江苏省南京市玄武区2015年中考数学二模试题
初中数学 南京市玄武区中考模拟二模数学考试卷及答案(word版)
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:2的相反数是A.-2B.-C.D .2试题2:等于A.-3B.3C.±3D.试题3:南京青奥会期间约有1020000人次参与了青奥文化教育活动.将数据1020000用科学记数法表示为A.10.2×105 B.1.02×105 C.1.02×106 D.1.02×107试题4:如图,∠1=50°,如果AB∥DE,那么∠D=A.40°B.50°C. 130°D.140°试题5:不等式组的解集在数轴上表示正确的是A.B.C.D.试题6:如图,水平线l1∥l2,铅垂线l3∥l4,l1⊥l3,若选择l1、l2其中一条当成x轴,且向右为正方向,再选择l3、l4其中一条当成y轴,且向上为正方向,并在此平面直角坐标系中画出二次函数y=ax2-ax-a的图象,则下列关于x、y轴的叙述,正确的是A.l1为x轴,l 3为y轴B.l1为x轴,l4为y轴C.l2为x轴,l 3为y轴D.l2为x轴,l4为y轴试题7:使式子有意义的x的取值范围是.试题8:一组数据:1,4,2,5,3的中位数是.试题9:分解因式:2x2-4x+2=.试题10:计算:sin45°+-=.试题11:小明与家人和同学一起到游泳池游泳,买了2张成人票与3张学生票,共付了155元.已知成人票的单价比学生票的单价贵15元,设学生票的单价为x元,可得方程.试题12:已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为.试题13:如图,ON⊥OM,等腰直角三角形ACB中,∠ACB=90°,边AC在OM上,将△ACB绕点A逆时针旋转75°,使得点B的对应点E恰好落在ON上,则=.试题14:如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使3CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为.试题15:如图,四边形ABCD为⊙O的内接四边形,连接AC、BO,已知∠CAB=36°,∠ABO=30°,则∠D=°.试题16:函数y1=k1x+b的图象与函数y2=的图象交于点A(2,1)、B(n,2),则不等式-<-k1x+b的解集为.试题17:解方程组:试题18:先化简,再求值:÷-,其中a=1.试题19:如图,矩形花圃ABCD一面靠墙,另外三面用总长度是24m的篱笆围成.当矩形花圃的面积是40m2时,求BC的长.试题20:在一个不透明的口袋里装有四个球,这四个球上分别标记数字-3、-1、0、2,除数字不同外,这四个球没有任何区别.(1)从中任取一球,求该球上标记的数字为正数的概率;(2)从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.试题21:为了解南京市民每天的阅读时间情况,随机抽取了部分市民进行调查,根据调查结果绘制如下尚不完整的频数分布表:阅读时间0≤x<30 30≤x<60 60≤x<90 x≥90 合计x(min)频数450 400 ②50 ④频率①0.4 0.1 ③ 1 (1)补全表格中①~④的数据;(2)将每天阅读时间不低于60min的市民称为“阅读爱好者”,若我市约有800万人,请估计我市能称为“阅读爱好者”的市民约有多少万人?试题22:如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.试题23:游泳池完成换水需要经过“排水—清洗—注水”三个过程.如图,图中折线表示的是游泳池在换水过程中池中的水量y(m3)与时间t(min)之间的关系.(1)求注水过程中y与t的函数关系式;(2)求清洗所用的时间.试题24:在海上某固定观测点O处的北偏西60°方向,且距离O处40海里的A处,有一艘货轮正沿着正东方向匀速航行,2小时后,此货轮到达O处的北偏东45°方向的B处.在该货轮从A处到B处的航行过程中.(1)求货轮离观测点O处的最短距离;(2)求货轮的航速.试题25:如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.(1)求证:∠E=∠BCO;(2)若⊙O的半径为3,cos A=,求EF的长.试题26:已知二次函数y=x2—2x+c(c为常数).(1)若该二次函数的图象与两坐标轴有三个不同的交点,求c的取值范围;(2)已知该二次函数的图象与x轴交于点A(-1,0)和点B,与y轴交于点C,顶点为D,若存在点P(m,0)(m>3)使得△CDP与△BDP面积相等,求m的值.试题27:如图,在△ABC中,∠A=90°,AB=AC=12cm,半径为4cm的⊙O与AB、AC两边都相切,与BC交于点D、E.点P从点A出发,沿着边AB向终点B运动,点Q从点B出发,沿着边BC向终点C运动,点R从点C出发,沿着边CA向终点A运动.已知点P、Q、R同时出发,运动速度分别是1cm/s、x cm/s、1.5cm/s,运动时间为t s.(1)求证:BD=CE;(2)若x=3,当△PBQ∽△QCR时,求t的值;(3)设△PBQ关于直线PQ对称的图形是△PB'Q,求当t和x分别为何值时,点B'与圆心O恰好重合.试题1答案:A试题2答案:B试题3答案:C试题4答案:C试题5答案:D试题6答案:A试题7答案:x≥-1;试题8答案:3试题9答案:2(x-1)2试题10答案:-2试题11答案:3x+2(x+15)=155 试题12答案:24试题13答案:试题14答案:8试题15答案:96试题16答案:x>0,-2<x<-1试题17答案:解:①+②,得 3x=3,解得x=1.将x=1代入①,得 1+y=-3,解得y=-4.所以原方程组的解为6分试题18答案:解:÷-=÷-=·-=-=-=-.当a=1时,原式=-1.7分试题19答案:解:设BC的长度为x m.由题意得x·=40.解得x1=4,x2=20.答:BC长为4m或20m.7分试题20答案:解:(1)正数为2,该球上标记的数字为正数的概率为. 3分(2)点(x,y)所有可能出现的结果有:(-3,-1)、(-3,0)、(-3,2)、(-1,0)、(-1,2)、(0,2)、(-1,-3)、(0,-3)、(2,-3)、(0,-1)、(2,-1)、(2,0).共有12种,它们出现的可能性相同.所有的结果中,满足“点(x,y)位于第二象限”(记为事件A)的结果有2种,所以P(A)=.8分试题21答案:解:(1)①0.45;②100;③0.05;④1000;4分(2)800×(0.1+0.05)=120(万人)答:我市能称为“阅读爱好者”的市民约有120万人. 7分试题22答案:解:(1)证明:在正方形ABCD中,∵AD=CD,∴∠DAE=∠DCG,∵DE=DG,∴∠DEG=∠DGE,∴∠AED=∠CGD.在△AED和△CGD中,∵∠DAE=∠DCG,∠AED=∠CGD,DE=DG,∴△AED≌△CGD,∴AE=CG.4分(2)解法一:BE∥DF,理由如下:在正方形ABCD中,AB∥CD,AB=CD,∴∠BAE=∠DCG.又∵AE=CG,∴△AEB≌△CGD,∴∠AEB=∠CGD.∵∠CGD=∠EGF,∴∠AEB=∠EGF,∴ BE∥DF.9分解法二:BE∥DF,理由如下:在正方形ABCD中,∵AD∥FC,∴=.∵CG=AE,∴AG=CE.又∵在正方形ABCD中,AD=CB,∴=.又∵∠GCF=∠ECB,∴△CGF∽△CEB,∴∠CGF=∠CEB,∴ BE∥DF.9分试题23答案:解:(1)设注水过程中y与t之间的函数关系式为y=kt+b.根据题意,当t=95时,y=0;当t=195时,y=1000.所以解得所以,y与t之间的函数关系式为y=10t-950. 4分(2)由图象可知,排水速度为=20m3/min.则排水需要的时间为=75min.清洗所用的时间为95-75=20min.8分试题24答案:解:(1)如图,作OH⊥AB,垂足为H.在Rt△AOH中,∵cos∠AOH=.∴OH=cos60°·AO=20.即货轮离观测点O处的最短距离为20海里. 4分(2)在Rt△AOH中,∵sin∠AOH=,∴AH=sin60°·AO=20,在Rt△BOH中,∵∠B=∠HOB=45°,∴HB=HO=20.∴AB=20+20,∴货轮的航速为=10+10(海里/小时). 8分试题25答案:(1)证明:连接BO.∵OE∥BD,∴∠E=∠ABD.∵AE与⊙O相切于点B,∴OB⊥AE.∴∠ABD+∠OBD=90°.∵CD是⊙O的直径,∴∠CBO+∠OBD=90°.∴∠ABD=∠CBO.∵OB=OC,∴∠CBO=∠BCO.∴∠E=∠BCO.4分(2)解:在Rt△ABO中,cos A==,可设AB=4k,AO=5k,BO==3k.∵⊙O的半径为3,∴3k=3,∴k=1.∴AB=4,AO=5.∴AD=AO-OD=5-3=2.∵BD∥EO,∴==,∴AE=10.∴EB=AE-AB=6.在Rt△EBO中,EO==3.∵OE∥BD,∴∠EFB=∠DBF=90°.∵∠FEB=∠BEO,∠EFB=∠EBO,∴△EFB∽△EBO.∴=,即=.∴EF=.9分试题26答案:解:(1)由题意可得,该二次函数与x轴有两个不同的交点,也就是当y=0时,方程x2—2x+c=0有两个不相等的实数根,即b2-4ac>0,所以4-4c>0,c<1.又因为该二次函数与两个坐标轴有三个不同的交点,所以c≠0.综上,若该二次函数的图象与两坐标轴有三个不同的交点,c的取值范围为c<1且c≠0.4分(2)因为点A(-1,0)在该二次函数图象上,可得0=(-1)2-2×(-1)+c,c=-3.所以该二次函数的关系式为y=x2—2x-3,可得C(0,-3).由x=-=1,可得B(3,0),D(1,-4).若点P(m,0)(m>3)使得△CDP与△BDP面积相等,可得点C、B到DP的距离相等,此时,CB∥DP.设过点C、B的直线的函数关系式为y=kx+b,即解得设过点D、P的直线的函数关系式为y=x+n,即-4=1+n.解得n=-5.即y=x-5,当y=0时,x=5,即m=5.9分试题27答案:(1)证明:连接AO并延长交BC于点H.连接OE、OD.∵⊙O与AB、AC两边都相切,∴点O到AB、AC两边的距离相等.∴AH是∠CAB的平分线.∵AB=AC,∴AH⊥BC,AH平分BC.∵OE=OD,OH⊥ED,∴OH平分ED.∵CE=CH-EH,BD=BH-DH,且CH=BH,EH=DH,∴ BD=CE.3分(2)解:在Rt△ABC中,BC==12.∵△PBQ∽△QCR,∴=,即=.解得t=. 6分(3)解:设⊙O与AB相切于点M,连接OM、OB、OP、OQ,H参考(1)中作法.∵点O与点B关于PQ对称,∴PQ垂直平分BO.∴OP=BP,OQ=BQ.∵⊙O与AB相切于点M,∴OM⊥AB.设BP=a,在Rt△OMP中,(12-4-a)2+42=a2,解得a=5;设BQ=b,在Rt△OHB中,(6-b)2+(2)2=b2,解得b=.t==7s.x==cm.。
江苏省南京市鼓楼区2015年中考数学二模试题(含解析).doc
江苏省南京市鼓楼区2015 年中考数学二模试题一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)1.下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是()A.B.C.D.2.下列算式结果为﹣ 3 的是()A.﹣ | ﹣ 3| B.(﹣ 3)0 C.﹣(﹣ 3)D.(﹣ 3)﹣13.使分式有意义的x 的取值范围是()A. x> 2 B. x< 2 C . x≠ 2 D . x≥ 24.下列从左边到右边的变形,是因式分解的是()A.( a﹣ 1)( a﹣ 2) =a2﹣ 3a+2B. a2﹣ 3a+2=( a﹣1)( a﹣ 2)C.( a﹣ 1)2+( a﹣ 1)=a2﹣ a D. a2﹣ 3a+2=( a﹣1)2﹣( a﹣1)5.下列命题中假命题是()A.两组对边分别相等的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.一组对边平行一组对角相等的四边形是平行四边形D.一组对边平行一组对边相等的四边形是平行四边形6.对函数y=x 3的描述:① y 随 x 的增大而增大,②它的图象是中心对称图形,③它的自变量取值范围是 x≠ 0.正确的是()b5E2RGbCAPA.①② B .①③ C.②③ D.①②③二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直接填写在答题纸相应位置上) p1EanqFDPw7. 9 的平方根是.8.一个多边形的每个外角都等于72°,则这个多边形的边数为.9.已知方程组的解为,则一次函数y= ﹣x+1 和 y=2x﹣ 2 的图象的交点坐标为.10.计算(﹣)×的结果是.11.已知 x1、x2是一元二次方程x2+x=1 的两个根,则x1x2=.12.如果代数式2x+y 的值是 3,那么代数式7﹣6x ﹣ 3y 的值是.13.已知点A(2, y1)、B( m,y2)是反比例函数y=的图象上的两点,且y1< y2.写出满足条件的 m的一个值, m可以是.DXDiTa9E3d14.如图,∠ 1=70°,直线 a 平移后得到直线b,则∠ 2﹣∠ 3=°.15 .已知等腰△ABC中,AB=AC=13cm,BC=10cm,则△ABC的内切圆半径为cm.RTCrpUDGiT16.如图,方格纸中有三个格点A、 B、 C,则 sin ∠ ABC=.三、解答题(本大题共 11 小题,共 88 分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 5PCzVD7HxA17.( 1)解方程组(2)解不等式2x﹣1≥,并把它的解集在数轴上表示出来.18.某校八年级学生开展踢毽子比赛活动,每班派 5 名学生参加,按团体总数排列名次,在规定时间内每人踢100 个以上(含100 个)为优秀,下表是成绩最好的甲、乙两班各 5 名学生的比赛数据.(单位:个)jLBHrnAILg1 号2 号3 号4 号5 号总数甲班89 100 96 118 97 500乙班100 96 110 90 104 500统计发现两班总数相等,此时有人建议,可以通过考查数据中的其他信息来评判.试从两班比赛数据的中位数、方差、优秀率三个方面考虑,你认为应该选定哪一个班为冠军?xHAQX74J0X19.如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,请你结合图片信息,解答下列问题:(1)加油过程中的常量是,变量是;(2)请用合适的方式表示加油过程中变量之间的关系.20.在一个不透明的袋子中,放入除颜色外其余都相同的 1 个白球、 2 个黑球、 3 个红球.搅匀后,从中随机摸出 2 个球.LDAYtRyKfE(1)请列出所有可能的结果:(2)求每一种不同结果的概率.21.某纪念币从2013 年 11 月 11 日起开始上市,通过市场调查得知该纪念币每 1 枚的市场价 y(单位:元)与上市时间x(单位:天)的数据如下:Zzz6ZB2Ltk上市时间 x 天 4 10 36市场价 y 元90 51 90(1)根据上表数据,在某一特定时期内,可从下列函数中选取一个恰当的函数描述纪念币的市场价 y 与上市时间 x 的变化关系:dvzfvkwMI1①y=ax+b (a≠ 0);② y=a(x﹣h)2+k(a≠ 0);③ y=(a≠0).你可选择的函数的序号是.(2)利用你选取的函数,求该纪念币上市多少天时市场价最低,最低价格是多少?22.三角形中有 3 个角、 3 条边共 6 个元素,由其中的已知元素,求出所有未知元素的过程,叫做解三角形.已知△ ABC中, AB=,∠ B=45°,BC=1+,解△ ABC.23.如图,线段AB绕点 O顺时针旋转一定的角度得到线段A1B1.(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接 OA、 OA1、 OB、 OB1,根据旋转的性质用符号语言写出 2 条不同类型的正确结论;(3)针对第( 2)问中的图形,添加一定的条件,可以求出线段AB 扫过的面积.(不再添加字母和辅助线,线段的长用a、b、 c表示,角的度数用α 、β 、γ 表示).rqyn14ZNXI你添加的条件是,线段 AB扫过的面积是.24.如图, OA、 OB是⊙ O的半径且O A⊥ OB,作 OA的垂直平分线交⊙O于点 C、 D,连接 CB、AB.求证:∠ ABC=2∠ CBO.25.小明和小莉在跑道上进行100m短跑比赛,两人从出发点同时起跑,小明到达终点时,小莉离终点还差6m,已知小明和小莉的平均速度分别为x m/s 、 y m/s .EmxvxOtOco(1)如果两人重新开始比赛,小明从起点向后退6m,两人同时起跑能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.SixE2yXPq5(2)如果两人想同时到达终点,应如何安排两人起跑位置?请设计两种方案.26.