霍尔开关 传感器 HA-0724PA-B

合集下载

霍尔传感器解析

霍尔传感器解析

一.霍尔传感器市场调研1.霍尔效应在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为U H的霍尔电压。

2.霍尔传感器霍尔传感器是根据霍尔效应制作的一种磁场传感器。

霍尔效应是磁电效应的一种,这一现象是霍尔(1855—1938)于1879年在研究金属的导电机构时发现的。

后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。

霍尔效应是研究半导体材料性能的基本方法。

通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。

3.霍尔传感器的工作原理霍尔电流传感器有两种工作方式,即磁平衡式和直式。

霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、次级线圈和放大电路等组成。

①直放式电流传感器(开环式)众所周知,当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出。

这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V。

②磁平衡式电流传感器(闭环式)磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿,从而使霍尔器件处于检测零磁通的工作状态。

磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is。

这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。

当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起指示零磁通的作用,此时可以通过Is来平衡。

霍尔开关的各种应用电路

霍尔开关的各种应用电路
尔电动势 E HO
霍尔电动势 EH 信号产生后,送人差分放大器放大,如图 3-11 所示。放大的信号又送 到施密特触发器,一旦施密特触发器被触发,就输出高电压加到三极管基极使其饱和导通, 即三极管集电极与发射极之间的电压接近于 0 ,于是霍尔开关第②脚(黄线)就输出低电
压,称之为霍尔开关关断。
当永久磁铁离磁感应面较远或说感应的磁感应强度小于 80 mT 时,霍尔开关内部霍尔
构成电源的电流回路和输出信号的回路。
,
14
山脚川以
OUT
OUT
(a) 螺母式霍尔开关
(b) 穿孔式霍尔开关
(c) 圈形符号
图 3-10
回心 1 型霍尔开关外形和图形符号
霍尔开关磁感应面的内部是一个霍尔元件,由它来感应外部磁场,控制霍尔开关输出端
OUT 输出电信号 Uoun 以完成由磁场转换为电信号的功能,再以电信号来控制其他电路或
(f)
图 3-14
霍尔开关的各种应用电路
触发晶闸管导通,负载 Rfz得电工作。
图 3-14 (d) 、 (e) 、(f)是利用霍尔开关分别控制不同集成电路工作的电路。 四\..-1 型霍尔开关是全密封结构,能在极其恶劣的环境中应用,如能在水溶液、油类、 冷却碱液、粉尘环境中稳定可靠地控制电气设备工作,而且具有无触点、无磨损、体积小、
电路,图中 R也是被控制的负载。电路加电源 +V 之后,当有磁场靠近使霍尔开关感应到磁
感应强度时,它的第②脚就输出低电压,三极管截止,关断负载的电流。 当没有磁场接近霍尔开关时,它的第②脚无信号输出,而是由 R1 、R2建立起高电压加
到 VT 基极,三极管导通饱和电流,使负载 Rfz上有电流流过。
图 3-14 (b) 、( c) 是用霍尔开关分别控制单向晶闸管、双向晶闸管的电路,各有两组电

霍尔相关型号及主要参数

霍尔相关型号及主要参数
HAL1881
30
-30
-40-150
SOT-23
高灵敏无触点开关、无刷电机
HAL513
4
70
-70
-40-150
SOT-89
高灵敏无触点开关、无刷电机
AH512
10
60
-60
-40-125
TO-92
高灵敏无触点开关、无刷电机
YH1601
10
30
-30
-40-150
SOT-23
无刷电机、转速传感
YH1602
HAL43F
200
170
-40-150
TO-92S
速度和RPM传感器、转速计等
HAL58
180
137
-40-150
SOT-23
马达、无触点开关
HAL543
5
160
110
-40-150
SOT-89B
无触点开关、位置检测、转速计
AH3144E
10
110
20
-40-85
TO-92S
舞台灯光、车速仪表、空调电机等
?
?
?
?
?
?
?
?
双极锁存型霍尔电路
型号
工作电压VDD(V)
工作电流IDD(MA)
工作点Bop(GS)
释放点Brp(GS)
工作温度TA(℃)
封装形式
典型应用
HAL41F
4
120
120
-40-150
TO-92S
直流无刷电机、转速检测
HAL732
18
-18
-40-150
SOT-23
高灵敏无触点开关、无刷电机

