3、图1,已知四边形ABCD ,点P 为平面内一动点. 如果∠PAD =∠PBC ,则我们称点P 为四边形ABCD 关于A 、B 的等角点. 如图2,以点B 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系,点C 的横坐标为6.(1)若A 、D 两点的坐标分别为A (0,4)、D (6,4),当四边形ABCD 关于A 、B 的等角点P 在DC 边上时,则点P 的坐标为______;(2)若A 、D 两点的坐标分别为A (2,4)、D (6,4),当四边形ABCD 关于A 、B 的等角点P 在DC 边上时,求点P 的坐标;(3)若A 、D 两点的坐标分别为A (2,4)、D (10,4),点P (x ,y )为四边形ABCD 关于A 、B 的等角点,其中x >2,y >0,求y 与x 之间的关系式.练习3:定义:平面内的直线1l 与2l 相较于点O ,对于该平面内任意一点M ,点M 到直线1l ,2l 的距离分别为a 、b ,则称有序非负实数对(a,b )是点M 的“距离坐标”。

根据上述定义,距离坐标为(2,3)的点的个数是_______。

例4.如果三角形有一边上的中线长恰好等于这边的长,则称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;(2)如图在Rt△ABC中,∠C=90°,tanA=32,求证:△ABC是“好玩三角形”;(3)如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC 和AD-DC向终点C运动,记点P经过的路程为s.①当β=45°时,若△APQ是“好玩三角形”,试求as的值;②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.练习4:若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD 中,AB=AD=BC ,∠BAD=90°,AC 是四边形ABCD 的和谐线,求∠BCD 的度数例5、如图,A 、B 是⊙O 上的两个定点,P 是⊙O 上的动点(P 不与A,B 重合),我们称∠APB 是⊙O 上关于A 、B 的滑动角.(1)已知∠APB 是⊙O 上关于A 、B 的滑动角.①若AB 是⊙O 的直径,则∠APB =____; ②若⊙O 的半径是1,AB=2,求∠APB 的度数.(2)已知O 2是⊙O 1外一点,以O 2为圆心做一个圆与⊙O 1相交于A 、B 两点,∠APB 是⊙O 1上关于A 、B 的滑动角,直线PA 、PB 分别交⊙O 2于点M 、N (点M 与点A 、点N 与点B 均不重合),连接AN ,试探索∠APB 与∠MAN 、∠ANB 之间的数量关系.BA0P几何新定义练习5:阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c.(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使得AE=AD,CB=CE.①求证:△ACE是奇异三角形.②当△ACE是直角三角形时,求∠AOC的度数.课堂练习1.若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°2.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若[410x+]=5,则x的取值可以是()A.40 B.45 C.51 D.563.对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=()A.(5,-9)B.(-9,-5)C.(5,9)D.(9,5)4.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,则这个“特征三角形”的最小内角的度数为.5.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,则曲线CDEF的长是.6.我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:AB BEDC EC=;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)。

中考数学专题31新定义与阅读理解创新型问题(全国通用解析版)

中考数学专题31新定义与阅读理解创新型问题(全国通用解析版)

新定义与阅读理解创新型问题一.选择题(共3小题)1.(2022•娄底)若10x=N.则称x是以10为底N的对数.记作:x=lgN.例如:102=100.则2=lg100.100=1.则0=lg1.对数运算满足:当M>0.N>0时.lgM+lgN=lg(MN).例如:lg3+lg5=lg15.则(lg5)2+lg5×lg2+lg2的值为()A.5B.2C.1D.0【分析】首先根据定义运算提取公因式.然后利用定义运算计算即可求解.【解析】原式=lg5(lg5+lg2)+lg2=lg5×lg(5×2)+lg2=lg5lg10+lg2=lg5+lg2=lg10=1.故选:C.2.(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号.加括号后仍只有减法运算.然后按给出的运算顺序重新运算.称此为“加算操作”.例如:(x﹣y)﹣(z ﹣m﹣n)=x﹣y﹣z+m+n.x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n.….下列说法:①至少存在一种“加算操作”.使其运算结果与原多项式相等.②不存在任何“加算操作”.使其运算结果与原多项式之和为0.③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【分析】根据“加算操作”的定义可知.当只给x﹣y加括号时.和原式相等.因为不改变x.y的运算符号.故不存在任何“加算操作”.使其运算结果与原多项式之和为0在多项式x﹣y﹣z﹣m﹣n中.可通过加括号改变z.m.n的符号.因为z.m.n中只有加减两种运算.求出即可.【解析】①(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n.与原式相等.故①正确.②∵在多项式x﹣y﹣z﹣m﹣n中.可通过加括号改变z.m.n的符号.无法改变x.y的符号.故不存在任何“加算操作”.使其运算结果与原多项式之和为0.故②正确.③在多项式x﹣y﹣z﹣m﹣n中.可通过加括号改变z.m.n的符号.