2018年辽宁省鞍山一中高考数学二模试卷(理科)

合集下载

辽宁省2018年高考[理数卷]考试真题与答案解析

辽宁省2018年高考[理数卷]考试真题与答案解析

辽宁省2018年高考[理数卷]考试真题与答案解析一、选择题本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.12i12i +=-A .43i55--B .43i55-+C .34i55--D .34i55-+2.已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>A.y = B.y =C.y =D.y =6.在ABC △中,cos 2C 1BC =,5AC =,则AB =A.BCD.7.为计算11111123499100S =-+-++-…则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A 且的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23B .12C .13D .14二、填空题本题共4小题,每小题5分,共20分.13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.14.若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,,则z x y =+的最大值为__________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为,则该圆锥的侧面积为__________.三、解答题共70分。

2018年辽宁省鞍山一中高考数学二模试卷及答案(理科)

2018年辽宁省鞍山一中高考数学二模试卷及答案(理科)

2018年辽宁省鞍山一中高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈N|x2﹣x﹣2<0}的真子集个数为()A.1 B.2 C.3 D.42.(5分)若为a实数,且=3+i,则a=()A.﹣4 B.﹣3 C.3 D.43.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.144.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.25.(5分)已知命题“∃x∈R,2x2+(a﹣1)x+≤0是假命题,则实数a的取值范围是()A.(﹣∞,﹣1)B.(﹣1,3)C.(﹣3,+∞)D.(﹣3,1)6.(5分)已知sin2α=,则cos2(α+)=()A.B.C.D.7.(5分)若向量,满足,,则•=()A.1 B.2 C.3 D.58.(5分)设x,y满足约束条件,则z=3x+y的最大值为()A.﹣3 B.4 C.2 D.59.(5分)由曲线xy=1与直线y=x,y=3所围成的封闭图形面积为()A.2﹣ln3 B.ln3 C.2 D.4﹣ln310.(5分)设a=log25,b=log415,c=20.5,则a,b,c大小关系为()A.a>c>b B.a>b>c C.c>b>a D.c>a>b11.(5分)在等差数列{a n}中,a1>0,a2016+a2017>0,a2016a2017<0,则使前n 项和S n>0成立的最大自然数n的值为()A.2016 B.2017 C.4031 D.403212.(5分)若存在正数x使2x(x﹣a)<1成立,则a的取值范围是()A.(﹣∞,+∞)B.(﹣2,+∞)C.(0,+∞)D.(﹣1,+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)等差数列{a n},公差d=2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n等于.14.(5分)直线y=kx+3被圆(x﹣2)2+(y﹣3)2=4截得的弦长为,则直线的倾斜角为.15.(5分)函数y=log a(x+4)﹣1(a>0且a≠1)的图象恒过定点A,若点A 在直线mx+ny+1=0上,其中m,n均大于0,则的最小值为.16.(5分)在锐角△ABC中,a,b,c分别是角A,B,C所对的边,△ABC的面积S=2,且满足acosB=b(1+cosA),则(c+a﹣b)(c+b﹣a)的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知函数.(1)求函数f(x)的最小正周期和图象的对称轴方程;(2)求函数f(x)在区间上的最值.18.(12分)已知函数f(x)=|2x+1|﹣|x﹣1|.(1)求不等式f(x)<2的解集;(2)若关于x的不等式f(x)有解,求a的取值范围.19.(10分)证明:不是有理数.20.(12分)已知数列{a n}的前n项和为S n,且S n+1=4a n+2,a1=1.(1)b n=a n+1﹣2a n,求证数列{b n}是等比数列;(2)设,求证数列{c n}是等差数列;(3)求数列{a n}的通项公式及前n项和S n.21.(12分)如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA ⊥底面ABCD,FD∥EA,且.(1)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,并写出该直线与CF所成角的余弦值,但不要求证明和解答过程.(2)求直线EB与平面ECF所成角的正弦值.22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.2018年辽宁省鞍山一中高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈N|x2﹣x﹣2<0}的真子集个数为()A.1 B.2 C.3 D.4【解答】解:∵集合A={x∈N|x2﹣x﹣2<0}={x∈N|﹣1<x<2}={0,1},∴集合A={x∈N|x2﹣x﹣2<0}的真子集个数为22﹣1=3.故选:C.2.(5分)若为a实数,且=3+i,则a=()A.﹣4 B.﹣3 C.3 D.4【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.3.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.14【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.4.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.2【解答】解:∵∴三棱锥O﹣ABC,OE⊥底面ABC,EA=ED=1,OE=1,AB=BC=∴AB⊥BC,∴可判断;△OAB≌△OBC的直角三角形,S△OAC=S△ABC==1,S△OAB=S△OBC=×2=该四面体的表面积:2,故选:C.5.(5分)已知命题“∃x∈R,2x2+(a﹣1)x+≤0是假命题,则实数a的取值范围是()A.(﹣∞,﹣1)B.(﹣1,3)C.(﹣3,+∞)D.(﹣3,1)【解答】解:∵“∃x∈R,2x2+(a﹣1)x+≤0”的否定为“∀x∈R,“∵“∃x∈R,2x2+(a﹣1)x+”为假命题∴“为真命题即恒成立∴解得﹣1<a<3故选B6.(5分)已知sin2α=,则cos2(α+)=()A.B.C.D.【解答】解:∵sin2α=,∴cos2(α+)=[1+cos(2α+)]=(1﹣sin2α)=×(1﹣)=.故选A7.(5分)若向量,满足,,则•=()A.1 B.2 C.3 D.5【解答】解:∵,,∴(+)2=10,(﹣)2=6,两者相减得:4•=4,∴•=1,故选:A.8.(5分)设x,y满足约束条件,则z=3x+y的最大值为()A.﹣3 B.4 C.2 D.5【解答】解:由约束条件作出可行域如图,化目标函数z=3x+y为y=﹣3x+z,由图可知,当直线y=﹣3x+z过B(1,1)时,直线在y轴上的截距最大,此时z有最大值为3×1+1=4.故选:B.9.(5分)由曲线xy=1与直线y=x,y=3所围成的封闭图形面积为()A.2﹣ln3 B.ln3 C.2 D.4﹣ln3【解答】解:方法一:由xy=1,y=3可得交点坐标为(,3),由xy=1,y=x可得交点坐标为(1,1),由y=x,y=3可得交点坐标为(3,3),∴由曲线xy=1,直线y=x,y=3所围成的平面图形的面积为(3﹣)dx+(3﹣x)dx=(3x﹣lnx)+(3x﹣x2),=(3﹣1﹣ln3)+(9﹣﹣3+)=4﹣ln3故选:D.方法二:由xy=1,y=3可得交点坐标为(,3),由xy=1,y=x可得交点坐标为(1,1),由y=x,y=3可得交点坐标为(3,3),对y积分,则S=(y﹣)dy=(y2﹣lny)=﹣ln3﹣(﹣0)=4﹣ln3,故选D.10.(5分)设a=log25,b=log415,c=20.5,则a,b,c大小关系为()A.a>c>b B.a>b>c C.c>b>a D.c>a>b【解答】解:∵a=log25>log24=2,2=log416>b=log415>log48=1.5,c=20.5=,∴a,b,c大小关系为a>b>c.故选:B.11.(5分)在等差数列{a n}中,a1>0,a2016+a2017>0,a2016a2017<0,则使前n 项和S n>0成立的最大自然数n的值为()A.2016 B.2017 C.4031 D.4032【解答】解:∵等差数列{a n}中,a1>0,a2016+a2017>0,a2016a2017<0,∴等差数列{a n}是单调递减数列,d<0,因此a2016>0,a2017<0,∴S4032==>0,S4033==4033a2017<0,∴使前n项和S n>0成立的最大自然数n是4032.故选:D.12.(5分)若存在正数x使2x(x﹣a)<1成立,则a的取值范围是()A.(﹣∞,+∞)B.(﹣2,+∞)C.(0,+∞)D.(﹣1,+∞)【解答】解:因为2x(x﹣a)<1,所以,函数y=是增函数,x>0,所以y>﹣1,即a>﹣1,所以a的取值范围是(﹣1,+∞).故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)等差数列{a n},公差d=2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n等于n2+n.【解答】解:等差数列{a n},公差d=2,若a2,a4,a8成等比数列,所以(a4)2=a2•a8,可得(a1+6)2=(a1+2)(a1+14),解得a1=2.则{a n}的前n项和S n=2n+=n2+n.故答案为:n2+n.14.(5分)直线y=kx+3被圆(x﹣2)2+(y﹣3)2=4截得的弦长为,则直线的倾斜角为或.【解答】解:∵圆(x﹣2)2+(y﹣3)2=4的圆心C(2,3),半径r=2,∴圆心到直线y=kx+3的距离d==,∵直线y=kx+3被圆(x﹣2)2+(y﹣3)2=4截得的弦长为,∴2=2=2,解得k=,∴直线的倾斜角为或.故答案为:或.15.(5分)函数y=log a(x+4)﹣1(a>0且a≠1)的图象恒过定点A,若点A 在直线mx+ny+1=0上,其中m,n均大于0,则的最小值为5+2.【解答】解:函数y=log a(x+4)﹣1(a>0且a≠1)的图象恒过定点A,当x+4=1时,即x=﹣3,y=﹣1,则A(﹣3,﹣1),∴﹣3m﹣n+1=0,∴3m+n=1,∴=(3m+n)()=5++≥5+2=5+2,当且仅当n=m 时取等号,故最小值为5+2,故答案为:16.(5分)在锐角△ABC中,a,b,c分别是角A,B,C所对的边,△ABC的面积S=2,且满足acosB=b(1+cosA),则(c+a﹣b)(c+b﹣a)的取值范围是.【解答】解:∵在锐角△ABC中,a,b,c分别为角A,B,C所对的边,满足acosB=b (1+cosA),∴sinAcosB=sinB+sinBcosA,sin(A﹣B)=sinB,∴A﹣B=B,即A=2B<,可得:B∈(0,),可得:A+B=3B∈(,),故C∈(,),∴∈(,),∴tanC=>1,可得:1>tan>﹣1+.∵△ABC的面积S=ab•sinC=2,∴ab=,则(c+a﹣b)(c+b﹣a)=c2﹣(a﹣b)2=c2﹣a2﹣b2+2ab=﹣2ab•cos C+2ab=2ab(1﹣cosC)=(1﹣cosC)=8=8tan∈(8﹣8,8).故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知函数.(1)求函数f(x)的最小正周期和图象的对称轴方程;(2)求函数f(x)在区间上的最值.【解答】解:(1)∵,∴,令:,解得:.函数f(x)的最小正周期为π,对称轴方程为:.(2)∵,∴.因为在区间上单调递增,在区间上单调递减,所以,当时,f(x)取最大值1.又∵,当时,f(x)取最小值.18.(12分)已知函数f(x)=|2x+1|﹣|x﹣1|.(1)求不等式f(x)<2的解集;(2)若关于x的不等式f(x)有解,求a的取值范围.【解答】解:(1)函数f(x)=|2x+1|﹣|x﹣1|=,当x≥1时,不等式化为x+2<2,解得x<0,可得x∈∅;当﹣<x<1时,不等式化为3x<2,解得x<,可得﹣<x<;当x≤﹣时,不等式化为﹣x﹣2<2,解得x>﹣4,可得﹣4<x≤﹣;综上可得,原不等式的解集为(﹣4,);(2)关于x的不等式f(x)≤a﹣有解,即为:f(x)min≤a﹣,由x≥1时,x+2≥3;﹣<x<1时,﹣<3x<3:x≤﹣时,﹣x﹣2≥﹣.可得f(x)min=﹣,即有a﹣≥﹣,解得﹣1≤a≤3;所以a的取值范围是[﹣1,3].19.(10分)证明:不是有理数.【解答】证明:假设为有理数那么存在两个互质的正整数p,q,使得:,于是,两边平方得p2=2q2由2q2是偶数,可得p2是偶数.而只有偶数的平方才是偶数,所以p也是偶数.因此可设p=2s,s是正整数,代入上式,得:4s2=2q2,即q2=2s2.所以q也是偶数,这样p,q都是偶数,不互质,这与假设p,q互质矛盾.因此不是有理数.20.(12分)已知数列{a n}的前n项和为S n,且S n+1=4a n+2,a1=1.(1)b n=a n+1﹣2a n,求证数列{b n}是等比数列;(2)设,求证数列{c n}是等差数列;(3)求数列{a n}的通项公式及前n项和S n.【解答】(1)证明:由题意,S n+1=4a n+2,S n+2=4a n+1+2,两式相减,得S n+2﹣S n+1=4(a n+1﹣a n)a n+2=4a n+1﹣4a n,∴a n+2﹣2a n+1=2(a n+1﹣2a n),∵b n=a n+1﹣2a n,∴b n+1=2b n,又由题设,得1+a2=4+2=6,即a2=5,∴b1=a2﹣2a1=3,∴{b n}是首项为3,公比为2的等比数列;(2)证明:由(1)得,∴,∴,即.∴数列{c n}是首项为,公差为的等差数列;(3)解:由(2)得,,即,∴.则S n=4a n﹣1+2=(3n﹣4)•2n﹣1+2.21.(12分)如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,FD∥EA,且.(1)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,并写出该直线与CF所成角的余弦值,但不要求证明和解答过程.(2)求直线EB与平面ECF所成角的正弦值.【解答】解:(1)取线段CD的中点,连结KQ,直线KQ即为所求.余弦值为,如图所示:(2)以A点为原点,AB所在直线为x轴,AD所在的直线为y轴,AE所在直线为z轴建立空间直角坐标系,如图.由已知可得A(0,0,0),E(0,0,2),B(2,0,0),C(2,2,0),F(0,2,1),∴,,设平面ECF的法向量为,得,取y=1,得平面ECF的一个法向量为,设直线EB与平面ECF所成的角的正弦值为:==.22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.【解答】解:(1)∵,且x>0,∴.令,则.①当a≤0时,U'(x)>0,U(x)在(1,+∞)上为单调递增函数,∴x>1时,U(x)>U(1)=0,不合题意.②当0<a<2时,时,U'(x)>0,U(x)在上为单调递增函数,∴,U(x)>U(1)=0,不合题意.③当a>2时,,U'(x)<0,U(x)在上为单调递减函数.∴时,U(x)>U(1)=0,不合题意.④当a=2时,x∈(0,1),U'(x)>0,U(x)在(0,1)上为单调递增函数.x∈(1,+∞),U'(x)<0,U(x)在(1,+∞)上为单调递减函数.∴U(x)≤0,符合题意.综上,a=2.(2),x∈[1,e2].g'(x)=lnx﹣ax.令h(x)=g'(x),则由已知h(x)=0在(1,e2)上有两个不等的实根.(A)①当时,h'(x)≥0,h(x)在(1,e2)上为单调递增函数,不合题意.②当a≥1时,h'(x)≤0,h(x)在(1,e2)上为单调递减函数,不合题意.③当时,,h'(x)>0,,h'(x)<0,所以,h(1)<0,,h(e2)<0,解得.(B)证明:由已知lnx1﹣ax1=0,lnx2﹣ax2=0,∴lnx1﹣lnx2=a(x1﹣x2).不妨设x1<x2,则,则=.令,(0<x<1).则,∴G(x)在(0,1)上为单调递增函数,∴即,∴,∴,∴,由(A),∴ae<1,2ae<2,∴.。

辽宁省鞍山市中学2018年高三数学理联考试题含解析

辽宁省鞍山市中学2018年高三数学理联考试题含解析

辽宁省鞍山市中学2018年高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 同时具有性质:“①最小正周期是;②图象关于直线对称;③在上是增函数”的一个函数是()A. B.C. D.参考答案:C略2. 函数的图象大致为(A)(B)(C)(D)参考答案:A3. 已知曲线向左平移个单位,得到的曲线经过点,则()A.函数的最小正周期 B.函数在上单调递增C.曲线关于直线对称D.曲线关于点对称参考答案:D解法1:由题意,得,且,即,所以,即,故,故的最小正周期,故选项A错;因为的单调递减区间为,故选项B错;曲线的对称轴方程为,故选项C错;因为,所以选项D正确,故选D.解法2:由于曲线向左平移个单位,得到的曲线特征保持不变,周期,故的最小正周期,故选项A错;由其图象特征,易知的单调递减区间为,故选项B错;曲线的对称轴方程为,故选项C错;因为,所以选项D正确,故选D.4. 一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是()A. 最长棱的棱长为B. 最长棱的棱长为3C. 侧面四个三角形都是直角三角形D. 侧面四个三角形中有且仅有一个是正三角形参考答案:C【详解】本题考查空间几何体的三视图和线线垂直,根据四棱锥的三视图,可得到四棱锥的直观图(如图所示):由图可知,,,面,面,,所以,,中,,,,,所以,所以是直角三角形,所以最长的棱长是,侧面都是直角三角形.本题选择C选项.5. 已知等于………………………………………………….()A.B.3 C.0 D.—3参考答案:B6. 已知可导函数满足,则当时,和的大小关系为()(A)(B)(C)(C)参考答案:7. 设是首项为,公差为的等差数列,为其前n项和,若成等比数列,则=()A.2B.-2C. D .-参考答案:D∵,又∵成等比数列,∴,解之得.8. 已知实数,,,则a,b,c的大小关系为()A. B.C. D.参考答案:B【分析】利用二倍角的余弦公式可知,,由单调性可知;利用二倍角的正切公式可知,根据单调性可知,从而得到结果.【详解】;本题正确选项:【点睛】本题考查三角函数值的大小比较,关键是能够利用二倍角的余弦公式和正切公式将数字进行化简,再结合余弦函数和正切函数单调性得到结论.9. 在△中,若,,,则A. B. C. D.参考答案:B根据正弦定理,,则.10. 已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且,则椭圆和双曲线的离心率的倒数之和的最大值为A.B.C.3D.2参考答案:A设椭圆离心率,双曲线离心率,由焦点三角形面积公式得,即,即,设,由柯西不等式得最大值为.二、填空题:本大题共7小题,每小题4分,共28分11. 在△ABC中,,点D在边BC上,,,,则AC+BC=_________________.参考答案:【知识点】解三角形 C8【答案解析】解析:,,故答案为:【思路点拨】根据三角形的边角关系,利用正弦定理和余弦定理求出BD,CD和AD的长度,即可得到结论.12. 若,则的取值范围是 .参考答案:13. 在△ABC中,内角A、B、C所对的边分别为a、b、c,a2=bc,设函数,若,则角B的值为参考答案:14. 代数式(1﹣x)(1+x)5的展开式中x3的系数为_____.参考答案:【分析】根据二项式定理写出(1+x)5的展开式,即可得到x3的系数.【详解】∵(1﹣x)(1+x)5=(1﹣x)(?x?x2?x3?x4?x5),∴(1﹣x)(1+x)5展开式中x3的系数为110.故答案为:0.【点睛】此题考查二项式定理,关键在于熟练掌握定理的展开式,根据多项式乘积关系求得指定项的系数.15. 将7个不同的小球全部放入编号为2 和3 的两个小盒子里,使得每个盒子里的球的个数不小于盒子的编号,则不同的放球方法共有____________ 种(用数字作答) .参考答案:91放入编号为2 和3 的两个小盒子里球的数目有如下三种情况:2个与5个;3个与4个;4个与3个。

辽宁省2018年普通高中高三第二次模拟考试数学(理)试题

辽宁省2018年普通高中高三第二次模拟考试数学(理)试题

辽宁省2018年普通高中高三第二次模拟考试数学理本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}21,P y y x x R ==-∈,{}1,Q x x x R =≤∈,则P Q ⋂=( )A .()()(){}1,0,0,1,1,0-B .{}11x x -≤≤C .{}1,0,1-D .(],1-∞ 2.若复数z 满足22iz i =-(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知实数,x y 满足1122xy⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则下列关系式中恒成立的是( )A .tan tan x y >B .()()22ln 2ln 1x y +>+ C .11x y> D .33x y > 4.已知双曲线()22220,01x y a b a b -=>>,若过一、三象限的渐近线的倾斜角,43ππθ⎡⎤∈⎢⎥⎣⎦,则双曲线的离心率e 的取值范围是( )A .2⎤⎦B .[]2,4C .(]1,3D .⎣ 5.“0rand ”是计算机软件产生随机数的函数,每调用一次0rand 函数,就产生一个在区间[]0,1内的随机数.我们产生n 个样本点(),P a b ,其中201,201a rand b rand =⋅-=⋅-.在这n 个样本点中,满足220a b rand += 的样本点的个数为m ,当n 足够大时,可估算圆周率π的近似值为( ) A .4m n B .4m n C .4n m D .4nm6.已知函数()()sin (0,0,0)f x A x A ωϕωϕπ=+>><<的图象如图所示,则下列说法正确的是( )A.函数()f x 的周期为πB.函数()y f x π=-为偶函数C.函数()f x 在,2ππ⎡⎤-⎢⎥⎣⎦上单调递增D.函数()f x 的图象关于点3,04π⎛⎫⎪⎝⎭对称7.王老师的班上有四个体育健将甲、乙、丙、丁,他们都特别擅长短跑,在某次运动会上,他们四人要组成一个4100⨯米接力队,王老师要安排他们四个人的出场顺序,以下是他们四人的对话:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒;王老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求, 据此我们可以断定,在王老师安排的出场顺序中,跑第三棒的人是( ) A.甲B.乙C.丙D. 丁8.在ABC ∆中,内角,,A B C 的对边分别为,,a b c .若1sin cos sin cos 2a B C c B Ab +=,且a b >,则B =( ) A .6π B .3π C .23π D .56π 9.条形码()barcode 是将宽度不等的多个黑条和空白,按照一定的编码规则排列,用以表达一组信息的图形标识符。

2018年辽宁省鞍山一中高考数学一模试卷(理科)

2018年辽宁省鞍山一中高考数学一模试卷(理科)