( 1 )已知:如图, E、 F、 G、 H 分别是菱形ABCD的各边上与顶点均不重合的点,且AE=CF=CG=AH.6ewMyirQFL求证:四边形EFGH是矩形.(2)已知:E、F、G、H 分别是菱形 ABCD的边 AB、 BC、 CD、 AD上与顶点均不重合的点,且四边形 EFGH是矩形. AE 与 AH相等吗?如果相等,请说明理由;如果不相等,请举反例进行说明. kavU42VRUs27.△ ABC中, AB=AC=10, BC=12,矩形 DEFG中, EF=4, FG> 12.(1)如图①,点 A 是 FG的中点, FG∥ BC,将矩形 DEFG向下平移,直到 DE与 BC重合为止.要研究矩形 DEFG与△ ABC重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).y6v3ALoS89(2)如图②,点 B 与 F 重合, E、B、C 在同一直线上,将矩形DEFG向右平移,直到点 E 与C重合为止.设矩形 DEFG与△ ABC重叠部分的面积为 y,平移的距离为 x.M2ub6vSTnP①求 y 与 x 的函数关系式,并写出自变量的取值范围;②在给定的平面直角坐标系中画出y 与 x 的大致图象,并在图象上标注出关键点坐标.2015 年江苏省南京市鼓楼区中考数学二模试卷参考答案与试题解析一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)0YujCfmUCw1.下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是()A.B.C.D.考点:轴对称图形.分析:根据对称轴的概念求解.解答:解:A、有3条对称轴;B、有 4 条对称轴;C、有 2 条对称轴;D、有 6 条对称轴.故选 D.点评:本题考查了轴对称图形的知识,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.eUts8ZQVRd2.下列算式结果为﹣ 3 的是()A.﹣ | ﹣ 3| B.(﹣ 3)0 C.﹣(﹣ 3)D.(﹣ 3)﹣1考点:负整数指数幂;相反数;绝对值;零指数幂.分析:首先根据绝对值的含义和求法,一个数的相反数的求法,以及负整数指数幂、零指数幂的运算方法,求出每个选项中的数各是多少;然后判断出算式结果为﹣ 3 的是哪个即可. sQsAEJkW5T解答:解:∵﹣ | ﹣3|= ﹣ 3,(﹣ 3)0=1,﹣(﹣ 3) =3,(﹣ 3)﹣1=﹣,∴算式结果为﹣ 3 的是﹣ | ﹣ 3| .故选: A.点评:( 1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a﹣p=(a≠0,p为正整数);(2)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;( 3)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.GMsIasNXkA (2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);( 2)00≠ 1.TIrRGchYzg(3)此题还考查了绝对值的含义和求法的应用,以及一个数的相反数的求法,要熟练掌握.3.使分式有意义的x 的取值范围是()A. x> 2 B. x< 2 C . x≠ 2 D . x≥ 2考点:分式有意义的条件.分析:根据分式有意义的条件:分母不等于0 即可求解.解答:解:根据题意得:x﹣2≠ 0,解得: x≠2.故选: C.点评:本题主要考查了分式有意义的条件,解决本题的关键是熟记分式有意义的条件:分母不等于 0.4.下列从左边到右边的变形,是因式分解的是()A.( a﹣ 1)( a﹣ 2) =a2﹣ 3a+2B. a2﹣ 3a+2=( a﹣1)( a﹣ 2)C.( a﹣ 1)2+( a﹣ 1)=a2﹣ a D. a2﹣ 3a+2=( a﹣ 1)2﹣( a﹣ 1)考点:因式分解的意义.专题:计算题.分析:利用因式分解的意义判断即可.2解答:解:a﹣3a+2=(a﹣1)(a﹣2)是因式分解.点评:此题考查了因式分解的意义,熟练掌握因式分解的意义是解本题的关键.5.下列命题中假命题是()A.两组对边分别相等的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.一组对边平行一组对角相等的四边形是平行四边形D.一组对边平行一组对边相等的四边形是平行四边形考点:命题与定理.分析:要找出假命题,可以通过举反例得出;也可运用相关基础知识分析得出真命题,从而得出正确选项.解答:解: A、由平行四边形的判定定理可知是个真命题,错误;B、由平行四边形的判定定理可知是个真命题,错误;C、首先由两直线平行,同旁内角互补及等角的补角相等得出另一组对角相等,然后根据两组对角分别相等的四边形是平行四边形可知是个真命题,错误;7EqZcWLZNXD、例如等腰梯形,满足一组对边平行一组对边相等,但它不是平行四边形,所以是个假命题.正确.故选 D.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.lzq7IGf02E6.对函数y=x 3的描述:① y 随 x 的增大而增大,②它的图象是中心对称图形,③它的自变量取值范围是x≠ 0.正确的是()zvpgeqJ1hkA.①② B .①③ C.②③ D.①②③考点:函数的图象;函数自变量的取值范围;中心对称图形.分析:①根据函数的增减性,可得答案;②根据中心对称图形的定义,可得答案;③根据立方的意义,可得答案.解答:解:① y=x3的增减性是y随 x 的增大而增大,故①正确;。
苏科版2015九年级中考二模数学试卷及答案
2014—2015学年度第二学期初三年级数学试题(考试时间:120分钟 卷面总分:150分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.-12 的倒数是 ( ▲ )A .12B .-2C .-12D .22.下列运算正确的是 ( ▲ ) A .x 2+ x 3= x 5B .x 4·x 2 = x 6C .x 6÷x 2 = x 3D .( x 2)3 = x 83.下面四个几何体中,俯视图为四边形的是 ( ▲ )4.若菱形ABCD 的两条对角线长分别为6和8,则此菱形的面积为 ( ▲ ) A .5 B .12 C .24 D .48 5.对于反比例函数y =- 1x,下列说法正确的是A .图象经过点(1,1)B .图象位于第一、三象限 ( ▲ )C .图象是中心对称图形D .当x <0时,y 随x 的增大而减小6.某公司10名职工3月份工资统计如下,该公司10名职工3月份工资的中位数是 ( ▲ ) A . 3100元B . 3200元C . 3300元D . 3400元7. 已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图2.则旋转的牌是 ( ▲ )8.已知实数m ,n 满足m ﹣n 2=2,则代数式m 2+2n 2+4m ﹣1的最小值等于 ( ▲ ) A .-14 B .-6 C .8 D .11二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.16的平方根是 ▲ . 10.使式子1+有意义的x 的取值范围是 ▲ .工资(元) 3000 3200 3400 3600 人数(人) 3 3 3 1 图1图2 A B C DA B C D11.因式分解:a 2+2ab= ▲.12.一种花瓣的花粉颗粒直径约为 ▲ .13.一元二次方程mx 2﹣2x+1=0有两个不相等的实数根,则m 应满足的条件是 ▲ .14.如图所示是一飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在黑色区域的概率是 ▲ .15. 如图,四边形ABCD 的四个顶点都在⊙O 上,若∠ABC=80°,则∠ADC 的度数为 ▲ °.16.如图,在Rt △ABC 中,∠ACB=90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD=5cm ,则EF=▲ cm .17.如图,将边长为2cm 的正方形ABCD 绕点A 顺时针旋转到AB′C′D′的位置, ∠B′AD=120°,则C 点运动到C′点的路径长为 ▲ cm .18.如下图,第1个图形中一共有1个平行四边形,第2个图形中一共有5个平行四边形,第3个图形中一共有11个平行四边形,……则第n 个图形中平行四边形的个数是 ▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)(1)计算:(3)0 - ( 12)-2 +sin30° (2)化简:2()(2)a b b a b -++20.(本题满分8分)(1)解不等式组:⎩⎪⎨⎪⎧x +23 <1,2(1-x )≤5,(2)解方程:x x -1 - 31-x = 221.(本题满分8分)如图,一艘巡逻艇航行至海面B 处时,得知正北方向上的C 处有一渔船发生故障,就立即指挥港口A 处的救援艇前往C 处营救.已知C 处位于A 处的北偏东45°的方向,港口A 位于B 的北偏西30°的方向, A 、 B 之间的距离为20海里,求A 、C 之间的距离.(结果精确到海里,参考数据24)(第17题)A B C DC ′B ′ D ′ D E F A BC (第16题) (第14题) DOC B A (第15题) 45022. (本题满分8分)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向2的概率为;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.23.(本题满分10分)已知:如图,在□ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.24.(本题满分10分)盐城市初级中学为了了解中考体育科目训练情况,从本校九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;A DCBEFO图1图2(2)图1中∠α的度数是 ,并把图2条形统计图补充完整;(3)该校九年级有学生2500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为 .25.(本题满分10分)如图,AB 是⊙O 的直径,点E 是上的一点,∠DBC=∠BED .(1)请判断直线BC 与⊙O 的位置关系,并说明理由;(2)已知AD=5,CD=4,求BC 的长.26.(本题满分10分)在购买某场足球赛门票时,设购买门票数为x (张),总费用为y (元).现有两种购买方案: 方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)方案二:购买门票方式如右图所示.解答下列问题:(1)方案一中,y 与x 的函数关系式为 ▲ ; 方案二中,当0≤x ≤100时,y 与x 的函数关系式为 ▲ , 当x >100时,y 与x 的函数关系式为 ▲ ;(2)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共600张,花去总费用计48000元,求甲、乙两单位各购买门票多少张.27.(本题满分12分) 某数学活动小组在一次活动中,对一个数学问题作如下探究:【问题发现】如图1,在等边三角形ABC 中,点M 是边BC 上任意一点,连接AM ,以AM 为边作等边三角形AMN ,连接CN ,证明:BM=CN .【变式探究】如图2,在等腰三角形ABC 中,BA=BC ,∠ABC=∠α,点M 为边BC 上任意一点,以AM 为腰作等腰三角形AMN ,MA=MN ,使∠AMN=∠ABC ,连接CN ,请求出BMCN的值. (用含α的式子表示出来)1000014000100 150 Ox (张y(元)【解决问题】如图3,在正方形ADBC 中,点M 为边BC 上一点,以AM 为边作正方形作AMEF ,N 为正方形AMEF 的中心,连接CN ,若正方形AMEF 的边长为10,CN=2,请你求正方形ADBC 的边长.28.(本题满分12分) 如图,抛物线c bx x y ++-=2161经过△ABC 的三个顶点,点A 坐标为(0,6),点C 坐标为 (4,6),点B 在x 轴正半轴上.(1)求该抛物线的函数表达式和点B 的坐标.(2)将经过点B 、C 的直线平移后与抛物线交于点M ,与x 轴交于点N ,当以B、C 、M 、N 为顶点的四边形是平行四边形时,请求出点M 的坐标.(3)①动点D 从点O 开始沿线段OB 向点B 运动,同时以OD 为边在第一象限作正方形ODEF ,当正方形的顶点E 恰好落在线段AB 上时,则此时正方形的边长为 ▲②将①中的正方形ODEF 沿OB 向右平移,记平移中的正方形ODEF 为正方形O ′D ′E ′F ′,当点D 与点B 重合时停止平移.设平移的距离为x ,在平移过程中,设正方形O ′D ′E ′F ′与△ABC 重叠部分的面积为y ,请你画出相对应的图形并直接写出y 与x 之间的函数关系式.AB CMN图1EFACBDM N图3图2BCM AN备用图数学参考答案一、1-5 BBDCC 6-8 BAD二、9. 4±10. 0x≥11. (2)a a b+12. 66.510-⨯13. 10m m<≠且14.1215. 100︒16. 518. 2-1n n+三、19. ⑴解:原式2111=1=142212-+-+⎛⎫⎪⎝⎭=52-⑵解:原式222-22a ab b ab b=+++=222a b+20. ⑴由①得212313xx x+<+<<由②得5332(1)51222x x x x-≤-≤-≤≥-∴312x-≤<⑵323225511xx x x xx x+=+=--=-=--检验:当5x=时,10x-≠∴5x=为原分式方程的根21. ⑴解:作AD⊥BC ∵∠B=30°∴1sin30AD︒==∵AB=20 ∴AD=10 ∵∠1=45°∴∠ACD=45°∴sin45ADAC︒==∴AC=∴AC≈10×1.414=14.14 ≈14.122. ⑴13⑵共出现9种等可能性的结果54==99P P P P∴≠小明小华小明小华∴不公平答:游戏对双方不公平23. ⑴证明:∵平行四边形ABCD ∴AD∥BC △DOE与△BOF中∴12EDO FBO OD OB EDO FBO ∠=∠⎧⎪∠=∠=⎨⎪∠=∠⎩∵O 为BD 中点 ∴OB=OD ∴DOE BOF ∆≅∆⑵解:当∠DOE=90°时,BFOE 为菱形 ∵DOE BOF ∆≅∆∴OE=OF ∵OB=OD ∴BFDE 为平行四边形 ∵∠DOE=90°∴EF ⊥BD∴BFDE 为菱形 ∴当90DIEBFDE ∠=︒时,为菱形24. ⑴40人⑵54︒⑶500人25. ⑴BC 与O 相切 ∵BD BD =∴∠BAD=∠BED ∵∠DBC=∠BED∴∠BAD=∠DBC ∵AB 为直径 ∴∠ADB=90° ∴∠BAD+∠ABD=90°∴∠DBC+∠ABD=90° ∴∠CBO=90° ∴点B 在O 上∴BC 与O 相切 ⑵∵AB 为直径 ∴∠ADB=90° ∴∠BDC=90° ∵BC 与O 相切∴∠CBO=90° ∴∠BDC=∠CBO∴ABCBDC ∆∆∴BC AC CD BC= ∴2BCCD AC =⋅∵4,5CD AD ==∴AC=9∴24936BC =⨯= ∴BC=6(BC=-6 舍去) 26. ⑴y=10000+50x y=100x y=80x+2000⑵解:设甲购买门票m 张,则乙购买门票(600-m )张。
南京市玄武区 中考二模数学试卷含答案 (2)