霍尔传感器中文手册

霍尔传感器中文手册

1.描述ES582是单极霍尔效应传感器从混合信号IC制造CMOS技术。

设备集成了一个电压调节器,霍尔传感器动态补偿取消系统,施密特触发器和一个open-drain输出驱动程序,所有在一个包中。

它集成了先进的直升机稳定技术提供准确和稳定的磁开关点。

有很多申请这HED -霍尔电子设备除了那些下面列出。

由于其宽工作电压范围和扩展温度范围的选择,它非常适用于汽车,工业和消费者应用程序。

交付的设备是在一个小提纲晶体管(说)表面安装过程和在一个塑料单(- 92平)通孔。

3-lead 包都是通过无铅认证。

2.特性宽工作电压范围3.5 v和24 v介质的敏感性CMOS技术Chopper-stabilized放大级优良的温度稳定性极低的开关点漂移对身体压力低电流消耗明渠输出小SOT23 3 l和平板- 92 3 l,通过无铅认证包3.应用程序汽车、消费品和工业固态开关断续器速度检测线性位置检测角位置检测接近detectio4.原理框图5.术语表术语描述毫伏特斯拉(mT) 高斯,磁通密度单位:1吨= 10高斯 RoHS有害物质限制SOT 小轮廓晶体管(说包)——也被称为包代码” ESD 静电放电 BLDCBrush-Less 直流操作点(BOP)磁通密度应用于品牌的包将输出驱动程序(输出电压= VDSon)释放点(BRP)磁通密度应用于品牌的包挫伤了驱动程序的输出(输出电压=高)6.销的定义和描述SE 销UA 销.类型函数名称 1 1 V DD 输入 电源电压销 2 3 OUT 输出 输出销 32GND接地地面销VDDOUTV oltage Regulat o rChopperHall PlateGNDUA Package SO Package Pin 1 – V DDPin 1 – V DDPin 2 – GND P in 2 – OUT Pin 3 – OUT P in 3 – GND7.独特的特性基于混合信号CMOS技术,Innosen ES582霍尔设备与介质磁敏感性。

霍尔式传感器介绍课件

霍尔式传感器介绍课件

霍尔式传感器可以检测汽车电子设备的工作状态,如发动机转速、车速等。
工业控制
霍尔式传感器在工业控制中的应用广泛,如电机控制、机器人控制等。
01
霍尔式传感器可以检测电机的转速、位置和扭矩等信息,实现精确控制。
02
霍尔式传感器在机器人控制中,可以检测机器人的关节角度和位置,实现机器人的精确运动控制。
03
虚拟现实:霍尔传感器用于头部追踪、手势识别等
01
02
03
04
05
06
霍尔式传感器发展趋势
技术进步
霍尔元件的制造工艺不断改进,提高了传感器的灵敏度和稳定性。
随着新材料和新工艺的应用,霍尔式传感器的测量范围和精度得到了进一步提高。
集成电路技术的发展,使得霍尔式传感器的体积越来越小,功耗越来越低。
智能化技术的发展,使得霍尔式传感器能够实现自诊断、自校准等功能,提高了系统的可靠性和稳定性。
演讲人
单击此处输入你的正文,文字是您思想的提炼,为了最终演示发布的良好效果,请尽量言简意赅的阐述观点
霍尔式传感器介绍课件
01.
霍尔式传感器原理
02.
03.
目录
霍尔式传感器应用
霍尔式传感器发展趋势
霍尔式传感器原理
霍尔效应
霍尔效应是指当电流通过导体时,在导体两侧会产生一个与电流方向垂直的磁场。
这个磁场的大小与电流的大小和导体的厚度有关。
应用领域拓展
汽车电子:霍尔式传感器在汽车电子领域中的应用越来越广泛,如汽车电子稳定系统(ESP)、电子助力转向系统(EPS)等。
智能家居:霍尔式传感器在智能家居中的应用也越来越多,如智能门锁、智能照明系统等。
医疗设备:霍尔式传感器在医疗设备中的应用也越来越广泛,如医疗监护设备、医疗诊断设备等。

