笔算开立方和N次方

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

今年在某次物理竞赛中忘了带计算器,需要计算开立方。当时不知道怎么笔算,所以只好一位一位地试。因此,我便想研究出一种开立方的笔算方法(我知道现在有,但是苦于找不到,所以只好自己来了)。

在刚开始研究是我不知道该如何入手,所以就去找了初二时候的代数书,里面有开平方笔算法和推导过程。它是这么写的:

在这里,我“定义”a^b=a的b次方。

(10a+b)^2 = 100a^2+20ab+b^2 = 100a^2+b(20a+b)

a代表的是已经计算出来的结果,b代表的是当前需要计算的位上的数。在每次计算过程中,100a^2都被减掉,剩下b(20a+b)。然后需要做的就是找到最大的整数b'使b'(20a+b')<=b(20a+b)。

因此,我就照着书里的方法,推导开立方笔算法。

(10a+b)^3 = 1000a^3+300a^2*b+30a*b^2+b^3 = 1000a^3+b[300a^2+b(30a%2

笔算开立方

一天,我遇到了一道需要用到310的近似值的物理题。我没带计算器或《中学数学用表》,只好逐个计算一些数的立方,并与10比较,好不容易才把小数点后第二位数字确定下来。这促使我寻求笔算开立方的方法。

笔算开平方的方法我是掌握的。我想笔算开立方的方法应该与它有些关联,不妨先把笔算开平方的主要步骤回忆一下:1.将被开方数的整数部分从个位起向左每两位分为一组;

2.根据最左边一组,求得平方根的最高位数;

3.用第一组数减去平方根最高位数的平方,在其差右

边写上第二组数;

4.用求得的最高位数的20倍试除上述余数,得出试商。再用最高位数的20倍与试商的和乘以试商,若所

得的积不大于余数,试商就是平方根的第二位数,若

大于,就减小试商再试。

5.用同样方法继续进行下去。

类似地,若要写出笔算开立方的法则,显然第1步中的“两”应改为“三”,第2、3步中的“平”应改为“立”,而第5步不变化。关键是第4步如何进行。

当天晚上,我想到完全平方公式是(a+b)2=a2+2ab+b2,完全立方公式是(a+b)3=a3+3a2b+3ab2+b3。于是我猜想“20倍”应该与“2ab”有关。我先后想出了几种可能的方法,经检验,都是行不通的。那么我有必要分析笔算开平方的本质。

以两位数ab为例,2

ab= (10a+b)2=100a2+20ab+b2。这里a代表平方根的最高位数,b代表试商。事实上,100a2已在第3步里被减去了。那么剩下的就是20ab+b2,即(20a+b)·b,也就是“求得的最高位数的20倍与试商的和再乘以试商”。这样,如果被开方数是(10a+b)2,那么最后所得的余数恰好为零;如果被开方数比(10a+b)2大,就把10a+b看作a继续进行下去。同样的道理,这个法则对多位数、一位数和小数也适用。

类似地,(10a+b)3=1000a3+300a2b+30ab2+b3,其中1000a3在开立方法则第3 步里被减去了。那么我就应该把求得的最高位数

的平方的300倍与试商的积,求得的最高位数的30倍与试商的

平方的积和试商的立方写在竖式的左边,用第3 步所得余数减

去它们的和。举几个简单的例子验证一下:

(300=12×300× 1 (600=12×300× 2 (1200=22×300×1)

30=1×30×12 120=1×30×22 60=2

×30×12

1=13) 8=23) 1=13)

为了进一步验证这种方法的正确性,我求出了310的近似值,

并与计算器的结果进行比照:

(为了书写简便,我把10.000……后面的“0”省略了。)

用这种方法算出10的立方根约等于2.1544,而计算器的结果是2.1544347,这说明求出的结果是正确的。

现将笔算开立方的方法总结如下:

1.将被开立方数的整数部分从个位起向左每三位分为一组;

2.根据最左边一组,求得立方根的最高位数;

3.用第一组数减去立方根最高位数的立方,在其右边写上第二组数;

4.用求得的最高位数的平方的300倍试除上述余数,得出试商;并把求得的最高位数的平方的300倍与试

商的积、求得的最高位数的30倍与试商的平方的积和

试商的立方写在竖式左边,观察其和是否大于余数,

若大于,就减小试商再试,若不大于,试商就是立方

根的第二位数;

5.用同样方法继续进行下去。

这种方法肯定早就有人发明了。其运算量相当大,实用价值也不高。但我毕竟是独立地发现了它。虽然欣喜无法与发现新大陆相比,但这至少使我体验到在数学世界中探索的快乐。

此后不久,我居然发现这种方法在期中考试中发挥了作用──

期中考试物理试卷中有这样一道题:“神舟”三号飞船的运行周期约是91分钟,地球半径约是6370㎞,求飞船的轨道高度(以km为单位,保留两个有效数字)。

这道题并不难。根据所学知识,我很快就列出方程,并求出了结果的表达式。经过近似计算和约分、化简,结果大约是(10003300-6370)㎞。我想大多数同学能够算到这里,而对于3300就束手无策了。

但它难不倒我。我运用了笔算开立方的方法。由于法则是自己总结的,所以记得很牢,用起来也得心应手。很快,我求出3300≈6.7,最终结果约是3.3×102㎞。严格地说,这个答案是不可靠的。要保证最终结果的第二个有效数字准确,应该把3300计算到百分位。但因时间有限,且300这个数本身就是不准确的,我只好这样写。后来我看到答案,知道我的结果是正确的。

我感到高兴,因为我自己发现并总结出的规律在考试中得到应用。我觉得这种笔算开立方的方法不能为大家所知似乎是个遗憾。但它的应用似乎仅限于这类由周期求轨道半径的物理题,除此之外,别的意义很是寥寥。换言之,这种方法仅是雕虫小技而已。然而探索的过程使我体会到初步的数学研究方法,或许将有更大的意义──因为“对真理的探求比对真理的占有更为可贵”。

相关文档
最新文档