2018年辽宁省鞍山一中高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B=x{x|x2﹣x﹣6<0},则()A.A∩B={x|x<1}B.A∪B=R C.A∪B={x|x<2}D.A∩B={x|﹣2<x<1} 2.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.B. C.D.3.(5分)设命题p:∃n>1,n2>2n,则¬p为()A.∀n>1,n2>2n B.∃n≤1,n2≤2n C.∀n>1,n2≤2n D.∃n>1,n2≤2n 4.(5分)函数的对称轴为()A.B.C.D.5.(5分)指数函数f(x)=a x(a>0,且a≠1)在R上是减函数,则函数在其定义域上的单调性为()A.单调递增B.单调递减C.在(0,+∞)上递增,在(﹣∞,0)上递减D.在(0,+∞)上递减,在(﹣∞,0)上递增6.(5分)设a=log510,b=log612,c=1+log72,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c7.(5分)已知函数f(x)=ln(﹣x2﹣2x+3),则f(x)的增区间为()A.(﹣∞,﹣1)B.(﹣3,﹣1)C.[﹣1,+∞)D.[﹣1,1)8.(5分)函数f(x)=x3﹣3x﹣1,若对于区间[﹣3,2]上的任意x1,x2都有|f (x1)﹣f(x2)|≤t,则实数t的最小值是()A.20 B.18 C.3 D.09.(5分)如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是()A.B.C.D.10.(5分)已知函数f(x)的定义域为R的奇函数,当x∈[0,1]时,f(x)=x3,且∀x∈R,f(x)=f(2﹣x),则f(2017.5)=()A.B.C.0 D.111.(5分)某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是()A.甲B.乙C.丙D.丁12.(5分)已知函数f(x)=,若f(f(m))≥0,则实数m的取值范围是()A.[﹣2,2]B.[﹣2,2]∪[4,+∞)C.[﹣2,2+]D.[﹣2,2+]∪[4,+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若,则=.14.(5分)已知f(x)为奇函数,当x<0时,f(x)=x4﹣x,则曲线y=f(x)在x=1处的切线方程是.15.(5分)由y=x2﹣2和y=x围成的封闭图形面积为.16.(5分)设函数,则使得f(x)>f(2x﹣1)成立的x的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设a∈R,命题q:∀x∈R,x2+ax+1>0,命题p:∃x∈[1,2],满足(a﹣1)x﹣1>0.(1)若命题p∧q是真命题,求a的范围;(2)(¬p)∧q为假,(¬p)∨q为真,求a的取值范围.18.(12分)已知f(x)=Asin(ωx+ϕ)(过点,且当时,函数f(x)取得最大值1.(1)将函数f(x)的图象向右平移个单位得到函数g(x),求函数g(x)的表达式;(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x﹣1,求h(x)在上的值域.19.(12分)已知函数为奇函数.(1)判断f(x)的单调性并证明;(2)解不等式.20.(12分)已知f(x)=sinx,,,,.(1)求的值.(2),求g(x)的值域.21.(12分)已知函数f(x)=1n(x﹣1)﹣k(x﹣1)+1(1)求函数f(x)的单调区间;(2)若f(x)≤0恒成立,试确定实数k的取值范围;(3)证明:且n>1)22.(12分)已知函数f(x)=e﹣x﹣ax(x∈R).(1)当a=﹣1时,求函数f(x)的最小值;(2)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围.2018年辽宁省鞍山一中高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B=x{x|x2﹣x﹣6<0},则()A.A∩B={x|x<1}B.A∪B=R C.A∪B={x|x<2}D.A∩B={x|﹣2<x<1}【解答】解:集合A={x|x<1},B=x{x|x2﹣x﹣6<0}={x|﹣2<x<3},则A∩B={x|﹣2<x<1},A∪B={x|x<3},故选D.2.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.B. C.D.【解答】解:∵函数f(x)=e x+4x﹣3,∴f′(x)=e x+4>0,∴函数f(x)=e x+4x﹣3在(﹣∞,+∞)上为增函数,∵f()=+1﹣3<0,f()=+2﹣3=﹣1>0,∴f()•f()<0,∴函数f(x)=e x+4x﹣3的零点所在的区间为(,)故选:C.3.(5分)设命题p:∃n>1,n2>2n,则¬p为()A.∀n>1,n2>2n B.∃n≤1,n2≤2n C.∀n>1,n2≤2n D.∃n>1,n2≤2n【解答】解:因为特称命题的否定是全称命题,所以命题p:∃n>1,n2>2n,则¬p为∀n>1,n2≤2n.故选:C.4.(5分)函数的对称轴为()A.B.C.D.【解答】解:f(x)=sin2x+cos2x=2sin(2x+),令2x+=+kπ,解得x=+,k∈Z.故选:D.5.(5分)指数函数f(x)=a x(a>0,且a≠1)在R上是减函数,则函数在其定义域上的单调性为()A.单调递增B.单调递减C.在(0,+∞)上递增,在(﹣∞,0)上递减D.在(0,+∞)上递减,在(﹣∞,0)上递增【解答】解:∵指数函数f(x)=a x在R上是减函数,∴0<a<1,∴﹣2<a﹣2<﹣1,而函数y=x2在(﹣∞,0)上递减,在区间(0,+∞)上递增;∴g(x)在区间(﹣∞,0)上递增,在区间(0,+∞)上递减;故选:C.6.(5分)设a=log510,b=log612,c=1+log72,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c【解答】解:∵a=log510=1+log52,b=log612=1+log62,c=1+log72,log52>log62>log72,∴a>b>c.故选:D.7.(5分)已知函数f(x)=ln(﹣x2﹣2x+3),则f(x)的增区间为()A.(﹣∞,﹣1)B.(﹣3,﹣1)C.[﹣1,+∞)D.[﹣1,1)【解答】解:由﹣x2﹣2x+3>0,解得:﹣3<x<1,而y=﹣x2﹣2x+3的对称轴是x=﹣1,开口向下,故y=﹣x2﹣2x+3在(﹣3,﹣1)递增,在(﹣1,1)递减,由y=lnx递增,根据复合函数同增异减的原则,得f(x)在(﹣3,﹣1)递增,故选:B.8.(5分)函数f(x)=x3﹣3x﹣1,若对于区间[﹣3,2]上的任意x1,x2都有|f (x1)﹣f(x2)|≤t,则实数t的最小值是()A.20 B.18 C.3 D.0【解答】解:对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,等价于对于区间[﹣3,2]上的任意x,都有f(x)max﹣f(x)min≤t,∵f(x)=x3﹣3x﹣1,∴f′(x)=3x2﹣3=3(x﹣1)(x+1),∵x∈[﹣3,2],∴函数在[﹣3,﹣1]、[1,2]上单调递增,在[﹣1,1]上单调递减∴f(x)max=f(2)=f(﹣1)=1,f(x)min=f(﹣3)=﹣19∴f(x)max﹣f(x)min=20,∴t≥20∴实数t的最小值是20,故选A.9.(5分)如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是()A.B.C.D.【解答】解:当x=0时,y=EB+BC+CD=BC=;当x=π时,此时y=AB+BC+CA=3×=2;当x=时,∠FOG=,三角形OFG为正三角形,此时AM=OH=,在正△AED中,AE=ED=DA=1,∴y=EB+BC+CD=AB+BC+CA﹣(AE+AD)=3×﹣2×1=2﹣2.如图.又当x=时,图中y0=+(2﹣)=>2﹣2.故当x=时,对应的点(x,y)在图中红色连线段的下方,对照选项,D正确.故选D.10.(5分)已知函数f(x)的定义域为R的奇函数,当x∈[0,1]时,f(x)=x3,且∀x∈R,f(x)=f(2﹣x),则f(2017.5)=()A.B.C.0 D.1【解答】解:∀x∈R,f(x)=f(2﹣x),∴f(x+2)=f(﹣x)=﹣f(x),故f(2017.5)=f(1009×2﹣0.5)=f(0.5)=f(0.5)=(0.5)3=,故选:B.11.(5分)某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是()A.甲B.乙C.丙D.丁【解答】解:假如甲:我没有偷是真的,乙:丙是小偷、丙:丁是小偷是假的,丁:我没有偷就是真的,与他们四人中只有一人说真话矛盾,假如甲:我没有偷是假的,那么丁:我没有偷就是真的,乙:丙是小偷、丙:丁是小偷是假的,成立,故选:A.12.(5分)已知函数f(x)=,若f(f(m))≥0,则实数m的取值范围是()A.[﹣2,2]B.[﹣2,2]∪[4,+∞)C.[﹣2,2+]D.[﹣2,2+]∪[4,+∞)【解答】解:令f(m)=t⇒f(t)≥0⇒⇒﹣1≤t≤1;⇒t≥3下面求解﹣1≤f(m)≤1和f(m)≥3,⇒﹣2≤m≤1,⇒1<m≤2+,⇒m无解,⇒m≥4,综上实数m的取值范围是[﹣2,2+]∪[4,+∞).故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若,则=.【解答】解:,则:=,==.故答案为:.14.(5分)已知f(x)为奇函数,当x<0时,f(x)=x4﹣x,则曲线y=f(x)在x=1处的切线方程是5x+y﹣3=0.【解答】解:f(x)为奇函数,当x<0时,f(x)=x4﹣x,可得x>0时,﹣x<0,f(﹣x)=x4+x,又f(﹣x)=﹣f(x),可得f(x)=﹣x4﹣x,(x>0),则f′(x)=﹣4x3﹣1(x>0),可得y=f(x)在x=1处的切线斜率为﹣4﹣1=﹣5,切点为(1,﹣2),则y=f(x)在x=1处的切线方程为y+2=﹣5(x﹣1),即为5x+y﹣3=0.故答案为:5x+y﹣3=0.15.(5分)由y=x2﹣2和y=x围成的封闭图形面积为.【解答】解:联立,解得:,或,则A(2,2),B(﹣1,﹣1),S=(x﹣x2+2)dx=(x2﹣x3+2x)=(×4﹣×8+2×2)﹣(×1+﹣2)=,∴y=x2﹣2和y=x围成的封闭图形面积,故答案为:.16.(5分)设函数,则使得f(x)>f(2x﹣1)成立的x的取值范围是.【解答】解:∵函数,f(﹣x)===f(x),故函数为偶函数,当x>0时,=>0恒成立函数为增函数,若使得f(x)>f(2x﹣1)成立,则|x|>|2x﹣1|,即x2>(2x﹣1)2,解得:x∈,故答案为:三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设a∈R,命题q:∀x∈R,x2+ax+1>0,命题p:∃x∈[1,2],满足(a﹣1)x﹣1>0.(1)若命题p∧q是真命题,求a的范围;(2)(¬p)∧q为假,(¬p)∨q为真,求a的取值范围.【解答】解:(1)p真,则或得;q真,则a2﹣4<0,得﹣2<a<2,∴p∧q真,.(2)由(¬p)∧q为假,(¬p)∨q为真⇒p、q同时为假或同时为真,若p假q假,则,⇒a≤﹣2,若p真q真,则,⇒综上a≤﹣2或.18.(12分)已知f(x)=Asin(ωx+ϕ)(过点,且当时,函数f(x)取得最大值1.(1)将函数f(x)的图象向右平移个单位得到函数g(x),求函数g(x)的表达式;(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x﹣1,求h(x)在上的值域.【解答】解:(1)由题意可得A=1,由函数过,得,结合范围,由,∵0<ω<4,∴可得:ω=2,可得:,∴.(2)∵,由于,可得:,∴h(x)在上的值域为[﹣1,2].19.(12分)已知函数为奇函数.(1)判断f(x)的单调性并证明;(2)解不等式.【解答】解:(1)由已知f(﹣x)=﹣f(x),∴∴,a=﹣2,∵,∴为单调递增函数.(2)∵,∴,而f(x)为奇函数,∴∵f(x)为单调递增函数,∴,∴,∴﹣3≤log2x≤1,∴.20.(12分)已知f(x)=sinx,,,,.(1)求的值.(2),求g(x)的值域.【解答】解:(1)∵,∴,∵,∴,∴,,又,∴,∴∴=.(2)令,则∴g(x)的值域为.21.(12分)已知函数f(x)=1n(x﹣1)﹣k(x﹣1)+1(1)求函数f(x)的单调区间;(2)若f(x)≤0恒成立,试确定实数k的取值范围;(3)证明:且n>1)【解答】解:(1)∵f(x)=1n(x﹣1)﹣k(x﹣1)+1,∴x>1,,∵x>1,∴当k≤0时,>0,f(x)在(1,+∞)上是增函数;当k>0时,f(x)在(1,1+)上是增函数,在(1+,+∞)上为减函数.(2)∵f(x)≤0恒成立,∴∀x>1,ln(x﹣1)﹣k(x﹣1)+1≤0,∴∀x>1,ln(x﹣1)≤k(x﹣1)﹣1,∴k>0.由(1)知,f(x)max=f(1+)=ln≤0,解得k≥1.故实数k的取值范围是[1,+∞).(3)令k=1,则由(2)知:ln(x﹣1)≤x﹣2对x∈(1,+∞)恒成立,即lnx≤x﹣1对x∈(0,+∞)恒成立.取x=n2,则2lnn≤n2﹣1,即,n≥2,∴且n>1).22.(12分)已知函数f(x)=e﹣x﹣ax(x∈R).(1)当a=﹣1时,求函数f(x)的最小值;(2)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围.【解答】解:(1)当a=﹣1时,f(x)=e﹣x+x,则f′(x)=﹣+1.令f'(x)=0,得x=0.当x<0时,f'(x)<0;当x>0时,f'(x)>0.∴函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x=0时,函数f(x)取得最小值,其值为f(0)=1f(x)的最小值为1.(2)若x≥0时,f(﹣x)+ln(x+1)≥1,即e x+ax+ln(x+1)﹣1≥0(*)令g(x)=e x+ax+ln(x+1)﹣1,则①若a≥﹣2,由(1)知e﹣x+x≥1,即e﹣x≥1﹣x,故e x≥1+x∴函数g(x)在区间[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴(*)式成立.②若a<﹣2,令,则∴函数ϕ(x)在区间[0,+∞)上单调递增,由于ϕ(0)=2+a<0,.故∃x0∈(0,﹣a),使得ϕ(x0)=0,则当0<x<x0时,ϕ(x)<ϕ(x0)=0,即g'(x)<0.∴函数g(x)在区间(0,x0)上单调递减,∴g(x0)<g(0)=0,即(*)式不恒成立.综上所述,实数a的取值范围是[﹣2,+∞).。

最新-2018年普通高等学校招生全国统一考试数学理辽宁

最新-2018年普通高等学校招生全国统一考试数学理辽宁

2018年普通高等学校招生全国统一考试数学理(辽宁卷,含答案)一- 选择题(每小题5分,共60分)(1)已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N=(A) {x|-5<x<5} (B) {x|-3<x<5}(C) {x|-5<x ≤5} (D) {x|-3<x ≤5}(2)已知复数12z i =-,那么1z= (A)55+ (B)55- (C )1255i + (D )1255i -(3)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b += (A(B) (C) 4 (D)12 (4) 已知圆C 与直线x-y=0 及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为(A )22(1)(1)2x y ++-= (B) 22(1)(1)2x y -++= (C) 22(1)(1)2x y -+-= (D) 22(1)(1)2x y +++=(5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A )70种 (B ) 80种 (C ) 100种 (D )140种 (6)设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则 69S S = (A ) 2 (B ) 73(C ) 83 (D )3(7)曲线y=2xx -在点(1,-1)处的切线方程为 (A )y=x-2 (B) y=-3x+2 (C)y=2x-3 (D)y=-2x+1 (8)已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f = (A )23- (B) - 12 (C) 23 (D) 12(9)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是(A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23) 10)某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,。

2018年普通高等学校招生全国统一考试模拟试题二 数学(理科)含答案

2018年普通高等学校招生全国统一考试模拟试题二 数学(理科)含答案

2018年普通高等学校招生全国统一考试模拟试题二数学(理科)本试卷共5页,23 小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,并将条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污.损2.选择题每小题选出答案后,用2B铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再做答.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A 2,1,0,1,2, B {x|R x 1x 20},则A BA.1,0,1B.1,0C.2,1,0D.0,1,22.已知,是相异两平面,m,n是相异两直线,则下列命题中错误的是A.若m//n,m ,则n B.若m ,m ,则//C.若m ,m//,则D.若m//,n,则m//n3.变量X服从正态分布X定点N 10,2,P X 12a,P 8X10b,则直线ax by 1过A.(1,1)B.(1,2)C.(2,1)D.(2,2)4.“欧几里得算法”是有记载的最古老的算法,可追溯至公元前300年前,上面的程序框图的算法思路就是来源于“欧几里得算法”,执行该程序框图(图中“aMODb”表示a除以b的余数),若输入的a,b分别为675,125,..则输出的 a()A. 0B . 25C. 50D. 755.记不等式组x y 2 2 x y 2 y 2 0表示的平面区域为 ,点 M 的坐标为 x,y.已知命题 p:M , xy的最小值为 6;A.命题p q q: M , p qB . 45x 2 y 220 qC.;则下列命题中的真命题是 pq 、p q 、q D .都是假命题6.设F , F 为椭圆 C : x 122my 21的两个焦点,若点 F 在圆 F : x122( y1 2m )2 n上, 则椭圆 C 的方程为A . x2y 2 x 2 1 B .x 2 2 y 2 1C.22y21D .2 x2y217.若a20 c o s x d x ,则 ( xa x2 6) 的展开式中含 x 5 项的系数为8. 12 A .A .24已 知 定 义 在 R 上 的 奇 函 数 fx 满足 fC .12x 2f x, 当 D . 24x0,1时 ,f x 2x1,则A.f6f7f11 2B.f112f 7f 6C.f7f1111f 79.庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何 图f 6D . f 6f22顶点的多边形为正五边形,且PT51AT2.下列关系中正确的是A.BP TS 5151RS B.C Q TP22TSC.ES AP 5151 BQ D.AT BQ22CR10.已知函数f(x)2sin(2x6)在[a4,a](a R)上的最大值为y1,最小值为y,则2y y12的取值范围是A.[22,2]B.[2,22]C.[ 2,2]D.[22,22]11.对于任一实数序列A a,a,a, ,定义A为序列a a,a a,a a, ,它的123213243第n项是an 1an,假定序列(A)的所有项都是1,且a a1820170,则a2018A.0B.1000 C. 1009D.201812.已知M {|f ()0},N {|g()0},若存在M ,N,使得||1,则称函数f(x)与g(x)互为“和谐函数”.若f(x)2x 2x 3与g(x)x2ax a 3互为“和谐函数”则实数a的取值范围为A.(2,)B.[2,)C.(2,3)D.(3,)二、填空题:本大题共4小题,每题5分,满分20分.把答案填在题中的横线上.13.设复数z22 i(其中i为虚数单位),则复数z的实部为_____,虚部为_____.14.点F为双曲线E:x2y21(a 0,b 0)a2b2的右焦点,点P为双曲线上位于第二象限的点,点P关于原点的对称点为Q,且PF 2FQ,OP 5a,则双曲线E的离心率为_____.15.在数列an 中,如果存在非零常数T,使得an Ta对于任意的正整数n均成立,那么就n称数列an 为周期数列,其中T叫数列a的周期.已知数列b满n n足:b b b (n N*),若b 1,b a(a R,a 0)当数列b的周期最小时,该数列的前2018项的和是,_____. 1 2 n16.一个正八面体的外接球的体积与其内切球的体积之比的比值为_________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)设△ABC的内角A,B,C的对边分别是a,b,c,M为A C的中点,且4a 4b cos C 3c s in B.(Ⅰ)求cos B的大小;B(Ⅱ)若ABM 450,a 52,求ABC的面积.A M C18.(本小题满分12分)为了治理大气污染,某市2017年初采用了一系列措施,比如“煤改电”,“煤改气”,“整治散落污染企业”等.下表是该市2016年11月份和2017年11月份的空气质量指数(AQI)(AQI指数越小,空气质量越好)统计表.根据表中数据回答下列问题:(1)将2017年11月的空气质量指数AQI数据用该天的对应日期作为样本编号,再用系统抽样方法从中抽取6个AQI数据,若在2017年11月16日到11月20日这五天中用简单随机抽样抽取到的样本的编号是19号,写出抽出的样本数据;(2)根据《环境空气质量指数(A QI )技术规定(试行)》规定:当空气质量指数为0~50(含50)时,空气质量级别为一级,用从(1)中抽出的样本数据中随机抽取三天的数据,空气质量级别为一级的天数为,求的分布列及数学期望;(3)求出这两年11月空气质量指数为一级的概率,你认为该市2017年初开始采取的这些大气污染治理措施是否有效?19.(本小题满分12分)C如图,底面为直角三角形的三棱柱ABC A B C中,AB AC AA1111,A BA AB A AC 60 110,点D在棱BC上,且AC //1平面ADB.1(Ⅰ)求二面角A-B C-D11的余弦值;C(Ⅱ)求AB1与平面ABC所成角的正弦值.A DB20.(本小题满分12分)已知点A(0,1),B为y轴上的动点,以AB为边作菱形ABCD,使其对角线的交点恰好落在x轴上.(Ⅰ)求动点D的轨迹E的方程;(Ⅱ)过点A的直线l交轨迹E于M、N两点,分别过点M、N作轨迹E的切线l、l12,且l1与l2交于点P.(ⅰ)证明:点P在定直线上,并写出定直线的方程;(ⅱ)求OMN的面积的最小值.21.(本小题满分12分)111已知函数f x l n xa Rx 1(Ⅰ)讨论函数f x的单调性;.(Ⅱ)若fx 有两个极值点x,x12,证明:fx x122fx f x122.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy中,曲线C:x y 41,曲线C:2x 1cosy sin(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(I)求曲线C,C12的极坐标方程;(II)若射线(0)与曲线C,C12的公共点分别为A,B,求OBOA的最大值.23.(本小题满分10分)选修4-5:不等式选讲已知a 0,b 0,c 0,函数f x c a x x b.(I)当a b c1时,求不等式fx3的解集;(II)当 fx 的最小值为3时,求a b c的值,并求111a b c的最小值.2018年普通高等学校招生全国统一考试模拟试题(二)参考答案一、选择题:题号123456789101112ax二、填空题:13.31,2214.515. 134616.33三、解答题17. (Ⅰ) 由题设知:4sin( B C ) 4sin A 4sin B c os C 3sin C sin BB4cos B 3sin B 0 93c os 2 B , 即 cos B 25 5.………………4 分N AMC(II )取 AB 的中点 N ,连 MN ,则 MN / / B C 且 MN5 22s in BNM sin B4 5,……………7 分由 BM MN MNsin BNM sin NBM sin ABM知: 4 5 2 1BM 4 5 2 sin 450……………9 分2 4 3S 2S BM BC sin( B 450 ) 4 5 2 ( ) 4 ABC MBC ………………12 分18.解:(1)系统抽样,分段间隔k 30 65, 抽出的样本的编号依次是 4 号、9 号、14 号、 19 号、24 号、29 号, 对应的样本数据依次是 分28 、56、94、48、40、221. (3)C k C 3k(2)随机变量 所有可能的取值为 0,1,2,3,且 P ( k ) 3 3 (k 0,1,2,3)C 3 61 9 9 1P ( 0) , P (1) , P( 2) , P ( 3) ,20 20 20 20随机变量的分布列为:0 1 2 3P1209 20 9 20 1 20所以E () 01 9 9 11 2 31.5 20 20 20 20.……………9 分(3)2016 年 11 月AQI指数为一级的概率P 17 30,2017 年 11 月 AQI 指数为一级的概率P 217 30,PP ,说明这些措施是有效的.……………12 分2119. (Ⅰ)解:连 A B ,得 A B ABO , 连 OD ;111ZC'则 O D 平面 ADB1∵ AC / / 平面ADB11平面 A C B ,且 O 为 A B 的中点11A'B'2 5 5CDA BxY∴ A C / /O D ,且 D 为 BC 的中点……………2 分1AB AC AA 1, A ABA AC 60 11∴ A BAC A A , A D B C , AD B C1111设 BC2a ,又底面为直角三角形得 A D AD a , AB AC AA112a∴ A DA 90 10 ,即 A DA D 1,得 A D 1平面 ABC ……………4 分以 D 为原点, DA , DB , DA 分别为 x , y , z 1轴建立空间直角坐标系, 则由 A (a ,0,0) , B (0, a ,0) , C (0,a ,0) , A (0,0, a ) ,1AA / / B B / /C C 知: AABB CC (a ,0, a ) 111111,得B (a, a , a ) 1,C (a, a, a ) 1;∴BC(0, 2a ,0) , AB (2a , a , a ) , DB (a, a , a ) , DA (0,0, a ) 1 1111,………6 分设n( x , y , z ) 且 n平面 AB C 1 11 1,则n B C2ay 01 1n AB 2ax ay az 01 取 x1 得 n(1,0,2) ;设 n平面 DB C ,同理:且 n(1,0,1) 121 12 (8)分∴cos n , n123 3 105 2 10,故二面角A -BC -D 1 1的余弦值为3 10 10;…10 分又 DA 为平面 1ABC的法向量,且cos DA , AB111 666,∴ AB 与平面 ABC 所成角的正弦值 1 6 6.……………12 分20. 解:(Ⅰ)设 D ( x , y ) ,则由题设知:B (0, y ) , 由 AB A D 知 x 2 ( y 1)2( y 1)2 ,得 x24 y ( y 0) 为动点 D 的轨迹 E 的方程;……………4 分x x 2 x 2(Ⅱ) (ⅰ)由(Ⅰ)知: y ' ,设 M ( x ,y )、N ( x ,y ) ,则 y 1 , y 2 2 4 4;AM ( x , 1 x 2 x 2 x 2 x 2 1 1)、AN ( x , 2 1) 由题设知: x ( 2 1) x ( 1 4 4 4 41),得x x4 12;1 21 12 2 2 12切线xl : y y 1 ( x x ) 2的方程为x x 2 y 1 x 1 ; 2 4切线 l 2的方程为x x 2 y2 x 2 ; 2 4两者联立得: xx +x x x1 2 ,y 1 21;即点 P 在定直线 2 4y1上; (9)分(ⅱ)由(Ⅰ)及(ⅰ)知:S OMN 1 1 1OA x x ( x x ) 2 4 x x ( x x ) 2 2 22 16 2; 即点 P (0, 1) 时, (S) OMN min2 .……………12 分21. 解 : ( Ⅰ )1 a ( x 1) ax x f '(x ) x ( x 1)22 (2 a ) x 1 x ( x 1)2 ( x 0),(a 2) 2 4 a (a 4) ;当 a 4 时, f '(x ) 0 , f ( x ) 在 (0, )上单调递增;当a 4时 ,f ( x )在(0,a 2 a (a 4) 2)上 单 调 递 增 , 在( a 2 a (a 4) a 2 a (a 4) a 2 a (a 4) , ) 上单调递减,在 (2 2 2, )上 单调递增;……………6 分(Ⅱ)由(Ⅰ)知: a 4 且 x xa 2 , x x1 121 2ax ( x 1) ax ( x 1)f ( x ) f ( x ) ln x x 1 2 2 1 a ,(x 1)(x 1) 1 2a 2 a x x a 2 a 2 a 2而 f ( 1 2 ) f ( ) ln ln (a 2) 2 2 2 a 2 22 1x x f ( x ) f ( x ) a 2 a f ( 1 2 ) 1 2 ln 2 h (a )2 2 2 2,2 1 4 ah '(a ) ( 1) 0 a 2 2 2(a 2),得 h (a ) 在 (4,) 上为减函数,又 h (4) 0 ,即 h (a ) 0 ;则 f ( x x f (x ) f ( x ) 1 2 ) 1 2 2 2……………12 分22.解:(I )曲线 C 的极坐标方程为 (cos sin ) 4 ,1曲 线 C 的 普 通 方 程 为 ( x 1) 2 y 2 1 , 所 以 曲 线 C 的 极 坐 标 方 程 为 2 22cos . …………4 分(II )设设A ( , ) ,B ( , ) ,因为 A , B 是射线与曲线 124,则 ,2 cos ,42 cossinC , C 12的公共点,所以不妨1 1 1 12 1 2 1 2 1 2 , ,1 2 1 2 21 . 1 2| OB | 12 2cos | OA | 41(cossin)1 1(cos 2sin 21) 2 cos(2 ) 1 4 4 4,所以当| OB | 时, 8| OA | 2 1取得最大值 . ……………10 分4 23.解:(I ) fxx 1x 11x11x 1{ 或 { 1 2 x 3 3 3或{x 1 2x 1 3, 解 得{x | x 1或x 1}(II ) .……………5 分fxc a x x b a x x b c a b c a b c 31 1 1 1 1 1 1 1 b a c a c ba b c 3a b c 3 a b c 3 a b a c b c,13 2 2 2 3 3.当且仅当a b c 1时取得最小值 3.……………10 分19.如图,在三棱柱ABC A B C 体,平面 A B C平面 AAC C , BAC90 1 1 11 11 1.(I )证明:ACCA 1;(II )若A B C 1 1是正三角形,AB 2 A C 2,求二面角A ABC 1的大小.3BB1CC1AA1。