加括号后只有加减两种运算.∴2×2×2=8种.所有可能的加括号的方法最多能得到8种不同的结果.故选:D.3.(2022•常德)我们发现:=3.=3.=3.….=3.一般地.对于正整数a.b.如果满足=a时.称(a.b)为一组完美方根数对.如上面(3.6)是一组完美方根数对.则下面4个结论:①(4.12)是完美方根数对.②(9.91)是完美方根数对.③若(a.380)是完美方根数对.则a=20.④若(x.y)是完美方根数对.则点P(x.y)在抛物线y=x2﹣x上.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】将(4.12).(9.91)代入验证即可判断①②.将(a.380)代入公式.建立方程可得出结论.若(x.y)是完美方根数对.则满足给出公式.化简可得出结论.【解析】将(4.12)代入=4.=4.=4.….∴(4.12)是完美方根数对.故①正确.将(9.91)代入=10≠9.=.∴(9.91)不是完美方根数对.故②错误.③∵(a.380)是完美方根数对.∴将(a.380)代入公式.=a.=a.解得a=20或a=﹣19(舍去).故③正确.④若(x.y)是完美方根数对.则=x.=x.整理得y=x2﹣x.∴点P(x.y)在抛物线y=x2﹣x上.故④正确.故选:C.二.填空题(共1小题)4.(2022•内江)对于非零实数a.b.规定a⊕b=﹣.若(2x﹣1)⊕2=1.则x 的值为.【分析】利用新规定对计算的式子变形.解分式方程即可求得结论.【解析】由题意得:=1.解得:x=.经检验.x=是原方程的根.∴x=.故答案为:.三.解答题(共23小题)5.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y =bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标.(2)若a>0.过x轴上一点P.作x轴的垂线分别交抛物线C1.C2于点M.N.①当MN=6a时.求点P的坐标.②当a﹣4≤x≤a﹣2时.C2的最大值与最小值的差为2a.求a的值.【分析】(1)根据“关联抛物线”的定义可直接得出C2的解析式.再将该解析式化成顶点式.可得出C2的顶点坐标.(2)①设点P的横坐标为m.则可表达点M和点N的坐标.根据两点间距离公式可表达MN的长.列出方程.可求出点P的坐标.②分情况讨论.当a﹣4≤﹣2≤a﹣2时.当﹣2≤a﹣4≤a﹣2时.当a﹣4≤a﹣2≤﹣2时.分别得出C2的最大值和最小值.进而列出方程.可求出a的值.【解析】(1)根据“关联抛物线”的定义可得C2的解析式为:y=ax2+4ax+4a ﹣3.∵y=ax2+4ax+4a﹣3=a(x+2)2﹣3.∴C2的顶点坐标为(﹣2.﹣3).(2)①设点P的横坐标为m.∵过点P作x轴的垂线分别交抛物线C1.C2于点M.N.∴M(m.4am2+am+4a﹣3).N(m.am2+4am+4a﹣3).∴MN=|4am2+am+4a﹣3﹣(am2+4am+4a﹣3)|=|3am2﹣3am|.∵MN=6a.∴|3am2﹣3am|=6a.解得m=﹣1或m=2.∴P(﹣1.0)或(2.0).②∵C2的解析式为:y=a(x+2)2﹣3.∴当x=﹣2时.y=﹣3.当x=a﹣4时.y=a(a﹣4+2)2﹣3=a(a﹣2)2﹣3.当x=a﹣2时.y=a(a﹣2+2)2﹣3=a3﹣3.根据题意可知.需要分三种情况讨论.Ⅰ、当a﹣4≤﹣2≤a﹣2时.0<a≤2.且当0<a≤1时.函数的最大值为a(a﹣2)2﹣3.函数的最小值为﹣3.∴a(a﹣2)2﹣3﹣(﹣3)=2a.解得a=2﹣或a=2+(舍).当1≤a≤2时.函数的最大值为a3﹣3.函数的最小值为﹣3.∴a3﹣3﹣(﹣3)=2a.解得a=或a=﹣(舍).Ⅱ、当﹣2≤a﹣4≤a﹣2时.a≥2.函数的最大值为a3﹣3.函数的最小值为a(a﹣2)2﹣3.∴a3﹣3﹣[a(a﹣2)2﹣3]=2a.解得a=(舍).Ⅲ、当a﹣4≤a﹣2≤﹣2时.a≤0.不符合题意.舍去.综上.a的值为2﹣或.6.(2022•长沙)若关于x的函数y.当t﹣≤x≤t+时.函数y的最大值为M.最小值为N.令函数h=.我们不妨把函数h称之为函数y的“共同体函数”.(1)①若函数y=4044x.当t=1时.求函数y的“共同体函数”h的值.②若函数y=kx+b(k≠0.k.b为常数).求函数y的“共同体函数”h的解析式.(2)若函数y=(x≥1).求函数y的“共同体函数”h的最大值.(3)若函数y=﹣x2+4x+k.是否存在实数k.使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在.求出k的值.若不存在.请说明理由.【分析】(1)①由题意求出M=6066.N=2022.再由定义可求h的值.②分两种情况讨论:②当k>0时.M=kt+k+b.N=kt﹣k+b.h=k.当k<0时.M=kt﹣k+b.有N=kt+k+b.h=﹣k.(2)由题意t﹣≥1.M=.N=.则h=.所以h有最大值.(3)分四种情况讨论:①当2≤t﹣时.M=﹣(t﹣﹣2)2+4+k.N=﹣(t+﹣2)2+4+k.h=t﹣2.②当t+≤2时.N=﹣(t﹣﹣2)2+4+k.M=﹣(t+﹣2)2+4+k.h=2﹣t..③当t﹣≤2≤t.即2≤t≤.N=﹣(t+﹣2)2+4+k.M=4+k.h =(t﹣)2.④当t<2≤t+.N=﹣(t﹣﹣2)2+4+k.M=4+k.h=(t﹣)2.画出h的函数图象.结合图象可得=4+k.解得k=﹣.【解析】(1)①∵t=1.∴≤x≤.∵函数y=4044x.∴函数的最大值M=6066.函数的最小值N=2022.∴h=2022.②当k>0时.函数y=kx+b在t﹣≤x≤t+有最大值M=kt+k+b.有最小值N =kt﹣k+b.∴h=k.当k<0时.函数y=kx+b在t﹣≤x≤t+有最大值M=kt﹣k+b.有最小值N =kt+k+b.∴h=﹣k.综上所述:h=|k|.(2)t﹣≥1.即t≥.函数y=(x≥1)最大值M=.最小值N=.∴h=.当t=时.h有最大值.(3)存在实数k.使得函数y的最大值等于函数y的“共同体函数“h的最小值.理由如下:∵y=﹣x2+4x+k=﹣(x﹣2)2+4+k.∴函数的对称轴为直线x=2.y的最大值为4+k.①当2≤t﹣时.即t≥.此时M=﹣(t﹣﹣2)2+4+k.N=﹣(t+﹣2)2+4+k.∴h=t﹣2.此时h的最小值为.②当t+≤2时.即t≤.此时N=﹣(t﹣﹣2)2+4+k.M=﹣(t+﹣2)2+4+k.∴h=2﹣t.此时h的最小值为.③当t﹣≤2≤t.即2≤t≤.此时N=﹣(t+﹣2)2+4+k.M=4+k.∴h=(t﹣)2.④当t<2≤t+.即≤t<2.