HC-1024PA 霍尔开关

HC-1024PA  霍尔开关

HC-1024PA 霍尔开关HC-1024PA霍尔开关是种得用磁性感应原理的接近开关,只能用来检测磁铁,不可以检测金属物体,霍尔集成电路是霍尔元件与电子线路一体化的产品,它是由霍尔元件、放大器、温度补偿电路和稳压电路利用集成电路工艺技术制成的。

它能感知一切与磁有关的物理量,又能输出相关的电控信息,所以霍尔集成电路既是一种集成电路,又是一种磁敏传感器,湖北杭荣电气有限公司,优质生产厂家,现货批发供应,欢迎来电咨询订购,我公司是持有工商注册三证的正规生产厂家,产品经过严格的技术检测,质量可靠,产品性价比高,开关响应快,使用寿命长。

分类静电电容式接近开关可逆计数器专用特点采用专用IC定位精度高、防水、耐震、反应速度快外形编号HA HB HC HD HL外观尺寸ф6.5 M8 X 1 M12 X 1 M18 X 1 M18 X 1检测距离7mm 8mm 10mm 15mm 10mm额定工作电压10-30V DC0-250V AC10-30V DC0-250V AC10-30V DC0-250V AC10-30V DC0-250V AC4-30V DC0-250V AC可检物体永磁体永磁体永磁体永磁体永磁体响应频率≥20KHZ ≥20KHZ ≥20KHZ ≥20KHZ ≥20KHZ外壳材料金属镀铬金属镀铬金属、塑料金属、塑料金属、塑料工作环境温度-25℃~85℃-25℃~85℃-25℃~85℃-25℃~85℃-25℃~85℃防护等级IECIP67 IP67 IP67 IP67 IP67绝缘电阻50MΩ以上50MΩ以上50MΩ以上50MΩ以上50MΩ以上具备型号DC型NPN常开HA-0724NA HB-0824NA HC-1024NA HD-1524NA HL-1024NA常闭HA-0724NB HB-0824NB HC-1024NB HD-1524NB HL-1024NB一开一闭HC-1024NC HD-1524NCPNP常开HA-0724PA HB-0824PA HC-1024PA HD-1524PA HL-1024PA常闭HA-0724PB HB-0824PB HC-1024PB HD-1524PB HL-1024PB一开一闭HC-1024PC HD-1524PC二线制常开HA-0724LA HB-0824LA HC-1024LA HD-1524LA HL-1024LA常闭HA-0724LB HB-0824LB HC-1024LB HD-1524LB HL-1024LBAC型二线制常开HA-0722LA HB-0822LA HC-1022LA HD-1522LA HL-1022LA二线制常闭HA-0722LB HB-0822LB HC-1022LB HD-1522LB HL-1022LB。