2018年辽宁省鞍山一中高考数学一模试卷(理科)

2018年辽宁省鞍山一中高考数学一模试卷(理科)

2018年辽宁省鞍山一中高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(★)已知集合A={x|x<1},B=x{x|x 2-x-6<0},则()A.A∩B={x|x<1}B.A∪B=RC.A∪B={x|x<2}D.A∩B={x|-2<x<1}2.(★)在下列区间中,函数f(x)=e x+4x-3的零点所在的区间为()A.B.C.D.3.(★)设命题p:∃n>1,n 2>2 n,则¬p为()A.∀n>1,n2>2n B.∃n≤1,n2≤2n C.∀n>1,n2≤2n D.∃n>1,n2≤2n4.(★)函数的对称轴为()A.B.C.D.5.(★)指数函数f(x)=a x(a>0,且a≠1)在R上是减函数,则函数在其定义域上的单调性为()A.单调递增B.单调递减C.在(0,+∞)上递增,在(-∞,0)上递减D.在(0,+∞)上递减,在(-∞,0)上递增6.(★)设a=log 510,b=log 612,c=1+log 72,则()A .c >b >aB .b >c >aC .a >c >bD .a >b >c7.(★)已知函数f (x )=ln (-x 2-2x+3),则f (x )的增区间为( )A .(-∞,-1)B .(-3,-1)C .[-1,+∞)D .[-1,1)8.(★★)函数f (x )=x 3-3x-1,若对于区间[-3,2]上的任意x 1,x 2都有|f (x 1)-f (x2)|≤t ,则实数t 的最小值是( )A .20B .18C .3D .09.(★★)如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧的长为x (0<x <π),y=EB+BC+CD ,若l 从l 1平行移动到l 2,则函数y=f (x )的图象大致是( )A .B .C .D .10.(★)已知函数f (x )的定义域为R 的奇函数,当x ∈[0,1]时,f (x )=x 3,且∀x ∈R ,f (x )=f (2-x ),则f (2017.5)=( )A .B .C .0D .111.(★)某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是( )A .甲B .乙C .丙D .丁12.(★★)已知函数f(x)= ,若f(f(m))≥0,则实数m的取值范围是()A.[-2,2]B.[-2,2]∪[4,+∞)C.[-2,2+]D.[-2,2+]∪[4,+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(★★★)若,则= .14.(★★★)已知f(x)为奇函数,当x<0时,f(x)=x 4-x,则曲线y=f(x)在x=1处的切线方程是.15.(★★)由y=x 2-2和y=x围成的封闭图形面积为.16.(★★)设函数,则使得f(x)>f(2x-1)成立的x的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(★★★)设a∈R,命题q:∀x∈R,x 2+ax+1>0,命题p:∃x∈[1,2],满足(a-1)x-1>0.(1)若命题p∧q是真命题,求a的范围;(2)(¬p)∧q为假,(¬p)∨q为真,求a的取值范围.18.(★★★★)已知f(x)=Asin(ωx+ϕ)(过点,且当时,函数f(x)取得最大值1.(1)将函数f(x)的图象向右平移个单位得到函数g(x),求函数g(x)的表达式;(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos 2x-1,求h(x)在上的值域.19.(★★★★)已知函数为奇函数.(1)判断f(x)的单调性并证明;(2)解不等式.20.(★★★)已知f(x)=sinx,,,,.(1)求的值.(2),求g(x)的值域.21.(★★★★★)已知函数f(x)=ln(x-1)-k(x-1)+1(1)求函数f(x)的单调区间;(2)若f(x)≤0恒成立,试确定实数k的取值范围;(3)证明:且n>1)22.(★★★★★)已知函数f(x)=e -x-ax(x∈R).(1)当a=-1时,求函数f(x)的最小值;(2)若x≥0时,f(-x)+ln(x+1)≥1,求实数a的取值范围.。

2018年高考仿真卷理科数学试卷(二)含解析答案

2018年高考仿真卷理科数学试卷(二)含解析答案

2018高考仿真卷·理科数学(二)(考试时间:120分钟试卷满分:150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,则复数=()A.-2+iB.iC.2-iD.-i2.已知集合M={x|x2-4x<0},N=,则M∪N=()A.[-2,4)B.(-2,4)C.(0,2)D.(0,2]3.采用系统抽样的方法从 1 000人中抽取50人做问卷调查,为此将他们随机编号为1,2,3,…,1 000,适当分组后,在第一组中采用简单随机抽样的方法抽到的号码为8.若编号落在区间[1,400]上的人做问卷A,编号落在区间[401,750]上的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A.12B.13C.14D.154.已知命题p:函数y=ln(x2+3)+的最小值是2;命题q:“x>2”是“x>1”的充分不必要条件.则下列命题是真命题的是()A.p∧qB.(p)∧(q)C.(p)∧qD.p∧(q)5.已知点A是抛物线C1:y2=2px(p>0)与双曲线C2:=1(a>0,b>0)的一条渐近线的交点,若点A 到抛物线C1的焦点的距离为p,则双曲线C2的离心率等于()A. B. C. D.6.的展开式中含x的正整数指数幂的项的个数是()A.1B.2C.3D.47.若数列{a n}是等差数列,则下列结论正确的是()A.若a2+a5>0,则a1+a2>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a3>D.若a1<0,则(a2-a1)( a4-a2)>08.如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,若V 正四棱锥P-ABCD=,则球O的表面积是()A.4πB.8πC.12πD.16π9.已知变量x,y满足线性约束条件若目标函数z=kx-y仅在点(0,2)处取得最小值,则k的取值范围是()A.k<-3B.k>1C.-1<k<1D.-3<k<110.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为()A. B. C. D.11.已知M是△ABC内一点(不含边界),且=2,∠BAC=30°.若△MBC,△MCA,△MAB的面积分别为x,y,z,记f(x,y,z)=,则f(x,y,z)的最小值为()A.26B.32C.36D.4812.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“商高线”.给出下列四个集合:①M=;②M={(x,y)|y=sin x+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x-2}.其中是“商高线”的序号是()A.①②B.②③C.①④D.②④第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输入x=0.1,则输出的m值为.14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为.15.关于函数f(x)=2(sin x-cos x)cos x的下列四个结论:①函数f(x)的最大值为;②把函数f(x)=sin 2x-1的图象向右平移个单位后可得到函数f(x)=2(sin x-cos x)·cos x 的图象;③函数f(x)的单调递增区间为,k∈Z;④函数f(x)的图象的对称中心为,k∈Z.其中正确的结论有个.16.已知数列{a n}满足a1=,a n-1-a n=(n≥2),则该数列的通项公式为.三、解答题(本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知A=,sin B=3sin C.(1)求tan C的值;(2)若a=,求△ABC的面积.18.(本小题满分12分)某青少年研究中心为了统计某市青少年(18岁以下)2018年春节所收压岁钱的情况进而研究青少年的消费去向,随机抽查了该市60名青少年所收压岁钱的情况,得到如下数据统计表(图①).已知“压岁钱不少于2千元的青少年”与“压岁钱少于2千元的青少年”人数比恰好为2∶3.(1)试确定x,y,p,q的值,并补全频率分布直方图(图②);(2)该机构为了进一步了解这60名青少年压岁钱的消费去向,将这60名青少年按“压岁钱不少于2千元”和“压岁钱少于2千元”分为两部分,并且用分层抽样的方法从中抽取10人,若需从这10人中随机抽取3人进行问卷调查.设ξ为抽取的3人中“压岁钱不少于2千元的青少年”的人数,求ξ的分布列和均值;(3)若以频率估计概率,从该市青少年中随机抽取15人进行座谈,若15人中“压岁钱不少于2千元的青少年”的人数为η,求η的均值.图①图②19.(本小题满分12分)在如图所示的多面体中,四边形ABCD是菱形,ED∥FB,ED⊥平面ABCD,AD=BD=2,BF=2DE=2.(1)求证:AE⊥CF;(2)求二面角A-FC-E的余弦值.20.(本小题满分12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆C 上.(1)求椭圆C的方程;(2)设P是椭圆C长轴上的一个动点,过点P作斜率为的直线l交椭圆C于A,B两点,求证:|PA|2+|PB|2为定值.21.(本小题满分12分)已知函数f(x)=-x3+x2(x∈R),g(x)满足g'(x)=(a∈R,x>0),且g(e)=a,e为自然对数的底数.(1)已知h(x)=e1-x f(x),求曲线h(x)在点(1,h(1))处的切线方程;(2)若存在x∈[1,e],使得g(x)≥-x2+(a+2)x成立,求a的取值范围;(3)设函数F(x)=O为坐标原点,若对于y=F(x)在x≤-1时的图象上的任一点P,在曲线y=F(x)(x∈R)上总存在一点Q,使得<0,且PQ的中点在y轴上,求a的取值范围.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题评分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C:ρcos2θ=2a sin θ(a>0),过点P(-4,-2)的直线l的参数方程为(t为参数),直线l与曲线C分别交于点M,N.(1)写出C的直角坐标方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.23.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x-1|+|x+1|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)>a2-x2+2x在R上恒成立,求实数a的取值范围.参考答案2018高考仿真卷·理科数学(二)1.B解析 (方法一)=i.(方法二)=i.2.A解析∵M={x|0<x<4},N={x|-2≤x≤2},∴M∪N=[-2,4).3.A解析若采用系统抽样的方法从1 000人中抽取50人做问卷调查,则需要分为50组,每组20人.若第一组抽到的号码为8,则以后每组抽取的号码分别为28,48,68,88,108,…,所以编号落在区间[1,400]上的有20人,编号落在区间[401,750]上的有18人.所以做问卷C 的有12人.4.C解析因为命题p为假命题,命题q为真命题,所以(p)∧q为真命题.5.C解析因为点A到抛物线C1的焦点的距离为p,所以点A到该抛物线准线的距离为p.所以点A的坐标为所以双曲线C2的渐近线方程为y=±2x.所以=2.所以b2=4a2.又b2=c2-a2,所以c2=5a2.所以双曲线C2的离心率为6.B解析的展开式中第r+1项为)12-r=(-1)r当6-为正整数时,可知r=0或r=2,故的展开式中含x的正整数指数幂的项的个数是2.7.C解析设等差数列{a n}的公差为d,若a2+a5>0,则a1+a2=(a2-d)+(a5-3d)=(a2+a5)-4d.由于d的正负不确定,因而a1+a2的符号不确定,故选项A错误.若a1+a3<0,则a1+a2=(a1+a3)-d.由于d的正负不确定,因而a1+a2的符号不确定,故选项B 错误.若0<a1<a2,则d>0.所以a3>0,a4>0.所以-a2a4=(a1+2d)2-(a1+d)(a1+3d)=d2>0.所以a3>故选项C正确.由于(a2-a1)(a4-a2)=d(2d)=2d2,而d有可能等于0,故选项D错误.8.D解析连接PO,由题意知,PO⊥底面ABCD,PO=R,S正方形ABCD=2R2.因为V正四棱锥P-ABCD=,所以2R2·R=,解得R=2.所以球O的表面积是16π.9.D解析如图,作出题中不等式组所表示的平面区域.由z=kx-y得y=kx-z,要使目标函数z=kx-y仅在点A(0,2)处取得最小值,则阴影部分区域在直线y=kx+2的下方,故目标函数线的斜率k满足-3<k<1.10.D解析由该几何体的三视图可得其直观图为如图所示的三棱锥,且从点A出发的三条棱两两垂直,AB=1,PC=,PB=a,BC=b.可知PA2+AC2=a2-1+b2-1=6,即a2+b2=8.故(a+b)2=8+2ab≤8+2,即a+b≤4,当且仅当a=b=2时,a+b取得最大值,此时PA=,AC=所以该几何体的体积V=111.C解析由=2,∠BAC=30°,可得S△ABC=1,即x+y+z=1.故(x+y+z)=1+4+9+14+4+6+12=36,当且仅当x=,y=,z=时等号成立.因此,f(x,y,z)的最小值为36.12.D解析若对于函数图象上的任意一点M(x1,y1),在其图象上都存在点N(x2,y2),使OM⊥ON,则函数图象上的点的集合为“商高线”.对于①,若取M(1,1),则不存在这样的点;对于③,若取M(1,0),则不存在这样的点.②④都符合.故选D.13.0解析若输入x=0.1,则m=lg 0.1=-1.因为m<0,所以m=-1+1=0.所以输出的m值为0.14.-4解析因为f(x)是定义在R上的奇函数,所以f(0)=1+m=0.所以m=-1.所以f(-log35)=-f(log35)=-(-1)=-4.15.2解析因为f(x)=2sin x·cos x-2cos2x=sin 2x-cos 2x-1=sin-1,所以其最大值为-1.所以①错误.因为函数f(x)=sin 2x-1的图象向右平移个单位后得到函数f(x)=sin-1=sin-1的图象,所以②错误.由-+2kπ≤2x-+2kπ,k∈Z,得函数f(x)的单调递增区间为,k∈Z,即为,k'∈Z.故③正确.由2x-=kπ,k∈Z,得x=,k∈Z,故④正确.16.a n= 解析因为a n-1-a n=(n≥2),所以所以所以,…,所以所以所以a n=(n≥2).经检验,当n=1时也适合此公式.所以a n=17.解 (1)∵A=,∴B+C=∴sin=3sin C.cos C+sin C=3sin C.cos C=sin C.∴tan C=(2)由,sin B=3sin C,得b=3c.在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=9c2+c2-2×(3c)×c=7c2.∵a=,∴c=1,b=3.∴△ABC的面积为S=bc sin A=18.解 (1)根据题意,有解得故p=0.15,q=0.10.补全的频率分布直方图如图所示.(2)用分层抽样的方法从中抽取10人,则其中“压岁钱不少于2千元的青少年”有10=4人,“压岁钱少于2千元的青少年”有10=6人.故ξ的可能取值为0,1,2,3,且P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,所以ξ的分布列为所以E(ξ)=0+1+2+3(3)以频率估计概率,从该市青少年中随机抽取1人为“压岁钱不少于2千元的青少年”的概率是,则η~B,故随机变量η的均值为E(η)=15=6.19.(1)证明 (方法一)由题意知,在△AEF中,AE=,EF=,AF=2∴AE2+EF2=AF2,∴AE⊥EF.在△AEC中,AE=,EC=,AC=2∴AE2+EC2=AC2,∴AE⊥EC.又EF∩EC=E,∴AE⊥平面ECF.又FC⊂平面ECF,∴AE⊥FC.(方法二)∵四边形ABCD是菱形,AD=BD=2,∴AC⊥BD,AC=2故可以O为坐标原点,以OA,OB所在直线为x轴、y轴建立如图所示的空间直角坐标系.由ED⊥平面ABCD,ED∥FB,BD=2,BF=2,DE=,可知A(,0,0),E(0,-1,),C(-,0,0),F(0,1,2).=(-,-1,),=(,1,2).=(-,-1,)·(,1,2)=-3-1+4=0.∴AE⊥CF.(2)解由(1)中方法二可知A(,0,0),E(0,-1,),C(-,0,0),F(0,1,2),则=(-,1,2),=(-2,0,0),=(0,2,),=(-,1,-).设平面AFC的一个法向量为n1=(x1,y1,z1),由n1=0,n1=0,得-x1+y1+2z1=0,且-2x1=0.令z1=1,得n1=(0,-2,1).设平面EFC的一个法向量为n2=(x2,y2,z2),由n2=0,n2=0,得2y2+z2=0,且-x2+y2-z2=0.令y2=-1,得n2=(-,-1,).设二面角A-FC-E的大小为θ,则cos θ=20.(1)解因为2a=4,所以a=2.又因为焦点在x轴上,所以设椭圆方程为=1.将点代入椭圆方程得b2=1,所以椭圆方程为+y2=1.(2)证明设点P(m,0)(-2≤m≤2),可得直线l的方程是y=,由方程组消去y得2x2-2mx+m2-4=0.(*)设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根.所以x1+x2=m,x1x2=所以|PA|2+|PB|2=(x1-m)2++(x2-m)2+=(x1-m)2+(x1-m)2+(x2-m)2+(x2-m)2=[(x1-m)2+(x2-m)2]=-2m(x1+x2)+2m2]=[(x1+x2)2-2m(x1+x2)-2x1x2+2m2]=[m2-2m2-(m2-4)+2m2]=5.所以|PA|2+|PB|2为定值.21.解 (1)∵h(x)=(-x3+x2)e1-x,∴h'(x)=(x3-4x2+2x)e1-x.∴h(1)=0,h'(1)=-1.∴曲线h(x)在点(1,h(1))处的切线方程为y=-(x-1),即y=-x+1.(2)∵g'(x)=(a∈R,x>0),∴g(x)=a ln x+c(c为常数).∴g(e)=a ln e+c=a+c=a.∴c=0.∴g(x)=a ln x.由g(x)≥-x2+(a+2)x,得(x-ln x)a≤x2-2x.∵当x∈[1,e]时,ln x≤1≤x,且等号不能同时成立,∴ln x<x,即x-ln x>0.∴aa设t(x)=,x∈[1,e],则t'(x)=∵x∈[1,e],∴x-1≥0,ln x≤1,x+2-2ln x>0.∴t'(x)≥0.∴t(x)在[1,e]上为增函数.∴t(x)max=t(e)=a(3)设P(t,F(t))为y=F(x)在x≤-1时的图象上的任意一点,则t≤-1.∵PQ的中点在y轴上,∴点Q的坐标为(-t,F(-t)).∵t≤-1,∴-t≥1.∴P(t,-t3+t2),Q(-t,a ln(-t)).=-t2-at2(t-1)ln(-t)<0,∴a(1-t)ln(-t)<1.当t=-1时,a(1-t)ln(-t)<1恒成立,此时a∈R.当t<-1时,a<,令φ(t)=(t<-1),则φ'(t)=∵t<-1,∴t-1<0,t ln(-t)<0.∴φ'(t)>0.∴φ(t)=在(-∞,-1)内为增函数.∵当t→-∞时,φ(t)=0,∴φ(t)>0.∴a≤0.综上,可知a的取值范围是(-∞,0].22.解 (1)曲线C的直角坐标方程为x2=2ay(a>0),直线l的普通方程为x-y+2=0.(2)将直线l的参数方程与C的直角坐标方程联立,得t2-2(4+a)t+8(4+a)=0.(*)由Δ=8a(4+a)>0,可设点M,N对应的参数分别为t1,t2,且t1,t2是方程(*)的根,则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0,则有(4+a)2-5(4+a)=0,解得a=1或a=-4.因为a>0,所以a=1.23.解 (1)原不等式等价于解得x≤-或x故原不等式的解集为(2)令g(x)=|x-1|+|x+1|+x2-2x,则g(x)=当x∈(-∞,1]时,g(x)单调递减;当x∈[1,+∞)时,g(x)单调递增.故当x=1时,g(x)取得最小值1.因为不等式f(x)>a2-x2+2x在R上恒成立,所以a2<1,解得-1<a<1.所以实数a的取值范围是(-1,1).。