此时N=﹣(t﹣﹣2)2+4+k.M=4+k.∴h=(t﹣)2.h的函数图象如图所示:h的最小值为.由题意可得=4+k.解得k=﹣.综上所述:k的值为﹣.7.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N.若N能被它的各数位上的数字之和m整除.则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19.∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4.∴214不是“和倍数”.(1)判断357.441是否是“和倍数”?说明理由.(2)三位数A是12的“和倍数”.a.b.c分别是数A其中一个数位上的数字.且a>b>c.在a.b.c中任选两个组成两位数.其中最大的两位数记为F(A).最小的两位数记为G(A).若为整数.求出满足条件的所有数A.【分析】(1)根据“和倍数”的定义依次判断即可.(2)设A=(a+b+c=12.a>b>c).根据“和倍数”的定义表示F(A)和G(A).代入中.根据为整数可解答.【解析】(1)∵357÷(3+5+7)=357÷15=23……12.∴357不是“和倍数”.∵441÷(4+4+1)=441÷9=49.∴441是9的“和倍数”.(2)设A=(a+b+c=12.a>b>c).由题意得:F(A)=.G(A)=.∴===.∵a+c=12﹣b.为整数.∴====7+(1﹣b).∵1<b<9.∴b=3.5.7.∴a+c=9.7.5.①当b=3.a+c=9时.(舍)..则A=732或372.②当b=5.a+c=7时..则A=156或516.③当b=7.a+c=5时.此种情况没有符合的值.综上.满足条件的所有数A为:732或372或156或516.8.(2022•常州)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素.展现了我国古代数学的文化魅力.其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统.有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021.表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是2022.(2)小华设计了一个n进制数143.换算成十进制数是120.求n的值.(1)根据已知.从个位数字起.将八进制的每一位数分别乘以80.81.82.83.【分析】再把所得结果相加即可得解.(2)根据n进制数和十进制数的计算方法得到关于n的方程.解方程即可求解.【解析】(1)3746=3×83+7×82+4×81+6×80=1536+448+32+6=2022.故八进制数字3746换算成十进制是2022.故答案为:2022.(2)依题意有:n2+4×n1+3×n0=120.解得n1=9.n2=﹣13(舍去).故n的值是9.9.(2022•盐城)【发现问题】小明在练习簿的横线上取点O为圆心.相邻横线的间距为半径画圆.然后半径依次增加一个间距画同心圆.描出了同心圆与横线的一些交点.如图1所示.他发现这些点的位置有一定的规律.【提出问题】小明通过观察.提出猜想:按此步骤继续画圆描点.所描的点都在某二次函数图象上.【分析问题】小明利用已学知识和经验.以圆心O为原点.过点O的横线所在直线为x轴.过点O且垂直于横线的直线为y轴.相邻横线的间距为一个单位长度.建立平面直角坐标系.如图2所示.当所描的点在半径为5的同心圆上时.其坐标为(﹣3.4)或(3.4).【解决问题】请帮助小明验证他的猜想是否成立.【深度思考】小明继续思考:设点P(0.m).m为正整数.以OP为直径画⊙M.是否存在所描的点在⊙M上.若存在.求m的值.若不存在.说明理由.【分析】【分析问题】根据题意可知:该点的纵坐标为4.利用勾股定理.即可求出该点的横坐标.进而可得出点的坐标.【解决问题】设所描的点在半径为n(n为正整数)的同心圆上.则该点的纵坐标为(n﹣1).利用勾股定理可得出该点的坐标为(﹣.n﹣1)或(.n ﹣1).结合点横、纵坐标间的关系.可得出该点在二次函数y=x2﹣的图象上.进而可证出小明的猜想正确.【深度思考】设该点的坐标为(±.n﹣1).结合⊙M的圆心坐标.利用勾股定理.即可用含n的代数式表示出m的值.再结合m.n均为正整数.即可得出m.n的值.【解答】【分析问题】解:根据题意.可知:所描的点在半径为5的同心圆上时.其纵坐标y=5﹣1=4.∵横坐标x=±=±3.∴点的坐标为(﹣3.4)或(3.4).【解决问题】证明:设所描的点在半径为n(n为正整数)的同心圆上.则该点的纵坐标为(n﹣1).∴该点的横坐标为±=±.∴该点的坐标为(﹣.n﹣1)或(.n﹣1).∵(±)2=2n﹣1.n﹣1=.∴该点在二次函数y=(x2﹣1)=x2﹣的图象上.∴小明的猜想正确.【深度思考】解:设该点的坐标为(±.n﹣1).⊙M的圆心坐标为(0. m).∴=m.∴m====n﹣1+2+.又∵m.n均为正整数.∴n﹣1=1.∴m=1+2+1=4.∴存在所描的点在⊙M上.m的值为4.10.(2022•遂宁)在平面直角坐标系中.如果一个点的横坐标与纵坐标互为相反数.则称该点为“黎点”.例如(﹣1.1).(2022.﹣2022)都是“黎点”.(1)求双曲线y=上的“黎点”.(2)若抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”.当a>1时.求c的取值范围.【分析】(1)设双曲线y=上的“黎点”为(m.﹣m).构建方程求解即可.(2)抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”.推出方程ax2﹣7x+c=﹣x有且只有一个解.即ax2﹣6x+c=0.Δ=36﹣4ac=0.可得结论.【解析】(1)设双曲线y=上的“黎点”为(m.﹣m).则有﹣m=.∴m=±3.经检验.m=±3的分式方程的解.∴双曲线y=上的“黎点”为(3.﹣3)或(﹣3.3).(2)∵抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”.∴方程ax2﹣7x+c=﹣x有且只有一个解.即ax2﹣6x+c=0.Δ=36﹣4ac=0.∴ac=9.∴a=.∵a>1.∴0<c<9.11.(2022•兰州)在平面直角坐标系中.P(a.b)是第一象限内一点.给出如下定义:k1=和k2=两个值中的最大值叫做点P的“倾斜系数”k.(1)求点P(6.2)的“倾斜系数”k的值.(2)①若点P(a.b)的“倾斜系数”k=2.请写出a和b的数量关系.