南京市玄武区中考二模数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算6×(-2)-12÷(-4)的结果是 A .10 B .0 C .-3 D .-92.小明从正面观察如图所示的两个物体,看到的是A . C .D .3.已知一粒米的质量约是0. 000 021千克,这个数字用科学记数法表示为 A .21×10-3 B .2.1×10-4 C .2.1×10-5D .2.1×10-64.如果把分式2xyx +y 中的x 和y 都扩大2倍,那么分式的值A .扩大为原来的4倍B .扩大为原来的2倍C .不变D .缩小为原来的12倍5.若关于x 的方程x 2-4x +k =0的一个根为2-3,则k 的值为A .1B .-1C .2D .-2 6.已知40°的圆心角所对应的扇形面积为169π cm 2,则这个扇形所在圆的直径为A .2 cmB .4 cmC .8 cmD .16 cm二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接 第2题图填写在答题卡相应位置.......上) 7.分解因式:2x 2-8= ▲ .8.如图,直线AB ,CD 相交于点E ,DF ∥AB ,若∠AEC =100°,则∠D = ▲ °. 9.若||a -3=a -3,则a = ▲ .(请写一个符合条件a 的值)10.某班派6名同学参加拔河比赛,他们的体重分别是:67,61,59,63,57,66(单位:千克)这组数据的中位数是 ▲ 千克.11.如图,⊙O 的内接四边形ABCD 中,∠BOD =100°,则∠BCD = ▲ °. 12.一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件按原价的8折销售,售价为120元,则这款羊毛衫的原价为 ▲ 元.13.已知圆柱的底面半径为3 cm ,母线长为5 cm ,则圆柱的侧面积是 ▲ cm 2. 14.在同一直角坐标系中,点A 、B 分别是函数y =x -1与y =-3x +5的图像上的点,且点A 、B 关于原点对称,则点A 的横坐标为 ▲ .15.如图,等腰Rt △ABC 的斜边BC 在x 轴上,顶点A 在反比例函数y =3x(x >0)的图像上,连接OA ,若OB =2,则点A 的坐标为 ▲ .16.如图,在四边形ABCD 中,AB ⊥BC ,AD ∥BC ,∠BCD =120°,BC =2,AD =DC .P为四边形ABCD 边上的任意一点,当∠BPC =30°时,CP 的长为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字ABECD F第8题图第11题图第15题图ABCD第16题图初中毕业生视力抽样调查频数分布表说明、证明过程或演算步骤)17.(10分)(1)解方程组⎩⎪⎨⎪⎧3x +5y =8,2x -y =1.(2)解方程x 2-2x -1=0.18.(7分)先化简:⎝⎛⎭⎫x 2x -2+42-x ÷x +22x,再从2,-2,1,0,-1中选择一个合适的数进行计算.19.(8分)某区对即将参加中考的5 000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和不完整的频数分布直方图.请根据图表信息回答下列问题:视力 频数(人)频率 4.0≤x <4.3 20 0.1 4.3≤x <4.6 40 0.2 4.6≤x <4.9 70 0.35 4.9≤x <5.2 a 0.3 5.2≤x <5.5 10b(1)本次调查的样本为 ▲ ,样本容量为 ▲ ;(2)在频数分布表中,a = ▲ ,b = ▲ ,并将频数分布直方图补充完整; (3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?频数(人)10 20 30 40 50 60 70初中毕业生视力抽样调查频数分布直方图 (每组数据含最小值,不含最大值)20.(8分)如图,在△ABC 中,AB =AC ,D 为边BC 上一点,将线段AB 平移至DE ,连接AE 、AD 、EC . (1)求证:AD =EC ;(2)当点D 是BC 的中点时,求证:四边形ADCE 是矩形.21.(6分)某市在道路改造过程中,需要铺设一条管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.求甲、乙工程队每天各能铺设多少米.22.(6分)一个不透明的袋中装有2只红球和2只绿球,这些球除颜色外完全相同. (1)从袋中一次随机摸出1只球,则这只球是红球的概率为 ▲ ; (2)从袋中一次随机摸出2只球,求这2只球颜色不同的概率.23.(8分)如图,在△ABC 中,AB =AC ,点D 、E 分别在BC 、AC 上,且DC =DE . (1)求证:△ABC ∽△DEC ;(2)若AB =5,AE =1,DE =3,求BC 的长.ABCD E第20题图ABCED第23题图24.(8分)小明同学需测量一条河流的宽度(河岸两边互相平行).如图,小明同学在河岸一侧选取两个观测点A 、B ,在河对岸选取观测点C ,测得AB =31m ,∠CAB =37°,∠CBA =120°.请你根据以上数据,帮助小明计算出这条河的宽度.(结果精确到0.1,参考数据:sin37°≈0.60,cos37°≈0.80, tan37°≈0.75,2≈1.41,3≈1.73)25.(9分)一个装有进水管和出水管的容器,根据实际需要,从某时刻开始的2分钟内只进水不出水,在随后的4分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分钟)之间的部分关系如图所示. (1)当2≤x ≤6时,求y 与x 的表达式; (2)请将图像补充完整;(3)从进水管开始进水起,求该容器内的水量不少于7.5升所持续时间.ABC 第24题图y第25题图26.(8分)如图,AB 是⊙O 的直径,C 、D 为⊙O 上两点,CF ⊥AB 于点F ,CE ⊥AD 交AD 的延长线于点E ,且 CE =CF .连接CA 、CD 、CB . (1)求证:CE 是⊙O 的切线;(2)若AD =CD =6,求四边形ABCD 的面积.27.(10分)已知二次函数y =x 2-2ax -2a -6 (a 为常数,a ≠0). (1)求证:该二次函数的图象与x 轴有两个交点;(2)设该二次函数的图象与x 轴交于点A (-2,0)和点B ,与y 轴交于点C ,线段BC的垂直平分线l 与x 轴交于点D . ①求点D 的坐标;②设点P 是抛物线上的一个动点,点Q 是直线l 上的一个动点.以点B 、D 、P 、Q 为顶点的四边形是否可能为平行四边形?若能,直接写出点Q 的坐标.B第26题图①②第二学期九年级测试卷(二)数学参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7. 2(x +2) (x -2) 8.80 9. 4(不唯一) 10.62 11.130 12.150 13.30π 14.-1 15.(3,1) 16.2或23或4 三、解答题(本大题共11小题,共88分)17.(5分)(1)解方程组: ⎩⎪⎨⎪⎧3x +5y =8,2x -y =1.解: 由②得 y =2x —1 ③ 将③代入①得:3x +5(2x -1)=813x =13x =1 ………2分 将 x =1代入②得y =1 ………4分∴该方程组的解为:⎩⎪⎨⎪⎧x =1,y =1. ……5分(5分)(2)x 2-2x -1=0 解:∵ a =1,b =-2,c =-1∴ b 2-4ac =(-2)2-4×1×(-1)=8>0 ……2分 x =-b ±b 2-4ac 2a =2±82=1±2……4分∴ x 1=1+2,x 2=1- 2 ………5分(用配方法解方程酌情给分)18.(7分)解:原式= ⎝⎛⎭⎫x 2x -2 -4 x -2÷x +22x=x 2-4 x -2÷x +22x = ( x +2) ( x -2) x -2•2x x +2=2 x ……4分 ∵ x -2≠0、x ≠0 、x +2≠0,∴ x ≠2、x ≠0、x ≠-2, ………6分将x =1代入,得原式=2×1=2. ………7分19.(8分)(1)从中抽取的某区即将参加中考200名初中毕业生的视力情况;200 ……2分 (2)60;0.05 ……4分 补对图形 ………5分(3)解:5000×0.7=3500(人) ………7分 答:估计全区初中毕业生中视力正常的学生有3500人. ………8分 20.(8分)(1)证明:∵ 将线段AB 平移至DE ∴AB =DE ,AB ∥DE . ∴∠EDC =∠B ∵ AB =AC∴∠B =∠ACB ,DE =AC ∴∠EDC =∠ACB在△ADC 与△ECD 中,⎩⎪⎨⎪⎧AC =DE ∠EDC =∠ACB DC =CD∴△ADC ≌△ECD . ……3分∴AD =EC ……4分 (2) ∵将线段AB 平移至DE∴AB =DE ,AB ∥DE . ∴四边形ABDE 为平行四边形. ∴BD =AE∵点D 是BC 的中点 ∴ BD =DC , ∴ AE =DC , ∵AD =EC∴四边形ADCE 为平行四边形. ……6分 ∵AB =AC ,点D 是BC 的中点 ∴∠ADC =90° ∴四边形ADCE 为矩形. ……8分21.(6分)解:设乙工程队每天能铺设x 米,则甲工程队每天能铺设(x +20)米 ……1分由题意,得 350 x+20=250x… …3分解得,x =50经检验 x =50是方程的解. ……5分ED则x +20=70答:乙工程队每天能铺设50米,甲工程队每天能铺设70米. ……6分 22.(6分)解:(1)12……2分(2)将袋中的4个球分别记为:红1、红2、绿1、绿2,则从袋中随机抽取2个球,所有可能出现的结果有:(红1 , 红2)、(红1 ,绿1)、(红1 ,绿2)、(红2 ,绿1)、(红2 ,绿2)、(绿1 ,绿2),共有6种,它们出现的可能性相同.所有的结果中,满足“2只球颜色不同”(记为事件A )的结果只有4种,所以P(A )=46=23. ……6分(树状图或列表参照给分) 23.(8分)(1)证明:∵ AB =AC∴∠B =∠C∵ DC =DE∴∠DEC =∠C ∴∠DEC =∠B ∵∠C =∠C∴△ABC ∽△DEC ……4分 (2)∵ AB =AC =5,AE =1 ∴CE =AC -AE =4 ∵△ABC ∽△DEC∴53=BC 4. ∴BC =203……8分24.(8分)过点C 作CD ⊥AB ,垂足为点D 在Rt △CAD 中,tan ∠CAD =CD AD∴AD =CD tan ∠CAD =CDtan37°在Rt △CBD 中,tan ∠CBD =CD BD∴B D =CD tan ∠CBD =CDtan60° ……4分∵AD -B D =AB ∴CD tan37°-CDtan60°=31CD 0.75-CD3=31 ……6分 解得CD ≈41.0 ……7分(第24题)答:这条河的宽度约为41.0米. ……8分 25.(9分)(1)设y 与x 的函数表达式为y =kx +b , ……1分将点( 2,10 ),( 6,15) 代入y =kx +b 得:⎩⎪⎨⎪⎧2k +b =10,6k +b =15, 解得⎩⎨⎧k =54b∴ 当2≤x ≤6时,y 与x 的函数表达式为y =54 x +215. ……3分(2)由题意可求出进水管每分钟的进水量为5升,出水管每分钟的出水量为3.75升, 故关闭进水管直到容器内的水放完需要4分钟.所以补充的图像为连接点( 6,15 )和点(10,0 )所得的线段. ……5分(3)由题意可求:当0≤x ≤2时,y 与x 的函数表达式为y =5 x当6≤x ≤10时,y 与x 的函数表达式为y =-154x +752把y =7.5代入y =5 x , 得x 1=1.5把y =7.5代入y =-154x +752,得x 2=8 ……8分∴该容器内的水量不少于7.5升的持续时间为x 2-x 1=8-1.5=6.5(分钟) 答:该容器内的水量不少于7.5升的持续时间为6.5分钟. ……9分 26.(8分)证明:(1)连结OC.∵CF ⊥AB ,CE ⊥AD ,且CE =CF ∴∠CAE =∠CAB ∵ OC =OA∴ ∠CAB =∠OCA ∴∠CAE =∠OCA∴∠OCA +∠ECA =∠CAE +∠ECA =90° ∴ ∠OCE =90° 即OC ⊥CE ……3分 ∵OC 是⊙O 的半径,点C 为半径外端∴CE 是⊙O 的切线 ……4分 解(2)∵AD=CD∴∠DAC=∠DCA=∠CAB ∴DC//AB∵∠CA E =∠OCA ∴OC//AD∴四边形AOCD 是平行四边形 ∴OC=AD=6,AB =12 ∵∠CAE=∠CABABE (第26题)∴ ⌒CD= ⌒CB ∴CD=CB =6∴CB=OC =OB∴△OCB 是等边三角形 ……6分 在R t △CFB 中,CF =CB 2-FB 2=33. ……7分∴ S 四边形ABCD =12(DC +AB )·CF =12×(6+12)×33=273. ……8分 (其他解法酌情给分)27.(10分)(1)证明:y =x 2-2ax -2a -6当a ≠0时,(-2a )2-4(-2a -6)= 4a 2+8a +24=4(a +1) 2 +20 ∵ 4(a +1) 2≥0∴ 4(a +1) 2 +20>0所以,该函数的图像与x 轴总有两个公共点. ………3分(2)①把(2,0)代入y =x 2-2ax -2a -6 得a =1所以,y =x 2-2x -8.由此可求得B (4,0)、C (0,-8)∵点D 在BC 的垂直平分线上∴ DC =DB设OD =x ,则DC =DB =x +4,在Rt △ODC 中 OD 2+OC 2=DC 2即x 2+82=(x +4)2 解得x =6所以D (-6,0) ……6分 ② Q 1(223,-354)、Q 2(10,-8)、Q 3(-252,134)、Q 4(12,-134) ……10分 【附(2)②解答过程】设BC 的中点为E ,则点E (2, -4)可求直线l 的函数关系式为y =-12x -3 以点B 、D 、P 、Q 为顶点的四边形分以下两种情况讨论第一种情况:当DB 为四边形的边时当PQ ∥DB 且PQ =DB 时,四边形DPQB 为平行四边形若PQ 在x 轴下方时,设点Q (m ,-12m -3)则P (m -10,-12m -3) 因为点P 在抛物线上,所以-12m -3=(m -10)2-2(m -10)-8. 解得m 1=223, m 2=10所以Q 1(223,-354)、Q 2(10,-8) 若PQ 在x 轴上方时,设点Q (m ,-12m -3)则P (m +10,-12m -3) 因为点P 在抛物线上,所以-12m -3=(m +10)2-2(m +10)-8. 解得m 1=-252, m 2=-6(舍去) 所以Q 3(-252,134) 第二种情况:当DB 为四边形的对角线时当DQ 4∥PB 且DQ 4=PB 时,四边形D Q 4BP 为平行四边形此时可发现DQ 4 =PB =DQ 3,即D 为Q 3Q 4的中点所以,可求出Q 4点(12,-134)。
江苏省南京市鼓楼区2015年中考数学二模试题及答案
5号
总数
甲班
89
100
96
118
97
500
乙班
100
96
110
90
104
500
统计发现两班总数相等,此时有人建议,可以通过考查数据中的其他信息来评判.试从两班比赛数据的中位数、方差、优秀率三个方面考虑,你认为应该选定哪一个班为冠军?
19.(6分)如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,请你结合图片信息,解答下列问题:
(红1,红3),(红2,红3).它们是等可能的.…………………………………………3分
(2)其中摸得一个白球和一个黑球的结果有2个,
摸得一个白球和一个红球的结果有3个,
摸得二个黑球的结果有1个,
摸得一个黑球和一个红球的结果有6个,
摸得二个红球的结果有3个.
所以P(摸得一个白球和一个黑球)= ,
P(摸得一个白球和一个红球)= = ,
P(摸得二个黑球)= ,
P(摸得一个黑球和一个红球)= = ,
P(摸得二红球)= = .………………… ………………………………8分
21.(本题8分)
解:(1)②;…………………… ……………………………………………………………2分
(2)当x=4时,y=90,当x=10时,y=51,当x=36时,y=90,
江苏省南京市鼓楼区2015年中考数学二模试题
注意事项:
1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫 米黑色墨水签字笔填写在答题卡及本试卷上.
2015年南京市二模名校学业调查数学试题及答案
)
D.-a<-b
y
a
0
b
B
D (第 4 题)
E C
M (第 6 题)
O
x
(第 3 题)
4.如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且 DE//BC,若 S△ADE:S△ABC=4: 9,则 AD:AB=( A.1∶2 ( ▲ ) B.2∶3 C.1∶3 D.4∶9
5 .一元二次方程 2x 2 -3x - 5 = 0 的两个实数根分别为 x1 、 x2 ,则 x1 + x2 的值为 ▲ ) 3 3 5 5 A. B.- C.- D. 2 2 2 2 6.如图,在平面直角坐标系中,⊙M 与 y 轴相切于原点 O,平行 于 x 轴的直线交 ⊙M 于 P,Q 两点,点 P 在点 Q 的右方,若点 P 的坐标是(-1,2) ,则点 Q 的坐 标是( ▲ ) B. (-4.5,2) C. (-5,2) D. (-5.5,2) A. (-4,2)
时间段 (小时/周) 0~1 1~2 2~3 3~4
小丽抽样 人数 6 10 16 8
小杰抽样 人数 22 10 6 2
(每组可含最低值,不含最高值) (1)你认为哪位同学抽取的样本不合理?请说明理由. (2)根据合理抽取的样本,把上图中的频数分布直方图补画完整; (3)专家建议每周上网 2 小时以上(含 2 小时)的同学应适当减少上网的时间,估 计该校全体初二学生中有多少名同学应适当减少上网的时间?
11.2015 年南京 3 月份某周 7 天的最低气温分别是 -1℃,2℃, 3℃,2℃ ,0℃,
12 . 反 比 例 函 数 y ▲ 度. .