辽宁省鞍山市第一中学2017-2018学年高三12月月考(二模)理数试题 Word版含解析

辽宁省鞍山市第一中学2017-2018学年高三12月月考(二模)理数试题 Word版含解析

2017-2018学年 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|60}M x x x =+-<,{|13}N x x =≤≤,则M N = ( ) A .[1,2) B .[1,2] C .(2,3] D .[2,3] 【答案】A考点:集合运算 【名师点睛】1.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解. 2.求交、并、补的混合运算时,先算括号里面的,再按运算顺序求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 4.在解决有关A∩B=∅,A ⊆B 等集合问题时,往往忽视空集的情况,一定先考虑∅是否成立,以防漏解.2.复数212ii +-的共轭复数是( )A .35i -B .35i C .i - D .i【答案】C 【解析】 试题分析:因为212ii i+=-,所以共轭复数是i -,选C. 考点:共轭复数3.下列四个中真的个数是( )①“1x =”是“2320x x -+=”的充分不必要条件;②“,sin 1x R x ∀∈≤”的否定是“,sin 1x R x ∃∈>”; ③“若22am bm <,则a b <”的逆为真;④p :[1,),lg 0x x ∀∈+∞≥,q :2,10x R x x ∃∈++<,则p q ∨为真. A .0 B .1 C .2 D .3 【答案】D考点:真假判断 【易错点睛】充分条件、必要条件是相对的概念,在进行判断时一定要注意哪个是“条件”,哪个是“结论”,如“A 是B 成立的……条件”,其中A 是条件;“A 成立的……条件是B”,其中B 是条件.弄清是全称还是特称,是正确写出否定的前提.注意防止把的否定与否相混淆致误. 4.函数()sin()f x x ωϕ=+,(0,||)2πωϕ><的最小正周期为π,且其图象向左平移6π个单位后得到的函数为奇函数,则函数()f x 的图象( )A .关于点(,0)12π对称B .关于直线512x π=对称C .关于点5(,0)12π对称D .关于直线12x π=对称 【答案】B 【解析】试题分析:由函数最小正周期为π得22πωπ==,()sin(2)f x x ϕ=+的图象向左平移6π个单位后得到sin(2())6y x πϕ=++,因为为奇函数,所以()3k k Z πϕπ+=∈,而||2πϕ<,因此3πϕ=-即()sin(2)3f x x π=-,其对称轴为52,(),,()32122m x m m Z x m Z πππππ-=+∈=+∈,即512x π=为其一条对称轴,选B.考点:三角函数解析式,三角函数性质5.设,,αβγ为不同的平面,,m n 为不同的直线,则m β⊥的一个充分条件是( ) A .,,n m n αβαβ⊥=⊥ B .,,m αγαγβγ=⊥⊥ C .,,m αββγα⊥⊥⊥ D .,,n n m αβα⊥⊥⊥ 【答案】D考点:线面关系判断6.已知数列{}n a 满足13a =,151337n n n a a a +-=-,则2016a =( )A .3B .2C .1D .-1 【答案】B 【解析】试题分析:由151337n n n a a a +-=-得2341,2,3a a a ===,因此数列{}n a 周期为3,即201632a a ==,选B.考点:数列周期性7.若正数,x y ,满足35x y xy +=,则43x y +的最小值是( ) A .2 B .3 C .4 D .5 【答案】D 【解析】试题分析:31355x y xy y x+=⇒+=,31()1123143(43)(13)(135555x y y x x y x y y x ++=+=++≥+=当且仅当2y x =时取等号,即43x y +的最小值是5. 考点:基本不等式求最值8.已知数列{}n a 满足12n n a a n +-=*()n N ∈,13a =,则na n的最小值为( ) A .0 B.1 C .52D .3 【答案】C考点:累加法求数列通项9.已知1122log (4)log (32)x y x y ++<+-,若x y λ-<恒成立,则λ的取值范围是( )A .[10,)+∞B .(,10]-∞C .[10,20]D .[0,10] 【答案】A 【解析】 试题分析:1122log (4)log (32)4320x y x y x y x y ++<+-⇒++>+->,可行域为以(3,7)A -为射点两条射线围成区域,不包括边界,而x y λ-<恒成立等价于max ()x y λ-<,由可行域知,x y -过点A )73(-,时取最大值10,而A 点取不到,所以λ的取值范围是[10,)+∞考点:线性规划10.一个几何体的三视图如图所示,则这个几何体的外接球表面积为( ) A .163π B .83πC. D.【答案】A考点:三视图 【方法点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.11.ABC ∆中,BC 边上垂直平分线与BC 、AC 分别交于点D 、M ,若6A M B C ∙= ,且||2AB =,则||AC =( )A .4 D .【答案】C 【解析】试题分析:216()662AM BC AC CD DM BC AC BC BC ⋅=⇒++⋅=⇒⋅-=2222||2||22424AB AC CB AC CB AC CB AC CB AC BC =⇒+=⇒++⋅=⇒+-⋅=241216||4AC AC ⇒=+=⇒=选C.考点:向量数量积12.已知定义在R 上的奇函数()f x ,满足'2016()()f x f x -<恒成立,且2016(1)f e -=,则下列结论正确的是( )A .(2016)0f <B .22016(2016)f e -< C .(2)0f < D .4032(2)f e -> 【答案】D 【解析】考点:导数应用 【方法点睛】本题构造函数,并借助导数解决,需要较强的分析问题和解决问题的能力.记住一些常见函数的导数及深刻理解导数相关法则的内容是构造函数的关键:′=f ′(x )g (x )+f (x )g ′(x );.⎣⎢⎡⎦⎥⎤f x g x ′=f ′ x g x -f x g ′ x [g x ]2(g (x )≠0). 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知平面向量,a b 满足||a = ||2b = ,3a b ∙=- ,则|2|a b +=.【解析】试题分析:因为222|2|44316127a b a b a b +=++⋅=+-=,所以|2|a b += 考点:向量数量积,向量的模14.若{}n a 是正项递增等比数列,n T 表示其前n 项之积,且1020T T =,则当n T 取最小值时,n 的值为 . 【答案】15. 【解析】试题分析:510201120151615161()11T T a a a a a a =⇒⋅⋅=⇒=⇒= ,所以121415161701a a a a a a <<<<<<<<<因此当n T 取最小值时,n 的值为15. 考点:等比数列性质【方法点睛】 等比数列的性质1.对任意的正整数m 、n 、p 、q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k . 2.通项公式的推广:a n =a m qn -m(m ,n ∈N *)3.公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n;当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.4.若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍是等比数列.15.若关于x 的不等式2||20ax x a -+<的解集为空集,则实数a 的取值范围为 .【答案】[)4+∞考点:含参不等式 16.已知2|1|,0()|log |,0x x f x x x +≤⎧=⎨>⎩,方程()f x a =有四个不同的解1234,,,x x x x ,且1234x x x x <<<,则3212342()x x x x x -+的取值范围为 .【答案】5(2,]2【解析】试题分析:由题意得:12341210,122x x x x -<<-<<≤<<<,且12342,1x x x x +=-=,因此3321234321()x x x x x x x -=++,而函数1y t t=+在1[,1)2单调递减,所以所求取值范围为5(2,]2考点:函数图像与性质 【思想点睛】分段函数体现了数学的分类讨论思想,求解分段函数参数取值范围问题时应注意以下三点: (1)明确分段函数的分段区间.(2)依据自变量的取值范围,选好讨论的切入点,并建立等量或不等量关系. (3)在通过上述方法求得结果后,应注意检验所求值(范围)是否落在相应分段区间内. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(10分)已知函数()2sin sin()6f x x x π=+.(1)求函数()f x 的最小正周期和单调递增区间; (2)当[0,]2x π∈时,求函数()f x 的值域.【答案】(1)T π=,递增区间为5[,]1212k k ππππ-+,k Z ∈. (2)[0,1+(2)∵[0,]2x π∈,∴22[,]333x πππ-∈-,∴sin(2)[3x π-∈,∴()f x值域为[0,1. 10分 考点:两角和公式、二倍角公式、配角公式 18.(12分)已知数列{}n a 的前n 项和n S 和通项n a 满足21n n S a +=,等差数列1{}nb 中,1211,2b b ==.(1)求数列{}n a ,{}n b 的通项公式; (2)数列{}n c 满足nn na cb =,求证:12334n c c c c ++++< .【答案】(1)1()3nn a =,1n b n=(2)详见解析考点:求数列通项,错位相减法求和 【易错点睛】已知S n 求a n 时的三个注意点(1)重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论;特别注意a n =S n -S n -1中需n ≥2. (2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合“a n 式”,则需统一“合写” .(3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合“a n 式”,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.19.(12分)正ABC ∆的边长为4,CD 是AB 边上的高,E 、F 分别是AC 和BC 边的中点,现将ABC ∆沿CD 翻折成直二面角A-DC-B.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E-DF-C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP DE ⊥?若存在,请指出P 点的位置,若存在,请说明理由.【答案】(1)平行(2)7(3)靠近B 的三等分点考点:线面平行判定定理,利用空间向量求二面角、确定点的位置【名师点睛】判断或证明线面平行的常用方法有:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β)20.(12分)已知ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,sin sin 4sin 0A B C +-=,且ABC ∆的周长5L =,面积22161()55S a b =-+. (1)求c 和cos C 的值;(2)求22sin sin a b a A b B++的值.【答案】(1)1,c =3cos 5C =(2)54考点:正弦定理,面积公式21.(12分)已知函数()f x 的导数'2()33f x x ax =-,(0)f b =,(a ,b 为实数),12a <<. (1)若()f x 在区间[1,1]-上的最小值、最大值分别为2,1-,求a ,b 的值; (2)设函数2()[()61]x F x f x x e =++∙,试判断函数()F x 的极值点个数.【答案】(1)43a =,1b =(2)当22a ≤<时,极值点个数0;当12a <<有两个极值点.(2)2222()(3361)[33(2)1]x x F x x ax x e x a x e =-++∙=--+∙ ∴'222()[63(2)]2[33(2)1]x x F x x a e x a x e =--∙+--+∙考点:利用导数求函数最值、极值 【名师点睛】求函数最值的五个常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 提醒:在求函数的值域或最值时,应先确定函数的定义域. 22.(12分)已知函数()(2)(1)2ln f x a x x =---,1()xg x xe -=,(,a Re ∈为自然对数的底数). (1)若不等式()0f x >对于一切1(0,)2x ∈恒成立,求a 的最小值;(2)若对任意的0(0,]x e ∈,在(0,]e 上总存在两个不同的i x (1,2)i =,使0()()i f x g x =成立,求a 的取值范围.【答案】(1)24ln 2-(2)3(,2]1a e ∈-∞--因为(2)2()a x f x x --'=,所以2a ≥时()f x 在(0,]e 上单调递减,222a e-≤<时()f x 在(0,]e 上单调递减,不合题意,因此22a e <-,此时()f x 在2(0,)2a-上单调递减,在2(,)2e a -上单调递增,令22()()2ln ,()222a m a f a m a a a a-'==-=---,即()m a 在(,0)-∞上单调递增,在2(0,2)e-上单调递减,max ()(0)0,m a m ≤=∴欲使对任意的0(0,]x e ∈上总存在两个不同的(1,2)i x i =,使0()()i f x g x =成立,则需满足()1f e ≥,即321a e ≤--, 又∵2322(2)01(1)e e e e e +---=>--,∴23221e e ->--,∴321a e ≤--, 综上所述,3(,2]1a e ∈-∞--. 12分 考点:不等式恒成立问题,利用导数求存在性问题 【名师点睛】利用导数确定三次式、分式、以e 为底的指数式、对数式及三角式方程根的个数或函数零点的方法(1)构建函数g(x)(要求g ′(x)易求,g ′(x)=0可解),转化为确定g(x)的零点个数问题求解,利用导数研究函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图像草图,数形结合求解. (2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数.。

普通高等学校2018届高三招生全国统一考试模拟(二)数学(理)试题 Word版含答案

普通高等学校2018届高三招生全国统一考试模拟(二)数学(理)试题 Word版含答案

2018年普通高等学校招生全国统一考试模拟试题理数(二)本试卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i 为虚数单位,复数()12ai a R i +∈-为纯虚数,则a 的值为 A .2- B .12- C .2 D .122.已知集合{}{}()22log 3,450,R A x x B x x x A C B =<=-->⋂=则 A .[-1,8)B.(]05, C .[-1,5) D .(0,8)3.已知n S 是各项均为正数的等比数列{}n a 前n 项和,7153564,20a a a a S =+==,则A .31B .63C .16D .1274.设向量)()(,,3,1,//a b x c b c a b b ==-=-,若,则与的夹角为 A .30° B .60° C .120° D .150°5.大约2000多年前,古希腊数学家最先开始研究圆锥曲线,并获得了大量的成果,古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究这几种曲线,用垂直于锥轴的平面去截圆锥,得到的是圆;把平面再渐渐倾斜得到椭圆.若用周长为24的矩形ABCD 截某圆锥得到椭圆Γ,且Γ与矩形ABCD 的四边相切.设椭圆Γ在平面直角坐标系中的方程为()222210x y a b a b +=>>,测得Γ的离心率为2,则椭圆Γ的方程为 A .221164x y += B .2214x y +=C .2216416x y += D .22154x y += 6.已知某服装厂生产某种品牌的衣服,销售量()q x (单位:百件)关于每件衣服的利润x (单位:元)的函数解析式为()1260,020,190180,x x q x x ⎧<≤⎪+=⎨⎪-<≤⎩则当该服装厂所获效益最大时A .20B .60C .80D .407.已知,x y 满足不等式组240,20,130,x y x y z x y y +-≥⎧⎪--≤=+-⎨⎪-≤⎩则的最小值为A.2B.C. D.1 8.已知函数()2110sin 10sin ,,22f x x x x m π⎡⎤=---∈-⎢⎥⎣⎦的值域为1,22⎡⎤-⎢⎥⎣⎦,则实数m 的取A .,03π⎡⎤-⎢⎥⎣⎦B .,06π⎡⎤-⎢⎥⎣⎦C .,36ππ⎡⎤-⎢⎥⎣⎦D .,63ππ⎡⎤-⎢⎥⎣⎦ 9.已知()2112n x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为42-,则n = A.10 B.8 C.12 D.1110.某几何体的三视图如图所示,则该几何体的表面积为A .30π+B .803π+ C. 923π+ D .763π+ 11.已知双曲线()2222:10,0x y a b a bΓ-=>>的左、右焦点分别为12,F F ,点P 是双曲线Γ右支上一点,且212PF F F ⊥,过点P 作1F P 的垂线交x 轴于点A ,且22PM MF = ,若PA的中点E 在1F M 的延长线上,则双曲线Γ的离心率是A .3B .2+C .1D .4+12.已知函数()()()222f x x x x mx n =+++,且对任意实数x ,均有()()33f x f x -+=--,若方程()f x a =有且只有4个实根,则实数a 的取值范围为A .()16,9-B .(]16,9-C .(]16,0-D .(]16,5--第Ⅱ卷本卷包括必考题和选考题两部分。

东北三省四市2018届高考第二次模拟数学试题(理)附答案

东北三省四市2018届高考第二次模拟数学试题(理)附答案

东北三省四市教研联合体 2018届高三第二次模拟考试理科数学第Ⅰ卷(共60 分)一、选择题:本大题共12 个小题 , 每小题 5分,共 60分 . 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合A x x 1 , B x x x30,则 A B ()A.(-1,0 )B.( 0,1 )C.( -1,3 )D.( 1,3 )2. 若复数z1i为纯虚数,则实数 a 的值为()1aiA.1B. 0C.1D. -1 23. 中国有个名句“运筹帷幄之中,决胜千里之外. ”其中的“筹”取意是指《孙子算经》中记载的算筹. 古代是用算筹来进行计算 . 算筹是将几寸长的小竹棍摆在下面上进行运算. 算筹的摆放形式有纵横两种形式(如下图所示). 表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列. 但各位数码的筹式要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示. 以此类推 . 例如 3266 用箅筇表示就是,则 8771用算筹可表示为()中国古代的算筹数码A.B.C.D.4. 右图所示的程序框图是为了求出满足2n n228的最小偶数 n ,那么在空白框内填入及最后输出的n 值分别是()A . n n 1和 6B . n n 2 和 6C.n n 1和 8D . n n 2 和 85. 函数 f ( x) 1 x2tan x的部分图像大致为()xA .B . C. D .6. 某几何体的三视图如图所示(单位:cm ),其俯视图为等边三角形,则该几何体的体积(单位:cm 3 )是()A .4 3B .103C.23D .833 37.6 本不同的书在书架上摆成一排,要求甲、乙两本书必须摆在两端,丙、丁两本书必须相邻,则不同的摆放方法有()种A . 24 B. 36C.48D. 608.ABC 的内角 A, B, C 的对边分别为 a,b,c ,若 2b cos Ba cosC c cos A, b2, ABC 的面积最大值是()A . 1B. 3C.2D.49. 已知边长为 2 的等边三角形 ABC , D 为 BC 的中点,以 AD 为折痕,将 ABC 折成直二面角 B AD C ,则过A, B, C , D 四点的球的表面积为()A . 3B. 4C.5D. 610. 将函数 f ( x)sin 2x3的图像向右平移a 个单位得到函数 g (x) cos(2 x) 的图象,则 a 的值可以为4( )A .5B .7C .9D .411212242411.. 已知焦点在x轴上的双曲线x2y2F 和 F,其右支上存在一点满足221的左右两个焦点分别为Pm112mPF1 PF2,且PF1 F2的面积为3,则该双曲线的离心率为()A.5B.7C.2D.3 2212. 若直线kx y k 1 0 (k R )和曲线 E : y ax3bx25( ab0 )的图象交于A( x1, y1),B( x2, y2),3C (x3, y3 ) ( x1x2x3)三点时,曲线 E 在点 A ,点C处的切线总是平行,则过点(b, a)可作曲线 E 的()条切线A. 0B. 1C. 2D. 3第Ⅱ卷(共90 分)二、填空题(每题 5 分,满分20 分,将答案填在答题纸上)y 0,13. 设实数x,y满足约束条件4x y 0,则z x 2 y 5 的最大值为.x y5,14.为了了解居民天气转冷时期电量使用情况,某调查人员由下表统计数据计算出回归直线方程为$y 2.11x 61.13,现表中一个数据为污损,则被污损的数据为.(最后结果精确到整数位)气温 x181310-1用电量 y2434·6415.已知函数 f ( x) 满足 f (x1 f (x) 1)f (x)116.已知腰长为 2 的等腰直角ABC 中,M ,当 f (1) 2时, f (2018) f (2019) 的值为.为斜边 AB 的中点,点 P 为该平面内一动点,若uuur|PC | 2,则uuur uuur uuur uuuur( PA PB) ( PC PM ) 的最小值是.三、解答题(本大题共 6 小题,共70 分 . 解答应写出文字说明、证明过程或演算步骤. )17. 设数列a n的前 n 项和为S n,且S n n2n 1 ,正项等比数列b n的前 n 项和为T n,且b2a2, b4 a5.( I )求a n和 b n的通项公式;(II)数列c n中,c1a1,且 c n c n 1T n,求c n的通项c n.18.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生” 的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占80%.现从参与关注生态文明建设的人群中随机选出200 人,并将这 200 人按年龄分组:第 1 组[15, 25),第 2 组[25,35),第 3 组[35, 45),第 4 组[45,55),第 5 组[55,65),得到的频率分布直方图如图所示.( 1)求这 200 人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);( 2)现在要从年龄较小的第1,2 组中用分层抽样的方法抽取 5 人,再从这 5 人中随机抽取 3 人进行问卷调查,求这2 组恰好抽到 2 人的概率;( 3)若从所有参与调查的人(人数很多)中任意选出 3 人,设其中关注环境治理和保护问题的人数为随机变量X ,求 X 的分布列与数学期望.19. 在如图所示的几何体中,四边形ABCD 是正方形,PA平面ABCD,E,F分别是线段AD , PB 的中点,PA AB 1.(1)证明:EF / /平面DCP;(2)求平面EFC与平面PDC所成锐二面角的余弦值.20.在平面直角坐标系中,椭圆C: x2y21(a b 0) 的离心率为1,点 M (1,3) 在椭圆C上.a2b222( 1)求椭圆C的方程;( 2)已知P( 2,0)与 Q (2,0)为平面内的两个定点,过 (1,0) 点的直线l与椭圆C交于 A , B 两点,求四边形 APBQ 面积的最大值.21.已知函数f ( x)x24x5a( a R ).e x( I)若 f (x) 为在 R 上的单调递增函数,求实数 a 的取值范围;( II)设 g( x)ex f ( x) ,当m1时,若g(x1)g (x2 ) 2g(m) (其中 x1 m , x2 m ),求证: x1 x2 2m .请考生在 22、 23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修 4-4 :坐标系与参数方程在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C1: cos 3 ,曲线 C2:4cos ( 0).2( I )求C1与C2交点的极坐标;uuur2 uuur(II )设点Q在C2上,OQ QP,求动点 P 的极坐标方程.323. 选修 4-5 :不等式选讲已知函数 f (x)| 2x || 2x3| m ,m R .( I )当m2时,求不等式 f (x) 3 的解集;( II )对于x(,0) 都有 f (x)x2m 的取值范围.恒成立,求实数x数学(理科)试题参考答案一、选择题1-5: CDCDD6-10:BABCC11、 12:BC二、填空题13.1414.3815.716.32242 2三、解答题17. 解:( 1)∵S n n2n1,∴令 n 1 ,a11,a n S n Sn 12(n 1) , (n2) ,经检验 a11不能与 a n(n2)时合并,∴ a n 1,n1,2( n1),n 2.又∵数列b n为等比数列, b2a2 2 , b4a58 ,∴b4q2 4 ,∴ q 2 ,b2∴ b11,∴ b n2n 1.( 2)T n 12n n1,122∵ c2c1211, c3c2221,, c n c n1 2n 11,c n c12(12n 1 )1)以上各式相加得1(n,2c1a1 1,∴ c n12n n1,∴c n 2n 1.18. 解:( 1)由10(0.010 0.015 a 0.0300.010) 1 ,得a0.035,平均数为 200.1300.15400.35500.3600.141.5岁;设中位数为 x ,则100.010100.015(x35)0.0350.5 ,∴x42.1岁.( 2)第 1,2组抽取的人数分别为 2 人, 3 人.设第 2 组中恰好抽取 2 人的事件为A,C21 C323则 P(A).C535( 3)从所有参与调查的人中任意选出 1 人,关注环境治理和保护问题的概率为4 P,5X 的所有可能取值为0, 1,2,3,∴4 31,14 1 4 2 12 ,24 24 48P( X0) C 3 (15 )125 P(X 1)C 3 ( 5 ) (1 5 )125P( X2) C 3( 5 ) (1 5 ) ,12534 364 , P(X 3) C 3 ( 5)125所以 X 的分布列为:X 012 3P1 1248 64125125125125∵ X ~ B(3,4),5∴E(X)3412.5 519. 解:( 1)取 PC 中点 M ,连接 DM , MF ,∵M ,F 分别是 PC ,PB 中点,∴ MF //CB , MF1CB ,2∵ E 为 DA 中点, ABCD 为矩形,∴ DE / /CB , DE1CB ,2 ∴MF //DE ,MF DE ,∴四边形 DEFM 为平行四边形,∴EF//DM ,∵ EF平面 PDC , DM平面 PDC ,∴ EF//平面 PDC .( 2)∵ PA 平面 ABC ,且四边形 ABCD 是正方形, ∴ AD , AB , AP 两两垂直, 以 A 为原点, AP , AB , AD 所在直线为 x , y , z 轴,建立空间直角坐标系 A xyz ,则 P(1,0,0) , D (0,0,1) , C (0,1,1) , E(0,0, 1 ) , F (1 , 1,0) ,22 2 uruuur 1 , 1 ,1) , uuur 1,1,1), 设平面 EFC 法向量 n 1 ( x, y, z) , EF ( FC (2 222 2 uuur ur xy z 0, urEF n 10, 11(3, 1,2) 则uuur ur即取 n 1,FC n 10,xy z 0,22uuruuuruuur设平面 PDC 法向量为 n 2 (x, y, z) ,PD( 1,0,1) , PC( 1,1,1),uuur uur PD n 2则 uuur uurPC n 2ur uurcos n 1, n 20,x z 0,uur (1,0,1) , 即x y z取 n 2 0,0,ur uurn 1 n 231(1)021 57uruur142,| n 1 | | n 2 |14所以平面 EFC 与平面 PDC 所成锐二面角的余弦值为 5 7 .1420. 解:( 1)∵c1 ,∴ a 2c ,a 2椭圆的方程为x 2y 21,3c 24c 2将 (1,3) 代入得1 9 1 ,∴ c 21 ,24c 2 12c 2 ∴椭圆的方程为x 2 y 21 .43x 2 y 2( 2)设 l 的方程为 xmy1,联立4 1,3x my 1,消去 x ,得 (3m 24) y 2 6my 9 0 ,设点 A( x 1 , y 1) , B( x 2 , y 2 ) ,有 y 1 y 26m 4, y 1 y 2 9 4,3m 23m 2 有|AB|1 m2 121 m 212(1m 2 ) ,3m 2 43m 2 4点 P ( 2,0) 到直线 l 的距离为3,1 m 2点 Q(2,0) 到直线 l 的距离为1 ,1 m2从而四边形 APBQ 的面积 S1 12(1 m2 )4 24 1 m 2(或 S1 y2 |)2 3m 24 1 m 224| PQ || y 13m2令 t1 m 2 , t 1 ,有 S24t 124 ,设函数 f (t ) 3t1, f '(t) 310 ,所以 f (t) 在 [1,) 上单调递增,3t 2 3t 1tt 2t有 3t1 4 ,故 S24t24 6 ,t3t2113tt所以当 t 1,即 m 0时,四边形 APBQ 面积的最大值为6.21. 解:( 1)∵ f ( x) 的定义域为 x R 且单调递增,∴在 xR 上, f '( x)2x4a0 恒成立,xe即: a (4 2x)e x ,所以设( ) (4 2 x ) x , x R ,h x e∴h '( )(22x)x x e ,∴当 x(,1) 时, h '( x)0,∴ h( x) 在 x(,1) 上为增函数,∴当 x[1,) 时, h '( x)0,∴ h( x) 在 x[1,) 上为减函数,∴ h(x)max h(1)2e,∵a(4 2x)e x,max∴ a2e ,即a[2 e,) .( 2)∵g (x) e x f (x) ( x24x 5)e x a ,∵ g ( x1)g( x2 )2g(m) , m[1,) ,∴ ( x124x15)e x1a(x224x2 5)e x2a2(m24m 5)e m2a ,∴ ( x124x15)e x1(x224x25)e x22(m24m5)e m,∴设( x)( x24x5)e x,x R ,则( x1 )( x2 ) 2 (m) ,∴'( x)( x1)2 e x0 ,∴(x) 在x R上递增,∴设 F ( x)(m x)(m x) , x(0,) ,∴ F '( x) ( m x 1)2e m x(m x 1)2 e m x,∵ x0 ,∴ e m x e m x0 , ( m x 1)2( m x1)2(2 m 2)2 x 0 ,∴ F '( x)0, F ( x) 在 x(0,) 上递增,∴ F ( x) F (0)2( m) ,∴(m x)(m x)2( m) , x(0,) ,令 x m x1,∴(m m x1 )(m m x1 ) 2(m) ,即(2 m x1 )( x1 ) 2 (m) ,又∵ ( x1 )( x2 )2(m) ,∴ (2 m x1) 2 ( m)( x2 ) 2 (m ) ,即 (2 m x1 )( x2 ) ,∵ ( x) 在x R 上递增,∴ 2m x1x2,即 x1x22m 得证.22. 解:( 1)联立cos3,cos3 4cos,,2∵ 0,,2 3 ,26∴所求交点的极坐标(23,) .6(2)设P(, ),Q(0, 0)且04cos 0,0 [0,) ,2uuur 2 uuur 由已知OQ QP ,得32,5,∴ 24cos ,点 P 的极坐标方程为10cos ,[0, ) .524x1, x0,23. 解:( 1)当m 2 时, f (x) | 2x | | 2x 3 | 2 1,30,x2当当4x 5, x 3 .2 4x13,x13x 0 ,1 3 恒成立;x0,解得 02;当24x53,3 ,x3解得2x,22此不等式的解集为x | 2 x1.2x 23x0,2x 3 m,( 2)令g (x)2f ( x) x3 ,x5x2m3, xx2当3x 0 时, g '( x)12,当2x 0时,g '( x)0 ,所以 g( x) 在 [2, 0) 上单调递增,当2x23x 2 时, g '( x)0 ,所以 g( x) 在 [32)上单调递减,2,2所以g( x)min g(2)223m0 ,所以 m22 3 ,当x 3时, g '(x)520,所以 g( x) 在 (,3] 上单调递减,2x22所以 g( x) min g(3)m350 ,26所以 m 35 6,综上, m 2 2 3 .。