并说明理由.②若点P(a.b)的“倾斜系数”k=2.且a+b=3.求OP的长.(3)如图.边长为2的正方形ABCD沿直线AC:y=x运动.P(a.b)是正方形ABCD上任意一点.且点P的“倾斜系数”k<.请直接写出a的取值范围.【分析】(1)根据“倾斜系数”k的定义直接计算即可.(2)①根据“倾斜系数”k的的定义分情况得出结论即可.②根据“倾斜系数”k的的定义求出P点坐标.进而求出OP的值即可.(3)根据k的取值.分情况求出a的取值范围即可.【解析】(1)由题意知.k==3.即点P(6.2)的“倾斜系数”k的值为3.(2)①∵点P(a.b)的“倾斜系数”k=2.∴=2或=2.即a=2b或b=2a.∴a和b的数量关系为a=2b或b=2a.②由①知.a=2b或b=2a∵a+b=3.∴或.∴OP==.(3)由题意知.当P点与D点重合时.且k=时.a有最小临界值.如下图:连接OD.延长DA交x轴于E.此时=.则.解得a=.当P点与B点重合时.且k=时.a有最大临界值.如下图:连接OB.延长CB交x轴于F.此时=.则=.解得a=3+.综上所述.若点P的“倾斜系数”k<.则+1<a<3+.12.(2022•北京)在平面直角坐标系xOy中.已知点M(a.b).N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度.再向上(b≥0)或向下(b<0)平移|b|个单位长度.得到点P′.点P′关于点N的对称点为Q.称点Q为点P的“对应点”.(1)如图.点M(1.1).点N在线段OM的延长线上.若点P(﹣2.0).点Q 为点P的“对应点”.①在图中画出点Q.②连接PQ.交线段ON于点T.求证:NT=OM.(2)⊙O的半径为1.M是⊙O上一点.点N在线段OM上.且ON=t(<t<1).若P为⊙O外一点.点Q为点P的“对应点”.连接PQ.当点M在⊙O上运动时.直接写出PQ长的最大值与最小值的差(用含t的式子表示).【分析】(1)①根据定义.先求出P'的坐标.从而得出Q的位置.②连接PP'.利用三角形中位线定理得NT=PP'.从而证明结论.(2)连接PO.并延长至S.使OP=OS.延长SQ到T.使ST=OM.由题意知.PP1∥OM.PP1=OM.P1N=NQ.利用三角形中位线定理得QT的长.从而求出SQ的长.在△PQS中.PS﹣QS<PS+QS.则PS的最小值为PS﹣QS.PS的最大值为PS+QS.从而解决问题.【解析】(1)①由题意知.P'(﹣2+1.0+1).∴P'(﹣1.1).如图.点Q即为所求.②连接PP'.∵∠P'PO=∠MOx=45°.∴PP'∥ON.∵P'N=QN.∴PT=QT.∴NT=PP'.∵PP'=OM.∴NT=OM.(2)如图.连接PO.并延长至S.使OP=OS.延长SQ到T.使ST=OM.由题意知.PP1∥OM.PP1=OM.P1N=NQ.∴TQ=2MN.∵MN=OM﹣ON=1﹣t.∴TQ=2﹣2t.∴SQ=ST﹣TQ=1﹣(2﹣2t)=2t﹣1.在△PQS中.PS﹣QS<PS+QS.∴PS的最小值为PS﹣QS.PS的最大值为PS+QS.∴PQ长的最大值与最小值的差为(PS+QS)﹣(PS﹣QS)=2QS=4t﹣2.13.(2022•青岛)【图形定义】有一条高线相等的两个三角形称为等高三角形、例如:如图①.在△ABC和△A'B'C'中.AD.A'D'分别是BC和B'C'边上的高线.且AD=A'D'、则△ABC和△A'B'C'是等高三角形.【性质探究】如图①.用S△ABC.S△A'B'C′分别表示△ABC和△A′B′C′的面积.则S△ABC=BC•AD.S△A'B'C′=B′C′•A′D′.∵AD=A′D′∴S△ABC:S△A'B'C′=BC:B'C'.【性质应用】(1)如图②.D是△ABC的边BC上的一点.若BD=3.DC=4.则S△ABD:S△ADC=3:4.(2)如图③.在△ABC中.D.E分别是BC和AB边上的点.若BE:AB=1:2.CD:BC=1:3.S△ABC=1.则S△BEC=.S△CDE=.(3)如图③.在△ABC中.D.E分别是BC和AB边上的点.若BE:AB=1:m.CD:BC=1:n.S△ABC=a.则S△CDE=.【分析】(1)根据等高的两三角形面积的比等于底的比.直接求出答案.(2)同(1)的方法即可求出答案.(3)同(1)的方法即可求出答案.【解析】(1)∵BD=3.DC=4.∴S△ABD:S△ADC=BD:DC=3:4.故答案为:3:4.(2)∵BE:AB=1:2.∴S△BEC:S△ABC=BE:AB=1:2.∵S△ABC=1.∴S△BEC=.∵CD:BC=1:3.∴S△CDE:S△BEC=CD:BC=1:3.∴S△CDE=S△BEC=×=.故答案为:..(3)∵BE:AB=1:m.∴S△BEC:S△ABC=BE:AB=1:m.∵S△ABC=a.∴S△BEC=S△ABC=.∵CD:BC=1:n.∴S△CDE:S△BEC=CD:BC=1:n.∴S△CDE=S△BEC=•=.故答案为:.14.(2022•常州)在四边形ABCD中.O是边BC上的一点.若△OAB≌△OCD.则点O叫做该四边形的“等形点”.(1)正方形不存在“等形点”(填“存在”或“不存在”).(2)如图.在四边形ABCD中.边BC上的点O是四边形ABCD的“等形点”.已知CD=4.OA=5.BC=12.连接AC.求AC的长.(3)在四边形EFGH中.EH∥FG.若边FG上的点O是四边形EFGH的“等形点”.求的值.【分析】(1)根据“等形点”的定义可知△OAB≌△OCD.则∠OAB=∠C=90°.而O是边BC上的一点.从而得出正方形不存在“等形点”.(2)作AH⊥BO于H.由△OAB≌△OCD.得AB=CD=4.OA=OC=5.设OH=x.则BH=7﹣x.由勾股定理得.(4)2﹣(7﹣x)2=52﹣x2.求出x的值.再利用勾股定理求出AC的长即可.(3)根据“等形点”的定义可得△OEF≌△OGH.则∠EOF=∠HOG.OE=OG.∠OGH=∠OEF.再由平行线性质得OE=OH.从而推出OE=OH=OG.从而解决问题.【解析】(1)∵四边形ABCD是正方形.∴∠C=90°.∵△OAB≌△OCD.∴∠OAB=∠C=90°.∵O是边BC上的一点.∴正方形不存在“等形点”.故答案为:不存在.(2)作AH⊥BO于H.∵边BC上的点O是四边形ABCD的“等形点”.∴△OAB≌△OCD.∴AB=CD=4.OA=OC=5.∵BC=12.∴BO=7.设OH=x.则BH=7﹣x.由勾股定理得.(4)2﹣(7﹣x)2=52﹣x2.解得.x=3.∴OH=3.∴AH=4.∴CH=8.在Rt△CHA中.AC===4.(3)如图.∵边FG上的点O是四边形EFGH的“等形点”.∴△OEF≌△OGH.