13 .圆锥的底面直径是 6 ,母线长为 5 ,则圆锥侧面展开图的圆心角是
江苏省南京市2015年中考数学试题(WORD版,含答案)
第6题图F 南京市2015年初中毕业生学业考试数学试题一. 选择题(本大题共6小题,每小题2分,共12分) 1.计算︱- 5+3︱的结果是( )A. - 2B. 2C. - 8D. 82.计算(-xy ³)²的结果是( ) A. x ²y 6 B. -x ²y 6C. x ²y 9D. -x ²y 93.如图,在△ABC 中,DE ∥ BC ,AD DB = 12,则下列结论中正确的是()A. AE EC = 12B.DE BC = 12C.△ADE 的周长△ABC 的周长 = 13D.△ADE 的面积△ABC 的面积 = 134.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆.用科学记数法表示该市2014年底机动车的数量是( )A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆 5.估计 5 -12介于()A.0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间6.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A. 133B. 92C. 4313 D.2 5 二. 填空题(本大题共10小题,每小题2分,共20分)7.4的平方根是;4的算术平方根是.8.若式子x +1在实数范围内有意义,则x 的取值范围是 . 9.计算5×153的结果是 . 10.分解因式(a - b )(a - 4b )+ab 的结果是 .11.不等式组⎩⎨⎧2x +1>-12x +1 < 3的解集是 .12.已知方程x ²+mx +3=0的一个根是1,则它的另一个根是 ,m 的值是 . 13.在平面直角坐标系中,点A 的坐标是(2,- 3),作点A 关于x 轴的对称点,得到点A',再作点A'关于y 轴的对称点,得到点A'',则点A''的坐标是( , ).14.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名.与调整前相比,该工程队员工月工资的方差 (填“变小”,“不变”或“变大”).15.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B +∠E= °.16.如图,过原点O 的直线与反比例函数y 1、y 2的图像在第一象限内分别交于点A 、B ,且A 为OB的中点.若函数y 1= 1x ,则y 2与x 的函数表达式是 .三. 解答题(本大题共11小题,共88分)17.(6分)解不等式2(x +1) - 1 ≥ 3x +2,并把它的解集在数轴上表示出来.18.(7分)解方程2x -3 = 3x19.(7分)计算⎝⎛⎭⎫2a ²-b ² - 1a ² - ab ÷ a a +b20.(8分)如图,△ABC 中,CD 是边AB 上的高,且AD CD =CDBD . (1) 求证:△ACD ∽ △CBD ; (2) 求∠ACB 的大小.第15题图y 1=1B 第17题图–1–2–31230第20题图A21.(8分)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图.(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.22.(8分)某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.23.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h 和36km/h.经过0.1h,轮船甲行驶至B处,轮船乙行驶至D位,测得∠DBO=58°,此时B处距离码头O有多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)24.(8分)如图,AB ∥CD,点E、F分别在AB、CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形.(2)小明在完成(1)的证明后继续进行了探索.过G作MN ∥EF,分别交AB、CD于点M、N,过H东北OBA作PQ ∥ EF ,分别交AB 、CD 于点P 、Q ,得到四边形MNQP .此时,他猜想四边形MNQP 是菱形,请在下列框图中补全他的证明思路.25.(10分)如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)26.(8分)如图,四边形ABCD 是⊙O 的内接四边形,BC 的延长线与AD 的延长线交于点E ,且DC=DE . (1) 求证:∠A=∠AEB .(2) 连接OE ,交CD 于点F ,OE ⊥ CD .求证:△ABE 是等边三角形.27.某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系. (1)请解释图中点D 的横坐标、纵坐标的实际意义. (2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?小明的证明思路 第24题图B C 第25题图A(第26题)y /江苏省历年考试真题第11 页共11 页。
2015年江苏省南京市秦淮区中考数学二模试卷
2015年江苏省南京市秦淮区中考数学二模试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共6小题,共12.0分)1.-的倒数是()A.2B.C.-2D.-【答案】C【解析】解:-的倒数是-2,故选C利用倒数的定义计算即可得到结果.此题考查了倒数,熟练掌握倒数的定义是解本题的关键.2.计算2x2÷x3的结果是()A.xB.2xC.x-1D.2x-1【答案】D【解析】解:2x2÷x3=2x-1,故选:D.根据单项式除以单项式,即可解答.本题考查了单项式除以单项式,解决本题的关键是熟记单项式除以单项式的法则.3.下列函数图象中,既是中心对称图形又是轴对称图形的是()A. B. C. D.【答案】A【解析】解:A、既是中心对称图形又是轴对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概找对称中心,旋转180度后两部分重合.4.▱ABCD中,CE平分∠BCD.若BC=10,AE=4,则▱ABCD的周长是()A.28B.32C.36D.40【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AD=BC=10,AB=DC,AD∥BC,∴DE=AD-AE=6,∠DEC=∠BCE,∵CE平分∠BCD,∴∠BCE=∠DCE,∴∠DEC=∠DCE,∴DC=DE=6,∴▱ABCD的周长=2(DC+BC)=2(6+10)=32;故选:B.由平行四边形的性质得出AD=BC=10,AB=DC,AD∥BC,求出DE=AD-AE=6,再由角平分线和平行线的性质证出DC=DE=6,即可得出结果.本题考查了平行四边形的性质、等腰三角形的判定、平行线的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.5.为了说明命题“当b<0时,关于x的一元二次方程x2+bx+2=0必有实数解”是假命题,可以举的一个反例是()A.b=2B.b=3C.b=-2D.b=-3【答案】C【解析】解:A、当b=2时,此时b>0,不合题意,故此选项错误;B、当b=3时,此时b>0,不合题意,故此选项错误;C、当b=-2时,此时b<0,则x2-2x+2=0,故b2-4ac=4-8=-4<0,故此方程无实数根,故此选项正确;D、当b=-3时,此时b<0,则x2-3x+2=0,故b2-4ac=9-8=1>0,故此方程有两个不相等的实数根,故此选项错误.故选:C.利用根的判别式结合b的值分别判断得出即可.此题主要考查了命题与定理以及根的判别式,正确记忆根的判别式与方程根的情况是解题关键.6.如图,⊙O的半径为1,A为⊙O上一点,过点A的直线l交⊙O于点B,将直线l绕点A旋转180°,当AB的长度由1变为时,l在圆内扫过的面积为()A. B. C.或+ D.或+【答案】D当点B运动到点B′的位置时,过点O作OC⊥AB′,∵AB=AO=BO=1,∴∠AOB=60°.由垂径定理可知:AC=CB′=,由锐角三角形函数的定义可知:sin∠AOC===,∴∠AOC=60°.∴点O、C、B在同一条直线上.在R t△ACB和R t△B′CO中′′,∴R t△ACB≌R t△B′CO.∴直线AB扫过的面积=扇形BOB′的面积==.如下图:当点B运动到点B′的位置时,过点O作OC⊥AB′,∵AB=AO=BO=1,∴∠AOB=60°.∴S2=扇形AOB的面积-△AOB的面积==.S1=扇形AOB′的面积-△AOB′的面积=×=.∴直线AB扫过的面积=圆的面积-S1-S2==.故选:D.如图1,可先证明R t△ACB≌R t△B′CO,从而可知阴影部分的面积等于圆面积的本题主要考查的是旋转的性质,扇形的面积公式,将不规则图形的面积转为规则图形的面积是解题的关键.二、填空题(本大题共10小题,共20.0分)7.某时刻在南京中华门监测点监测到PM2.5的含量为65微克/米3,即0.000065克/米3,将0.000065用科学记数法表示为______ .【答案】6.5×10-5【解析】解:0.000065=6.5×10-5,故答案为:6.5×10-5.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.计算-×的值是______ .【答案】【解析】解:-×=2==即-×的值是.故答案为:.根据二次根式的混合运算顺序,首先计算乘法,然后计算减法,求出算式-×的值是多少即可.(1)此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式”.(2)此题还考查了平方根的性质和计算,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.9.如图,∠ECB=92°,CD∥AB,∠B=57°,则∠1= ______ °.【答案】35∴∠DCB=∠B=57°,∴∠1=∠ECB-∠DCB=92°-57°=35°.故答案为35.先根据平行线的性质得∠DCB=∠B=57°,然后利用∠1=∠ECB-∠DCB进行计算.本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.10.根据不等式的基本性质,若将“>2”变形为“6<2a”,则a的取值范围为______ .【答案】a<0【解析】解:∵将“>2”变形为“6<2a”,两边同时乘以a后不等号的方向改变,∴a<0,即a的取值范围为:a<0.故答案为:a<0.将“>2”变形为“6<2a”,根据不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,可得a<0,据此判断即可.此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.11.为了了解某小区居民的用水情况,随机抽查了该小区20户家庭的月用水量,数据见下表:3【答案】10【解析】解:这20户家庭的平均月用水量是(8×3+9×4+10×6+11×4+12×3)÷20=10(m3).故答案为:10.根据加权平均数的计算公式进行计算即可,把所有户的用水量加起来,再除以20,就得到这20户家庭的平均月用水量.此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.12.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A= ______ .【答案】55°【解析】解:∵把△ABC绕点C按顺时针方向旋转35°,得到∴∠ACA′=35°,则∠A′=90°-35°=55°,则∠A=∠A′=55°.故答案为:55°.根据题意得出∠ACA′=35°,则∠A′=90°-35°=55°,即可得出∠A的度数.此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.13.如图,⊙O是△ABD的外接圆,AB=AD,点C在⊙O上,若∠C=76°,则∠ABD= ______ °.【答案】38【解析】解:∵AB=AD,∠C=76°,∴=,∴∠ABD=∠C=38°.故答案为:38.先根据AB=AD得出=,再根据圆周角定理即可得出结论.本题考查的是圆周角定理,熟知在同圆或等圆中同弧或等弧所对的圆周角相等是解答此题的关键.14.如图,在菱形OABC中,点A的坐标是(3,1),点C的横坐标是2,则点B的坐标是______ .【答案】(5,1+)【解析】解:过点A作AD⊥x轴于点D,过点C作CE⊥y轴于点E,如图所示:∵点A的坐标是(3,1),点C的横坐标是2,∴OD=3,AD=1,CE=2,∴OA==,∵四边形OABC是菱形,∴OC=OA=,∴OE==,∴点C的坐标为:(2,),∵四边形OABC是菱形,∴线段CB相当于OA平移得到的,∴点B的坐标为:(3+2,1+),即(5,1+).故答案为:(5,1+).首先过点A作AD⊥x轴于点D,过点C作CE⊥y轴于点E,由点A的坐标是(3,1),点C的横坐标是2,可求得OC=OA=,继而求得OE的值,即可求得点C的坐标,又由四边形OABC是菱形,可得线段CB相当于OA平移得到的,即可求得答案.此题考查了菱形的性质以及勾股定理.注意菱形的四条边都相等,注意线段CB相当于OA平移得到.15.如图,顺次连接一个正六边形各边的中点,所得图形仍是正六边是______ .【答案】【解析】解:设大正六边形的边长为a,根据正六边形的性质得小正六边形的边长=a,∵所有正六边形都相似,∴=()2=,故答案为:.设大正六边形的边长为a,根据正六边形的性质得小正六边形的边长=a,由于所有正六边形都相似,于是得到面积比等于边长比的平方,由此得到结果.本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键.16.如图,△ABC和△BOD都是等腰直角三角形,∠ACB=∠BDO=90°,且点A在反比例函数y=(k>0)的图象上,若OB2-AB2=10,则k的值为______ .【答案】5【解析】解:设A点坐标为(a,b),∵△ABC和△BOD都是等腰直角三角形,∴AB=AC,OB=BD,BC=AC,OD=BD∵OB2-AB2=10,∴2OD2-2AC2=10,即OD2-AC2=5,∴(OD+AC)(OD-AC)=5,∴a•b=5,∴k=5.故答案为:5.设A点坐标为(a,b),根据等腰直角三角形的性质得OB=BD,AB=AC,BC=AC,OD=BD,则OB2-AB2=10,变形为OD2-AC2=5,利用平方差公式得到(OD+AC)(OD-AC)=5,得到a•b=5,根据反比例函数图象上点的坐标特征易得k=5.本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.三、解答题(本大题共1小题,共6.0分)17.解不等式组>并写出不等式组的整数解.【答案】解:>①②由①得,x>-2.由②得,x≤1.∴-2<x≤1.∴不等式组的整数解为-1,0,1.【解析】求出每个不等式的解集,根据找不等式组解集的规律找出即可.本题考查了解一元一次不等式(组),不等式的性质,一元一次不等式组的整数解等知识点的应用,关键是求出不等式组的解集,题目比较典型,难度适中.四、计算题(本大题共1小题,共6.0分)18.化简:1-÷.【答案】解:原式=1-•=1-=.【解析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果.此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.五、解答题(本大题共9小题,共76.0分)19.在R t△ABC中,∠ACB=90°.(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC、∠BDC的平分线,交AC、BC于点E、F(尺规作图,不写作法,保留作图痕迹);(2)求证:四边形CEDF是矩形.【答案】(1)解:如图,(2)证明:由题意得,点D是AB的中点,∵∠ACB=90°,∴CD=AD=BD=AB,在△ACD中,∵CD=AD,ED平分∠ADC,∴ED⊥AC,∴∠CED=90°同理∠DFC=90°,∵∠ACB=∠CED=∠DFC=90°,∴四边形CEDF是矩形.【解析】(1)画线段AB的垂直平分线得到点D,然后作两个角平分线即可;(2)由于点D为R t△ABC斜边上的中点,则CD=AD=BD=AB,在△ACD中,由于CD=AD,ED平分∠ADC,根据等腰三角形的性质得ED⊥AC,即∠CED=90°同理∠DFC=90°,于是可判断四边形CEDF是矩形.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了直角三角形斜边上的中线性质和矩形的判定.20.小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.(1)小明任意拿出1条裤子,是蓝色裤子的概率是______ ;(2)小明任意拿出1件上衣和1条裤子,求上衣和裤子恰好都是蓝色的概率.【答案】【解析】解:(1)∵共3条裤子,有蓝色的2条,∴是蓝色裤子的概率是.(2)小明任意拿出1件上衣和1条裤子,所有可能出现的结果有:红蓝、红蓝、红棕、蓝蓝、蓝蓝、蓝棕,共有6种,它们出现的可能性相同.所有的结果中,满足“上衣和裤子恰好都是蓝色’”(记为事所以P(A)=.(1)用蓝色裤子的数量除以所有裤子的数量即可求得是蓝色裤子的概率;(2)将所有等可能的结果列举出来,利用概率公式求解即可;考查了列表法与树状图法求概率的知识,注意概率=所求情况数与总情况数之比,能够将所有结果列举出来是解答本题的关键,难度不大.21.为了推动阳光体育运动的广泛开展,引导学生积极参加体育锻炼,某校九年级准备购买一批运动鞋供学生借用,现从九年级各班随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)接受随机抽样调查的学生人数为______ ,图①中m的值为______ ;(2)在本次调查中,学生鞋号的众数为______ 号,中位数为______ 号;(3)根据样本数据,若该年级计划购买100双运动鞋,建议购买35号运动鞋多少双?【答案】40;15;35;36【解析】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100-30-25-20-10=15;故答案为:40;15;(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;故答案为:35,36.(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买100双运动鞋,有100×30%=30双为35号.(1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.22.某工厂经过两年时间将某种产品的产量从每年10000台提高到14400台.