辽宁省鞍山市第一中学2018届高三上学期第二次模拟考试(期中)数学(理)试题

辽宁省鞍山市第一中学2018届高三上学期第二次模拟考试(期中)数学(理)试题

辽宁省鞍山市第一中学2018届高三上学期第二次模拟考试(期中)数学(理)试题一、单选题1.集合2{20}A x N x x =∈--<的真子集个数为( ) A.1 B.2 C.3 D.4 答案: C解答:2{20}{(1)(2)0}{0,1}A x N x x x N x x =∈--<=∈+-<=,所以真子集的个数为2213-=,故选C. 2.若a 为实数,且231aii i+=++,则a =( ) A.4- B.3- C.3 D.4 答案: D解答:232(3)(1)22441aii ai i i ai i a i+=+⇒+=++⇒+=+⇒=+,选D. 3.下面程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A.0B.2C.4D.14答案: B解答:由14a =,18b =,a b <,则b 变为18144-=,由a b >,则a 变为14410-=, 由a b >,则a 变为1046-=,由a b >,则a 变为642-=, 由a b <,则b 变为422-=,由2a b ==, 则输出的2a =.故选B .4.一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+B.1+C.2D.答案: C解答:由三视图还原几何体如图所示:三棱锥O ABC -,OE ⊥底面ABC ,1EA EC ==,1OE =,AB BC ==∴AB BC ⊥,∴可判断ABC ∆为直角三角形,12112OAC ABC S S ∆∆==⨯⨯=,242OAB OBC S S ∆∆===,该四面体的表面积:2,本题选择C 选项.5.已知命题“x R ∃∈,使212(1)02x a x +-+≤”是假命题,则实数a 的取值范围是( ) A.(,1)-∞ B.(1,3)- C.(3,)-+∞ D.(3,1)- 答案: B解答:原命题是假命题,所以其否定“x R ∀∈, 212(1)02x a x +-+>”是真命题, ∴21(1)4202a --⨯⨯<,解得13a -<<,故选B. 6.已知2sin23α=,则2os 4(c )πα+=( ) A.16 B.13 C.12 D.23答案: A解答:21cos(2)1sin212co 46(s )22παπαα++-+===,故选A.7.设向量a r ,b r满足a b +=r ra b -=r r a b ⋅=r r( )A.1B.2C.3D.5 答案: A解答:22()10()6a b a b ⎧+=⎪⎨-=⎪⎩r r r r ,展开后得:222221026a b a b a b a b ⎧++⋅=⎪⎨⎪+-⋅=⎩,两式相减得,44a b ⋅=,得到1a b ⋅=,故选A.8.设,x y 满足约束条件20210 220x y x y x y +-≤-+≤-+≥⎧⎪⎨⎪⎩,则3z x y =+的最大值为( )A.3-B.4C.2D.5 答案: B解答:作出x 、y 满足的区域如图(阴影部分),由目标函数对应直线的斜率与边界直线斜率的关系知目标函数在点(1,1)处取得最大值4.故选B.9. 由曲线1xy =与直线y x =, 3y =所围成的封闭图形面积为( ) A.2ln3- B.ln 3 C.2 D.4ln3- 答案: D解答:根据题意作出所围成的图形,如图所示,图中从左至右三个交点分别为1(,3)3,(1,1),(3,3), 所以题中所求面积为1312311113311(3)(3)(3ln )|(3)|4ln32S dx x dx x x x x x =-+-=-+-=-⎰⎰ ,故选D.10.设2log 5a =, 4log 15b =, 0.52c =,则a ,b ,c 大小关系为( ) A.a c b >> B.a b c >> C.c b a >> D.c a b >> 答案: B解答:24log 52log 15 1.5a b =>>=>,0.52 1.5c ==,所以有a b c >>.故选B. 11.若{}n a 是等差数列,首项10a >,201620170a a +>,201620170a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A.2016B.2017C.4032D.4033 答案: C解答:∵在等差数列中,20162017140324033+=+=,∴2016201714032a a a a +=+, 则140322016201740324032()4032()022a a a a S ++==>,又因为201620170a a +>,201620170a a ⋅<,所以20160a >,20170a <, 14033403320174033()403302a a S a +==⋅<,故选C.12.若存在正数x 使21()xx a -<成立,则a 的取值范围是( ) A.(,)-∞+∞ B.(2,)-+∞C.(0,)+∞D.(1,)-+∞ 答案: D解答:∵2()1xx a -<,∴12x a x >-,函数12xy x =-是增函数,0x >,∴1y >-,即1a >-,∴a 的取值范围是(1,)-+∞.故选D. 二、填空题13.等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则数列{}n a 的前n 项n S = .答案:(1)n n +解答:2a ,4a ,8a 成等比数列,∴2428a a a =,可得2111(6)(2)(14)a a a +=++,解得12a =,2(1)22n a n n =+-⨯=,{}n a 的前n 项和1()(22)(1)22n n n a a n n S n n ++===+. 14.直线3y kx =+被圆222)(3)(4x y -+-=截得的弦长为,则直线的倾斜角为 . 答案:6π或56π解答:由题知:圆心(2,3),半径为2.因为直线3y kx =+被圆222)(3)(4x y -+-=截得的弦长为所以圆心到直线的距离为1d ===,∴3k =±, 由tan k α=, 得6πα=或56π. 15.函数(l o g 4)1a y x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中,m n 均大于0,则12m n+的最小值为 . 答案:5+解答:函数(log 4)1a y x =+-的图象恒过定点(3,1)A --, 则310m n --+=,即31m n +=.∴12126()(3)555n m m n m n m n m n +=++=++≥+=+ 当且仅当6n mm n=时取等号. 16.在锐角ABC ∆中, a ,b ,c 分别是角A ,B ,C 所对的边, ABC ∆的面积2S =,且满足cos (1cos )a B b A =+,则()()c a b c b a +-+-的取值范围是 . 答案:8,8)解答:在锐角ABC ∆中,∵a ,b ,c 分别为角A ,B ,C 所对的边,满足cos (1cos )a B b A =+, ∴sin cos sin sin cos A B B B A =+,sin()sin A B B -=,∴A B B -=,即22A B π=<,∴(0,)4B π∈,∴32A B B π+=>,∴6B π>,∴64B ππ<<,42C ππ<<,14sin 22sin S ab C ab C==⇒=, 22222()()()2c a b c b a c a b c a b ab+-+-=--=--+282sin 822cos 2(1cos )8tan sin 22sin cos 22CC ab C ab C C C C ⨯=-+=-==, ∵42C ππ<<1tan 12C<<,()()8,8c a b c b a +-+-∈().三、解答题17.已知函数 ()cos(2)2sin()sin()344f x x x x πππ=-+-+.(1)求函数()f x 的最小正周期和图象的对称轴方程; (2)求函数()f x 在区间,]12[2ππ-上的最值. 答案:(1)最小正周期为T π=,对称轴方程为()23k x k Z ππ=+∈;(2)最大值1,最小值解答:(1)∵()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )22x x x x x x =++-+2211cos 22sin cos cos 22cos 2sin(2)22226x x x x x x x x π=++-=+-=-, ∴周期22T ππ==,由2()62x k k Z πππ-=+∈,得()23k x k Z ππ=+∈, ∴函数图像的对称轴方程为()23k k Z x ππ=+∈.(2)∵,]12[2x ππ-∈,∴25[,]636x πππ-∈-,因为sin(2())6x f x π=-在区间,]12[3ππ-上单调递增,在区间[,]32ππ上单调递减,所以当3x π=时,()f x 取最大值1,又∵1()()1222f f ππ-=<=,当12x π=-时,()f x 取最小值18.已知函数()211f x x x =+--. (1)求不等式()2f x <的解集;(2)若关于x 的不等式2()2a f x a ≤-有解,求实数a 的取值范围.答案:(1)2(4,)3x ∈-; (2)[1,3]a ∈-. 解答:(1)当1x ≥时,无解;当112x -<<时,1223x -<<; 当12x ≤-时,142x -<≤-.综上,2(4,)3x ∈-.(2)函数()f x 的最小值为32-,2322a a -≥-,所以[1,3]a ∈-.19.不是有理数. 答案:见解析. 解答:那么存在两个互质的正整数,p q p q=,于是p =,两边平方得222p q =,由22q 是偶数,可得2p 是偶数.而只有偶数的平方才是偶数,所以p 也是偶数.因此可设2p s =, s 是正整数,代入上式,得:2242s q =,即222q s =. 所以q 也是偶数,这样,p q 都是偶数,不互质,这与假设,p q 互质矛盾..20.已知数列{}n a 的前n 项和为n S ,且142n n S a +=+,11a =. (1)12n n n b a a +=-,求证数列{}n b 是等比数列; (2)设2nn n a c =,求证数列{}n c 是等差数列; (3)求数列{}n a 的通项公式及前n 项和n S . 答案:(1)见解析; (2)见解析; (3)见解析. 解答:(1)由题意,142n n S a +=+,2142n n S a ++=+相减, 得2114)(n n n n S S a a +++-=-,2144n n n a a a ++=-, ∴21122()2n n n n a a a a +++-=-,∵12n n n b a a +=-,∴*1(2)n n b b n N +=∈,2q =,又由题设,得21426a +=+=,即25a =,12123b a a =-=,∴{}n b 是首项为3,公比为2的等比数列,其通项公式为132n n b -=⋅. (2)11232n n n n b a a -+=-=⋅,所以11111123()22224n n n n n n n n n n n a a a a b c c n N *++++++--=-===∈, 又11122a c ==,∴数列{}n c 是首项为12,公差为34的等差数列.(3)∵1(1)n c c n d =+-,∴13(1)224n n a n =+-⋅, ∴2(31)2()n n n a n N -*=-⋅∈,21424(31)22(31)22n n n n S a n n -+=+=-⋅+=-⋅+,∴134)2(2n n S n --⋅+=.21.如图,已知多面体EABCDF 的底面ABCD 是边长为2的正方形, EA ⊥底面ABCD ,//FD EA ,且112FD EA ==.(1)记线段BC 的中点为K ,在平面ABCD 内过点K 作一条直线与平面ECF 平行,要求保留作图痕迹,并简要说明作法,但不要求证明; (2)求直线EB 与平面ECF 所成角的正弦值. 答案:(1)见解析;(2)6. 解答:(1)取线段CD 的中点Q ,连结KQ ,直线KQ 即为所求.如图所示:(2)以点A 为原点,AB 所在直线为x 轴,AD 所在的直线为y 轴,AE 所在的直线为z 轴,建立空间直角坐标系,如图.由已知可得(0,0,0)A ,(0,0,2)E ,(2,0,0)B ,(2,2,0)C ,(0,2,1)F ,∴(2,2,2)EC =-uu u r ,(2,0,2)EB =-u u r ,(0,2,1)EF =-u u u r ,设平面ECF 的法向量为(,,)n x y z =r ,得2220,20,x y z y z +-=-=⎧⎨⎩取1y =,得平面ECF 的一个法向量为(1,1,2)n =r ,设直线EB 与平面ECF 所成的角为θ,∴sin |cos ,|||n EB θ=〈〉==uu r r .22.设函数2()ln 2a f x x x x =-. (1)当(0,)x ∈+∞,()02a f x x +≤恒成立,求实数a 的取值范围; (2)设()()g x f x x =-在2[1,]e 上有两个极值点12,x x .(A )求实数a 的取值范围;(B )求证:12112ln ln ae x x +>. 答案:(1)2a =;(2)(A )221(,)a e e∈;(B )见解析.解答:(1)∵2ln 022a a x x x x -+≤,且0x >, ∴ln 022a a x x -+≤. 令()()ln 022a a U x x x x =-+>,则1()2a U x x '=-. ①当0a ≤时,()0U x '>,()U x 在(1,)+∞上为单调递增函数,∴1x >时,()(1)0U x U >=,不合题意.②当02a <<时,2(1,)x a ∈时,()0U x '>,()U x 在(21,)a 上为单调递增函数, ∴2(1,)x a ∈,()(1)0U x U >=,不合题意.③当2a >时,2(,1)x a ∈, ()0U x '<,()U x 在(2,1)a 上为单调递减函数. ∴2(,1)x a ∈时,()(1)0U x U >=,不合题意.④当2a =时,(0,1)x ∈,()0U x '>,()U x 在(0,1)上为单调递增函数. (1,)x ∈+∞,()0U x '<,()U x 在(1,+∞)上为单调递减函数.∴()(1)0U x U ≤=,符合题意.综上,2a =.(2)2()ln 2a g x x x x x =--,2][1,x e ∈. ()ln g x x ax '=-.令()()h x g x '=,则1()h x a x'=-, 由已知()0h x =在2(1,)e 上有两个不等的实根.(A )①当21a e≤时,()0h x '≥,()h x 在2(1,)e 上为单调递增函数,不合题意. ②当1a ≥时,()0h x '≤,()h x 在2(1,)e 上为单调递减函数,不合题意. ③当211e a <<时,1(1,)x a ∈,()0h x '>,2)1(,x e a∈,()0h x '<, 所以,(1)0h <,1()0h a >,2)(0h e <,解得221(,)a e e ∈.(B )由已知11ln 0x ax -=,22ln 0x ax -=, ∴1212ln n ()l x x a x x -=-.不妨设12x x <,则1201x x <<,则 22121212121212121212ln ln 11122[2(ln l )]n x x x x x x a x x x x x x x x x x x x +--+-=-=---- 1212121212ln 2x x x x x x x x x x -=---. 令1()2ln G x x x x =--,(01)x <<. 则22(1)()0x G x x -'=>,∴()G x 在(0,1)上为单调递增函数,∴12()(1)0x G G x <=,即1212122ln 0x x xx x x --<, ∴121120a x x +->,∴12112ax ax +>,∴12112ln ln x x +>, 由(A )1a e <,∴1ae <,22ae <,∴12112ln ln ae x x +>.。

2018年辽宁省鞍山一中高考数学一模试卷(理科)

2018年辽宁省鞍山一中高考数学一模试卷(理科)

2018年辽宁省鞍山一中高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B=x{x|x2﹣x﹣6<0},则()A.A∩B={x|x<1}B.A∪B=R C.A∪B={x|x<2}D.A∩B={x|﹣2<x<1} 2.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.B. C.D.3.(5分)设命题p:∃n>1,n2>2n,则¬p为()A.∀n>1,n2>2n B.∃n≤1,n2≤2n C.∀n>1,n2≤2n D.∃n>1,n2≤2n 4.(5分)函数的对称轴为()A.B.C.D.5.(5分)指数函数f(x)=a x(a>0,且a≠1)在R上是减函数,则函数在其定义域上的单调性为()A.单调递增B.单调递减C.在(0,+∞)上递增,在(﹣∞,0)上递减D.在(0,+∞)上递减,在(﹣∞,0)上递增6.(5分)设a=log510,b=log612,c=1+log72,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c7.(5分)已知函数f(x)=ln(﹣x2﹣2x+3),则f(x)的增区间为()A.(﹣∞,﹣1)B.(﹣3,﹣1)C.[﹣1,+∞)D.[﹣1,1)8.(5分)函数f(x)=x3﹣3x﹣1,若对于区间[﹣3,2]上的任意x1,x2都有|f (x1)﹣f(x2)|≤t,则实数t的最小值是()A.20 B.18 C.3 D.09.(5分)如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是()A.B.C.D.10.(5分)已知函数f(x)的定义域为R的奇函数,当x∈[0,1]时,f(x)=x3,且∀x∈R,f(x)=f(2﹣x),则f(2017.5)=()A.B.C.0 D.111.(5分)某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是()A.甲B.乙C.丙D.丁12.(5分)已知函数f(x)=,若f(f(m))≥0,则实数m的取值范围是()A.[﹣2,2]B.[﹣2,2]∪[4,+∞)C.[﹣2,2+]D.[﹣2,2+]∪[4,+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若,则=.14.(5分)已知f(x)为奇函数,当x<0时,f(x)=x4﹣x,则曲线y=f(x)在x=1处的切线方程是.15.(5分)由y=x2﹣2和y=x围成的封闭图形面积为.16.(5分)设函数,则使得f(x)>f(2x﹣1)成立的x的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设a∈R,命题q:∀x∈R,x2+ax+1>0,命题p:∃x∈[1,2],满足(a﹣1)x﹣1>0.(1)若命题p∧q是真命题,求a的范围;(2)(¬p)∧q为假,(¬p)∨q为真,求a的取值范围.18.(12分)已知f(x)=Asin(ωx+ϕ)(过点,且当时,函数f(x)取得最大值1.(1)将函数f(x)的图象向右平移个单位得到函数g(x),求函数g(x)的表达式;(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x﹣1,求h(x)在上的值域.19.(12分)已知函数为奇函数.(1)判断f(x)的单调性并证明;(2)解不等式.20.(12分)已知f(x)=sinx,,,,.(1)求的值.(2),求g(x)的值域.21.(12分)已知函数f(x)=ln(x﹣1)﹣k(x﹣1)+1(1)求函数f(x)的单调区间;(2)若f(x)≤0恒成立,试确定实数k的取值范围;(3)证明:且n>1)22.(12分)已知函数f(x)=e﹣x﹣ax(x∈R).(1)当a=﹣1时,求函数f(x)的最小值;(2)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围.2018年辽宁省鞍山一中高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B=x{x|x2﹣x﹣6<0},则()A.A∩B={x|x<1}B.A∪B=R C.A∪B={x|x<2}D.A∩B={x|﹣2<x<1}【分析】由二次不等式的解法,可得集合B,再由交集、并集的定义即可得到所求集合.【解答】解:集合A={x|x<1},B=x{x|x2﹣x﹣6<0}={x|﹣2<x<3},则A∩B={x|﹣2<x<1},A∪B={x|x<3},故选:D.【点评】本题考查集合的交集和并集的求法,考查二次不等式的解法,运用定义法解题是关键,属于基础题.2.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.B. C.D.【分析】根据导函数判断函数f(x)=e x+4x﹣3单调递增,运用零点判定定理,判定区间.【解答】解:∵函数f(x)=e x+4x﹣3,∴f′(x)=e x+4>0,∴函数f(x)=e x+4x﹣3在(﹣∞,+∞)上为增函数,∵f()=+1﹣3<0,f()=+2﹣3=﹣1>0,∴f()•f()<0,∴函数f(x)=e x+4x﹣3的零点所在的区间为(,)故选:C.【点评】本题考察了函数零点的判断方法,借助导数,函数值,属于中档题.3.(5分)设命题p:∃n>1,n2>2n,则¬p为()A.∀n>1,n2>2n B.∃n≤1,n2≤2n C.∀n>1,n2≤2n D.∃n>1,n2≤2n 【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以命题p:∃n>1,n2>2n,则¬p为∀n>1,n2≤2n.故选:C.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.4.(5分)函数的对称轴为()A.B.C.D.【分析】化简f(x)的解析式,根据正弦函数的对称轴公式解出答案.【解答】解:f(x)=sin2x+cos2x=2sin(2x+),令2x+=+kπ,解得x=+,k∈Z.故选:D.【点评】本题考查了正弦函数的性质,属于基础题.5.(5分)指数函数f(x)=a x(a>0,且a≠1)在R上是减函数,则函数在其定义域上的单调性为()A.单调递增B.单调递减C.在(0,+∞)上递增,在(﹣∞,0)上递减D.在(0,+∞)上递减,在(﹣∞,0)上递增【分析】根据指数函数f(x)的单调性判定a的取值范围,从而结合二次函数的单调性,得出正确选项.【解答】解:∵指数函数f(x)=a x在R上是减函数,∴0<a<1,∴﹣2<a﹣2<﹣1,而函数y=x2在(﹣∞,0)上递减,在区间(0,+∞)上递增;∴g(x)在区间(﹣∞,0)上递增,在区间(0,+∞)上递减;故选:C.【点评】本题考查了指数函数的单调性以及二次函数的图象与性质的问题,是基础题.6.(5分)设a=log510,b=log612,c=1+log72,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c【分析】a=log510=1+log52,b=log612=1+log62,c=1+log72,由此利用对数函数的单调性能求出结果.【解答】解:∵a=log510=1+log52,b=log612=1+log62,c=1+log72,log52>log62>log72,∴a>b>c.故选:D.【点评】本题考查三个数的大小的判断,是基础题,解题时要认真审题,注意对数函数的单调性的合理运用.7.(5分)已知函数f(x)=ln(﹣x2﹣2x+3),则f(x)的增区间为()A.(﹣∞,﹣1)B.(﹣3,﹣1)C.[﹣1,+∞)D.[﹣1,1)【分析】根据二次函数以及对数函数的性质求出函数的递增区间即可.【解答】解:由﹣x2﹣2x+3>0,解得:﹣3<x<1,而y=﹣x2﹣2x+3的对称轴是x=﹣1,开口向下,故y=﹣x2﹣2x+3在(﹣3,﹣1)递增,在(﹣1,1)递减,由y=lnx递增,根据复合函数同增异减的原则,得f(x)在(﹣3,﹣1)递增,故选:B.【点评】本题考查了复合函数的单调性问题,考查二次函数以及对数函数的性质,是一道基础题.8.(5分)函数f(x)=x3﹣3x﹣1,若对于区间[﹣3,2]上的任意x1,x2都有|f (x1)﹣f(x2)|≤t,则实数t的最小值是()A.20 B.18 C.3 D.0【分析】对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,等价于对于区间[﹣3,2]上的任意x,都有f(x)max﹣f(x)min≤t,利用导数确定函数的单调性,求最值,即可得出结论.【解答】解:对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,等价于对于区间[﹣3,2]上的任意x,都有f(x)max﹣f(x)min≤t,∵f(x)=x3﹣3x﹣1,∴f′(x)=3x2﹣3=3(x﹣1)(x+1),∵x∈[﹣3,2],∴函数在[﹣3,﹣1]、[1,2]上单调递增,在[﹣1,1]上单调递减∴f(x)max=f(2)=f(﹣1)=1,f(x)min=f(﹣3)=﹣19∴f(x)max﹣f(x)min=20,∴t≥20∴实数t的最小值是20,故选:A.【点评】本题考查导数知识的运用,考查恒成立问题,正确求导,确定函数的最值是关键.9.(5分)如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是()A.B.C.D.【分析】由题意可知:随着l从l1平行移动到l2,y=EB+BC+CD越来越大,考察几个特殊的情况,计算出相应的函数值y,结合考查选项可得答案.【解答】解:当x=0时,y=EB+BC+CD=BC=;当x=π时,此时y=AB+BC+CA=3×=2;当x=时,∠FOG=,三角形OFG为正三角形,此时AM=OH=,在正△AED中,AE=ED=DA=1,∴y=EB+BC+CD=AB+BC+CA﹣(AE+AD)=3×﹣2×1=2﹣2.如图.又当x=时,图中y0=+(2﹣)=>2﹣2.故当x=时,对应的点(x,y)在图中红色连线段的下方,对照选项,D正确.故选:D.【点评】本题考查函数的图象,注意理解图象的变化趋势是解决问题的关键,属中档题.10.(5分)已知函数f(x)的定义域为R的奇函数,当x∈[0,1]时,f(x)=x3,且∀x∈R,f(x)=f(2﹣x),则f(2017.5)=()A.B.C.0 D.1【分析】根据函数的奇偶性以及函数的周期性求出f(2017.5)=﹣f(0.5),求出函数值即可.【解答】解:∀x∈R,f(x)=f(2﹣x),∴f(x+2)=f(﹣x)=﹣f(x),故f(2017.5)=f(1009×2﹣0.5)=f(0.5)=f(0.5)=(0.5)3=,故选:B.【点评】本题考查了函数的奇偶性问题,考查函数求值,是一道基础题.11.(5分)某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是()A.甲B.乙C.丙D.丁【分析】此题可以采用假设法进行讨论推理,即可得出结论.【解答】解:假如甲:我没有偷是真的,乙:丙是小偷、丙:丁是小偷是假的,丁:我没有偷就是真的,与他们四人中只有一人说真话矛盾,假如甲:我没有偷是假的,那么丁:我没有偷就是真的,乙:丙是小偷、丙:丁是小偷是假的,成立,故选:A.【点评】本题考查进行简单的合情推理,考查学生分析解决问题的能力,比较基础.12.(5分)已知函数f(x)=,若f(f(m))≥0,则实数m的取值范围是()A.[﹣2,2]B.[﹣2,2]∪[4,+∞)C.[﹣2,2+]D.[﹣2,2+]∪[4,+∞)【分析】令f(m)=t⇒f(t)≥0⇒⇒﹣1≤t≤1;⇒t≥3,再求解﹣1≤f(m)≤1和f(m)≥3即可.【解答】解:令f(m)=t⇒f(t)≥0⇒⇒﹣1≤t≤1;⇒t≥3下面求解﹣1≤f(m)≤1和f(m)≥3,⇒﹣2≤m≤1,⇒1<m≤2+,⇒m无解,⇒m≥4,综上实数m的取值范围是[﹣2,2+]∪[4,+∞).故选:D.【点评】本题考查了复合函数的不等式问题,换元分段求解是常规办法,也可以利用图象求解,属于难题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若,则=.【分析】直接利用三角函数的诱导公式求出结果.【解答】解:,则:=,==.故答案为:.【点评】本题考查的知识要点:三角函数的诱导公式的应用.14.(5分)已知f(x)为奇函数,当x<0时,f(x)=x4﹣x,则曲线y=f(x)在x=1处的切线方程是5x+y﹣3=0.【分析】求得x>0时f(x)的解析式,注意运用奇函数的定义,求得x>0时f (x)的导数,可得切线的斜率,求得切点,由点斜式方程即可得到所求切线的方程.【解答】解:f(x)为奇函数,当x<0时,f(x)=x4﹣x,可得x>0时,﹣x<0,f(﹣x)=x4+x,又f(﹣x)=﹣f(x),可得f(x)=﹣x4﹣x,(x>0),则f′(x)=﹣4x3﹣1(x>0),可得y=f(x)在x=1处的切线斜率为﹣4﹣1=﹣5,切点为(1,﹣2),则y=f(x)在x=1处的切线方程为y+2=﹣5(x﹣1),即为5x+y﹣3=0.故答案为:5x+y﹣3=0.【点评】本题考查函数的奇偶性的运用:求函数的解析式,考查导数的运用:求切线的方程,注意运用导数的几何意义,考查运算能力,属于中档题.15.(5分)由y=x2﹣2和y=x围成的封闭图形面积为.【分析】联立求得A和B点坐标,根据定积分的几何意义,即可求得S.【解答】解:联立,解得:,或,则A(2,2),B(﹣1,﹣1),S=(x﹣x2+2)dx=(x2﹣x3+2x)=(×4﹣×8+2×2)﹣(×1+﹣2)=,∴y=x2﹣2和y=x围成的封闭图形面积,故答案为:.【点评】本题考查定积分的运算,考查定积分的几何意义,考查数形结合思想,计算能力,属于基础题.16.(5分)设函数,则使得f(x)>f(2x﹣1)成立的x的取值范围是.【分析】由已知可得函数为偶函数,且x>0时函数为增函数,则将f(x)>f(2x ﹣1)可化为:|x|>|2x﹣1|,即x2>(2x﹣1)2,解得答案.【解答】解:∵函数,f(﹣x)===f(x),故函数为偶函数,当x>0时,=>0恒成立函数为增函数,若使得f(x)>f(2x﹣1)成立,则|x|>|2x﹣1|,即x2>(2x﹣1)2,解得:x∈,故答案为:【点评】本题考查的知识点是函数的单调性,函数的奇偶性,是函数图象和性质的综合应用.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设a∈R,命题q:∀x∈R,x2+ax+1>0,命题p:∃x∈[1,2],满足(a﹣1)x﹣1>0.(1)若命题p∧q是真命题,求a的范围;(2)(¬p)∧q为假,(¬p)∨q为真,求a的取值范围.【分析】分别求出命题p,q成立的等价条件,(1)然后根据若p、q为真命题,列式计算,(2)由(¬p)∧q为假,(¬p)∨q为真⇒p、q同时为假或同时为真,分别求出确实实数m的取值范围即可.【解答】解:(1)p真,则或得;q真,则a2﹣4<0,得﹣2<a<2,∴p∧q真,.(2)由(¬p)∧q为假,(¬p)∨q为真⇒p、q同时为假或同时为真,若p假q假,则,⇒a≤﹣2,若p真q真,则,⇒综上a≤﹣2或.【点评】本题主要考查复合命题与简单命题之间的关系的应用,利用条件先求出命题p,q的等价条件是解决本题的关键.18.(12分)已知f(x)=Asin(ωx+ϕ)(过点,且当时,函数f(x)取得最大值1.(1)将函数f(x)的图象向右平移个单位得到函数g(x),求函数g(x)的表达式;(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x﹣1,求h(x)在上的值域.【分析】(1)由函数的最值求出A,由特殊点的坐标求出φ的值,由周期求出ω,可得f(x)的解析式,再根据y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式.(2)利用三角恒等变换化简函数的解析式,再利用正弦函数图象及性质即可得出结论.【解答】解:(1)由题意可得A=1,由函数过,得,结合范围,由,∵0<ω<4,∴可得:ω=2,可得:,∴.(2)∵,由于,可得:,∴h(x)在上的值域为[﹣1,2].【点评】本题主要考查利用由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由特殊点的坐标求出φ的值,由周期求出ω,三角恒等变换,正弦函数的增区间,属于中档题.19.(12分)已知函数为奇函数.(1)判断f(x)的单调性并证明;(2)解不等式.【分析】(1)运用奇函数的定义可得a,以及求出f(x)的导数,即可判断单调性;(2)运用f(x)为奇函数且为R上的增函数,结合对数不等式的解法,即可得到所求解集.【解答】解:(1)由已知f(﹣x)=﹣f(x),∴∴,a=﹣2,∵,∴为单调递增函数.(2)∵,∴,而f(x)为奇函数,∴∵f(x)为单调递增函数,∴,∴,∴﹣3≤log2x≤1,∴.【点评】本题考查函数的奇偶性和单调性的判断和运用:解不等式,考查化简整理的运算能力,属于中档题.20.(12分)已知f(x)=sinx,,,,.(1)求的值.(2),求g(x)的值域.【分析】(1)由题意,可得,即可求解求的值.(2),利用同角三角函数关系式化简,即可求解值域.【解答】解:(1)∵,∴,∵,∴,∴,,又,∴,∴∴=.(2)令,则∴g(x)的值域为.【点评】本题考查了知识点是两角和与差的公式的应用,构造思想和计算能力,计算难度大,属于中档题.21.(12分)已知函数f(x)=ln(x﹣1)﹣k(x﹣1)+1(1)求函数f(x)的单调区间;(2)若f(x)≤0恒成立,试确定实数k的取值范围;(3)证明:且n>1)【分析】(1)由f(x)=ln(x﹣1)﹣k(x﹣1)+1,知x>1,,由此能求出f(x)的单调区间.(2)由f(x)≤0恒成立,知∀x>1,ln(x﹣1)≤k(x﹣1)﹣1,故k>0.f (x)max=f(1+)=ln≤0,由此能求出实数k的取值范围.(3)令k=1,能够推导出lnx≤x﹣1对x∈(0,+∞)恒成立.取x=n2,得到,n≥2,由此能够证明且n>1).【解答】解:(1)∵f(x)=1n(x﹣1)﹣k(x﹣1)+1,∴x>1,,∵x>1,∴当k≤0时,>0,f(x)在(1,+∞)上是增函数;当k>0时,f(x)在(1,1+)上是增函数,在(1+,+∞)上为减函数.(2)∵f(x)≤0恒成立,∴∀x>1,ln(x﹣1)﹣k(x﹣1)+1≤0,∴∀x>1,ln(x﹣1)≤k(x﹣1)﹣1,∴k>0.由(1)知,f(x)max=f(1+)=ln≤0,解得k≥1.故实数k的取值范围是[1,+∞).(3)令k=1,则由(2)知:ln(x﹣1)≤x﹣2对x∈(1,+∞)恒成立,即lnx≤x﹣1对x∈(0,+∞)恒成立.取x=n2,则2lnn≤n2﹣1,即,n≥2,∴且n>1).【点评】本题考查函数的单调区间的求法,考查满足条件的实数的取值范围的求法,考查不等式的证明.解题时要认真审题,仔细解答,注意合理地进行等价转化.22.(12分)已知函数f(x)=e﹣x﹣ax(x∈R).(1)当a=﹣1时,求函数f(x)的最小值;(2)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值;(2)得到e x+ax+ln(x+1)﹣1≥0.(*)令g(x)=e x+ax+ln(x+1)﹣1,通过讨论a的范围,确定函数的单调性,从而求出满足条件的a的具体范围即可;【解答】解:(1)当a=﹣1时,f(x)=e﹣x+x,则f′(x)=﹣+1.令f'(x)=0,得x=0.当x<0时,f'(x)<0;当x>0时,f'(x)>0.∴函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x=0时,函数f(x)取得最小值,其值为f(0)=1f(x)的最小值为1.(2)若x≥0时,f(﹣x)+ln(x+1)≥1,即e x+ax+ln(x+1)﹣1≥0(*)令g(x)=e x+ax+ln(x+1)﹣1,则①若a≥﹣2,由(1)知e﹣x+x≥1,即e﹣x≥1﹣x,故e x≥1+x∴函数g(x)在区间[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴(*)式成立.②若a<﹣2,令,则∴函数ϕ(x)在区间[0,+∞)上单调递增,由于ϕ(0)=2+a<0,.故∃x0∈(0,﹣a),使得ϕ(x0)=0,则当0<x<x0时,ϕ(x)<ϕ(x0)=0,即g'(x)<0.∴函数g(x)在区间(0,x0)上单调递减,∴g(x0)<g(0)=0,即(*)式不恒成立.综上所述,实数a的取值范围是[﹣2,+∞).【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,考查分类讨论思想、转化思想,是一道综合题.。