∴∠EOF=∠HOG.OE=OG.∠OGH=∠OEF.∵EH∥FG.∴∠HEO=∠EOF.∠EHO=∠HOG.∴∠HEO=∠EHO.∴OE=OH.∴OH=OG.∴OE=OF.∴=1.15.(2022•青海)两个顶角相等的等腰三角形.如果具有公共的顶角的顶点.并把它们的底角顶点连接起来.则形成一组全等的三角形.把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1.若△ABC和△ADE是顶角相等的等腰三角形.BC.DE分别是底边.求证:BD=CE.(2)解决问题:如图 2.若△ACB和△DCE均为等腰直角三角形.∠ACB=∠DCE=90°.点A.D.E在同一条直线上.CM为△DCE中DE边上的高.连接BE.请判断∠AEB的度数及线段CM.AE.BE之间的数量关系并说明理由.【分析】(1)根据△ABC和△ADE是顶角相等的等腰三角形.证明△ABD≌△ACE(SAS).即可得BD=CE.(2)根据△ACB和△DCE均为等腰直角三角形.可得△ACD≌△BCE(SAS).即有AD=BE.∠ADC=∠BEC.从而可得∠BEC=∠ADC=135°.即知∠AEB =∠BEC﹣∠CED=90°.由CD=CE.CM⊥DE.∠DCE=90°.可得DM=ME =CM.故AE=AD+DE=BE+2CM.【解答】(1)证明:∵△ABC和△ADE是顶角相等的等腰三角形.∴AB=AC.AD=AE.∠BAC=∠DAE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.∴△ABD≌△ACE(SAS).∴BD=CE.(2)解:∠AEB=90°.AE=BE+2CM.理由如下:如图:∵△ACB和△DCE均为等腰直角三角形.∴AC=BC.DC=EC.∠ACB=90°=∠DCE.∴∠ACD=∠BCE.∴△ACD≌△BCE(SAS).∴AD=BE.∠ADC=∠BEC.∵△CDE是等腰直角三角形.∴∠CDE=∠CED=45°.∴∠ADC=180°﹣∠CDE=135°.∴∠BEC=∠ADC=135°.∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°.∵CD=CE.CM⊥DE.∴DM=ME.∵∠DCE=90°.∴DM=ME=CM.∴DE=2CM.∴AE=AD+DE=BE+2CM.16.(2022•嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1).用直尺和圆规作AB上的一点P.使AP:AB=1:.”小东的作法是:如图2.以AB为斜边作等腰直角三角形ABC.再以点A为圆心.AC长为半径作弧.交线段AB于点P.点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP.点D为线段AC上的动点.点E在AB的上方.构造△DPE.使得△DPE∽△CPB.①如图3.当点D运动到点A时.求∠CPE的度数.②如图4.DE分别交CP.CB于点M.N.当点D为线段AC的“趣点”时(CD<AD).猜想:点N是否为线段ME的“趣点”?并说明理由.【分析】(1)利用等腰三角形的性质证明.再利用AC=AP.即可得出结论.(2)①由题意可得:∠CAB=∠B=45°.∠ACB=90°.AC=AP=BC.再求解∠ACP=∠APC=67.5°.∠CPB=112.5°.证明∠DPE=∠CPB=112.5°.从而可得答案.②先证明△ADP∽△ACB.可得∠APD=45°.DP∥CB.再证明MP=MD=MC =MN.∠EMP=45°.∠MPE=90°.从而可得出结论.【解析】(1)赞同.理由如下:∵△ABC是等腰直角三角形.∴AC=BC.∠A=∠B=45°.∴cos45°=.∵AC=AP.∴.∴点P为线段AB的“趣点”.(2)①由题意得:∠CAB=∠B=45°.∠ACB=90°.AC=AP=BC.∴=67.5°.∴∠BCP=90°﹣67.5°=22.5°.∴∠CPB=180°﹣45°﹣22.5°=112.5°.∵△DPE∽△CPB.D.A重合.∴∠DPE=∠CPB=112.5°.∴∠CPE=∠DPE+∠CPB﹣180°=45°.②点N是线段ME的趣点.理由如下:当点D为线段AC的趣点时(CD<AD).∴.∵AC=AP.∴.∵.∠A=∠A.∴△ADP∽△ACB.∴∠ADP=∠ACB=90°.∴∠APD=45°.DP∥CB.∴∠DPC=∠PCB=22.5°=∠PDE.∴DM=PM.∴∠MDC=∠MCD=90°﹣22.5°=67.5°.∴MD=MC.同理可得MC=MN.∴MP=MD=MC=MN.∵∠MDP=∠MPD=22.5°.∠E=∠B=45°.∴∠EMP=45°.∠MPE=90°.∴=.∴点N是线段ME的“趣点”.17.(2022•兰州)如图.在Rt△ABC中.∠ACB=90°.AC=3cm.BC=4cm.M为AB 边上一动点.BN⊥CM.垂足为N.设A.M两点间的距离为xcm(0≤x≤5).B.N 两点间的距离为ycm(当点M和B点重合时.B.N两点间的距离为0).小明根据学习函数的经验.对因变量y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程.请补充完整.(1)列表:下表的已知数据是根据A.M两点间的距离x进行取点、画图、测量.分别得到了y与x的几组对应值:x/cm00.51 1.5 1.82 2.53 3.54 4.55 y/cm4 3.96 3.79 3.47a 2.99 2.40 1.79 1.230.740.330请你通过计算.补全表格:a= 3.2.(2)描点、连线:在平面直角坐标系中.描出表中各组数值所对应的点(x.y).并画出函数y关于x的图象.(3)探究性质:随着自变量x的不断增大.函数y的变化趋势:y随x的增大而减小.(4)解决问题:当BN=2AM时.AM的长度大约是 1.67cm.(结果保留两位小数)【分析】(1)先求出AB边上的高.进而求出AM'.判断出点M与M'重合.即可得出答案.(2)先描点.再连线.即可画出图象.(3)根据图象直接得出结论.(4)利用表格和图象估算出AM的长度.【解析】(1)如图.在Rt△ABC中.AC=3.BC=4.根据勾股定理得.AC=5.过点C作CM'⊥AB于M.∴S△ABC=AC•BC=AB•CM'.∴CM'=.在Rt△ACM'中.根据勾股定理得.AM'==1.8.当x=1.8时.点M与点M'重合.∴CM⊥AB.∵BN⊥CM.∴点M.N重合.∴a=BN=BM=AB﹣AM=3.2.故答案为:3.2.(2)如图所示.(3)由图象知.y随x的增大而减小.故答案为:y随x的增大而减小.(3)借助表格和图象得.