求该产品产量平均每年的年增长率.【答案】解:设该产品产量平均每年的增长率为x.由题意可得:10000(1+x)2=14400,解得:x1=20%,x2=-220%(舍去).答:该产品的该产品产量平均每年的增长率为20%.【解析】设该产品产量平均每年的增长率是x,根据某工厂经过两年时间将某种产品的产量从每年10000台提高到14400台,可列方程求解.本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,已知∠ABM=37°,AB=20,C是射线BM上一点.(1)在下列条件中,可以唯一确定BC长的是______ ;(填写所有符合条件的序号)①AC=13;②tan∠ACB=;③连接AC,△ABC的面积为126.(2)在(1)的答案中,选择一个作为条件,画出草图,求BC.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)【答案】②③【解析】解:(1)②③;(2)方案一:选②作AD⊥BC于D,则∠ADB=∠ADC=90°.在R t△ABD中,∵∠ADB=90°,∴AD=AB•sin B=12,BD=AB•cos B=16,在R t△ACD中,∵∠ADC=90°,=5,∴CD=∠∴BC=BD+CD=21.方案二:选③作CE⊥AB于E,则∠BEC=90°,由S△ABC=AB•CE得CE=12.6,在R t△BEC中,∵∠BEC=90°,∴BC==21.根据给出的条件作出辅助线,根据锐角三角函数的概念和勾股定理求出BC的长,得到(1)(2)的答案.本题考查了解直角三角形,勾股定理,特殊角的三角函数值的应用,能求出各个角的度数和求出各个边的长是解此题的关键,难度适中.24.某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示.根据图象解答下列问题:(1)洗衣机的进水时间是______ 分钟,清洗时洗衣机中的水量是______ 升;(2)已知洗衣机的排水速度为每分钟19升.①求排水时y与x之间的表达式;②洗衣机中的水量到达某一水位后13.9分钟又到达该水位,求该水位为多少升?【答案】4;40【解析】解:(1)由图可知洗衣机的进水时间是4分钟清洗时洗衣机中的水量是40升,故答案为:4;40;(2)①y=40-19(x-15),即y=-19x+325,②设洗衣机中的水量第一次到达某一水位的时间为x分钟,则第二次达到该水位时时间为(x+13.9)分钟,根据题意得10x=-19(x+13.9)+325,解得x=2.1,此时y=10×2.1=21,答:该水位为21升.(1)由图象可知0-4分时是进水时间,4-15分钟时时清洗时间,15分钟以后是放水的时间.(2)①可根据图象中的信息计算出剩下的水量.②先设出y与x的通式,然后用待定系数法求解.本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.注意自变量的取值范围不能遗漏.25.已知二次函数y=(x-1)(x-a-1)(a为常数,且a>0).(1)求证:不论a为何值,该二次函数的图象总经过x轴上一定点;(2)设该函数图象与x轴的交点为A、B(点A在点B的左侧),与y轴的交点为C,△ABC的面积为1.①求a的值;②D是该函数图象上一点,且点D的横坐标是m,若S△ABD=S△ABC,直接写出m的值.【答案】(1)证明:令y=0,则(x-1)(x-a-1)=0.解得x1=1,x2=1+a.∴二次函数的图象与x轴的交点为(1,0)、(1+a,0).∴不论a为何值,该二次函数的图象经过x轴上的定点(1,0).(2)解:①由题意得,AB=a,OC=1+a(a>0),∴S△ABC=AB•OC=a(a+1).∴a(a+1)=1.解得a1=1,a2=-2(舍去).∵a>0,∴a=1.②由①可得抛物线为y=x2-3x+2,令y=0可得0=x2-3x+2,解得x=1或x=2,∴AB=1,由于D点在抛物线上,故可设D点坐标为(m,m2-3m+2),∴D到AB的距离为h=|m2-3m+2|,且S△ABC=1,∴S△ABD=AB•h=×1×|m2-3m+2|=,整理可得|m2-3m+2|=,当m2-3m+2=时,解得m=,当m2-3m+2=-时,解得m=,∴m的值为或或.【解析】(1)令y=0可求得对应方程的两根,可求得二次函数与x轴的交点,可证得结论;(2)①结合(1)可用a表示出AB、OC,从而可表示出△ABC的面积,可求得a的值;②由①可得到抛物线的解析式,用m表示出D到AB的距离,可表示出△ABD的面积,可得到关于m的方程,可求得m的值.本题主要考查二次函数与x轴的交点,掌握二次函数与x轴的交点横坐标是对应一元二次方程的两根是解题的关键.26.如图,AB是⊙O的直径,C是的中点,延长AC至点D,使AC=CD,DB的延长线交CE的延长线于点F,AF交⊙O于点M,连接BM.(1)求证:DB是⊙O的切线;(2)若⊙O的半径为2,E是OB的中点,求BM的长.【答案】(1)证明:连接OC,如图,∵C是的中点,∴OC⊥AB,∵AC=CD,AO=BO,∴CO是△ADB的中位线.∴CO∥DB,∴BD⊥AB,又∵点B在⊙O上,∴DB是⊙O的切线;(2)解:∵CO∥DB,∴△OCE∽△BFE,∴=,∵E是OB的中点,∴OE=EB,∴BF=CO=2,在R t△ABF中,∵AB=4,BF=2,∴AF==2,∵AB是直径,∴∠AMB=90°,∴BM•AF=AB•BF,∴BM==.【解析】(1)连接OC,如图,根据垂径定理得OC⊥AB,再证明CO是△ADB的中位线,则CO∥DB,所以BD⊥AB,于是根据切线的判定定理得到DB是⊙O的切线;(2)由CO∥DB得△OCE∽△BFE,则=,由于OE=EB,则BF=CO=2,于是在R t△ABF中利用勾股定理可计算出AF=2,接着根据圆周角定理得到∠AMB=90°,所以可利用面积法计算BM的长.本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了三角形中位线定理和勾股定理.27.在一个三角形中,若一条边等于另一条边的两倍,则称这种三角形为“倍边三角形”.(1)下列三角形是倍边三角形的是______A.顶角为30°的等腰三角形B.底角为30°的等腰三角形C.有一个角为30°的直角三角形D.有一个角为45°的直角三角形(2)如图①,在△ABC中,AB=AC,延长AB到D,使BD=AB,E是AB的中点.求证:△DCE是倍边三角形;(3)如图②,R t△ABC中,∠C=90°,AC=3,BC=6,若点D在边AB上(点D不与A、B重合),且△BCD是倍边三角形,求BD的长.【答案】C【解析】解:(1)顶角为30°的等腰三角形和底角为30°的等腰三角形的底与腰的关系无法确定,所以A、B不正确;在直角三角形中,30°所对的直角边等于斜边的一半,∴C正确;有一个角为45°的直角三角形斜边等于直角边的倍,D不正确,故选:C;(2)∵BD=AB=AC,∴AD=2AC.即=2.∵E是AB的中点,∴AB=2AE.∴AC=2AE.即=2,∴=.又∵∠A=∠A,∴△ACD∽△AEC.∴==2.∴△DCE是倍边三角形.(3)当BC=2BD时,BD=3;当BC=2CD时,如图①,CD=3,作CE⊥AB于E,tan A===2,设AE=x,则CE=2x,AC=x,∴x=3.x=.在△ACD中,∵CD=AC=3,CE⊥AB,∴AD=2AE=.∴BD=AB-AD=;当BD=2CD时,如图②,作DF⊥BC于F,tan B===,设DF=y,则BF=2y,BD=y,∴CD=y,CF=y.∵BC=BF+CF,∴6=2y+y.解得y=.BD=;同理,当CD=2BD时,DF=,BD=.综上所述,BD=3或或或.(1)根据等腰三角形的性质和直角三角形的性质减小判断即可;(2)根据两边对应成比例、夹角相等的两个三角形相似证明△ACD∽△AEC,再根据AD=2AC即可得到答案;(3)分BC=2BD、BC=2CD、BD=2CD、CD=2BD四种情况进行解答,求出各种情况下BD的长.本题考查的是相似三角形的判定和性质,理解新定义、正确运用三角形三角形的性质定理和判定定理是解题的关键,注意分情况讨论思想的运用.。
南京市玄武区中考二模数学试题含答案
江苏省南京市玄武区中考二模试题数 学注意事项:1.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.2的相反数是A .2B .12C .-2D .-122.氢原子的半径大约是0.000 007 7 m ,将数据0.000 007 7用科学记数法表示为 A .0.77×10-5B .0.77×10-6C .7.7×10-5D .7.7×10-63.-7介于 A .-4与-3之间B .-3与-2之间C .-2与-1之间D .-1与0之间4.下列图形中既是中心对称图形又是轴对称图形的是 A .等腰三角形 B .正五边形 C .平行四边形D .矩形 5.右面是一个几何体的三视图,这个几何体是A .四棱柱B .三棱柱C .三棱锥D .圆锥6.如图,正六边形ABCDEF 的边长为6 cm ,P 是对角线BE 上一动 点,过点P 作直线l 与BE 垂直,动点P 从B 点出发且以1 cm/s 的速度匀速平移至E 点.设直线l 扫过正六边形ABCDEF 区域 的面积为S (cm 2),点P 的运动时间为t (s ),下列能反映S 与t之间函数关系的大致图像是A .B .C .D .主视图俯视图左视图EA FDCBl P (第6题)S S SS二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.8的算术平方根是 ;8的立方根是 .8.若式子1+x -2在实数范围内有意义,则x 的取值范围是 . 9.计算3×86= . 10.已知反比例函数y =kx 的图像经过点A (-2,3),则当x =-1时,y = .11.某班的中考英语口语考试成绩如下表:考试成绩/分 30 29 28 27 26 学生数/人3151363则该班中考英语口语考试成绩的众数比中位数多 分.12.若方程x 2-12x +5=0的两根分别为a ,b ,则a 2b +ab 2的值为 . 13.若圆锥的高为8 cm ,母线长为10 cm ,则它的侧面积为 cm 2. 14.若正多边形有一个外角是30°,则这个正多边形的边数为 .15.如图,在⊙O 的内接六边形ABCDEF 中,∠A +∠C =220°,则∠E = °. 16.如图,在△ABC 中,∠A =45°,∠B =60°,AB =4,P 是BC 边上的动点(不与B ,C 重合),点P 关于直线AB ,AC 的对称点分别为M ,N ,则线段MN 长的取值范围是.(第15题) (第16题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(10分)(1)解不等式组⎩⎪⎨⎪⎧x -3(x -2)≥4,2x -13>x -12,并把它的解集在数轴上表示出来.MNDABEO-4 -3 -2 -1 0 1 2 3 4(2)解方程3x x -3=1-13-x.18.(6分)先化简代数式1-x -1x ÷x 2-1x 2+2x ,并从-1,0,1,3中选取一个合适的数代入求值.19.(8分)某学校为了了解本校学生采用何种方式上网查找所需要的学习资源,随机抽取部分学生了解情况,并将统计结果绘制成频数分布表及频数分布直方图.(第19题)(1)频数分布表中a ,b 的值:a = ;b = ; (2)补全频数分布直方图;(3)若全校有1000名学生,估计该校利用搜索引擎上网查找学习资源的学生有多少名?20.(6分)从2名男生和3名女生中随机抽取运动会志愿者.求下列事件的概率: (1)抽取1名,恰好是女生的概率为 ; (2)抽取2名,恰好是1名男生和1名女生.21.(8分)如图,在四边形ABCD 中,BE ⊥AC ,DF ⊥AC ,垂足分别为E ,F ,BE =DF ,AE =CF .查找方式 频数 频率 搜索引擎 16 32% 专题网站 15 a 在线网校 4 8% 试题题库 10 20% 其他b10% 上网查找学习资源方式频数分布表 查找方式4 8上网查找学习资源方式 频数分布直方图数量(名) 其他搜索引擎 专题网站 在线网校 试题题库 16 10154(1)求证:△AFD≌△CEB;(2)若∠CBE=∠BAC,四边形ABCD是怎样的四边形?证明你的结论.22.(6分)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元?23.(8分)如图,小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C 两点的俯角分别为60°和35°,已知大桥BC的长度为100 m,且与地面在同一水平面上.求热气球离地面的高度.(结果保留整数,参考数据:sin35°≈712,cos35°≈56,tan35°≈710,3≈1.7)ADFC BE(第21题)(第23题)B CA 35°60°24.(8分)已知二次函数y =x 2-(a -1)x +a -2,其中a 是常数. (1)求证:不论a 为何值,该二次函数的图像与x 轴一定有公共点;(2)当a =4时,该二次函数的图像顶点为A ,与x 轴交于B ,D 两点,与y 轴交于C 点,求四边形ABCD 的面积.25.(9分)如图①,在一条笔直的公路上有M 、P 、N 三个地点,M 、P 两地相距20km ,甲开汽车,乙骑自行车分别从M 、P 两地同时出发,匀速前往N 地,到达N 地后停止运动.已知乙骑自行车的速度为20 km/h ,甲,乙两人之间的距离y (km )与乙行驶的时间t (h )之间的关系如图②所示. (1)M 、N 两地之间的距离为 km ;(2)求线段BC 所表示的y 与t 之间的函数表达式;(3)若乙到达N 地后,甲,乙立即以各自原速度返回M 地,请在图②所给的直角坐标系中补全函数图象.AOBD Cyx(第24题)MPN20 km②D B Cyt131 3O ①(第25题)A26.(9分)如图,点A 在⊙O 上,点P 是⊙O 外一点,PA 切⊙O 于点A ,连接OP 交⊙O于点D ,作AB ⊥OP 于点C ,交⊙O 于点B ,连接PB . (1)求证:PB 是⊙O 的切线; (2)若PC =9,AB =63,①求图中阴影部分的面积;②若点E 是⊙O 上一点,连接AE ,BE , 当AE =62时,BE = .27.(10分)(1)问题背景如图①,BC 是⊙O 的直径,点A 在⊙O 上,AB =AC ,P 为BmC ⌒上一动点(不与B ,C重合),求证:2PA =PB +PC .请你根据小明同学的思考过程完成证明过程.(2)类比迁移如图②,⊙O 的半径为3,点A ,B 在⊙O 上,C 为⊙O 内一点,AB =AC ,AB ⊥AC ,垂足为A ,求OC 的最小值.(3)拓展延伸如图③,⊙O 的半径为3,点A ,B 在⊙O 上,C 为⊙O 内一点,AB =43AC ,AB ⊥AC ,垂足为A ,则OC 的最小值为 .小明同学观察到图中自点A 出发有三条线段AB ,AP ,AC ,且AB =AC ,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△PAC 绕着点A 顺时针旋转90°至△QAB (如图①);第二步:证明Q ,B ,P 三点共线,进而原题得证. AOBP①Q②O ABCP OACB(第26题) D①②江苏省南京市玄武区中考二模试题数 学说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分. 题号 1 2 3 4 56 答案 C D B D BC二、填空题(本大题共10小题,每小题2分,共20分)7. 22;2 8.x ≥2 9.2 10.6 11. 112.6013.60π 14.1215.140 16.26≤MN <4 2三、解答题(本大题共11小题,共88分) 17.(本题10分)(1)解:⎩⎪⎨⎪⎧x -3(x -2)≥4,2x -13>x -12 解不等式①,得x ≤1……………………………………………………………………1分 解不等式②,得x >-1…………………………………………………………………2分………………………………………………………3分所以,不等式组的解集是-1<x ≤1 (5)分(2)方程两边同乘x -3得:3x =(x -3)+1解得x =-1………………………………………………………………………………3分 检验:当x =-1时,x -3≠0…………………………………………………………4分 所以x =-1是原方程的解……………………………………………………5分 18.(本题6分)解:1-x -1x ÷x 2-1x 2+2x=1-x -1x ·x 2+2x x 2-1………………………………………………………………………1分0 1 2 3 4=1-x -1x ·x (x +2)(x +1)(x -1)…………………………………………………………2分=1-x +2x +1………………………………………………………………………………3分=-1x +1. (4)分把x =3代入,原式=-14………………………………………………………………6分19.(本题8分)(1)30%;5………………………………………………………………………………4分 (2)图略…………………………………………………………………………………6分 (3)1000×32%=320(名)……………………………………………………………7分 答:该校利用搜索引擎查找学习资源的学生有320名………………………………8分 20.(本题6分)(1)35………………………………………………………………………………………2分(2)解:从中任意抽取两人,所有可能出现的结果有:(男1,男2)、(男1,女1)、(男1,女2)、(男1,女3)、(男2,女1)、(男2,女2)、(男2,女3)、(女1,女2)、(女1,女3)、(女2,女3),共有10种,它们出现的可能性相同.……………4分所有的结果中,满足“恰好1男1女”(记为事件B )的结果有6种,所以P (B )= 35………………………………………………………………………6分21.(本题8分)证明:(1)∵BE ⊥AC ,DF ⊥AC ,∴∠AFD =∠CEB =90°. ∵AE =FC ,∴AE +EF =FC +EF , ∴AF =CE , 又∵BE =DF ,∴△AFD ≌△CEB . (3)分(2)四边形ABCD 为矩形………………………………………………………4分∵△AFD ≌△CEB ,∴AD =BC ,∠BCE =∠DAF . ∴AD ∥BC ,∴四边形ABCD 为平行四边形,……………………………………………6分∵∠CBE =∠BAC , 又∵∠CBE +∠ACB =90°, ∴∠BAC +∠ACB =90°, ∴∠ABC =90°,∴四边形ABCD 为矩形 (8)分22.(本题6分)解:设衬衫的单价降了x 元………………………………………………………1分 (20+2x )(40-x )= 1250……………………………………………………………3分 x 1=x 2=15………………………………………………………………………………5分 答:衬衫的单价降了15元………………………………………………………………6分 23.