霍尔传感器工作原理

霍尔传感器工作原理

霍尔传感器工作原理一、引言霍尔传感器是一种常用的非接触式传感器,广泛应用于测量磁场、检测位置和速度等领域。

本文将详细介绍霍尔传感器的工作原理和应用。

二、工作原理霍尔传感器基于霍尔效应工作,霍尔效应是指当导电材料中有电流通过时,垂直于电流方向施加磁场时,会在材料两侧产生电势差。

霍尔传感器利用这种效应来测量磁场的强度。

具体而言,霍尔传感器由霍尔元件、电源和输出电路组成。

当电源施加电流通过霍尔元件时,磁场作用于霍尔元件,使得元件两侧产生电势差。

输出电路将这个电势差转换为可测量的电压或者电流信号,从而实现对磁场的测量。

三、应用领域1. 磁场测量:霍尔传感器可以用来测量磁场的强度和方向。

例如,在电动机控制系统中,可以利用霍尔传感器测量转子位置,从而实现精确控制。

2. 速度检测:霍尔传感器可以用来检测旋转物体的速度。

例如,在汽车的发动机控制系统中,可以利用霍尔传感器测量曲轴的转速,从而实现点火和喷油的精确控制。

3. 位置检测:霍尔传感器可以用来检测物体的位置。

例如,在自动门系统中,可以利用霍尔传感器检测门是否关闭,从而实现自动开关门的功能。

4. 接近开关:霍尔传感器可以用作接近开关,用来检测物体是否挨近。

例如,在自动灯光控制系统中,可以利用霍尔传感器检测人体的接近,从而实现灯光的自动开关。

5. 电流测量:霍尔传感器可以用来测量电流。

例如,在电力系统中,可以利用霍尔传感器测量电流的大小,从而实现对电力负载的监测和控制。

四、优缺点1. 优点:- 非接触式测量:霍尔传感器无需与被测物接触,避免了接触传感器磨损和污染的问题。

- 高精度:霍尔传感器具有较高的测量精度,能够满足精密测量的需求。

- 快速响应:霍尔传感器的响应速度快,能够实时监测被测物的变化。

2. 缺点:- 受外界磁场干扰:由于霍尔传感器是基于磁场测量的,因此容易受到外界磁场的干扰,影响测量结果的准确性。

- 价格较高:相比于其他传感器,霍尔传感器的价格较高,对于一些低成本应用可能不太适合。

霍尔传感器样本手册——安科瑞 华楠

霍尔传感器样本手册——安科瑞 华楠

1.霍尔传感器霍尔电流传感器主要适用于交流、直流、脉冲等复杂信号的隔离转换,通过霍尔效应原理使变换后的信号能够直接被AD 、DSP 、PLC 、二次仪表等各种采集装置直接采集,广泛应用于电流监控及电池应用、逆变电源及太阳能电源管理系统、直流屏及直流马达驱动、电镀、焊接应用、变频器,UPS 伺服控制等系统电流信号采集和反馈控制,具有响应时间快,电流测量范围宽精度高,过载能力强,线性好,抗干扰能力强等优点。

1.1开环霍尔电流传感器1.1.1型号说明1.1.2技术指标技术参数指标霍尔开口式/闭口式开环霍尔(真有效值)输出标称值电压:±5V/±4V 电流:4~20mA 零点失调电压(电流)电压:±20mV电流:±0.05mA失调电压(电流)漂移电压:≤±1.0mV/℃电流:±0.04mA/℃线性度≤0.2%FS电源电压DC ±15V DC 24V频宽0~20kHz 响应时间≤5us≤1ms耐压强度输入与输出及电源之间允许AC2500V 工频耐压精度等级1.0环境温度工作:-25℃~+70℃;储存:-40℃~+85℃湿度≤95%RH,不结露,无腐蚀性气体场所海拔≤3500m注:开口式、闭口式为传感器产品外观不同,原理都为开环原理。

1.1.3开口式开环霍尔电流传感器1.1.3.1规格尺寸(单位:mm)图1图21.1.3.2规格参数对照表型号额定电流供电电源额定输出测量孔径(mm)准确度AHKC-EKA 0~(50-500)A ±15V 5V /4V φ201级AHKC-EKAADC 0~(50-500)A12V/24V4~20mAφ201级尺寸规格外形尺寸穿孔尺寸安装尺寸图形W H D a e ΦM N AHKC-EKA 606416//2047/图1AHKC-EKAA 606416//2047/图1AHKC-EKDA 606416//2047/图1AHKC-EKB 10010224//4080/图1AHKC-EKBA 10010224//4080/图1AHKC-EKBDA 10010224//4080/图1AHKC-EKC 11511027//6095.5/图1AHKC-EKCA 11511027//6095.5/图1AHKC-EKCDA 11511027//6095.5/图1AHKC-K 12763256416//30图2AHKC-KAA 12763256416//30图2AHKC-KDA 12763256416//30图2AHKC-H 14979258232//46图2AHKC-KA 17695.52910436//60图2AHKC-HB 204111.52913252//48×2图2AHKC-HBAA 204111.52913252//48×2图2AHKC-HBDA204111.52913252//48×2图2AHKC-EKDA AC 0~(50-500)A 12V/24V 4~20mA φ201级AHKC-EKB 0~(200-1000)A±15V 5V /4V φ401级AHKC-EKBADC 0~(200-1000)A 12V/24V4~20mAφ401级AHKC-EKBDA AC 0~(200~1000)A 12V/24V 4~20mA φ401级AHKC-EKC 0~(500-1500)A±15V 5V /4V φ551级AHKC-EKCADC 0~(500-1500)A 12V/24V4~20mAφ551级AHKC-EKCDA AC 0~(500-1500)A 12V/24V 4~20mA φ551级AHKC-K 0~(400-2000)A±15V 5V /4V 64×161级AHKC-KAA DC 0~(400-2000)A 12V/24V4~20mA64×161级AHKC-KDAAC 0~(400-2000)A12V/24V 4~20mA 64×161级AHKC-H 0~(500-3000)A ±15V 5V /4V 82×321级AHKC-KA 0~(500-5000)A±15V 5V /4V 104×361级AHKC-HB0~(2000-20000)A±15V5V /4V132×521级AHKC-HBAA DC 0~(2000-20000)A12V/24V 4~20mA 132×521级AHKC-HBDA AC 0~(2000-20000)A12V/24V 4~20mA 132×521级注:额定电流未标注表示输入电流交直流均可测量,订货时请注明。