当BN=2AM时.AM的长度大约是1.67cm.故答案为:1.67.18.(2022•深圳)二次函数y=2x2.先向上平移6个单位.再向右平移3个单位.用光滑的曲线画在平面直角坐标系上.y=2x2y=2(x﹣3)2+6(0.0)(3.m)(1.2)(4.8)(2.8)(5.14)(﹣1.2)(2.8)(﹣2.8)(1.14)(1)m的值为6.(2)在坐标系中画出平移后的图象并写出y=﹣x2+5与y=x2的交点坐标.(3)点P(x1.y1).Q(x2.y2)在新的函数图象上.且P.Q两点均在对称轴同一侧.若y1>y2.则x1<或>x2.(填不等号)【分析】(1)根据平移的性质分析对应点的坐标.(2)利用描点法画函数图象.联立方程组求得两函数的交点坐标.(3)结合二次函数图象的性质分析求解.【解析】(1)将(0.0)先向上平移6个单位.再向右平移3个单位后对应点的坐标为(3.6).∴m=6.故答案为:6.(2)平移后的函数图象如图:联立方程组.解得.∴y=﹣x2+5与y=x2的交点坐标为(.).(﹣.).(3)∵点P(x1.y1).Q(x2.y2)在新的函数图象上.且P.Q两点均在对称轴同一侧.当P.Q两点同在对称轴左侧时.若y1>y2.则x1<x2.当P.Q两点同在对称轴右侧时.若y1>y2.则x1>x2.故答案为:<或>.19.(2022•潍坊)某市在盐碱地种植海水稻获得突破性进展.小亮和小莹到海水稻种植基地调研.小莹根据水稻年产量数据.分别在直角坐标系中描出表示2017﹣2021年①号田和②号田年产量情况的点(记2017年为第1年度.横轴表示年度.纵轴表示年产量).如图.小亮认为.可以从y=kx+b(k>0).y=(m>0).y=﹣0.1x2+ax+c中选择适当的函数模型.模拟①号田和②号田的年产量变化趋势.(1)小莹认为不能选y=(m>0).你认同吗?请说明理由.(2)请从小亮提供的函数模型中.选择适当的模型分别模拟①号田和②号田的年产量变化趋势.并求出函数表达式.(3)根据(2)中你选择的函数模型.请预测①号田和②号田总年产量在哪一年最大?最大是多少?【分析】(1)由当m>0时.y=的性质可得答案.(2)观察①号田和②号田的年产量变化趋势可知.①号田为y=kx+b(k>0).②号田为y=﹣0.1x2+ax+c.用待定系数法可得模拟①号田的函数表达式为y=0.5x+1.模拟①号田的函数表达式为y=﹣0.1x2+x+1.(3)设①号田和②号田总年产量为w吨.w=0.5x+1+(﹣0.1x2+x+1)=﹣0.1x2+1.5x+2=﹣0.1(x﹣7.5)2+7.625.根据二次函数性质可得答案.【解析】(1)认同.理由是:当m>0时.y=中.y随x的增大而减小.而从图中描点可知.x增大y随之增大.故不能选y=(m>0).(2)观察①号田和②号田的年产量变化趋势可知.①号田为y=kx+b(k>0).②号田为y=﹣0.1x2+ax+c.把(1.1.5).(2.2.0)代入y=kx+b得:.解得.∴y=0.5x+1.把(1.1.9).(2.2.6)代入y=﹣0.1x2+ax+c得:.解得.∴y=﹣0.1x2+x+1.答:模拟①号田的函数表达式为y=0.5x+1.模拟②号田的函数表达式为y=﹣0.1x2+x+1.(3)设①号田和②号田总年产量为w吨.由(2)知.w=0.5x+1+(﹣0.1x2+x+1)=﹣0.1x2+1.5x+2=﹣0.1(x﹣7.5)2+7.625.∵﹣0.1<0.抛物线对称轴为直线x=7.5.而x为整数.∴当x=7或8时.w取最大值.最大值为7.6.答:①号田和②号田总年产量在2023年或2024年最大.最大是7.6吨.20.(2022•潍坊)为落实“双减”.老师布置了一项这样的课后作业:二次函数的图象经过点(﹣1.﹣1).且不经过第一象限.写出满足这些条件的一个函数表达式.【观察发现】请完成作业.并在直角坐标系中画出大致图象.【思考交流】小亮说:“满足条件的函数图象的对称轴一定在y轴的左侧.”小莹说:“满足条件的函数图象一定在x轴的下方.”你认同他们的说法吗?若不认同.请举例说明.【概括表达】小博士认为这个作业的答案太多.老师不方便批阅.于是探究了二次函数y=ax2+bx+c的图象与系数a.b.c的关系.得出了提高老师作业批阅效率的方法.请你探究这个方法.写出探究过程.【分析】由题意写出一个符合条件的函数解析式即可.【观察发现】画出一个符合条件的函数图象即可.【思考交流】由题意可知抛物线的对称轴可以在y轴的左侧.也可以在y轴的右侧.或者是y轴.抛物线的图象一定在x轴的下方.【概括表达】设经过点(﹣1.﹣1)的函数解析式为y=a(x+1)2+m(x+1)﹣1.则b=2a+m.c=a+m﹣1.由a<0.c≤0.a﹣b+c=﹣1.可得b<1.【解析】y=﹣x2(答案不为唯一).【观察发现】如图:【思考交流】∵抛物线的对称轴为x=﹣.a<0.∴抛物线的对称轴可以在y轴的左侧.也可以在y轴的右侧.或者是y轴.例如:y=﹣x2.∴小亮的说法不正确.∵抛物线不经过第一象限.∴抛物线的图象一定在x轴的下方.∴小莹的说法不正确.【概括表达】设经过点(﹣1.﹣1)的函数解析式为y=a(x+1)2+m(x+1)﹣1.∴y=ax2+(2a+m)x+a+m﹣1.∵y=ax2+bx+c.∴b=2a+m.c=a+m﹣1.∵二次函数的图象不经过第一象限.∴a<0.c≤0.∵经过点(﹣1.﹣1).∴a﹣b+c=﹣1.∴a+m﹣1≤0.∴a+m≤1.∴b=2a+m=a+a+m≤a+1.∴b<1.综上所述:a<0.b<1.c≤0且a﹣b+c=﹣1.21.(2022•临沂)杠杆原理在生活中被广泛应用(杠杆原理:阻力×阻力臂=动力×动力臂).小明利用这一原理制作了一个称量物体质量的简易“秤”(如图1).制作方法如下:第一步:在一根匀质细木杆上标上均匀的刻度(单位长度1cm).确定支点O.并用细麻绳固定.在支点O左侧2cm的A处固定一个金属吊钩.作为秤钩.第二步:取一个质量为0.5kg的金属物体作为秤砣.(1)图1中.把重物挂在秤钩上.秤砣挂在支点O右侧的B处.秤杆平衡.就能称得重物的质量.当重物的质量变化时.OB的长度随之变化.设重物的质量为xkg.OB的长为ycm.写出y关于x的函数解析式.若0<y<48.求x的取值范围.(2)调换秤砣与重物的位置.把秤砣挂在秤钩上.重物挂在支点O右侧的B处.使秤杆平衡.如图2.设重物的质量为xkg.OB的长为ycm.写出y关于x的函数解析式.完成下表.画出该函数的图象.x/kg……0.250.5124……y/cm……421……【分析】(1)根据阻力×阻力臂=动力×动力臂解答即可.(2)根据阻力×阻力臂=动力×动力臂求出解析式.然后根据列表、描点、连线的步骤解答.【解析】(1)∵阻力×阻力臂=动力×动力臂.∴重物×OA=秤砣×OB.