2018年辽宁省辽南高三数学二模试卷(理科)Word版含解析

2018年辽宁省辽南高三数学二模试卷(理科)Word版含解析

2018年辽宁省辽南高三二模试卷(理科数学)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|a ﹣1≤x≤a+2},B={x|3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( )A .{a|3<a≤4}B .{a|3<a <4}C .{a|3≤a≤4}D .∅2.复数=A+Bi (A ,B ∈R ),则A+B 的值是( )A .B .0C .﹣D .﹣43.对于函数y=f (x ),x ∈R ,“y=|f(x )|的图象关于y 轴对称”是“y=f(x )是奇函数”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.根据下列算法语句,当输入x 为60时,输出y 的值为( )A .25B .30C .31D .615.已知,,向量与垂直,则实数λ的值为( )A .﹣B .C .﹣D .由K 2=算得K 2=≈4.762参照附表,得到的正确结论( )A .在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别有关”B .在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别无关”C .有97.5%以上的把握认为“是否爱吃零食与性别有关”D .有97.5%以上的把握认为“是否爱吃零食与性别无关”7.已知各项均为正数的数列{a n },其前n 项和为S n ,且S n ,a n ,成等差数列,则数列{a n }的通项公式为( )A .2n ﹣3B .2n ﹣2C .2n ﹣1D .2n ﹣2+18.若(1﹣2x )2016=a 0+a 1x+a 2x 2+…+a 2016x 2016,(x ∈R ),则(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+…+(a 0+a 2016)的值是( )A .2018B .2017C .2016D .20159.已知抛物线y 2=4x 的焦点为F ,抛物线的准线与x 轴的交点为P ,以坐标原点O 为圆心,以|OF|长为半径的圆,与抛物线在第四象限的交点记为B ,∠FPB=θ,则sinθ的值为( )A .B .C .﹣1 D .﹣110.某几何体的三视图如图所示,当xy 最大时,该几何体的体积为( )A .2B .4C .8D .1611.已知双曲线C 为:﹣=1(a >0,b >0),其左右顶点分别为A 、B ,曲线上一点P ,k PA 、k PB 分别为直线PA 、PB 的斜率,且k PA •k PB =3,过左焦点的直线l 与双曲线交于两点M ,N ,|MN|的最小值为4,则双曲线的方程为( )A .﹣=1B .﹣=1C .﹣=1和﹣=1D .﹣=1或﹣=112.直角三角形ABC ,三内角成等差数列,最短边的边长为m (m >0),P 是△ABC 内一点,并且∠APB=∠APC=∠BPC=120°,则PA+PB+PC=时,m 的值为( )A .1B .C .D .二、填空题:本大题共4小题,每小题5分,共20分.13.已知数列{a n },其前n 项和为S n ,且S n =n 2+6n+1(n ∈N *),则|a 1|+|a 2|+|a 3|+|a 4|的值为 .14.已知函数f(x)=ax2+bx(a,b∈R),且满足1<f(1)<2,3<f(2)<8,则f(3)的取值范围是.15.如图所示三棱锥A﹣BCD,其中AB=CD=5,AC=BD=6,AD=BC=7,则该三棱锥外接球的表面积为.16.已知函数f(x)=,g(x)=ax2﹣2a+2(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某同学用“五点法”画函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)在某一个周期ππ(1)求函数f(x(2)将函数f(x)的图象向左平移π个单位,可得到函数g(x)的图象,且函数y=f(x)•g(x)在区间(0,m)上是单调函数,求m的最大值.18.某市教育局为了了解高三学生体育达标情况,在某学校的高三学生体育达标成绩中随机抽取100个进行调研,按成绩分组:第l组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示:若要在成绩较高的第3,4,5组中用分层抽样抽取6名学生进行复查:(I)已知学生甲和学生乙的成绩均在第四组,求学生甲和学生乙至少有一人被选中复查的概率;(Ⅱ)在已抽取到的6名学生中随机抽取3名学生接受篮球项目的考核,设第三组中有ξ名学生接受篮球项目的考核,求接受篮球项目的考核学生的分布列和数学期望.19.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线PA与平面EAC所成角的正弦值.20.已知动圆过定点A(0,2),且在x轴上截得的弦MN的长为4.(1)求动圆圆心的轨迹C的方程;(2)过点A(0,2)作一条直线与曲线C交于E,F两点,过E,F分别作曲线C的切线,两切线交于P点,当|PE|•|PF|最小时,求直线EF的方程.21.已知a>0,函数f(x)=ax2﹣x,g(x)=lnx.(1)若a=1,求函数y=f(x)﹣3g(x)的极值;(2)是否存在实数a,使得f(x)≥g(ax)成立?若存在,求出实数a的取值集合;若不存在,请说明理由.四.请考生从第22、23题中任选一题作答.注意:只能做所选的题目.如果多做,则按所做的第一个题计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑 [选修4-4:坐标系与参数方程选讲]22.已知直线l :(t 为参数),曲线C 1:(θ为参数).(1)设l 与C 1相交于A 、B 两点,求|AB|的值;(2)若把曲线C 1上各点的横坐标压缩为原来的,纵坐标压缩为原来的,得到曲线C 2,设点P 是曲线C 2上的一个动点,求它到直线l 的距离的最小值.[选修4-5:不等式选讲]23.已知函数f (x )=|x+1|+|x ﹣3|. (1)求不等式f (x )<6的解集;(2)若关于x 的方程f (x )=|a ﹣2|有解,求实数a 的取值范围.2018年辽宁省辽南高三数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|a﹣1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的取值范围是()A.{a|3<a≤4}B.{a|3<a<4} C.{a|3≤a≤4}D.∅【考点】集合的包含关系判断及应用.【分析】由集合A={x|a﹣1≤x≤a+2},B={x|3<x<5},A⊇B,知,由此能求出实数a的取值范围.【解答】解:∵集合A={x|a﹣1≤x≤a+2},B={x|3<x<5},A⊇B,∴,解得3≤a≤4,故选C.2.复数=A+Bi(A,B∈R),则A+B的值是()A.B.0 C.﹣D.﹣4【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、复数相等即可得出.【解答】解:A+Bi====1﹣i,∴A=1,B=﹣1,∴A+B=0,故选:B.3.对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【考点】奇偶函数图象的对称性;充要条件.【分析】通过举反例判断出前面的命题推不出后面的命题;利用奇函数的定义,后面的命题能推出前面的命题;利用充要条件的定义得到结论.【解答】解:例如f(x)=x2﹣4满足|f(x)|的图象关于y轴对称,但f(x)不是奇函数,所以,“y=|f(x)|的图象关于y轴对称”推不出“y=f(x)是奇函数”当“y=f(x)是奇函数”⇒f(﹣x)=﹣f(x)⇒|f(﹣x)|=|f(x)|⇒y=|f(x)|为偶函数⇒,“y=|f(x)|的图象关于y轴对称”所以,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的必要而不充分条件故选B4.根据下列算法语句,当输入x为60时,输出y的值为()A.25 B.30 C.31 D.61【考点】伪代码.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出分段函数 y=的函数值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出分段函数 y=的函数值.当x=60时,则y=25+0.6(60﹣50)=31,故选:C.5.已知,,向量与垂直,则实数λ的值为()A.﹣B.C.﹣D.【考点】平面向量的综合题;数量积判断两个平面向量的垂直关系.【分析】先求出向量与的坐标,再利用2个向量垂直,数量积等于0,求出待定系数λ的值.【解答】解:∵已知,,向量与垂直,∴()•()=0,即:(﹣3λ﹣1,2λ)•(﹣1,2)=0,∴3λ+1+4λ=0,∴λ=﹣.故选A.由K 2=算得K 2=≈4.762参照附表,得到的正确结论( )A .在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别有关”B .在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别无关”C .有97.5%以上的把握认为“是否爱吃零食与性别有关”D .有97.5%以上的把握认为“是否爱吃零食与性别无关” 【考点】独立性检验的应用.【分析】根据P (K 2>3.841)=0.05,即可得出结论.【解答】解:∵K 2=≈4.762>3.841,P (K 2>3.841)=0.05∴在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别有关”. 故选:A .7.已知各项均为正数的数列{a n },其前n 项和为S n ,且S n ,a n ,成等差数列,则数列{a n }的通项公式为( )A .2n ﹣3B .2n ﹣2C .2n ﹣1D .2n ﹣2+1 【考点】等差数列的通项公式.【分析】先根据S n ,a n ,成等差数列,得到2a n =S n +,继而得到2a n ﹣1=S n ﹣1+,两式相减,整理得:a n =2a n ﹣1(n≥2),继而得到数列{a n }是为首项,2为公比的等比数列,问题得以解决.【解答】解:由题意知2a n =S n +,2a n ﹣1=S n ﹣1+,两式相减得a n =2a n ﹣2a n ﹣1(n≥2),整理得:a n =2a n ﹣1(n≥2)当n=1是,2a 1=S 1+,即a 1=∴数列{a n }是为首项,2为公比的等比数列,∴a n =•2n ﹣1=2n ﹣2, 当n=1时,成立, 故选:B8.若(1﹣2x)2016=a0+a1x+a2x2+…+a2016x2016,(x∈R),则(a+a1)+(a+a2)+(a+a3)+…+(a+a2016)的值是()A.2018 B.2017 C.2016 D.2015 【考点】二项式定理的应用.【分析】在所给的等式中,令x=0,可得a0=1.再令x=1,可得a+a1+a2+…+a2016=1,求得a 1+a2+…+a2016=0,从而求得要求式子的值.【解答】解:在(1﹣2x)2016=a0+a2x+a2x2+…+a2016x2016 (x∈R)中,令x=0,可得a=1.再令x=1,可得a0+a1+a2+…+a2016=1,∴a1+a2+…+a2016=0,∴(a0+a1)+(a+a2)+(a+a3)+…+(a+a2016)=2016a+(a1+a2+…+a2016)=2016,故选:C.9.已知抛物线y2=4x的焦点为F,抛物线的准线与x轴的交点为P,以坐标原点O为圆心,以|OF|长为半径的圆,与抛物线在第四象限的交点记为B,∠FPB=θ,则sinθ的值为()A.B.C.﹣1 D.﹣1【考点】抛物线的简单性质.【分析】求出圆O的方程,联立方程组解出B的横坐标,根据圆的性质和抛物线的性质得出sinθ=.【解答】解:抛物线的焦点为F(1,0),准线方程为x=﹣1,∴P(﹣1,0),∴圆O的方程为x2+y2=1.联立方程组,消元得x2+4x﹣1=0,解得x=﹣2或x=﹣﹣2(舍).∵B在抛物线y2=4x上,∴|BF|=﹣2+1=.∵PF是圆O的直径,∴PB⊥BF,∴sinθ==.故选:A.10.某几何体的三视图如图所示,当xy最大时,该几何体的体积为()A.2B.4C.8D.16【考点】棱柱、棱锥、棱台的体积.【分析】首先,根据三视图,得到该几何体的具体的结构特征,然后,建立关系式:,然后,求解当xy最大时,该几何体的具体的结构,从而求解其体积.【解答】解:由三视图,得该几何体为三棱锥,有,∴x2+y2=128,∵xy≤,当且仅当x=y=8时,等号成立,此时,V=××2×6×8=16,故选:D.11.已知双曲线C为:﹣=1(a>0,b>0),其左右顶点分别为A、B,曲线上一点P,k PA 、kPB分别为直线PA、PB的斜率,且kPA•kPB=3,过左焦点的直线l与双曲线交于两点M,N,|MN|的最小值为4,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1和﹣=1D.﹣=1或﹣=1【考点】双曲线的简单性质.【分析】设P(m,n),代入双曲线的方程,由A(﹣a,0),B(a,0),kPA •kPB=3,运用直线的斜率公式化简可得b=a,讨论M,N均在左支和分别在两支,由最小值为=4,和2a=4,解方程可得a,b,进而得到双曲线的方程.【解答】解:设P(m,n),可得﹣=1,即有=,由A(﹣a,0),B(a,0),kPA •kPB=3,可得•===3,即为b=a,由过左焦点的直线l与双曲线交于两点M,N,|MN|的最小值为4,可得当M,N都在左支上,即有MN垂直于x轴时取得最小值,且为=4,解得a=,b=,可得双曲线的方程为﹣=1;当M,N分别在两支上,即有MN的最小值为2a=4,即a=2,b=2,可得双曲线的方程为﹣=1.综上可得,双曲线的方程为﹣=1或﹣=1.故选:D.12.直角三角形ABC,三内角成等差数列,最短边的边长为m(m>0),P是△ABC内一点,并且∠APB=∠APC=∠BPC=120°,则PA+PB+PC=时,m的值为()A.1 B.C.D.【考点】正弦定理;余弦定理.【分析】由条件和等差中项的性质求出各个内角,由∠APB=∠BPC=∠CPA=120°、∠ACB=60°,可以得到∠ACP=∠PBC,判定两个三角形相似,然后用相似三角形的性质计算求出PB、PC的长,即可得出结论.【解答】解:∵直角三角形ABC,三内角成等差数列,设B=90°∴2A=B+C,又A+B+C=180°,解得A=60°,C=30°,由AB=m得,BC=m,AC=2m,延长BP到B′,在BB'上取点E,使PE=PC,EB′=AP,∵∠BPC=120°,∴∠EPC=60°,∴△PCE是正三角形,∴∠CEB'=120°=∠APC,∵AP=EB′,PC=EC,∴△ACP≌△B′CE,∴∠PCA=∠B′CE,AC=B′C=2m,∴∠PCA+∠ACE=∠ACE+∠ECP,∴∠ACB′=∠PCE=60°,∵∠ACB=30°,∴∠BCB′=90°,∵PE=PC,AP=B′E,AC=2AB=2m,BC=m,∴PA+PB+PC=B′E+PB+PE=BB′===m,∵PA+PB+PC=,∴=m,得m=,故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.已知数列{an },其前n项和为Sn,且Sn=n2+6n+1(n∈N*),则|a1|+|a2|+|a3|+|a4|的值为41 .【考点】数列的求和.【分析】由Sn=n2+6n+1逐一求出数列的前四项得答案.【解答】解:由Sn =n2+6n+1,得a1=S1=8,,,.∴|a1|+|a2|+|a3|+|a4|=8+9+11+13=41.故答案为:41.14.已知函数f(x)=ax2+bx(a,b∈R),且满足1<f(1)<2,3<f(2)<8,则f(3)的取值范围是(3,21).【考点】二次函数的性质.【分析】根据f(1),f(2)的范围得到:1<a+b<2,3<4a+2b<8,根据不等式的性质求出3a+b的范围,从而求出f(3)的范围即可.【解答】解:f(x)=ax2+bx(a,b∈R),∵1<f(1)<2,3<f(2)<8,∴1<f(2)﹣f(1)<7,令f(3)=mf(1)+nf(2),即9a+3b=m(a+b)+n(4a+2b),∴,解得:m=3,n=﹣3∴f(3)=3[f(2)﹣f(1)],∴3<f(3)<21,故答案为:(3,21).15.如图所示三棱锥A ﹣BCD ,其中AB=CD=5,AC=BD=6,AD=BC=7,则该三棱锥外接球的表面积为 55π .【考点】球内接多面体;球的体积和表面积.【分析】三棱锥A ﹣BCD 的三条侧棱两两相等,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,然后解答即可. 【解答】解:如图,∵三棱锥A ﹣BCD 的三条侧棱两两相等,∴把它扩展为长方体,它也外接于球,且此长方体的面对角线的长分别为:5,6,7,体对角线的长为球的直径,d==.∴它的外接球半径是.外接球的表面积是 4π.故答案为:55π.16.已知函数f (x )=,g (x )=ax 2﹣2a+2(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值范围是 ≤a≤ .【考点】分段函数的应用.【分析】判断函数f (x )的单调性,求出函数f (x )的值域,根据若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立得到,f (x )的值域和g (x )的值域交集不是空集即可得到结论.【解答】解:当<x≤1时,f (x )=的导数f′(x )===>0,则此时函数f(x)为增函数,则f()<f(x)≤f(1),即<f(x)≤1,当0≤x≤时,f(x)=﹣x+为减函数,则0≤f(x)≤,即函数f(x)的值域为[0,]∪(,1]函数g(x)=ax2﹣2a+2(a>0),在[0,1]上为增函数,则g(0)≤g(x)≤g(1),即2﹣2a≤g(x)≤2﹣a,即g(x)的值域为[2﹣2a,2﹣a]若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则[2﹣2a,2﹣a]∩([0,]∪(,1])≠∅,若[2﹣2a,2﹣a]∩([0,]∪(,1])=∅,则2﹣a<0或或2﹣2a>1,即a>或a无解或0<a<,即若[2﹣2a,2﹣a]∩([0,]∪(,1])≠∅,则≤a≤,故答案为:≤a≤.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某同学用“五点法”画函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)在某一个周期ππ(2)将函数f(x)的图象向左平移π个单位,可得到函数g(x)的图象,且函数y=f(x)•g(x)在区间(0,m)上是单调函数,求m的最大值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.【分析】(1)由πω+φ=0,πω+φ=π,可解得ω,φ,由Asin=2,可得A,即可得解函数f(x)的表达式.(2)由图象平移可求g(x),从而可求y=f(x)•g(x)=2sin(x﹣),由x∈(0,m),可求﹣π<x﹣π<m﹣π,由题意可得﹣π<m﹣π≤﹣,即可解得m的最大值为.【解答】(本题满分为12分)解:(1)由πω+φ=0,πω+φ=π,可得:ω=,φ=﹣,由Asin=2,可得:A=2,故函数f(x)的表达式为:f(x)=2sin(x﹣),…6分(2)由图象平移可知:g(x)=2cos(x﹣),所以y=f(x)•g(x)=2×2sin(x﹣)cos(x﹣)=2sin(x﹣),因为x∈(0,m),所以:﹣π<x﹣π<m﹣π,要使该函数在区间(0,m)上是单调函数,则﹣π<m﹣π≤﹣,所以:0<m≤,所以m的最大值为.…12分18.某市教育局为了了解高三学生体育达标情况,在某学校的高三学生体育达标成绩中随机抽取100个进行调研,按成绩分组:第l组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示:若要在成绩较高的第3,4,5组中用分层抽样抽取6名学生进行复查:(I)已知学生甲和学生乙的成绩均在第四组,求学生甲和学生乙至少有一人被选中复查的概率;(Ⅱ)在已抽取到的6名学生中随机抽取3名学生接受篮球项目的考核,设第三组中有ξ名学生接受篮球项目的考核,求接受篮球项目的考核学生的分布列和数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图.【分析】(I)根据分层抽样知,第三组应抽取3人,第四组应抽取2人,第五组应抽取1人,即可求学生甲和学生乙至少有一人被选中复查的概率;(Ⅱ)确定第三组应有3人进入复查,则随机变量ξ可能的取值为0,1,2,3,求出相应的概率,可得ξ的分布列和数学期望.【解答】解:(Ⅰ)设“学生甲和学生乙至少有一人参加复查”为事件A,第三组人数为100×0.06×5=30,第四组人数为100×0.04×5=20,第五组人数为100×0.02×5=10,根据分层抽样知,第三组应抽取3人,第四组应抽取2人,第五组应抽取1人,…第四组的学生甲和学生乙至少有1人进入复查,则:.…(Ⅱ)第三组应有3人进入复查,则随机变量ξ可能的取值为0,1,2,3.且,则随机变量ξ的分布列为:19.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线PA与平面EAC所成角的正弦值.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定. 【分析】(Ⅰ)证明平面EAC ⊥平面PBC ,只需证明AC ⊥平面PBC ,即证AC ⊥PC ,AC ⊥BC ;(Ⅱ)根据题意,建立空间直角坐标系,用坐标表示点与向量,求出面PAC 的法向量=(1,﹣1,0),面EAC 的法向量=(a ,﹣a ,﹣2),利用二面角P ﹣A C ﹣E 的余弦值为,可求a的值,从而可求=(2,﹣2,﹣2),=(1,1,﹣2),即可求得直线PA 与平面EAC 所成角的正弦值. 【解答】(Ⅰ)证明:∵PC ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥PC ,∵AB=2,AD=CD=1,∴AC=BC=, ∴AC 2+BC 2=AB 2,∴AC ⊥BC ,又BC∩PC=C,∴AC ⊥平面PBC ,∵AC ⊂平面EAC ,∴平面EAC ⊥平面PBC .…(Ⅱ)如图,以C 为原点,取AB 中点F ,、、分别为x 轴、y 轴、z 轴正向,建立空间直角坐标系,则C (0,0,0),A (1,1,0),B (1,﹣1,0).设P (0,0,a )(a >0),则E (,﹣,),…=(1,1,0),=(0,0,a ),=(,﹣,),取=(1,﹣1,0),则•=•=0,为面PAC 的法向量.设=(x ,y ,z )为面EAC 的法向量,则•=•=0,即取x=a ,y=﹣a ,z=﹣2,则=(a ,﹣a ,﹣2),依题意,|cos <,>|===,则a=2.…于是=(2,﹣2,﹣2),=(1,1,﹣2).设直线PA 与平面EAC 所成角为θ,则sinθ=|cos<,>|==,即直线PA 与平面EAC 所成角的正弦值为.…20.已知动圆过定点A (0,2),且在x 轴上截得的弦MN 的长为4.(1)求动圆圆心的轨迹C的方程;(2)过点A(0,2)作一条直线与曲线C交于E,F两点,过E,F分别作曲线C的切线,两切线交于P点,当|PE|•|PF|最小时,求直线EF的方程.【考点】直线与圆锥曲线的综合问题.【分析】(1)设圆心为C(x,y),线段MN的中点为E,依题意得|CA|2=|CM|2=|ME|2+|EC|2,由此能求出动圆圆心的轨迹C的方程.(2)设E(),F(),由A,E,F三点共线,得到x1x2=﹣8,由已知条件利用导数性质求出P点坐标为(),由此能求出|PE|•|OF|当且仅当x2=﹣x1时取最小值,从而能求出直线EF方程为y=2.【解答】解:(1)设圆心为C(x,y),线段MN的中点为E,则|ME|=,依题意得|CA|2=|CM|2=|ME|2+|EC|2,∴x2+(y﹣2)2=22+y2,整理,得x2=4y,∴动圆圆心的轨迹C的方程为x2=4y.(2)设E(),F(),由A,E,F三点共线,得,∴x1x2=﹣8,由x2=4y,得y=,∴,∴PE的方程为,即y=.同理PF的方程为y=,解得P点坐标为(),即(),∴|PE|==,∴|PE|•|PF|====≥=24,当且仅当x 2=﹣x 1时,上式取等号,此时EF 的斜率为0,所求直线EF 方程为y=2.21.已知a >0,函数f (x )=ax 2﹣x ,g (x )=lnx . (1)若a=1,求函数y=f (x )﹣3g (x )的极值;(2)是否存在实数a ,使得f (x )≥g(ax )成立?若存在,求出实数a 的取值集合;若不存在,请说明理由.【考点】利用导数研究函数的极值;函数恒成立问题. 【分析】(1)求出y=f (x )﹣3g (x )的解析式,求出导函数的根,判断导函数根左右的单调性,再根据极值的定义即可得;(2)令h (x )=f (x )﹣g (ax )=ax 2﹣x ﹣ln (ax ),则问题等价于h (x )min ≥0,h′(x )=,令p (x )=2ax 2﹣x ﹣1,△=1+8a >0,设p (x )=0有两不等根x 1,x 2,不妨令x 1<0<x 2,利用导数可求得h (x )min =h (x 2)≥0;由p (x 2)=0可对h (x 2)进行变形,再构造函数,利用导数可判断h (x 2)≤0,由此求得x 2=1,进而求得a 值. 【解答】解:(1)当a=1时,y=f (x )﹣3g (x )=x 2﹣x ﹣3lnx ,导数y′=2x﹣1﹣=,因为x >0,所以当0<x <时,y′<0,当x >时,y′>0,所以函数y=f (x )﹣3g (x )在x=处取得极小值f ()﹣3g ()=﹣﹣3ln =﹣3ln , 函数y=f (x )﹣3g (x )没有极大值; (2)假设存在f (x )≥g(ax )成立.令h (x )=f (x )﹣g (ax )=ax 2﹣x ﹣ln (ax ),即h (x )min ≥0,所以h′(x )=2ax ﹣1﹣=,令p (x )=2ax 2﹣x ﹣1,△=1+8a >0,所以p (x )=0有两个不等根x 1,x 2,x 1 x 2=﹣,不妨令x 1<0<x 2,所以h (x )在(0,x 2)上递减,在(x 2,+∞)上递增, 所以h (x 2)=ax 22﹣x 2﹣ln (ax 2)≥0成立, 因为p (x 2)=2ax 22﹣x 2﹣1=0,所以ax 2=,所以h (x 2)=﹣ln ≥0,令k (x )=﹣ln=+ln2x ﹣ln (1+x ),k′(x )=﹣+﹣=﹣,所以k (x )在(0,1)上递增,在(1,+∞)上递减,所以k (x 2)≤k(1)=0,又h (x 2)=﹣ln≥0,所以x 2=1代入ax 2=,得a=1,所以a ∈{1}.故存在实数a 的取值集合{1},使得f (x )≥g(ax )成立.四.请考生从第22、23题中任选一题作答.注意:只能做所选的题目.如果多做,则按所做的第一个题计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.[选修4-1: [选修4-4:坐标系与参数方程选讲]22.已知直线l :(t 为参数),曲线C 1:(θ为参数).(1)设l 与C 1相交于A 、B 两点,求|AB|的值;(2)若把曲线C 1上各点的横坐标压缩为原来的,纵坐标压缩为原来的,得到曲线C 2,设点P 是曲线C 2上的一个动点,求它到直线l 的距离的最小值.【考点】参数方程化成普通方程.【分析】本题(1)可以将曲线C 1的方程转化为普通方程,再将直线l :(t 为参数),方程代入后,求出交点A 、B 对应的参数t 1,t 2,得到两个参数的和与积,再利用交点点A 、B两点的坐标与参数t 1,t 2的关系,求出|AB|的值,也可以将直线l 的方程化成普通方程后,利用弦长公式求出出|AB|的值,得到本题结论;(2)将曲线C 1上各点的横坐标压缩为原来的,纵坐标压缩为原来的,利用曲线的变换规律,求出到曲线C 2的方程,再将直线l 平移到与曲线C 2的相切, 利用根据的判断式为0,求出平移后的直线方程,利用两直线间距离公式,求出两平行线距离,得到曲线C 2上的一个动点P 到直线l 的距离的最小值.【解答】解:(1)∵曲线C 1:(θ为参数),∴消去参数θ,得到C 1:x 2+y 2=4.∵直线l :(t 为参数),∴(t+1)2+()2=4, ∴4t 2+2t ﹣3=0.∴(t 2﹣t 1)2=(t 2+t 1)2﹣4t 1t 2==.设l 与C 1相交于A 、B 两点,则A (x 1,y 1),B (x 2,y 2),|AB|2==[(1+t 2)﹣(1+t 1)]2+[]2 =4(t 2﹣t 1)2=13.∴|AB|=.(2)∵把曲线C 1上各点的横坐标压缩为原来的,纵坐标压缩为原来的,得到曲线C 2, ∴由C 1:x 2+y 2=4得C 2:(4x )2+()2=4,∴.∵直线l :(t 为参数),∴y=x .将y=x+m 代入,∴, 令△=0,,∴m=.取m=﹣,得到直线:y=x ,∵直线y=x与直线y=x 的距离为:=,∴曲线C 2上的一个动点P 到直线l 的距离的最小值为.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|+|x﹣3|.(1)求不等式f(x)<6的解集;(2)若关于x的方程f(x)=|a﹣2|有解,求实数a的取值范围.【考点】绝对值不等式的解法.【分析】(1)原不等式等价于或或<0,分别解每一个不等式,最后取其并集即可;(2)利用绝对值不等式可得f(x)=|x+1|+|x﹣3|≥|x+1﹣x﹣3|=4,依题意,解不等式|a﹣2|≥4即可求得实数a的取值范围.【解答】解:(1)原不等式等价于或或<0…解得﹣2<x<﹣1或﹣1≤x≤3或3<x<4,故原不等式的解集为{x|﹣2<x<4}.…(2)∵f(x)=|x+1|+|x﹣3|≥|x+1﹣x﹣3|=4.…又关于x的方程f(x)=|a﹣2|有解,∴|a﹣2|≥4,即a﹣2≥4或a﹣2≤﹣4,解得a≥6或a≤﹣2,…所以实数a的取值范围为a≥6或a≤﹣2.…。