ACS724KMA高隔离高精度霍尔效应电流传感器

ACS724KMA高隔离高精度霍尔效应电流传感器

The A llegro ™ A CS724KMA current sensor IC is an economical and precise solution for A C or DC current sensing in industrial, commercial, and communication systems. The small package is ideal for space-constrained applications while also saving costs due to reduced board area. Typical applications include motor control, load detection and management, switched-mode power supplies, and overcurrent fault protection.The device consists of a precise, low-offset, linear Hall sensor circuit with a copper conduction path located near the surface of the die. Applied current flowing through this copper conduction path generates a magnetic field which is sensed by the integrated Hall IC and converted into a proportional voltage. The current is sensed differentially in order to reject common-mode fields, improving accuracy in magnetically noisy environments. The inherent device accuracy is optimized through the close proximity of the magnetic field to the Hall transducer. A precise, proportional voltage is provided by the low-offset, chopper-stabilized BiCMOS Hall IC, which includes Allegro’s patented digital temperature compensation, resulting in extremely accurate performance over temperature. T he output of the device has a positive slope when an increasing current flows through the primary copper conduction path (from pins 1 through 4, to pins 5 through 8), which is the path used for current sensing. The internal resistance of this conductive path is 0.85 mΩ typical, providing low power loss.The terminals of the conductive path are electrically isolated from the sensor leads (pins 9 through 16). This allows the ACS724KMA current sensor IC to be used in high-side current• Differential Hall sensing rejects common-mode fields • Patented integrated digital temperature compensation circuitry allows for near closed loop accuracy over temperature in an open loop sensor • UL60950-1 (ed. 2) certified□Dielectric Strength V oltage = 4.8 kV RMS□Basic Isolation Working V oltage = 1097 V RMS□Reinforced Isolation Working V oltage = 565 V RMS• Industry-leading noise performance with greatly improved bandwidth through proprietary amplifier and filter design techniques• Filter pin allows user to filter output for improved resolution at lower bandwidth• 0.85 mΩ primary conductor resistance for low power loss and high inrush current withstand capability • Low-profile SOIC16 package suitable for space-constrained applications• 4.5 to 5.5 V single supply operation• Output voltage proportional to AC or DC currentHigh-Accuracy, Hall-Effect-Based Current Sensor IC withCommon-Mode Field Rejection in High-Isolation SOIC16 PackageContinued on the next page…Package: 16-pin SOICW (suffix MA)Typical ApplicationThe ACS724KMA outputs an analog signal, V IOUT , that changes proportionally with the bidirectional AC or DC primary sensed current, I P , within the specified measure-ment range.The FILTER pin can be used to decrease the bandwidth in order to optimize the noise performance.Continued on the next page…FEATURES AND BENEFITSDESCRIPTIONCB Certificate Number:US-22339-A1-ULTÜV AmericaCertificate Number: U8V 14 11 54214 030 CB 14 11 54214 029Not to scaleACS724KMAsense applications without the use of high-side differential amplifiers or other costly isolation techniques.The ACS724KMA is provided in a low-profile surface-mount SOIC16 package. The leadframe is plated with 