∵OA=2cm.重物的质量为xkg.OB的长为ycm.秤砣为0.5kg.∴2x=0.5y.∴y=4x.∵4>0.∴y随x的增大而增大.∵当y=0时.x=0.当y=48时.x=12.∴0<x<12.(2)∵阻力×阻力臂=动力×动力臂.∴秤砣×OA=重物×OB.∵OA=2cm.重物的质量为xkg.OB的长为ycm.秤砣为0.5kg.∴2×0.5=xy.∴y=.当x=0.25时.y==4.当x=0.5时.y==2.当x=1时.y=1.当x=2时.y=.当x=4时.y=.故答案为:4.2.1...作函数图象如图:22.(2022•赤峰)阅读下列材料定义运算:min|a.b|.当a≥b时.min|a.b|=b.当a<b时.min|a.b|=a.例如:min|﹣1.3|=﹣1.min|﹣1.﹣2|=﹣2.完成下列任务(1)①min|(﹣3)0.2|=1.②min|﹣.﹣4|=﹣4.(2)如图.已知反比例函数y1=和一次函数y2=﹣2x+b的图象交于A、B两点.当﹣2<x<0时.min|.﹣2x+b|=(x+1)(x﹣3)﹣x2.求这两个函数的解析式.【分析】(1)根据定义运算的法则解答即可.(2)根据反比例函数和一次函数图象的性质解答即可.【解析】(1)由题意可知:①min|(﹣3)0.2|=1.②min|﹣.﹣4|=﹣4.故答案为:1.﹣4.(2)当﹣2<x<0时.min|.﹣2x+b|=(x+1)(x﹣3)﹣x2=﹣2x﹣3.∵一次函数y2=﹣2x+b.∴b=﹣3.∴y2=﹣2x﹣3.当x=﹣2时.y=1.∴A(﹣2.1)将A点代入y1=中.得k=﹣2.∴y1=﹣.23.(2022•赤峰)【生活情境】为美化校园环境.某学校根据地形情况.要对景观带中一个长AD=4m.宽AB=1m的长方形水池ABCD进行加长改造(如图①.改造后的水池ABNM仍为长方形.以下简称水池1).同时.再建造一个周长为12m的矩形水池EFGH(如图②.以下简称水池2).【建立模型】如果设水池ABCD的边AD加长长度DM为x(m)(x>0).加长后水池1的总面积为y1(m2).则y1关于x的函数解析式为:y1=x+4(x>0).设水池2的边EF的长为x(m)(0<x<6).面积为y2(m2).则y2关于x的函数解析式为:y2=﹣x2+6x(0<x<6).上述两个函数在同一平面直角坐标系中的图象如图③.【问题解决】(1)若水池2的面积随EF长度的增加而减小.则EF长度的取值范围是3≤x<6(可省略单位).水池2面积的最大值是9m2.(2)在图③字母标注的点中.表示两个水池面积相等的点是C.E.此时的x (m)值是1或4.(3)当水池1的面积大于水池2的面积时.x(m)的取值范围是0<x<1或4<x<6.(4)在1<x<4范围内.求两个水池面积差的最大值和此时x的值.(5)假设水池ABCD的边AD的长度为b(m).其他条件不变(这个加长改。

2023秋季初三AA第14讲新定义压轴题

2023秋季初三AA第14讲新定义压轴题

第14讲 新定义压轴题模块1 旋转类定义【经典例题】例1 给出如下定义:对于线段PQ,以点P为中心,把点Q逆时针旋转60°得到点R,点R 叫做线段PQ关于点P的“完美点”.例如等边△ABC中,点C就是线段AB关于点A的“完美点”.在平面直角坐标系xOy中.(1)已知点A(0,2),在A1(,1),A2(﹣,1),A3(1,),A4(1,﹣)中,____是线段OA关于点O的“完美点”;(2)直线y=x+4上存在线段BB′,若点B′恰好是线段BO关于点B的“完美点”,求线段BB′的长;(3)若OC=4,OE=2,点D是线段OC关于点O的“完美点”,点F是线段EO关于点E 的“完美点”.当线段DF分别取得最大值和最小值时,直接写出线段CE的长.【专题】新定义;等腰三角形与直角三角形;平移、旋转与对称;应用意识.【答案】(1)A2;(2)BB'=;(3)DF最大时,CE=2,DF最小时,CE=2.模块2 对称类定义【经典例题】例2 在△ABC中,∠A=90°,AB=AC,给出如下定义:作直线l分别交AB,AC边于点M,N,点A关于直线l的对称点为A′,则称A′为等腰直角△ABC关于直线l的“直角对称点”.(点M可与点B重合,点N可与点C重合)(1)在平面直角坐标系xOy中,点A((0,2),B((2,0),直线l:y=kx+1,O′为等腰直角△AOB关于直线l的“直角对称点”.①当k=﹣1时,写出点O′的坐标_______;②连接BO′,求BO′长度的取值范围;(2)⊙O的半径为10,点M是⊙O上一点,以点M为直角顶点作等腰直角△MPQ,其中MP=2,直线l与MP、MQ分别交于E、F两点,同时M′为等腰直角△MPQ关于直线l的“直角对称点”,连接OM′,当点M在⊙O上运动时,直接写出OM′长度的最大值与最小值.【专题】几何综合题;推理能力.【答案】(1)①(1,1);②﹣1≤BO′≤2;(2)OM′的最大值为10+2,OM′的最小值为10﹣2.模块3 距离类定义【经典例题】例3 在平面直角坐标系xOy中,对于点P和线段AB,若点P到点A或点B的距离,不超过线段AB的长度,则称点P为线段AB的近合点.(1)已知A(2,0),B(4,0),①在点P1(6,0),P2(1,﹣2),P3(4,2)中,线段AB的近合点是(_______;②若直线y=t上存在线段AB的近合点,求t的取值范围;(2)已知⊙O的半径为5,A((m,0),B((m+1,0),直线l过点T((0,1),记线段AB关于l的对称线段为A'B'.若对于实数m,存在直线l,使得⊙O上有A'B'的近合点,直接写出m的取值范围.【专题】圆的有关概念及性质;与圆有关的计算;运算能力;推理能力.【答案】(1)①P1,P3;②﹣2≤t≤2;(2)或.附加题1 在平面直角坐标系xOy中,对于点P和直线y=1,给出如下定义:若点P在直线y=1上,且以点P为顶点的角是45°,则称点P为直线y=1的“关联点”.(1)若在直线x=1上存在直线y=1的“关联点”P,则点P的坐标为(_______;(2)过点P((2,1)作两条射线,一条射线垂直于x轴,垂足为A;另一条射线交x轴于点B,若点P为直线y=1的“关联点”.求点B的坐标;(3)以点O为圆心,1为半径作圆,若在⊙O上存在点N,使得∠OPN的顶点P为直线y =1的“关联点”.则点P的横坐标a的取值范围是(________.【专题】几何综合题;推理能力.【答案】(1)(1,1);(2)B(1,0)或B′(3,0);(3)﹣1≤a≤1.附加题2 在平面直角坐标系xOy中,对于图形P,图形P'和直线l给出如下定义:图形P 关于直线l的对称图形为P'.若图形P与图形P'均存在点在图形Q内部((包括边界),则称图形Q为图形P关于直线l的“弱相关图形”.