(本题8分)解:作AD ⊥CB 交CB 所在直线于点D , 由题知,∠ACD =35°,∠ABD =60°,在Rt △ACD 中,∠ACD =35°,tan35°=AD CD ≈710,所以CD =107AD (2)分 在Rt △ABD 中,∠ABD =60°,tan60°=ADBD=3≈1.7,所以BD =1017AD (4)分所以BC =CD -BD =107AD -1017AD (6)分所以107AD -1017AD =100,解得AD =119m.答:热气球离地面的高119m ……………………………………………………………8分 24.(本题8分)(1)证明:y =x 2-(a -1)x +a -2.因为[-(a -1)]2-4(a -2)=(a -3)2≥0.所以,方程x 2-(a -1)x +a -2=0有实数根.……………………………………2分 所以,不论a 为何值,该函数的图象与x 轴总有公共点.………………………3分 (2)由题可知:当a =4时,y =x 2-3x +2,因为y =x 2-3x +2=(x -32)2-14,所以A (32,-14),………………………5分当y =0时,x 2-3x +2=0,解得x 1=1,x 2=2,所以B (1,0),D (2,0), (6)分当x =0时,y =2,所以C (0,2), (7)分所以S 四边形ABCD =S △ABD +S △BDC =18+1=98…………………………………………8分25.(本题9分)(1)80………………………………………………………………………………………2分(2)由题可知B (13,0), C (1,40) ………………………………………………………3分设y 与x 之间的函数表达式为y =kx +b .根据题意,当x =13时,y =0;当x =1时,y =40.所以⎩⎪⎨⎪⎧13k +b =2,k +b =40.,解得⎩⎪⎨⎪⎧k =60,b =-20.………………………………………………5分所以,y 与x 之间的函数表达式为y =60x -20………………………………………6分(3)图略 (9)分26.(本题9分)(1)证明:连接OB∵OP ⊥AB ,OP 经过圆心O ∴AC =BC∴OP 垂直平分AB ∴AP =BP∵OA =OB ,OP =OP∴△APO ≌△BPO …………………………………………………………2分 ∵PA 切⊙O 于点A ∴AP ⊥OA ∴∠PAO =90°∴∠PBO =∠PAO =90°∴OB ⊥BP …………………………………………………………3分 又∵点B 在⊙O 上,∴PB 与⊙O 相切于点B …………………………………………………………………4分 (2)①解:∵OP ⊥AB ,OP 经过圆心O∴BC =12AB=33∵∠PBO =∠BCO=90°∴∠PBC+∠OBC=∠OBC+∠BOC=90° ∴∠PBC=∠BOC∴△PBC ∽△BOC∴OC =BC ×BC PC =33×339=3∴在Rt △OCB 中,OB =OC 2+BC 2=6,tan ∠COB =BCOC=3∴∠COB =60°∴S △OPB =183,S 扇DOB =6π ………………………………………………6分 ∴S 阴影=S △OPB -S 扇DOB =183-6π………………………………………………7分 (3)36-3 2 或36+32…………………………………………………………9分 27.(本题10分)(1)证明:∵BC 是直径∴∠BAC =90° ∵AB =AC∴∠ACB =∠ABC =45°由旋转可得∠QBA =∠PCA ,∠ACB=∠APB=45°,PC =QB ∵∠PCA+∠PBA =180° ∴∠QBA+∠PBA =180°∴Q ,B ,P 三点共线 (2)分∴∠QAB +∠BAP =∠BAP +∠P AC =90°∴QP 2=AP 2+AQ 2=2AP 2 ……………………………………………………………3分 ∴QP =2AP =QB +BP =PC +PB∴2AP =PC +PB …………………………………………………………………4分(2)解:连接OA,将△OAC绕点O顺时针旋转90°至△QAB,连接OB,OQ …5分∵AB⊥AC∴∠BAC=90°由旋转可得QB=OC,AQ=OA,∠QAB=∠OAC∴∠QAB+∠BAO=∠BAO+∠OAC=90°∴在Rt△OAQ中,OQ=32,AO=3 ……………………………………………6分∴在△OQB中,BQ≥OQ-OB=32-3 …………………………………………7分即OC最小值是32-3……………………………………………………………8分(3)3 2…………………………………………………………………………………10分11 / 11。
2015年中考数学二模试题附答案
2015年中考数学二模试题(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列运算中,正确的是 ……………………………………………………………………( )(A)1293=±3(C)030-=()(D)2139-=2.轨道交通给人们的出行提供了便捷的服务,据悉,上海轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为 ………………………( )(A)52.0610⨯(B)320.610⨯(C)42.0610⨯(D)50.20610⨯3.从下列不等式中选择一个与12x +≥组成不等式组,如果要使该不等式组的解集为1x ≥,那么可以选择的不等式可以是 ………………………………………………………………( ) (A)1x >-(B)2x >(C)1x <-(D)2x <4.已知点11(,)A x y 和点22(,)B x y 是直线23y x =+上的两个点,如果12x x <,那么1y 与2y 的大小关系正确的是 …………………………………………………………………( )(A)12y y >(B)12y y <(C)12y y =(D)无法判断5.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是…………………( )(A) (B) (C) (D) 6.已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是 …………………………………………………………………( ) (A)AC BD =, AB CD ∥, AB CD = (B)AD BC ∥, A C ∠=∠(C)AO BO CO DO ===, AC BD ⊥(D)AO CO =, BO DO =, AB BC =二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.因式分解:34x x -= ▲ . 8.2,那么x = ▲ .9.如果分式242x x -+的值为0,那么x 的值为 ▲ .10.已知关于x 的一元二次方程2610x x m -+-=有两个相等的实数根,那么m 的值为▲ . 11.已知在方程222232x x x x++=+中,如果设22y x x =+,那么原方程可化为关于y 的整式方程是 ▲ .12.布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为 ▲ .13.某学校在开展“节约每一滴水”的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是 ▲ 吨.14.如图,在ABC ∆中,AD 是边BC 上的中线,设向量AB a =,AD b =,如果用向量,a b表示向量BC ,那么BC = ▲ .15.如图,已知ABC ∆和ADE∆均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果9AB =,3BD =,那么CF 的长度为 ▲ .16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =,那么CD = ▲ .17.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将(第14题图)ABCD(第15题图)A BCEFD(第16题图)B[],p q 称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[]4,2-.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[]2,3,将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为 ▲ .18.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 ▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-.20.(本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩21.(本题满分10分,第(1)小题5分、第(2)小题5分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点, AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =. (1)求线段AE 的长;(2)求sin DAE ∠的值.22.(本题满分10分,第(1)小题4分,第(2)小题6分)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为 千米/小时,在甲地游玩的时间为 小时; (2)小明从家出发多少小时的时候被妈妈追上?A C FED(第18题图)(第21题图) CAB E D此时离家多远?23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H . (1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.24.(本题满分12分,每小题各6分) 如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.(第24题图)A BDHG FEC(第23题图)25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点,以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E ,点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CE y =,求y 关于x 的函数关系式,并写出定义域;(2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径;(3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(第25题图)(备用图1)BA CB九年级数学参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分) 1.D ; 2.C ;3.A ; 4.B ; 5.D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.(2)(2)x x x +- 8.1 9.2 10. 10 11. 2320y y -+= 12.2513. 540 14.22b a - 15.216. 17.[]68, 18. 35三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6302x tan =-. 解:原式=21(1)212x x x x x --+-+……………………………………………………2分 122x x x x -=-++ ………………………………………………………2分 12x =+………………………………………………………………2分∵6302x tan =-6223=⨯-=………………………………………2分 ∴原式6=………………………………………………………………2分 20. (本题满分10分) 解方程组:222230x y x xy y -=⎧⎨--=⎩...............(1) (2)解:由(2)可得:(3)()0x y x y -+=∴30x y -=,0x y += ………………………………2分∴原方程组可化为:230x y x y -=⎧⎨-=⎩,2x y x y -=⎧⎨+=⎩ …………………………4分解得原方程组的解为1131x y =⎧⎨=⎩,2211x y =⎧⎨=-⎩ ………………………………4分21.(本题满分10分,第(1)小题5分、第(2)小题5分)(1)解:909oBAC AC ∠==∵, 93cos 5AC C AB BC ===∴ …………………………………………1分 15BC =∴ ………………………………………………………………2分 90oBAC ∠=∵,点E 是BC 的中点 11522AE BC ==∴ ……………………………………………………2分 (2)解:AD BC ⊥∵ 90oADC ADB ∠=∠=∴3cos 95CD CD C AC ===∴ 275CD =∴ …………………………………………………2分∵点E 是BC 的中点,BC=15 ∴CE=152 ∴DE=2110………………………………………1分 ∵90oADB ∠= ∴sin DAE ∠=2127101525DE AE =⨯= ……………………………2分 22. (本题满分10分,第(1)小题4分,第(2)小题6分)(1) 20;0.5 ……………………………………………………………各2分 (2)解:设小明出发x 小时的时候被妈妈追上.420(1)10203()3x x -+=⨯- ……………………………………3分解得:74x =……………………………………………………1分 ∴320(1)102010254x -+=⨯+= ……………………………1分答:当小明出发74小时的时候被妈妈追上,此时他们离家25千米.…1分23.(本题满分12分,每小题各6分)(1)证明:∵点D 、E 分别是BC 、AC 的中点∴DE//AB ,BC=2BD …………………………………………………1分 ∵AF//BC∴四边形ABDF 是平行四边形 ……………………………………………2分 ∵BC=2AB∴AB=BD …………………………………………………………………1分 ∴四边形ABDF 是菱形. …………………………………………………2分(2)证明:∵四边形ABDF 是菱形 ∴AF=DF∵点G 是AF 的中点 ∴FG=12AF ∵点E 是AC 的中点 ∴AE=CE ∵AF//BC ∴1EF AEDE CE== ∴EF=12DF , ∴FG=EF ……………………………………………………………1分 在△AFE 和△DFG 中AF DF F F EF GF =⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DFG (S.A.S )∴∠FAE=∠FDG ………………………………………………………1分 ∵AF//BC ∴∠FA E=∠C∴∠FDG=∠C ………………………………………………………1分 又∵∠EHD=∠DHC (公共角)∴△HED ∽△HDC ……………………………………………………2分 ∴HE HDHD HC= ∴2DH HE HC = ………………………………………………………1分 24.(本题满分12分,每小题各6分)(1)解:∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩……………………………………………………1分解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩………………………………………………2分∴这个抛物线的解析式为:2142y x x =-- ………………………………1分 顶点为9(1,)2- ……………………………………………………………2分(2)如图:取OA 的中点,记为点N ∵OA=OC=4,∠AOC=90° ∴∠ACB=45°∵点N 是OA 的中点 ∴ON=2 又∵OB=2 ∴OB=ON 又∵∠BON=90° ∴∠ONB=45° ∴∠ACB=∠ONB ∵∠OMB+∠OAB=∠ACB ∠NBA+∠OAB=∠ONB∴∠OMB=∠NBA ………………………………………………………………2分 1° 当点M 在点N 的上方时,记为M 1 ∵∠BAN=∠M 1AB ,∠NBA=∠OM 1B , ∴△ABN ∽△AM 1B ∴1AN ABAB AM =又∵AN=2,∴110AM = 又∵A (0,—4)∴1(0,6)M ………………………………………………………………………2分 2° 当点M 在点N 的下方时,记为M 2点M 1与点M 2关于x 轴对称,∴2(0,6)M - ……………………………………2分 综上所述,点M 的坐标为(0,6)或(0,6)-25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) (1)解:过点P 作PH ⊥AD ,垂足为点H∵∠ACB=90°,43tanB = ∴35sinA =∵PA x = ∴35PH x = ∵∠PHA=90° ∴222PH AH PA += ∴45AH x =……………………1分 ∵在⊙P 中,PH ⊥弦AD ∴45DH AH x ==, ∴85AD x = 又∵AC=8 ∴885CD x =- ………………………………………………1分∵∠PHA=∠BCA=90°,∴PH ∥BE ∴PH DHCE CD = ∴3455885x xy x=- ……………………………1分 ∴665y x =- (x 0<<5) (1)(2)∵PA=PD ,PH ⊥AD ∴∠1=∠2 ∵PH ∥BE∴∠1=∠B ,∠2=∠3 ∴PB=PE ∵Q 是BE 的中点∴PQ ⊥BE ………………………………………………………………………1分 ∴43PQ tanB =BQ = ∴35BQ cosB =BP = ∵PA x = ∴10PB x =- ∴365BQ x =-, 485PQ x =- 1°当⊙Q 和⊙P 外切时:PQ=AP+BQ∴438655x x x -=+- …………………………………………………………1分 53x = …………………………………………………………………1分2°当⊙Q 和⊙P 内切时,此时⊙P 的半径大于⊙Q 的半径,则PQ=A P —BQ ∴438(6)55x x x -=-- …………………………………………………………1分 321HQABP CED- 11 - 356x = ……………………………………………………………………1分 ∴当⊙Q 和⊙P 相切时,⊙P 的半径为53或356. (3)当△PMC 是等腰三角形,存在以下几种情况: 1°当MP=MC x =时 ,∵336(6)55QC x x =--= ∴45MQ x = 若M 在线段PQ 上时,PM+MQ=PQ ∴44855x x x +=- 4013x = ……………………………………………………………………1分 若M 在线段PQ 的延长线上时,PM —MQ=PQ ∴44855x x x -=- 8x = …………………………………………………………………………1分 2°当CP=CM 时∵CP=CM ,CQ ⊥PM∴PQ=QM=1122PM x = ∴41852x x -= 8013x = …………………………………………………………………………1分 3°当PM=PC x =时∵AP x = ∴PA=PC 又∵PH ⊥AC ∴AH=CH∵PH ∥BE ∴1AP AH BP CH== ∴110x x =- 5x = …………………………………………………………………………1分 综上所述:当△PMC 是等腰三角形时,AP 的长为4013或8013或5或8.。