2018年高考辽宁卷数学(理)试卷及答案

2018年高考辽宁卷数学(理)试卷及答案

2018年普通高等学校招生全国统一考试(辽宁卷)数 学(理)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的11Z i =-模为A.12B.22 2.已知集合A={x|0<log4x<1},B={x|x ≤2},则A ∩B=A .()01,B .(]02,C .()1,2D .(]12, 3.已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为 A.3455⎛⎫ ⎪⎝⎭,- B.4355⎛⎫ ⎪⎝⎭,- C.3455⎛⎫- ⎪⎝⎭, D.4355⎛⎫- ⎪⎝⎭, 4.下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列; 其中的真命题为A.12,p pB.34,p pC.23,p pD.14,p p5.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是A.45B.50C.55D.606.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠= A .6π B .3π C .23π D .56π 7.使得()3n x n N n+⎛∈ ⎝的展开式中含有常数项的最小的为。

2018年高考数学二模试卷(理科)带答案精讲

2018年高考数学二模试卷(理科)带答案精讲

2018年高考数学二模试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)若集合,则m的取范围值为()A.(2,+∞)B.(﹣∞,﹣1)C.﹣1或2 D.2或2.(5分)设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于()A.180 B.90 C.72 D.103.(5分)在样本的频率分布直方图中,共有5个长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的,且样本容量为100,则正中间的一组的频数为()A.80 B.0.8 C.20 D.0.24.(5分)若满足条件的△ABC有两个,那么a的取值范围是()A.(1,)B.() C.D.(1,2)5.(5分)复数2+i与复数在复平面上的对应点分别是A、B,则∠AOB等于()A.B.C.D.6.(5分)已知x,y满足约束条件的最小值是()A.B.C.D.17.(5分)2011年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码.公司规定:凡卡号的后四位带数字“6”或“8”的一律作为“金兔卡”,享受一定优惠政策,则这组号码中“金兔卡”的个数为()A.2000 B.4096 C.5904 D.83208.(5分)有三个命题①函数f(x)=lnx+x﹣2的图象与x轴有2个交点;②函数的反函数是y=(x﹣1)2(x≥﹣1);③函数的图象关于y轴对称.其中真命题是()A.①③B.②C.③D.②③9.(5分)若长度为定值的线段AB的两端点分别在x轴正半轴和y轴正半轴上移动,O为坐标原点,则△OAB的重心、内心、外心、垂心的轨迹不可能是()A.点B.线段C.圆弧D.抛物线的一部分10.(5分)已知点G是△ABC的重心,点P是△GBC内一点,若的取值范围是()A. B. C. D.(1,2)二、填空题(共5小题,每小题5分,满分25分)11.(5分)二项式(﹣2x2)9展开式中,除常数项外,各项系数的和为.12.(5分)边长是的正三角形ABC内接于体积是的球O,则球面上的点到平面ABC的最大距离为.13.(5分)函数,在区间(﹣π,π)上单调递增,则实数φ的取值范围为.14.(5分)已知过椭圆的右焦点F斜率是1的直线交椭圆于A、B两点,若,则椭圆的离心率是.15.(5分)在数学中“所有”一词,叫做全称量词,用符号“∀”表示;“存在”一词,叫做存在量词,用符号“∃”表示.设.①若∃x0∈(2,+∞),使f(x0)=m成立,则实数m的取值范围为;②若∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为.三、解答题(共6小题,满分75分)16.(12分)已知=(cosx+sinx,sinx),=(cosx﹣sinx,2cosx).(I)求证:向量与向量不可能平行;(II)若•=1,且x∈[﹣π,0],求x的值.17.(12分)已知某高中某班共有学生50人,其中男生30人,女生20人,班主任决定用分层抽样的方法在自己班上的学生中抽取5人进行高考前心理调查.(I)若要从这5人中选取2人作为重点调查对象,求至少选取1个男生的概率;(II)若男生学生考前心理状态好的概率为0.6,女学生考前心理状态好的概率为0.5,ξ表示抽取的5名学生中考前心理状态好的人数,求P(ξ=1)及Eξ.18.(12分)如图所示,在正方体ABCD﹣A1B1C1D1中,AB=a,E为棱A1D1中点.(I)求二面角E﹣AC﹣B的正切值;(II)求直线A1C1到平面EAC的距离.19.(12分)已知{a n}是正数组成的数列,其前n项和2S n=a n2+a n(n∈N*),数列{b n}满足,.(I)求数列{a n},{b n}的通项公式;(II)若c n=a n b n(n∈N*),数列{c n}的前n项和.20.(13分)若圆C过点M(0,1)且与直线l:y=﹣1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点.(Ⅰ)求曲线E的方程;(Ⅱ)若t=6,直线AB的斜率为,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;(Ⅲ)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l 上,求证:t与均为定值.21.(14分)已知函数f(x)=ax+lnx,a∈R.(I)当a=﹣1时,求f(x)的最大值;(II)对f(x)图象上的任意不同两点P1(x1,x2),P(x2,y2)(0<x1<x2),证明f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平等;(III)当时,设正项数列{a n}满足:a n=f'(a n)(n∈N*),若数列{a2n}是递+1减数列,求a1的取值范围.参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)若集合,则m的取范围值为()A.(2,+∞)B.(﹣∞,﹣1)C.﹣1或2 D.2或【分析】根据集合,解得A={2},在根据B=(1,m),A⊆B,即2必须要在(1,m)中,得到m≥2即可求解【解答】解:∵解得:x=2,x=﹣1(舍)∴A={2}∵B=(1,m),A⊆B∴m>2故选A【点评】本题以集合为依托,考查了解物理方程以及集合关系中的参数取值问题,属于基础题.2.(5分)设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于()A.180 B.90 C.72 D.10【分析】由a4=9,a6=11利用等差数列的性质可得a1+a9=a4+a6=20,代入等差数列的前n项和公式可求.【解答】解:∵a4=9,a6=11由等差数列的性质可得a1+a9=a4+a6=20故选B【点评】本题主要考查了等差数列的性质若m+n=p+q,则a m+a n=a p+a q和数列的求和.解题的关键是利用了等差数列的性质:利用性质可以简化运算,减少计算量.3.(5分)在样本的频率分布直方图中,共有5个长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的,且样本容量为100,则正中间的一组的频数为()A.80 B.0.8 C.20 D.0.2【分析】由已知中在样本的频率分布直方图中,共有5个长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的,我们出该组的频率,进而根据样本容量为100,求出这一组的频数.【解答】解:∵样本的频率分布直方图中,共有5个长方形,又∵中间一个小长方形的面积等于其它4个小长方形的面积和的,则该长方形对应的频率为0.2又∵样本容量为100,∴该组的频数为100×0.2=20故选C【点评】本题考查的知识点是频率分布直方图,其中根据各组中频率之比等于面积之比,求出该组数据的频率是解答本题的关键.4.(5分)若满足条件的△ABC有两个,那么a的取值范围是()A.(1,)B.() C.D.(1,2)【分析】由已知条件C的度数,AB及BC的值,根据正弦定理用a表示出sinA,由C的度数及正弦函数的图象可知满足题意△ABC有两个A的范围,然后根据A 的范围,利用特殊角的三角函数值即可求出sinA的范围,进而求出a的取值范围.【解答】解:由正弦定理得:=,即=,变形得:sinA=,由题意得:当A∈(60°,120°)时,满足条件的△ABC有两个,所以<<1,解得:<a<2,则a的取值范围是(,2).故选C【点评】此题考查了正弦定理及特殊角的三角函数值.要求学生掌握正弦函数的图象与性质,牢记特殊角的三角函数值以及灵活运用三角形的内角和定理这个隐含条件.5.(5分)复数2+i与复数在复平面上的对应点分别是A、B,则∠AOB等于()A.B.C.D.【分析】利用复数的几何意义:复数与复平面内的点一一对应,写出A,B的坐标;利用正切坐标公式求出角∠XOA,∠XOB,写最后利用和角公式求出∠AOB.【解答】解:∵点A、B对应的复数分别是2+i与复数,则=∴A(2,1),B(,﹣),∴tan∠XOA=,tan∠XOB=,∴tan∠AOB=tan(∠XOA+∠XOB)==1,则∠AOB等于故选B.【点评】本题考查复数的几何意义,复数与复平面内的点一一对应.解答的关键是利用正切的和角公式.6.(5分)已知x,y满足约束条件的最小值是()A.B.C.D.1【分析】本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与原点(0,0)构成的线段的长度问题,注意最后要平方.【解答】解:先根据约束条件画出可行域,z=x2+y2,表示可行域内点到原点距离OP的平方,点P到直线3x+4y﹣4=0的距离是点P到区域内的最小值,d=,∴z=x2+y2的最小值为故选B.【点评】本题利用直线斜率的几何意义,求可行域中的点与原点的斜率.本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.7.(5分)2011年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码.公司规定:凡卡号的后四位带数字“6”或“8”的一律作为“金兔卡”,享受一定优惠政策,则这组号码中“金兔卡”的个数为()A.2000 B.4096 C.5904 D.8320【分析】由题意知凡卡号的后四位不带数字“6”或“8”的一律不能作为“金兔卡”,后四位没有6和8,后四位中的每一个组成数字只能从另外8个中选,每一位有8种选法,根据分步计数原理得到结果,用总数减去不合题意的即可.【解答】解:∵凡卡号的后四位带数字“6”或“8”的一律作为“金兔卡”,∴凡卡号的后四位不带数字“6”或“8”的一律不能作为“金兔卡”,后四位没有6和8,∴后四位中的每一个组成数字只能从另外8个中选,根据分步计数原理知共有8×8×8×8=4096,∴符合条件的有10000﹣4096=5904,故选C.【点评】本题考查分步计数原理的应用,考查带有约束条件的数字问题,这种题目若是从正面来做包括的情况比较多,可以选择从反面来解决.8.(5分)有三个命题①函数f(x)=lnx+x﹣2的图象与x轴有2个交点;②函数的反函数是y=(x﹣1)2(x≥﹣1);③函数的图象关于y轴对称.其中真命题是()A.①③B.②C.③D.②③【分析】对于①,考查f(x)的单调性即可;对于②,欲求原函数y=﹣1(x ≥0)的反函数,即从原函数式中反解出x,后再进行x,y互换,即得反函数的解析式.对于③,考查函数f(x)的奇偶性即可.【解答】解:对于①,考察f(x)的单调性,lnx和x﹣2在(0,+∞)上是增函数,故f(x)=lnx+x﹣2在(0,+∞)上是增函数,图象与x轴最多有1个交点,故错.对于②,∵y=﹣1(x≥0),∴x=(y+1)2(y≥﹣1),∴x,y互换,得y=(x+1)2(x≥﹣1).故错.对于③,考察函数f(x)的奇偶性,化简得y=是偶函数,图象关于y轴对称,故对.故选C.【点评】本小题主要考查函数单调性的应用、函数奇偶性的应用、反函数等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.9.(5分)若长度为定值的线段AB的两端点分别在x轴正半轴和y轴正半轴上移动,O为坐标原点,则△OAB的重心、内心、外心、垂心的轨迹不可能是()A.点B.线段C.圆弧D.抛物线的一部分【分析】本题是个选择题,利用排除法解决.首先由△OAB的重心,排除C;再利用△OAB的内心,排除B;最后利用△OAB的垂心,排除A;即可得出正确选项.【解答】解:设重心为G,AB中点为C,连接OC.则OG=OC (这是一个重心的基本结论).而OC=AB=定值,所以G轨迹圆弧.排除C;内心一定是平分90度的那条角平分线上,轨迹是线段.排除B;外心是三角形外接圆圆心,对于这个直角三角形,AB中点C就是三角形外接圆圆心,OC是定值,所以轨迹圆弧,排除C;垂心是原点O,定点,排除A故选D.【点评】本题考查三角形的重心、内心、外心、垂心、以及轨迹的求法.解选择题时可利用排除法.10.(5分)已知点G是△ABC的重心,点P是△GBC内一点,若的取值范围是()A. B. C. D.(1,2)【分析】由点P是△GBC内一点,则λ+μ≤1,当且仅当点P在线段BC上时,λ+μ最大等于1;当P和G重合时,λ+μ最小,此时,=,λ=μ=,λ+μ=.【解答】解:∵点P是△GBC内一点,则λ+μ<1,当且仅当点P在线段BC上时,λ+μ最大等于1,当P和G重合时,λ+μ最小,此时,==×()=,∴λ=μ=,λ+μ=.故<λ+μ<1,故选:B.【点评】本题考查三角形的重心的性质,两个向量的加减法的法则,以及其几何意义,属于基础题.二、填空题(共5小题,每小题5分,满分25分)11.(5分)二项式(﹣2x2)9展开式中,除常数项外,各项系数的和为671.【分析】利用二项展开式的通项公式求出通项令x的指数为0得到常数项;令二项式中x为1求出各项系数和,从而解决问题.【解答】解:二项式展开式的通项令3r﹣9=0得r=3故展开式的常数项为﹣C93×23=﹣672.令二项式中的x=1得到系数之和为:(1﹣2)9=﹣1除常数项外,各项系数的和为:671.故答案为671.【点评】本题涉及的考点:(1)二项式定理及通项公式;(2)二项式系数与系数,解答时注意二项式系数与系数的区别.12.(5分)边长是的正三角形ABC内接于体积是的球O,则球面上的点到平面ABC的最大距离为.【分析】由已知中,边长是的正三角形ABC内接于体积是的球O,我们易求出△ABC的外接圆半径及球的半径,进而求出球心距,由于球面上的点到平面ABC的最大距离为球半径加球心距,代入即可得到答案.【解答】解:边长是的正三角形ABC的外接圆半径r=.球O的半径R=.∴球心O到平面ABC的距离d==.∴球面上的点到平面ABC的最大距离为R+d=.故答案为:.【点评】本题考查的知识点是点、面之间的距离,其中根据球的几何特征分析出球面上的点到平面ABC的最大距离为球半径加球心距,是解答本题的关键.13.(5分)函数,在区间(﹣π,π)上单调递增,则实数φ的取值范围为.【分析】求出函数的单调增区间,通过子集关系,确定实数φ的取值范围.【解答】解:函数,由2kπ﹣πφ≤2kπ,可得6kπ﹣3π﹣3φ≤x≤6kπ﹣3φ,由题意在区间(﹣π,π)上单调递增,所以6kπ﹣3π﹣3φ≤﹣π 且π≤6kπ﹣3φ,因为0<φ<2π,所以k=1,实数φ的取值范围为;故答案为:【点评】本题是基础题,考查三角函数的单调性的应用,子集关系的理解,考查计算能力.14.(5分)已知过椭圆的右焦点F斜率是1的直线交椭圆于A、B两点,若,则椭圆的离心率是.【分析】设出A、B两点的坐标,A(m,m﹣c),B(n,n﹣c),由得m+2n=3c ①,再根据椭圆的第二定义,=2=,可得2n﹣m=②,由①②解得m 和n的值,再代入椭圆的第二定义,e===,解方程求得e的值.【解答】解:右焦点F(c,0),直线的方程为y﹣0=x﹣c.设A(m,m﹣c),B(n,n﹣c),由得(c﹣m,c﹣m)=2 (n﹣c,n﹣c),∴c﹣m=2(n﹣c),m+2n=3c ①.再根据椭圆的第二定义,=2=,∴2n﹣m=②,由①②解得m=,n=.据椭圆的第二定义,e=====,∴3e3﹣3e﹣e2+=0,(e2﹣1)•(3e﹣)=0.∵0<e<1,∴e=,故椭圆的离心率是,故答案为.【点评】本题考查椭圆的定义、椭圆的标准方程,以及椭圆的简单性质的应用.15.(5分)在数学中“所有”一词,叫做全称量词,用符号“∀”表示;“存在”一词,叫做存在量词,用符号“∃”表示.设.①若∃x0∈(2,+∞),使f(x0)=m成立,则实数m的取值范围为(,+∞);②若∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为不存在.【分析】①先对函数配方,求出其对称轴,判断出其在给定区间上的单调性进而求出函数值的范围,即可求出实数m的取值范围;②先利用单调性分别求出两个函数的值域,再比较即可求出实数a的取值范围.【解答】解:因为f(x)==,(2,+∞),f(x)>f(2)=;g(x)=a x,(a>1,x>2).g(x)>g(2)=a2.①∵∃x0∈(2,+∞),使f(x0)=m成立,∴m;②∵∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),∴⇒a不存在.故答案为:(,+∞):不存在.【点评】本题主要考查函数恒成立问题以及借助于单调性研究函数的值域,是对基础知识的综合考查,属于中档题目.三、解答题(共6小题,满分75分)16.(12分)已知=(cosx+sinx,sinx),=(cosx﹣sinx,2cosx).(I)求证:向量与向量不可能平行;(II)若•=1,且x∈[﹣π,0],求x的值.【分析】(I)先假设两个向量平行,利用平行向量的坐标表示,列出方程并用倍角和两角和正弦公式进行化简,求出一个角的正弦值,根据正弦值的范围推出矛盾,即证出假设不成立;(II)利用向量数量积的坐标表示列出式子,并用倍角和两角和正弦公式进行化简,由条件和已知角的范围进行求值.【解答】解:(I)假设∥,则2cosx(cosx+sinx)﹣sinx(cosx﹣sinx)=0,1+cosxsinx+cos2x=0,即1+sin2x+=0,∴sin(2x+)=﹣3,解得sin(2x+)=﹣<﹣1,故不存在这种角满足条件,故假设不成立,即与不可能平行.(II)由题意得,•=(cosx+sinx)(cosx﹣sinx)+2cosxsinx=cos2x+sin2x=sin (2x+)=1,∵x∈[﹣π,0],∴﹣2π≤2x≤0,即≤,∴=﹣或,解得x=或0,故x的值为:或0.【点评】本题考查了向量共线和数量积的坐标运算,主要利用了三角恒等变换的公式进行化简,对于存在性的题目一般是先假设成立,根据题意列出式子,再通过运算后推出矛盾,是向量和三角函数相结合的题目.17.(12分)已知某高中某班共有学生50人,其中男生30人,女生20人,班主任决定用分层抽样的方法在自己班上的学生中抽取5人进行高考前心理调查.(I)若要从这5人中选取2人作为重点调查对象,求至少选取1个男生的概率;(II)若男生学生考前心理状态好的概率为0.6,女学生考前心理状态好的概率为0.5,ξ表示抽取的5名学生中考前心理状态好的人数,求P(ξ=1)及Eξ.【分析】(I)根据分层抽样的定义知:在自己班上的学生中抽取5人中有3男2女,“至少选取1个男生”的对立面是“全为女生”则所求的概率为:1﹣“全为女生”的概率(II)P(ξ=1)表示抽取的5名学生中考前心理状态好的人数为男生1人和女生1人ξ表示抽取的5名学生中考前心理状态好的人数可表示为:用ξ1表示3个男生中考前心理状态好的人数,ξ2表示2个女生考前心理状态好的人数,则ξ1~B(3,0.6),ξ2~B(2,0.5)根据Eξ=Eξ1+Eξ2即可运算【解答】解:(I)男生被抽取人数为3人,女生被抽取人数为2人选取的两名学生都是女生的概率P=∴所求的概率为:1﹣P=(II)P(ξ=1)=C31×0.6×0.42×0.52+C21×0.43×0.52=0.104用ξ1表示3个男生中考前心理状态好的人数,ξ2表示2个女生考前心理状态好的人数,则ξ1~B(3,0.6),ξ2~B(2,0.5),∴Eξ1=3×0.6=1.8,Eξ2=2×0.5=1,∴Eξ=Eξ1+Eξ2=2.8【点评】本题考查了等可能事件的概率,离散型随机变量的期望,特别是二项分布的期望与方差也是高考中常考的内容之一.18.(12分)如图所示,在正方体ABCD﹣A1B1C1D1中,AB=a,E为棱A1D1中点.(I)求二面角E﹣AC﹣B的正切值;(II)求直线A1C1到平面EAC的距离.【分析】(I)取AD的中点H,连接EH,则EH⊥平面ABCD,过H作HF⊥AC与F,连接EF,我们可得∠EFH即为二面角E﹣AC﹣B的补角,解三角形EFH后,即可求出二面角E﹣AC﹣B的正切值;(II)直线A1C1到平面EAC的距离,即A1点到平面EAC的距离,利用等体积法,我们根据=,即可求出直线A 1C1到平面EAC的距离.【解答】解:(I)取AD的中点H,连接EH,则EH⊥平面ABCD,过H作HF⊥AC 与F,连接EF,则EF在平面ABCD内的射影为HF,由三垂线定理得EF⊥AC,,∴∠EFH即为二面角E﹣AC﹣B的补角∵EH=a,HF=BD=∴∠tan∠EFH===2∴二面角E﹣AC﹣B的正切值为﹣2…6分(II)直线A1C1到平面EAC的距离,即A1点到平面EAC的距离d,…8分∵=•d=∴S△EAC∵EF====•AC•EF=•a•=∴S△EAC而=••a=∴•d=•a∴d=∴直线A1C1到平面EAC的距离【点评】本题考查的知识点是二面角的平面角及求法,点到平面的距离,其中(I)的关键是得到∠EFH即为二面角E﹣AC﹣B的补角,(II)中求点到面的距离时,等体积法是最常用的方法.19.