(1)如图,点A(1,0),点B(3,0).①已知图形Q1是半径为2的⊙O,Q2是半径为1的⊙A,Q3是半径为的⊙B,在Q1,Q2,Q3中,线段AB关于直线y=x的“弱相关图形”是:_______;②已知⊙O的半径为2,若⊙O是线段OA关于直线y=x+b的“弱相关图形”,求b的取值范围;(2)在由第四象限、原点、x轴正半轴以及y轴负半轴组成的区域内,有一个半径为2的圆P.若存在点C((a﹣2,a+2),使得对于任意过点C的直线l,有圆P,满足半径r的⊙O 是圆P关于l的“弱相关图形”,直接写出r的取值范围.【专题】与圆有关的计算;运算能力;推理能力.【答案】(1)①Q3;②;(2).【作业】作业1 在平面直角坐标系xOy中,我们给出如下定义:将图形M绕直线x=3上某一点P 顺时针旋转90°,再关于直线x=3对称,得到图形N,我们称图形N为图形M关于点P的二次关联图形.已知点A(0,1).(1)若点P的坐标是(3,0),直接写出点A关于点P的二次关联图形的坐标(_______;(2)若点A关于点P的二次关联图形与点A重合,求点P的坐标(直接写出结果即可);(3)已知⊙O的半径为1,点A关于点P的二次关联图形在⊙O上且不与点A重合.若线段AB=1,其关于点P的二次关联图形上的任意一点都在⊙O及其内部,求此时P点坐标及点B的纵坐标y B的取值范围.【专题】新定义;平移、旋转与对称;推理能力.【答案】(1)(2,3);(2)P(3,﹣2);(3)P(3,﹣3);0≤y B≤.作业2 在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是(_______.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB 上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.【专题】与圆有关的位置关系;运算能力;推理能力.【答案】((1)①P2,P3;②或;(2)或.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析: (1)根据题意得出函数解析式,进而得出顶点坐标即可; (2)①首先得出函数解析式,进而利用函数平移规律得出答案;
②分别求出两函数解析式,进而得出平移规律.
典例4
总结:此题主要考查了二次函数的平移以及配方法求函数解析式, 利用特征数得出函数解析式是解题关键.
感谢聆听
By:蜗牛老师王很圆
阿基米德折弦定理
阿基米德(Archimedes,公元前287~公元212年,古希腊)是有史以来最伟大的
数学家之一.他与牛顿、高斯并称为三大数子.
阿拉伯Al-Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,
苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是
中考数学总复习
压轴题:新定义题(信息题)
主讲老师:蜗牛老师王很圆
本专题(必考)重点考查:
01 阅读理解能力 02 信息整合能力 03 知识迁移能力
典例1
(2015•永州,第10题)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,
[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条
折弦),BC>AB,M是
的中点,则从M向BC所作垂线的垂足D是折弦
ABC的中点,即CD=AB+BD.
下面是运用“截长法”证明CD=AB+BD的部分证明过程.
证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.
典例3
解析:
【解析】本题考查了圆的证明。 (1)已截取CG=AB ∴只需证明BD=DG 且MD⊥BC,所以需证明MB=MG,故证明△MBA≌△MGC即可 (2)AB=2,利用三角函数可得BE=
由阿基米德折弦定理可得BE=DE+DC 则△BDC周长=BC+CD+BD=BC+DC+DE+BE =BC+(DC+DE)+BE =BC+BE+BE =BC+2BE 然后代入计算可得答案
∵M是 的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即
CD=AB+BD.
下面是运用“截长法”证明CD=AB+BD的部分证明过程.
证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.
∵M是
的中点,
∴MA=MC
任务: (1)请按照上面的证明思路,写出该证明的剩余部 分;
(A2B)=填2,空D:为如⊙图O(上3一)点,已,知∠等AB边D=△4A5B°C内,接AE于⊥⊙BOD于点E,则 △BDC的周长是_______
C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+ (﹣4)=﹣10, ∵﹣9>﹣10, ∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2], ∴[x+y]≤[x]+[y]不成立,
D、[n+x]=n+[x](n为整数),成立;
典例2
a
典例3
(2016山西省第19题)请阅读下列材料,并完成相应的任务:
A.[x]=x(x为整数) B.0≤x﹣[x]<1 C.[x+y]≤[x]+[y] D.[n+x]=n+[x](n为整数)
解析:
根据“定义[x]为不超过x的最大整数”进行计算
A、∵[x]为不超过x的最大整数, ∴当x是整数时,[x]=x,成立;
B、∵[x]为不超过x的最大整数,∴0≤x﹣[x]<1,成立;
(1)证明:又∵∠A=∠C, ∴△MBA≌△MGC. ∴MB=MG. 又∵MD⊥BC,∵BD=GD. ∴CD=CG+GD=AB+BD.
(2)
典例4
如果二次函数的二次项系数为1,则此二次函数可表示为y=x2+px+q,我们称[p,q] 为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3]. (1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标. (2)探究下列问题: ①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上 平移1个单位,求得到的图象对应的函数的特征数. ②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到 的图象对应的函数的特征数为[3,4]?
相关文档
最新文档