2015年江苏省南京市玄武区中考数学二模试卷(解析版)
2015年江苏省南京市玄武区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2的相反数是()A.﹣2 B.﹣ C.D.22.(2分)等于()A.﹣3 B.3 C.±3 D.3.(2分)南京青奥会期间约有1020000人次参与了青奥文化教育活动.将数据1020000用科学记数法表示为()A.10.2×105B.1.02×105C.1.02×106D.1.02×1074.(2分)如图,∠1=50°,如果AB∥DE,那么∠D=()A.40°B.50°C.130° D.140°5.(2分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(2分)如图,水平线l1∥l2,铅垂线l3∥l4,l1⊥l3,若选择l1、l2其中一条当成x轴,且向右为正方向,再选择l3、l4其中一条当成y轴,且向上为正方向,并在此平面直角坐标系中画出二次函数y=ax2﹣ax﹣a的图象,则下列关于x、y 轴的叙述,正确的是()A.l1为x轴,l3为y轴B.l1为x轴,l4为y轴C.l2为x轴,l3为y轴D.l2为x轴,l4为y轴二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)使式子有意义的x取值范围是.8.(2分)一组数据1,4,2,5,3的中位数是.9.(2分)分解因式:2x2﹣4x+2=.10.(2分)计算:sin45°+﹣=.11.(2分)小明与家人和同学一起到游泳池游泳,买了2张成人票与3张学生票,共付了155元.已知成人票的单价比学生票的单价贵15元,设学生票的单价为x元,可得方程.12.(2分)已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为.13.(2分)如图,ON⊥OM,等腰直角三角形ACB中,∠ACB=90°,边AC在OM 上,将△ACB绕点A逆时针旋转75°,使得点B的对应点E恰好落在ON上,则=.14.(2分)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为.15.(2分)如图,四边形ABCD为⊙O的内接四边形,连接AC、BO,已知∠CAB=36°,∠ABO=30°,则∠D=°.16.(2分)函数y1=k1x+b的图象与函数y2=的图象交于点A(2,1)、B(n,2),则不等式﹣<﹣k1x+b的解集为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解方程组:.18.(7分)先化简再求值:.其中a=1.19.(7分)如图,矩形花圃ABCD一面靠墙,另外三面用总长度是24m的篱笆围成.当矩形花圃的面积是40m2时,求BC的长.20.(8分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.(1)从中任取一球,求该球上标记的数字为正数的概率;(2)从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.21.(7分)为了解南京市民每天的阅读时间情况,随机抽取了部分市民进行调查,根据调查结果绘制如下尚不完整的频数分布表:(1)补全表格中①~④的数据;(2)将每天阅读时间不低于60min的市民称为“阅读爱好者”,若我市约有800万人,请估计我市能称为“阅读爱好者”的市民约有多少万人?22.(9分)如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.23.(8分)游泳池完成换水需要经过“排水﹣清洗﹣注水”三个过程.如图,图中折线表示的是游泳池在换水过程中池中的水量y(m3)与时间t(min)之间的关系.(1)求注水过程中y与t的函数关系式;(2)求清洗所用的时间.24.(8分)在海上某固定观测点O处的北偏西60°方向,且距离O处40海里的A处,有一艘货轮正沿着正东方向匀速航行,2小时后,此货轮到达O处的北偏东45°方向的B处.在该货轮从A处到B处的航行过程中.(1)求货轮离观测点O处的最短距离;(2)求货轮的航速.25.(9分)如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.(1)求证:∠E=∠C;(2)当⊙O的半径为3,cosA=时,求EF的长.26.(9分)已知二次函数y=x2﹣2x+c(c为常数).(1)若该二次函数的图象与两坐标轴有三个不同的交点,求c的取值范围;(2)已知该二次函数的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C,顶点为D,若存在点P(m,0)(m>3)使得△CDP与△BDP面积相等,求m的值.27.(10分)如图,在△ABC中,∠A=90°,AB=AC=12cm,半径为4cm的⊙O与AB、AC两边都相切,与BC交于点D、E.点P从点A出发,沿着边AB向终点B 运动,点Q从点B出发,沿着边BC向终点C运动,点R从点C出发,沿着边CA向终点A运动.已知点P、Q、R同时出发,运动速度分别是1cm/s、xcm/s、1.5cm/s,运动时间为ts.(1)求证:BD=CE;(2)若x=3,当△PBQ∽△QCR时,求t的值;(3)设△PBQ关于直线PQ对称的图形是△PB'Q,求当t和x分别为何值时,点B′与圆心O恰好重合.2015年江苏省南京市玄武区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2的相反数是()A.﹣2 B.﹣ C.D.2【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:2的相反数是﹣2.故选:A.2.(2分)等于()A.﹣3 B.3 C.±3 D.【分析】利用算术平方根的定义计算即可得到结果.【解答】解:==3,故选:B.3.(2分)南京青奥会期间约有1020000人次参与了青奥文化教育活动.将数据1020000用科学记数法表示为()A.10.2×105B.1.02×105C.1.02×106D.1.02×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:1020000=1.02×106,故选:C.4.(2分)如图,∠1=50°,如果AB∥DE,那么∠D=()A.40°B.50°C.130° D.140°【分析】由对顶角相等求出∠2的度数,再利用两直线平行同旁内角互补求出所求角度数即可.【解答】解:∵∠1与∠2为对顶角,∴∠1=∠2=50°,∵AB∥DE,∴∠2+∠D=180°,则∠D=130°,故选:C.5.(2分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:,解得,故选:B.6.(2分)如图,水平线l1∥l2,铅垂线l3∥l4,l1⊥l3,若选择l1、l2其中一条当成x轴,且向右为正方向,再选择l3、l4其中一条当成y轴,且向上为正方向,并在此平面直角坐标系中画出二次函数y=ax2﹣ax﹣a的图象,则下列关于x、y 轴的叙述,正确的是()A.l1为x轴,l3为y轴B.l1为x轴,l4为y轴C.l2为x轴,l3为y轴D.l2为x轴,l4为y轴【分析】根据抛物线的开口向上,可得a>0,则﹣a<0,可确定l1为x轴,再根据左同右异的法则,可得出l3为y轴,即可得出答案.【解答】解:∵抛物线的开口向上,∴a>0,∴﹣a<0,∴抛物线与y轴的负半轴相交,∴l1为x轴,l3为y轴.故选:A.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)使式子有意义的x取值范围是x≥﹣1.【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.8.(2分)一组数据1,4,2,5,3的中位数是3.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:将数据从小到大排列,可得1,2,3,4,5;第3个数为3,故这5个数的中位数是3.故填3.9.(2分)分解因式:2x2﹣4x+2=2(x﹣1)2.【分析】先提取公因数2,再利用完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.10.(2分)计算:sin45°+﹣=﹣2.【分析】首先求出45°的正弦值是多少;然后根据算术平方根、立方根的运算方法计算,再从左向右依次计算即可.【解答】解:sin45°+﹣==﹣2故答案为:.11.(2分)小明与家人和同学一起到游泳池游泳,买了2张成人票与3张学生票,共付了155元.已知成人票的单价比学生票的单价贵15元,设学生票的单价为x元,可得方程3x+2(x+15)=155.【分析】由学生票的单价为x元,表示出成人票的单价为(x+15)元,根据买了2张成人票与3张学生票,共付了155元,即可列出方程.【解答】解:设学生票的单价为x元,则成人票的单价为(x+15)元,根据题意得:3x+2(x+15)=155,故答案为:3x+2(x+15)=155.12.(2分)已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为24.【分析】首先根据题意画出图形,由一个菱形的边长为5,其中一条对角线长为8,可利用勾股定理,求得另一菱形的对角线长,继而求得答案.【解答】解:如图,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴这个菱形的面积为:AC•BD=×6×8=24.故答案为:24.13.(2分)如图,ON⊥OM,等腰直角三角形ACB中,∠ACB=90°,边AC在OM 上,将△ACB绕点A逆时针旋转75°,使得点B的对应点E恰好落在ON上,则=.【分析】首先求出∠CAB的度数,再根据旋转的性质求出∠BAE=75°,然后根据平角的性质求出∠OAE的度数,利用锐角三角形函数值的定义求出答案.【解答】解:∵等腰直角三角形ACB中,∠ACB=90°,∴∠CAB=45°,∵△ACB绕点A逆时针旋转75°得到△ADE,∴∠BAE=75°,∴∠OAE=180°﹣45°﹣75°=60°,在Rt△OAE中,∴cos60°==,故答案为.14.(2分)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为8.【分析】首先根据直角三角形斜边上中线的性质,求出CD的长度是多少;然后根据CE=CD,求出CE的长度是多少,进而求出ED的长度是多少;最后判断出ED是△AFB的中位线,根据三角形中位线定理,求出BF的长为多少即可.【解答】解:∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=3;又∵CE=CD,∴CE==1,∴ED=CE+CD=1+3=4;又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线.∴BF=2ED=2×4=8,即BF的长为8.故答案为:8.15.(2分)如图,四边形ABCD为⊙O的内接四边形,连接AC、BO,已知∠CAB=36°,∠ABO=30°,则∠D=96°.【分析】连结OC,如图,根据圆周角定理得到∠BOC=2∠CAB=72°,再根据等腰三角形的性质和三角形内角和定理可计算出∠OBC=54°,则∠ABC=∠OBA+∠OBC=84°,然后根据圆内接四边形的性质求∠D的度数.【解答】解:连结OC,如图,∠BOC=2∠CAB=2×36°=72°,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC=(180°﹣∠BOC)=(180°﹣72°)=54°,∴∠ABC=∠OBA+∠OBC=30°+54°=84°,∵∠D+∠ABC=180°,∴∠D=180°﹣84°=96°.故答案为96.16.(2分)函数y1=k1x+b的图象与函数y2=的图象交于点A(2,1)、B(n,2),则不等式﹣<﹣k1x+b的解集为x>0或﹣2<x<﹣1.【分析】根据反比例函数y2=的图象过点A(2,1)利用待定系数法即可求出k2,把B(n,2)代入反比例函数解析式即可求得B的坐标,然后利用待定系数法即可求得函数y1=k1x+b的解析式,即可求得k1,b.然后在同一坐标系画出函数y=﹣和y=x+3的图象,根据图象求得即可.【解答】解:(1)因为函数y2=的图象经过A(2,1),所以k2=2.所以反比例函数的解析式为y=.因为B(n,2)在y=上,所以n=1.所以B的坐标是(1,2).把A(2,1)、B(1,2)代入y1=k1x+b得:,解得,∵﹣<﹣k1x+b化为:﹣<x+3,画出函数y=﹣和y=x+3的图象如图:由图象可知等式﹣<﹣k1x+b的解集x>0或﹣2<x<﹣1.故答案为:x>0或﹣2<x<﹣1.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:①+②,得3x=3,解得:x=1,将x=1代入①,得1+y=﹣3,解得:y=﹣4,则原方程组的解为.18.(7分)先化简再求值:.其中a=1.【分析】原式第一项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•﹣=﹣,当a=1时,原式=﹣1.19.(7分)如图,矩形花圃ABCD一面靠墙,另外三面用总长度是24m的篱笆围成.当矩形花圃的面积是40m2时,求BC的长.【分析】设BC的长为xm,根据篱笆总长度表示出AB的长,根据花圃面积列出方程,求出方程的解即可得到结果.【解答】解:设BC的长度为xm,由题意得x•=40,整理得:x2﹣24x+80=0,即(x﹣4)(x﹣20)=0,解得x1=4,x2=20,答:BC长为4m或20m.20.(8分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.(1)从中任取一球,求该球上标记的数字为正数的概率;(2)从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.【分析】(1)直接根据概率公式求解;(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.【解答】解:(1)正数为2,所以该球上标记的数字为正数的概率为;(2)画树状图为:共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率==.21.(7分)为了解南京市民每天的阅读时间情况,随机抽取了部分市民进行调查,根据调查结果绘制如下尚不完整的频数分布表:(1)补全表格中①~④的数据;(2)将每天阅读时间不低于60min的市民称为“阅读爱好者”,若我市约有800万人,请估计我市能称为“阅读爱好者”的市民约有多少万人?【分析】(1)根据频数、频率与总数之间的关系分别进行计算,然后填表即可;(2)用800万人乘以阅读时间不低于60min所占的百分比,即可求出我市能称为“阅读爱好者”的市民数.【解答】解:(1)根据题意得:=1000(人),0≤x<30的频率是:=0.45,60≤x<90的频数是:1000×0.1=100(人),x≥90的频率是:=0.05.填表如下:(2)根据题意得:800×(0.1+0.05)=120(万人).答:估计我市能称为“阅读爱好者”的市民约有120万人.22.(9分)如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.【分析】(1)先证∠AED=∠CGD,再证明△ADE≌△CDG,根据全等三角形的对应边相等即可得出结论;(2)先证明△AEB≌△CGD,得出对应角相等∠AEB=∠CGD,得出∠AEB=∠EGF,即可证出平行线.【解答】解:(1)证明:在正方形ABCD中,∵AD=CD,∴∠DAE=∠DCG,∵DE=DG,∴∠DEG=∠DGE,∴∠AED=∠CGD.在△AED和△CGD中,∴△AED≌△CGD(AAS),∴AE=CG.(2)解法一:BE∥DF,理由如下:在正方形ABCD中,AB∥CD,∴∠BAE=∠DCG.在△AEB和△CGD中,∴△AEB≌△CGD(SAS),∴∠AEB=∠CGD.∵∠CGD=∠EGF,∴∠AEB=∠EGF,∴BE∥DF.解法二:BE∥DF,理由如下:在正方形ABCD中,∵AD∥FC,∴=.∵CG=AE,∴AG=CE.又∵在正方形ABCD中,AD=CB,∴=.又∵∠GCF=∠ECB,∴△CGF∽△CEB,∴∠CGF=∠CEB,∴BE∥DF.23.(8分)游泳池完成换水需要经过“排水﹣清洗﹣注水”三个过程.如图,图中折线表示的是游泳池在换水过程中池中的水量y(m3)与时间t(min)之间的关系.(1)求注水过程中y与t的函数关系式;(2)求清洗所用的时间.【分析】(1)根据图象上点的坐标利用待定系数法即可求出注水过程中y与t的函数关系式;(2)根据图象可知,游泳池25min排水1500﹣1000=500m3,求出排水速度,再求出排水需要的时间,那么清洗所用的时间等于95min减去排水需要的时间.【解答】解:(1)设注水过程中y与t之间的函数关系式为y=kt+b.根据题意,当t=95时,y=0;当t=195时,y=1000;所以,解得.所以,注水过程中y与t之间的函数关系式为y=10t﹣950;(2)由图象可知,排水速度为=20m3/min,则排水需要的时间为=75min,清洗所用的时间为95﹣75=20min.24.(8分)在海上某固定观测点O处的北偏西60°方向,且距离O处40海里的A处,有一艘货轮正沿着正东方向匀速航行,2小时后,此货轮到达O处的北偏东45°方向的B处.在该货轮从A处到B处的航行过程中.(1)求货轮离观测点O处的最短距离;(2)求货轮的航速.【分析】(1)如图,作OH⊥AB,垂足为H.通过解Rt△AOH来求OH的长度即可;(2)在Rt△AOH中,求得AH的长度;然后在Rt△BOH中,∠B=∠HOB=45°,则△BHO的等腰直角三角形,故HB=HO=20.易求AB=20+20,利用速度=路程÷时间进行计算.【解答】解:(1)如图,作OH⊥AB,垂足为H.在Rt△AOH中,∵cos∠AOH=.∴OH=cos60°•AO=20.即货轮离观测点O处的最短距离为20海里;(2)在Rt△AOH中,∵sin∠AOH=,∴AH=sin60°•AO=20,在Rt△BOH中,∵∠B=∠HOB=45°,∴HB=HO=20.∴AB=20+20,∴货轮的航速为=10+10(海里/小时).25.(9分)如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.(1)求证:∠E=∠C;(2)当⊙O的半径为3,cosA=时,求EF的长.