100% matte tin, which is compatible with standard lead (Pb) free printed circuit board assembly processes. Internally, the device is Pb-free. The device is fully calibrated prior to shipment from the factory.DESCRIPTION (continued)• Factory-trimmed sensitivity and quiescent output voltage for improved accuracy• Chopper stabilization results in extremely stable quiescent output voltage• Nearly zero magnetic hysteresis• Ratiometric output from supply voltageFEATURES AND BENEFITS (continued)SELECTION GUIDEPart Number I PR (A)Sens(Typ) at V CC = 5 V(mV/A)T A (°C)Packing 1ACS724KMATR-20AB-T ±20100–40 to 125Tape and Reel, 3000 pieces per reelACS724KMATR-30AB-T ±3066ACS724KMATR-30AU-T 30132ACS724KMATR-65AB-T±6530.751Contact Allegro for additional packing options.THERMAL CHARACTERISTICSCharacteristicSymbol Test Conditions*Value Units Package Thermal Resistance (Junction to Ambient)R θJAMounted on the Allegro 85-0738 evaluation board with 700 mm 2 of 4 oz. copper on each side, connected to pins 1 and 2, and to pins 3 and 4, with thermal vias connecting the layers. Performance values include the power consumed by the PCB.23ºC/WPackage Thermal Resistance (Junction to Lead)R θJLMounted on the Allegro ASEK724 evaluation board.5ºC/W*Additional thermal information available on the Allegro website.ISOLATION CHARACTERISTICSCharacteristicSymbol NotesRating Unit Dielectric Strength Test VoltageV ISOAgency type-tested for 60 seconds per UL 60950-1(edition 2). Production tested at 3000 V RMS for 1 second, in accordance with UL 60950-1 (edition 2).4800V RMS Working Voltage for Basic IsolationV WVBIMaximum approved working voltage for basic (single) isolation according to UL 60950-1 (edition 2).1550V PK 1097V RMS or VDCWorking Voltage for Reinforced IsolationV WVRIMaximum approved working voltage for reinforced isolation according to UL 60950-1 (edition 2).800V PK 565V RMS or VDCClearance D cl Minimum distance through air from IP leads to signal leads.7.5mm CreepageD crMinimum distance along package body from IP leads to signal leads8.2mmABSOLUTE MAXIMUM RATINGSCharacteristicSymbol NotesRating Units Supply VoltageV CC 6V Reverse Supply Voltage V RCC –0.1V Output VoltageV IOUT V CC + 0.5V Reverse Output Voltage V RIOUT –0.1V Operating Ambient Temperature T A Range K–40 to 125°C Junction Temperature T J (max)165°C Storage TemperatureT stg–65 to 165°CSPECIFICATIONSTerminal List TableNumber Name Description1, 2, 3, 4IP+Terminals for current being sensed; fused internally 5, 6, 7, 8IP-Terminals for current being sensed; fused internally9, 16NC No internal connection; recommended to be left unconnected in order to maintain high creepage 10VCC Device power supply terminal11, 14NC No internal connection; recommened to connect to GND for the best ESD performance 12VIOUT Analog output signal13FILTER Terminal for external capacitor that sets bandwidth 15GNDSignal ground terminalFunctional Block DiagramPinout DiagramIP+IP+IP –IP –IP+IP+IP –IP –1IP+2IP+3IP+4IP+5IP-6IP-7IP-8IP-9NC10VCC 11NC 12VIOUT 13FILTER 14NC 15GND 16NCCharacteristicSymbol Test ConditionsMin.Typ.Max.Units Supply Voltage V CC 4.55 5.5V Supply CurrentI CC V CC within V CC (min) and V CC (max)–1014mA Output Capacitance Load C L VIOUT to GND ––10nF Output Resistive Load R L VIOUT to GND 4.7––kΩPrimary Conductor Resistance R IP T A = 25°C–0.85–mΩInternal Filter Resistance 2R F(INT)– 1.7–kΩPrimary Hall Coupling Factor G1T A = 25°C – 4.5–G/A Secondary Hall Coupling