(12分)已知{a n}是正数组成的数列,其前n项和2S n=a n2+a n(n∈N*),数列{b n}满足,.(I)求数列{a n},{b n}的通项公式;(II)若c n=a n b n(n∈N*),数列{c n}的前n项和.【分析】(I)由题设知a1=1,a n=S n﹣S n﹣1=,a n2﹣a n﹣12﹣a n﹣a n﹣1=0,故(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,由此能导出a n=n.于是b n+1=b n+3n,b n+1﹣b n=3n,由此能求出b n.(II),,由错位相减法能求出,由此能得到==.【解答】解:(I),∴a1=1,n≥2时,a n=S n﹣S n﹣1=,∴a n2﹣a n﹣12﹣an﹣a n﹣1=0,(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,∴a n﹣a n﹣1=1.∴数列{a n}是首项为1,公差为1的等差数列,∴a n=n.于是b n+1=b n+3n,∴b n+1﹣b n=3n,b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=.(II),∴,,∴==,,∴==.【点评】第(I)题考查数列通项公式的求法,解题时要注意迭代法的合理运用;第(II)题考查前n项和的计算和极限在数列中的运用,解题时要认真审题,仔细解答,注意数列性质的合理运用.20.(13分)若圆C过点M(0,1)且与直线l:y=﹣1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点.(Ⅰ)求曲线E的方程;(Ⅱ)若t=6,直线AB的斜率为,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;(Ⅲ)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l 上,求证:t与均为定值.【分析】(I)由点C到定点M的距离等于到定直线l的距离与抛物线的定义可得点C的轨迹为抛物线所以曲线E的方程为x2=4y.(II)由题得直线AB的方程是x﹣2y+12=0联立抛物线的方程解得A(6,9)和B(﹣4,4),进而直线NA的方程为,由A,B两点的坐标得到线段AB中垂线方程为,可求N点的坐标,进而求出圆N的方程.(III)设A,B两点的坐标,由题意得过点A的切线方程为又Q(a,﹣1),可得x12﹣2ax1﹣4=0同理得x22﹣2ax2﹣4=0所以x1+x2=2a,x1x2=﹣4.所以直线AB的方程为所以t=﹣1.根据向量的运算得=0.【解答】【解】(Ⅰ)依题意,点C到定点M的距离等于到定直线l的距离,所以点C的轨迹为抛物线,曲线E的方程为x2=4y.(Ⅱ)直线AB的方程是,即x﹣2y+12=0.由及知,得A(6,9)和B(﹣4,4)由x2=4y得,.所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3.直线NA的方程为,即.①线段AB的中点坐标为,线段AB中垂线方程为,即.②由①、②解得.于是,圆C的方程为,即.(Ⅲ)设,,Q(a,1).过点A的切线方程为,即x12﹣2ax1﹣4=0.同理可得x22﹣2ax2﹣4=0,所以x1+x2=2a,x1x2=﹣4.又=,所以直线AB的方程为,即,亦即,所以t=1.而,,所以==.【点评】本题主要考查抛物线的定义和直线与曲线的相切问题,解决此类问题的必须熟悉曲线的定义和曲线的图形特征,这也是高考常考的知识点.21.(14分)已知函数f(x)=ax+lnx,a∈R.(I)当a=﹣1时,求f(x)的最大值;(II)对f(x)图象上的任意不同两点P1(x1,x2),P(x2,y2)(0<x1<x2),证明f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平等;(III)当时,设正项数列{a n}满足:a n=f'(a n)(n∈N*),若数列{a2n}是递+1减数列,求a1的取值范围.【分析】(I)求出函数的导函数判断出其大于零得到函数在区间[1,e]上为增函数,所以f(1)为最小值,f(e)为最大值,求出即可;(II)直线P1P2的斜率k由P1,P2两点坐标可表示为;由(1)知﹣x+lnx≤﹣1,当且仅当x=1时取等号;可得+<﹣1,整理可得<,同理,由,得;所以P1P2的斜率,在x∈(x1,x2)上,有,可得结论.【解答】解:(Ⅰ)当a=﹣1时,f(x)=﹣x+lnx,.对于x∈(0,1),有f'(x)>0,∴f(x)在区间(0,1]上为增函数,对于x∈(1,+∞),有f'(x)<0,∴f(x)在区间(1,+∞)上为减函数,.∴f max(x)=f(1)=﹣1;(II)直线P1P2的斜率为;由(1)知﹣x+lnx≤﹣1,当且仅当x=1时取等号,∴,同理,由,可得;故P1P2的斜率,又在x∈(x1,x2)上,,所以f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平行;(III)f(x)=,f′(x)=,∴a n+1=+,a3=,a4==<a2⇒2a22﹣3a2﹣2>0,⇒(2a2+1)(a2﹣1)>0⇒a2>2⇒⇒0<a1<2,下面我们证明:当0<a1<2时,a2n+2<a2n,且a2n>2(n∈N+)事实上,当n=1时,0<a1<2⇒a2=,a4﹣a2=⇒a4<a2,结论成立.若当n=k时结论成立,即a2k+2<a2k,且a2k>2,则a2k+2=⇒a2k+4=,a2k+4﹣a2k+2=⇒a2k+4<a2k+2,由上述证明可知,a1的取值范围是(0,2).【点评】本题综合考查了利用导数研究曲线上过某点的切线方程,利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值问题,也考查了利用函数证明不等式的问题,以及利用数学归纳法证明数列不等式,考查运算能力和分析解决问题能力,属难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年辽宁省鞍山一中高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈N|x2﹣x﹣2<0}的真子集个数为()A.1 B.2 C.3 D.42.(5分)若为a实数,且=3+i,则a=()A.﹣4 B.﹣3 C.3 D.43.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.144.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.25.(5分)已知命题“∃x∈R,2x2+(a﹣1)x+≤0是假命题,则实数a的取值范围是()A.(﹣∞,﹣1)B.(﹣1,3)C.(﹣3,+∞)D.(﹣3,1)6.(5分)已知sin2α=,则cos2(α+)=()A.B.C.D.7.(5分)若向量,满足,,则•=()A.1 B.2 C.3 D.58.(5分)设x,y满足约束条件,则z=3x+y的最大值为()A.﹣3 B.4 C.2 D.59.(5分)由曲线xy=1与直线y=x,y=3所围成的封闭图形面积为()A.2﹣ln3 B.ln3 C.2 D.4﹣ln310.(5分)设a=log25,b=log415,c=20.5,则a,b,c大小关系为()A.a>c>b B.a>b>c C.c>b>a D.c>a>b11.(5分)在等差数列{a n}中,a1>0,a2016+a2017>0,a2016a2017<0,则使前n 项和S n>0成立的最大自然数n的值为()A.2016 B.2017 C.4031 D.403212.(5分)若存在正数x使2x(x﹣a)<1成立,则a的取值范围是()A.(﹣∞,+∞)B.(﹣2,+∞)C.(0,+∞)D.(﹣1,+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)等差数列{a n},公差d=2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n等于.14.(5分)直线y=kx+3被圆(x﹣2)2+(y﹣3)2=4截得的弦长为,则直线的倾斜角为.15.(5分)函数y=log a(x+4)﹣1(a>0且a≠1)的图象恒过定点A,若点A 在直线mx+ny+1=0上,其中m,n均大于0,则的最小值为.16.(5分)在锐角△ABC中,a,b,c分别是角A,B,C所对的边,△ABC的面积S=2,且满足acosB=b(1+cosA),则(c+a﹣b)(c+b﹣a)的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知函数.(1)求函数f(x)的最小正周期和图象的对称轴方程;(2)求函数f(x)在区间上的最值.18.(12分)已知函数f(x)=|2x+1|﹣|x﹣1|.(1)求不等式f(x)<2的解集;(2)若关于x的不等式f(x)有解,求a的取值范围.19.(10分)证明:不是有理数.20.(12分)已知数列{a n}的前n项和为S n,且S n+1=4a n+2,a1=1.(1)b n=a n+1﹣2a n,求证数列{b n}是等比数列;(2)设,求证数列{c n}是等差数列;(3)求数列{a n}的通项公式及前n项和S n.21.(12分)如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA ⊥底面ABCD,FD∥EA,且.(1)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,并写出该直线与CF所成角的余弦值,但不要求证明和解答过程.(2)求直线EB与平面ECF所成角的正弦值.22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.2018年辽宁省鞍山一中高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈N|x2﹣x﹣2<0}的真子集个数为()A.1 B.2 C.3 D.4【解答】解:∵集合A={x∈N|x2﹣x﹣2<0}={x∈N|﹣1<x<2}={0,1},∴集合A={x∈N|x2﹣x﹣2<0}的真子集个数为22﹣1=3.故选:C.2.(5分)若为a实数,且=3+i,则a=()A.﹣4 B.﹣3 C.3 D.4【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.3.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.14【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.4.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.2【解答】解:∵∴三棱锥O﹣ABC,OE⊥底面ABC,EA=ED=1,OE=1,AB=BC=∴AB⊥BC,∴可判断;△OAB≌△OBC的直角三角形,S△OAC=S△ABC==1,S△OAB=S△OBC=×2=该四面体的表面积:2,故选:C.5.(5分)已知命题“∃x∈R,2x2+(a﹣1)x+≤0是假命题,则实数a的取值范围是()A.(﹣∞,﹣1)B.(﹣1,3)C.(﹣3,+∞)D.(﹣3,1)【解答】解:∵“∃x∈R,2x2+(a﹣1)x+≤0”的否定为“∀x∈R,“∵“∃x∈R,2x2+(a﹣1)x+”为假命题∴“为真命题即恒成立∴解得﹣1<a<3故选B6.(5分)已知sin2α=,则cos2(α+)=()A.B.C.D.【解答】解:∵s in2α=,∴cos2(α+)=[1+cos(2α+)]=(1﹣sin2α)=×(1﹣)=.故选A7.(5分)若向量,满足,,则•=()A.1 B.2 C.3 D.5【解答】解:∵,,∴(+)2=10,(﹣)2=6,两者相减得:4•=4,∴•=1,故选:A.8.(5分)设x,y满足约束条件,则z=3x+y的最大值为()A.﹣3 B.4 C.2 D.5【解答】解:由约束条件作出可行域如图,化目标函数z=3x+y为y=﹣3x+z,由图可知,当直线y=﹣3x+z过B(1,1)时,直线在y轴上的截距最大,此时z有最大值为3×1+1=4.故选:B.9.(5分)由曲线xy=1与直线y=x,y=3所围成的封闭图形面积为()A.2﹣ln3 B.ln3 C.2 D.4﹣ln3【解答】解:方法一:由xy=1,y=3可得交点坐标为(,3),由xy=1,y=x可得交点坐标为(1,1),由y=x,y=3可得交点坐标为(3,3),∴由曲线xy=1,直线y=x,y=3所围成的平面图形的面积为(3﹣)dx+(3﹣x)dx=(3x﹣lnx)+(3x﹣x2),=(3﹣1﹣ln3)+(9﹣﹣3+)=4﹣ln3故选:D.方法二:由xy=1,y=3可得交点坐标为(,3),由xy=1,y=x可得交点坐标为(1,1),由y=x,y=3可得交点坐标为(3,3),对y积分,则S=(y﹣)dy=(y2﹣lny)=﹣ln3﹣(﹣0)=4﹣ln3,故选D.10.(5分)设a=log25,b=log415,c=20.5,则a,b,c大小关系为()A.a>c>b B.a>b>c C.c>b>a D.c>a>b【解答】解:∵a=log25>log24=2,2=log416>b=log415>log48=1.5,c=20.5=,∴a,b,c大小关系为a>b>c.故选:B.11.(5分)在等差数列{a n}中,a1>0,a2016+a2017>0,a2016a2017<0,则使前n 项和S n>0成立的最大自然数n的值为()A.2016 B.2017 C.4031 D.4032【解答】解:∵等差数列{a n}中,a1>0,a2016+a2017>0,a2016a2017<0,∴等差数列{a n}是单调递减数列,d<0,因此a2016>0,a2017<0,∴S4032==>0,S4033==4033a2017<0,∴使前n项和S n>0成立的最大自然数n是4032.故选:D.12.(5分)若存在正数x使2x(x﹣a)<1成立,则a的取值范围是()A.(﹣∞,+∞)B.(﹣2,+∞)C.(0,+∞)D.(﹣1,+∞)【解答】解:因为2x(x﹣a)<1,所以,函数y=是增函数,x>0,所以y>﹣1,即a>﹣1,所以a的取值范围是(﹣1,+∞).故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)等差数列{a n},公差d=2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n等于n2+n.【解答】解:等差数列{a n},公差d=2,若a2,a4,a8成等比数列,所以(a4)2=a2•a8,可得(a1+6)2=(a1+2)(a1+14),解得a1=2.则{a n}的前n项和S n=2n+=n2+n.故答案为:n2+n.14.(5分)直线y=kx+3被圆(x﹣2)2+(y﹣3)2=4截得的弦长为,则直线的倾斜角为或.【解答】解:∵圆(x﹣2)2+(y﹣3)2=4的圆心C(2,3),半径r=2,∴圆心到直线y=kx+3的距离d==,∵直线y=kx+3被圆(x﹣2)2+(y﹣3)2=4截得的弦长为,∴2=2=2,解得k=,∴直线的倾斜角为或.故答案为:或.15.(5分)函数y=log a(x+4)﹣1(a>0且a≠1)的图象恒过定点A,若点A 在直线mx+ny+1=0上,其中m,n均大于0,则的最小值为5+2.【解答】解:函数y=log a(x+4)﹣1(a>0且a≠1)的图象恒过定点A,当x+4=1时,即x=﹣3,y=﹣1,则A(﹣3,﹣1),∴﹣3m﹣n+1=0,∴3m+n=1,∴=(3m+n)()=5++≥5+2=5+2,当且仅当n=m 时取等号,故最小值为5+2,故答案为:16.(5分)在锐角△ABC中,a,b,c分别是角A,B,C所对的边,△ABC的面积S=2,且满足acosB=b(1+cosA),则(c+a﹣b)(c+b﹣a)的取值范围是.【解答】解:∵在锐角△ABC中,a,b,c分别为角A,B,C所对的边,满足acosB=b (1+cosA),∴sinAcosB=sinB+sinBcosA,sin(A﹣B)=sinB,∴A﹣B=B,即A=2B<,可得:B∈(0,),可得:A+B=3B∈(,),故C∈(,),∴∈(,),∴tanC=>1,可得:1>tan>﹣1+.∵△ABC的面积S=ab•sinC=2,∴ab=,则(c+a﹣b)(c+b﹣a)=c2﹣(a﹣b)2=c2﹣a2﹣b2+2ab=﹣2ab•cosC+2ab=2ab(1﹣cosC)=(1﹣cosC)=8=8tan∈(8﹣8,8).故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知函数.(1)求函数f(x)的最小正周期和图象的对称轴方程;(2)求函数f(x)在区间上的最值.【解答】解:(1)∵,∴,令:,解得:.函数f(x)的最小正周期为π,对称轴方程为:.(2)∵,∴.因为在区间上单调递增,在区间上单调递减,所以,当时,f(x)取最大值1.又∵,当时,f(x)取最小值.18.(12分)已知函数f(x)=|2x+1|﹣|x﹣1|.(1)求不等式f(x)<2的解集;(2)若关于x的不等式f(x)有解,求a的取值范围.【解答】解:(1)函数f(x)=|2x+1|﹣|x﹣1|=,当x≥1时,不等式化为x+2<2,解得x<0,可得x∈∅;当﹣<x<1时,不等式化为3x<2,解得x<,可得﹣<x<;当x≤﹣时,不等式化为﹣x﹣2<2,解得x>﹣4,可得﹣4<x≤﹣;综上可得,原不等式的解集为(﹣4,);(2)关于x的不等式f(x)≤a﹣有解,即为:f(x)min≤a﹣,由x≥1时,x+2≥3;﹣<x<1时,﹣<3x<3:x≤﹣时,﹣x﹣2≥﹣.可得f(x)min=﹣,即有a﹣≥﹣,解得﹣1≤a≤3;所以a的取值范围是[﹣1,3].19.(10分)证明:不是有理数.【解答】证明:假设为有理数那么存在两个互质的正整数p,q,使得:,于是,两边平方得p2=2q2由2q2是偶数,可得p2是偶数.而只有偶数的平方才是偶数,所以p也是偶数.因此可设p=2s,s是正整数,代入上式,得:4s2=2q2,即q2=2s2.所以q也是偶数,这样p,q都是偶数,不互质,这与假设p,q互质矛盾.因此不是有理数.20.(12分)已知数列{a n}的前n项和为S n,且S n+1=4a n+2,a1=1.(1)b n=a n+1﹣2a n,求证数列{b n}是等比数列;(2)设,求证数列{c n}是等差数列;(3)求数列{a n}的通项公式及前n项和S n.【解答】(1)证明:由题意,S n+1=4a n+2,S n+2=4a n+1+2,两式相减,得S n+2﹣S n+1=4(a n+1﹣a n)a n+2=4a n+1﹣4a n,∴a n+2﹣2a n+1=2(a n+1﹣2a n),∵b n=a n+1﹣2a n,∴b n+1=2b n,又由题设,得1+a2=4+2=6,即a2=5,∴b1=a2﹣2a1=3,∴{b n}是首项为3,公比为2的等比数列;(2)证明:由(1)得,∴,∴,即.∴数列{c n}是首项为,公差为的等差数列;(3)解:由(2)得,,即,∴.则S n=4a n﹣1+2=(3n﹣4)•2n﹣1+2.21.(12分)如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA ⊥底面ABCD,FD∥EA,且.(1)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,并写出该直线与CF所成角的余弦值,但不要求证明和解答过程.(2)求直线EB与平面ECF所成角的正弦值.【解答】解:(1)取线段CD的中点,连结KQ,直线KQ即为所求.余弦值为,如图所示:(2)以A点为原点,AB所在直线为x轴,AD所在的直线为y轴,AE所在直线为z轴建立空间直角坐标系,如图.由已知可得A(0,0,0),E(0,0,2),B(2,0,0),C(2,2,0),F(0,2,1),∴,,设平面ECF的法向量为,得,取y=1,得平面ECF的一个法向量为,设直线EB与平面ECF所成的角的正弦值为:==.22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.【解答】解:(1)∵,且x>0,∴.令,则.①当a≤0时,U'(x)>0,U(x)在(1,+∞)上为单调递增函数,∴x>1时,U(x)>U(1)=0,不合题意.②当0<a<2时,时,U'(x)>0,U(x)在上为单调递增函数,∴,U(x)>U(1)=0,不合题意.③当a>2时,,U'(x)<0,U(x)在上为单调递减函数.∴时,U(x)>U(1)=0,不合题意.④当a=2时,x∈(0,1),U'(x)>0,U(x)在(0,1)上为单调递增函数.x∈(1,+∞),U'(x)<0,U(x)在(1,+∞)上为单调递减函数.∴U(x)≤0,符合题意.综上,a=2.(2),x∈[1,e2].g'(x)=lnx﹣ax.令h(x)=g'(x),则由已知h(x)=0在(1,e2)上有两个不等的实根.(A)①当时,h'(x)≥0,h(x)在(1,e2)上为单调递增函数,不合题意.②当a≥1时,h'(x)≤0,h(x)在(1,e2)上为单调递减函数,不合题意.③当时,,h'(x)>0,,h'(x)<0,所以,h(1)<0,,h(e2)<0,解得.(B)证明:由已知lnx1﹣ax1=0,lnx2﹣ax2=0,∴lnx1﹣lnx2=a(x1﹣x2).不妨设x1<x2,则,则=.令,(0<x<1).则,∴G(x)在(0,1)上为单调递增函数,∴即,∴,∴,∴,由(A),∴ae<1,2ae<2,∴.。

相关文档
最新文档