【分析】(1)连接OB,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;(2)首先求出AB,AO的长,设FB为x,利用勾股定理可得:EB2=EF2+BF2,即62=(2x)2+x2,解方程可求出x的值,进而求出EF的长.【解答】(1)证明:连接OB,∵CD为⊙O的直径,∴∠CBD=∠CBO+∠OBD=90°,∵AE是⊙O的切线,∴∠ABO=∠ABD+∠OBD=90°,∴∠ABD=∠CBO,∵OB、OC是⊙O的半径,∴OB=OC,∴∠C=∠CBO,∵OE∥BD,∴∠E=∠ABD,∴∠E=∠C;(2)解:∵在Rt△OBA中,cosA=,OB=3,∴AB=4,AO=5,∴AD=2.∵BD∥OE,∴,∴,∴BE=6,∵OE∥BD,∴∠EFB=∠CBD=∠OBE=90°,∵在Rt△OBE中,tanE=,∴在Rt△FBE中,tanE=,设FB为x,∵EB2=EF2+BF2∴62=(2x)2+x2∴x=,∴EF=.26.(9分)已知二次函数y=x2﹣2x+c(c为常数).(1)若该二次函数的图象与两坐标轴有三个不同的交点,求c的取值范围;(2)已知该二次函数的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C,顶点为D,若存在点P(m,0)(m>3)使得△CDP与△BDP面积相等,求m的值.【分析】(1)该二次函数的图象与两坐标轴有三个不同的交点,得出c≠0,且二次函数与x轴有两个交点,利用b2﹣4ac>0,进一步得出答案即可;(2)代入点A求得函数解析式,进一步利用等底等高三角形的面积相等,得出C、B的直线的函数关系式,D、P的直线的函数关系式,由此得出答案即可.【解答】解:(1)由题意可得,该二次函数与x轴有两个不同的交点,也就是当y=0时,方程x2﹣2x+c=0有两个不相等的实数根,即b2﹣4ac>0,所以4﹣4c>0,c<1.又因为该二次函数与两个坐标轴有三个不同的交点,所以c≠0.综上,若该二次函数的图象与两坐标轴有三个不同的交点,c的取值范围为c<1且c≠0.(2)因为点A(﹣1,0)在该二次函数图象上,可得0=(﹣1)2﹣2×(﹣1)+c,c=﹣3.所以该二次函数的关系式为y=x2﹣2x﹣3,可得C(0,﹣3).由x=﹣=1,可得B(3,0),D(1,﹣4).若点P(m,0)(m>3)使得△CDP与△BDP面积相等,可得点C、B到DP的距离相等,此时,CB∥DP.设过点C、B的直线的函数关系式为y=kx+b,即解得设过点D、P的直线的函数关系式为y=x+n,即﹣4=1+n,解得n=﹣5.即y=x﹣5,当y=0时,x=5,即m=5.27.(10分)如图,在△ABC中,∠A=90°,AB=AC=12cm,半径为4cm的⊙O与AB、AC两边都相切,与BC交于点D、E.点P从点A出发,沿着边AB向终点B 运动,点Q从点B出发,沿着边BC向终点C运动,点R从点C出发,沿着边CA向终点A运动.已知点P、Q、R同时出发,运动速度分别是1cm/s、xcm/s、1.5cm/s,运动时间为ts.(1)求证:BD=CE;(2)若x=3,当△PBQ∽△QCR时,求t的值;(3)设△PBQ关于直线PQ对称的图形是△PB'Q,求当t和x分别为何值时,点B′与圆心O恰好重合.【分析】(1)作辅助线连接AO并延长交BC于点H.连接OE、OD.由等腰三角形三线合一得出OH平分ED.再由CE=CH﹣EH,BD=BH﹣DH,即可得出BD=CE.(2)在Rt△ABC中,易得出BC的值,利用△PBQ∽△QCR,得出=,列出关于t的式子,即可求出t的值.(3)设⊙O与AB相切于点M,作辅助线连接AO并延长交BC于点H.连接OM、OB、OP、OQ,由点O与点B关于PQ对称,PQ垂直平分BO.可得OP=BP,OQ=BQ.又⊙O与AB相切于点M,可得出OM⊥AB.设BP=a,在Rt△OMP中,利用勾股定理即可得出a=5;由(1)可得AH是△ABC的高,BH,OH的值,设BQ=b,在Rt△OHB中,利用勾股定理即可得出b的值,即可得出t的值;由x=BQ÷3求解即可.【解答】证明:(1)如图1,连接AO并延长交BC于点H.连接OE、OD.∵⊙O与AB、AC两边都相切,∴点O到AB、AC两边的距离相等.∴AH是∠CAB的平分线.∵AB=AC,∴AH⊥BC,AH平分BC.∵OE=OD,OH⊥ED,∴OH平分ED.∵CE=CH﹣EH,BD=BH﹣DH,且CH=BH,EH=DH,∴BD=CE.(2)解:在Rt△ABC中,BC==12.∵△PBQ∽△QCR,∴=,即=.解得t=.(3)解:设⊙O与AB相切于点M,连接AO并延长交BC于点H.连接OM、OB、OP、OQ,∵点O与点B关于PQ对称,∴PQ垂直平分BO.∴OP=BP,OQ=BQ.∵⊙O与AB相切于点M,∴OM⊥AB.设BP=a,在Rt△OMP中,(12﹣4﹣a)2+42=a2,解得a=5;∵由(1)可得AH是△ABC的高,∴BH==,OH=2,设BQ=b,在Rt△OHB中,(6﹣b)2+(2)2=b2,解得b=.t==7s;x=÷7=cm.。
2015年江苏省南京市中考数学试卷-答案
江苏省南京市2015年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】负数的绝对值等于它的相反数,原式=5322-+=-=。
【考点】有理数的加法,绝对值的求法 2.【答案】A【解析】()()()2223326xyx y x y -=-=。
【考点】幂的乘方和积的乘方 3.【答案】C【解析】此题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方。
DE BC ∥,ADE ABC ∴△∽△,AD AE DEAB AC BC∴==,12AD DB =,13AD AE DE AB AC BC ===,故A 、B 选项均错误;ADE ABC △∽△,1==3ADE AD ABC AB ∴△的周长△的周长,21==9ADE AD ABC AB ⎛⎫∴ ⎪⎝⎭△的面积△的面积,故C 选项正确,D 错误。
【考点】比例的性质,相似三角形的判定与性质 4.【答案】C【解析】通过单项式的加法进行加减之后,用科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数。
2014年底机动车的数量为:566310210 2.310⨯+⨯=⨯。
【考点】单项式的加法,科学记数法 5.【答案】C2.235≈1 1.235≈,10.6172≈。
【考点】估算有理数的大小 6.【答案】A【解析】本题正确的作出辅助线是解题的关键,连接OE ,OF ,ON ,OG ,在矩形ABCD 中,90A B ∠=∠=︒,4CD AB ==,AD ,AB ,BC 分别与O 相切于E ,F ,G 三点,90AEO AFO OFB BGO ∴∠=∠=∠=∠=︒,∴四边形AFOE ,FBGO 是正方形,∴2AF BF AE BG ====,3DE ∴=,∵DM 是O 的切线,3DN DE ∴==,MN MG =,523CM MN MN ∴=--=-,在Rt DMC△中,222DM CD CM =+,∴()()222334NM NM +=-+,∴43NM =,∴413333DM =+=,故选A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省南京市玄武区2015年中考数学二模试题注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.2的相反数是 A .-2B .-12C .12D .22.9等于A .-3B .3C .±3D .33.南京青奥会期间约有1020000人次参与了青奥文化教育活动.将数据1020000用科学记数法表示为A .10.2×105B .1.02×105C .1.02×106D .1.02×1074.如图,∠1=50°,如果AB ∥DE ,那么∠D =A .40°B .50°C . 130°D .140°5.不等式组⎩⎨⎧x >-1,2x -3≤1.的解集在数轴上表示正确的是A .C D 6.如图,水平线l 1∥l 2,铅垂线l 3∥l 4,l 1⊥l 3,若选择l 1、l 2其中一条当成x 轴,且向右为正方向,再选择l 3、l 4其中一条当成y 轴,且向上为正方向,并在此平面直角坐标系中画出二次函数y =ax 2-ax -a 的图象,则下列关于x 、y 轴的叙述,正确的是A .l 1为x 轴,l 3为y 轴B .l 1为x 轴,l 4为y 轴C .l 2为x 轴,l 3为y 轴D .l 2为x 轴,l 4为y 轴 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.使式子x +1有意义的x 的取值范围是 ▲ .8.一组数据:1,4,2,5,3的中位数是 ▲ .9.分解因式:2x 2-4x +2= ▲ . 10.计算:sin45°+12-38= ▲ . 11.小明与家人和同学一起到游泳池游泳,买了2张成人票与3张学生票,共付了155元.已知成人票的单价比学生票的单价贵15元,设学生票的单价为x 元,可得方程 ▲ . 12.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为 ▲ .13.如图,ON ⊥OM ,等腰直角三角形ACB 中,∠ACB =90°,边AC 在OM 上,将△ACB 绕点A 逆时针旋转75°,使得点B 的对应点E 恰好落在ON 上,则OAEA= ▲ . (第6题)l 3 l 4l 1 l 2C (第4题) 1 A B DE14.如图,∠ACB =90°,D 为AB 的中点,连接DC 并延长到E ,使3CE =CD ,过点B 作BF ∥DE , 与AE 的延长线交于点F .若AB =6,则BF 的长为 ▲ .15.如图,四边形ABCD 为⊙O 的内接四边形,连接AC 、BO ,已知∠CAB =36°,∠ABO =30°,则∠D = ▲ °.16.函数y 1=k 1x +b 的图象与函数y 2= k 2 x 的图象交于点A (2,1)、B (n ,2),则不等式- k 2x<-k 1x +b 的解集为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解方程组:⎩⎨⎧x +y =-3,2x -y =6.18.(7分)先化简,再求值:a -2a +3÷a 2-42a +6-5a +2,其中a =1.19.(7分)如图,矩形花圃ABCD 一面靠墙,另外三面用总长度是24m 的篱笆围成.当矩形花圃的面积是40 m 2时,求BC 的长.20.(8分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字-3、-1、0、2,除数字不同外,这四个球没有任何区别.(1)从中任取一球,求该球上标记的数字为正数的概率;(2)从中任取两球,将两球上标记的数字分别记为x 、y ,求点(x ,y )位于第二象限的概率.A B C D (第19题)文档来源:弘毅教育园丁网数学第一站24.(8分)在海上某固定观测点O 处的北偏西60°方向,且距离O 处40海里的A 处,有一艘货轮正沿着正东方向匀速航行,2小时后,此货轮到达O 处的北偏东45°方向的B 处.在该货轮从A 处到B 处的航行过程中.(1)求货轮离观测点O 处的最短距离; (2)求货轮的航速.25.(9分)如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,OE ∥BD ,交BC 于点F ,交AE 于点E . (1)求证:∠E =∠BCO ;(2)若⊙O 的半径为3,cos A =45,求EF 的长.26.(9分)已知二次函数y =x 2—2x +c (c 为常数).(1)若该二次函数的图象与两坐标轴有三个不同的交点,求c 的取值范围;(2)已知该二次函数的图象与x 轴交于点A (-1,0)和点B ,与y 轴交于点C ,顶点为D ,若存在点P (m ,0)(m >3)使得△CDP 与△BDP 面积相等,求m 的值.27.(10分)如图,在△ABC 中,∠A =90°,AB =AC =12 cm ,半径为4cm 的⊙O 与AB 、AC 两边都相切,与BC 交于点D 、E .点P 从点A 出发,沿着边AB 向终点B 运动,点Q 从点B 出发,沿着边BC 向终点C 运动,点R 从点C 出发,沿着边CA 向终点A 运动.已知点P 、Q 、R 同时出发,运动速度分别是1 cm/s 、x cm/s 、1.5 cm/s ,运动时间为ts. (1)求证:BD =CE ;(2)若x =3,当△PBQ ∽△QCR 时,求t 的值;(3)设△PBQ 关于直线PQ 对称的图形是△PB'Q ,求当t 和x 分别为何值时,点B'与圆心O 恰好重合.OA B北(第24题) 东 E BCOF D A (第25题)2014~2015学年第二学期九年级测试卷数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.二、填空题(本大题共10小题,每小题2分,共20分)7.x ≥-1; 8.3 9.2(x -1)210.2-2 11.3x +2(x +15)=15512.24 13.12 14.8 15.96 16.x >0,-2<x <-1三、解答题(本大题共11小题,共88分) 17.(本题6分)解:⎩⎨⎧x +y =-3, ①2x -y =6. ②①+②,得 3x =3,解得 x =1.将x =1代入①,得 1+y =-3,解得 y =-4.所以原方程组的解为⎩⎨⎧x =1,y =-4.6分18.(本题7分)解:a -2a +3÷a 2-42a +6-5a +2=a -2a +3÷(a +2)(a -2)2(a +3)-5a +2 =a -2a +3·2(a +3)(a +2)(a -2)-5a +2 =2(a -2)(a +3)(a +3)(a +2)(a -2)-5a +2 =2a +2-5a +2=-3a +2.当a =1时,原式=-1. 7分19.(本题7分)解:设BC 的长度为x m .文档来源:弘毅教育园丁网数学第一站由题意得 x ·24-x2=40.解得 x 1=4,x 2=20.答:BC 长为4 m 或20m . 7分 20.(本题8分)解:(1)正数为2,该球上标记的数字为正数的概率为14. 3分(2)点(x ,y )所有可能出现的结果有:(-3,-1)、(-3,0)、(-3,2)、(-1,0)、(-1,2)、(0,2)、 (-1,-3)、(0,-3)、(2,-3)、(0,-1)、(2,-1)、(2,0). 共有12种,它们出现的可能性相同.所有的结果中,满足“点(x ,y )位于第二象限”(记为事件A )的结果有2种,所以P(A )=16. 8分21.(本题7分)解:(1)①0.45;②100;③0.05;④1000; 4分 (2)800×(0.1+0.05)=120(万人)答:我市能称为“阅读爱好者”的市民约有120万人. 7分22.(本题9分)解:(1)证明:在正方形ABCD 中,∵AD =CD ,∴∠DAE =∠DCG ,∵DE =DG , ∴∠DEG =∠DGE , ∴∠AED =∠CGD . 在△AED 和△CGD 中,∵∠DAE =∠DCG ,∠AED =∠CGD ,DE =DG , ∴△AED ≌△CGD , ∴AE =CG . 4分(2)解法一:BE ∥DF ,理由如下:在正方形ABCD 中,AB ∥CD ,AB =CD , ∴∠BAE =∠DCG . 又∵AE =CG , ∴△AEB ≌△CGD , ∴∠AEB =∠CGD . ∵∠CGD =∠EGF , ∴∠AEB =∠EGF , ∴ BE ∥DF . 9分解法二:BE ∥DF ,理由如下: 在正方形ABCD 中, ∵AD ∥FC ,∴CG AG =CF AD . ∵CG =AE ,∴AG =CE .又∵在正方形ABCD 中,AD =CB ,∴CG CE =CF CB. 又∵∠GCF =∠ECB , ∴△CGF ∽△CEB , ∴∠CGF =∠CEB , ∴ BE ∥DF . 9分23.(本题8分)解:(1)设注水过程中y 与t 之间的函数关系式为y =kt +b .根据题意,当t =95时,y =0;当t =195时,y =1000.所以⎩⎨⎧0=95k +b ,1000=195k +b .解得⎩⎨⎧k =10,b =-950.所以,y 与t 之间的函数关系式为y =10t -950. 4分(2)由图象可知,排水速度为1500-100025=20 m 3/min .则排水需要的时间为150020=75min .清洗所用的时间为95-75=20min . 8分24.(本题8分)解:(1)如图,作OH ⊥AB ,垂足为H .在Rt △AOH 中,∵cos ∠AOH =OH AO.∴OH =cos60°·AO =20. 即货轮离观测点O 处的最短距离为20海里. 4分(2)在Rt △AOH 中,∵sin ∠AOH =AH AO,∴AH =sin60°·AO =203,在Rt △BOH 中,∵∠B =∠HOB =45°,∴HB =HO =20. ∴AB =203+20,∴货轮的航速为203+202=103+10(海里/小时). 8分25.(本题9分)(1)证明:连接BO .∵OE ∥BD , ∴∠E =∠ABD .∵AE 与⊙O 相切于点B ,∴OB ⊥AE . ∴∠ABD +∠OBD =90°.OAB北 东EBF文档来源:弘毅教育园丁网数学第一站∵CD 是⊙O 的直径, ∴∠CBO +∠OBD =90°. ∴∠ABD =∠CBO . ∵OB =OC ,∴∠CBO =∠BCO . ∴∠E =∠BCO . 4分(2)解:在Rt △ABO 中,cos A =AB AO =45,可设AB =4k ,AO =5k ,BO =(5k )2-(4k )2=3k .∵⊙O 的半径为3,∴3k =3,∴k =1. ∴AB =4,AO =5.∴AD =AO -OD =5-3=2. ∵BD ∥EO , ∴AB AE =AD AO =25,∴AE =10. ∴EB =AE -AB =6.在Rt △EBO 中,EO =EB 2+OB 2=35. ∵OE ∥BD ,∴∠EFB =∠DBF =90°.∵∠FEB =∠BEO ,∠EFB =∠EBO , ∴△EFB ∽△EBO . ∴EF EB =EB EO ,即EF 6=635. ∴EF =1255. 9分26.(本题9分)即y =x -5,当y =0时,x =5,即m =5. 9分27.(本题10分)(1)证明:连接AO 并延长交BC 于点H .连接OE 、OD .∵⊙O 与AB 、AC 两边都相切,∴点O 到AB 、AC 两边的距离相等. ∴AH 是∠CAB 的平分线. ∵AB =AC ,∴AH ⊥BC ,AH 平分BC . ∵OE =OD ,OH ⊥ED , ∴OH 平分ED .∵CE =CH -EH ,BD =BH -DH , 且CH =BH ,EH =DH , ∴ BD =CE . 3分(2BC =122+122=122.,∴BP CQ =BQ CR ,即12-t 122-3t =3t 1.5t.解得t =242-125. 6分(3M ,连接OM 、OB 、OP 、OQ ,H 参考(1)中作法. PQ 对称, ∴OP=BP ,OQ =BQ . ∵⊙O 与AB 相切于点M ,∴OM ⊥AB .设BP =a ,在Rt △OMP 中,(12-4-a )2+42=a 2,解得a =5;设BQ =b ,在Rt △OHB 中,(62-b )2+(22)2=b 2,解得b =1023.t =12-51=7 s . x =10237=10221cm .10分B。