Factor G2T A = 25°C –0.5–G/A Hall Plate Sensitivity Matching Sens MATCHT A = 25°C–±1–%Hysteresis I HYS Difference in offset after a ±40 A pulse –150–mA Rise Time t r I P = I P (max), T A = 25°C, C L = 1 nF –3–μs Propagation Delay t pd I P = I P (max), T A = 25°C, C L = 1 nF –2–μs Response Time t RESPONSEI P = I P (max), T A = 25°C, C L = 1 nF –4–μs Internal Bandwidth BW Small signal –3 dB, C L = 1 nF –120–kHz Noise Density I ND Input-referenced noise density; T A = 25°C, C L = 1 nF–450–µA RMS / √Hz Noise I N Input-referenced noise; C F = 4.7 nF , C L = 1 nF , BW = 18 kHz, T A = 25°C –60–mA RMSNonlinearity E LIN Through full range of I P –±1%Saturation Voltage 3V OH R L = 4.7 kΩ, T A = 25°C V CC – 0.5––V V OL R L = 4.7 kΩ, T A = 25°C––0.5V Power-On Timet PO Output reaches 90% of steady-state level, T A = 25°C, I P = I PR (max) applied –80–μs Shorted Output to Ground Current I SC(GND)T A = 25°C – 3.3–mA Shorted Output to V CC CurrentI SC(VCC)T A = 25°C–45–mA1 Device may be operated at higher primary current levels, IP, ambient temperatures, T A , and internal leadframe temperatures, provided the Maximum Junction Tempera -ture, T J (max), is not exceeded.2 RF(INT) forms an RC circuit via the FILTER pin.3 The sensor IC will continue to respond to current beyond the range of I Puntil the high or low saturation voltage; however, the nonlinearity in this region will be worse thanthrough the rest of the measurement range.COMMON ELECTRICAL CHARACTERISTICS 1: Valid through the full range of T A = –40°C to 125°C and V CC = 5 V, unless otherwise specifiedxKMATR-20AB PERFORMANCE CHARACTERISTICS: T A Range K, valid at T A = – 40°C to 125°C, V CC = 5 V, unless oth-erwise specifiedCharacteristic Symbol Test Conditions Min. Typ.1 Max. Units NOMINAL PERFORMANCECurrent Sensing Range I PR–20–20A Sensitivity Sens I PR(min) < I P < I PR(max)–100–mV/AZero Current Output Voltage V IOUT(Q)Bidirectional; I P = 0 A–V CC ×0.5–VACCURACY PERFORMANCETotal Output Error2E TOT I P = I PR(max), T A = 25°C to 125°C–2.5±1 2.5% I P = I PR(max), T A = –40°C to 25°C–±3–%TOTAL OUTPUT ERROR COMPONENTS 3: E TOT = E SENS + 100 × V OE/(Sens × I P)Sensitivity Error E SENS T A = 25°C to 125°C, measured at I P = I PR(max)–2±12% T A = –40°C to 25°C, measured at I P = I PR(max)–±2.8–%Offset Voltage V OE I P = 0 A, T A = 25°C to 125°C–15±515mV I P = 0 A, T A = –40°C to 25°C–±20–mVLIFETIME DRIFT CHARACTERISTICSSensitivity Error Lifetime Drift E sens_drift–±1–% T otal Output Error Lifetime Drift E tot_drift–±1–%1 Typical values with +/- are 3 sigma values.2 Percentage of I P , with I P = I PR(max).3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.xKMATR-30AB PERFORMANCE CHARACTERISTICS: T A Range K, valid at T A = – 40°C to 125°C, V CC = 5 V, unless oth-erwise specifiedCharacteristic Symbol Test Conditions Min. Typ.1 Max. Units NOMINAL PERFORMANCECurrent Sensing Range I PR–30–30A Sensitivity Sens I PR(min) < I P < I PR(max)–66–mV/AZero Current Output Voltage V IOUT(Q)Bidirectional; I P = 0 A–V CC ×0.5–VACCURACY PERFORMANCETotal Output Error2E TOT I P = I PR(max), T A = 25°C to 125°C–2.5±0.8 2.5% I P = I PR(max), T A = –40°C to 25°C–±2.7–%TOTAL OUTPUT ERROR COMPONENTS 3: E TOT = E SENS + 100 × V OE/(Sens × I P)Sensitivity Error E SENS T A = 25°C to 125°C, measured at I P = I PR(max)–2±0.72% T A = –40°C to 25°C, measured at I P = I PR(max)–±2.6–%Offset Voltage V OE I P = 0 A, T A = 25°C to 125°C–15±715mV I P = 0 A, T A = –40°C to 25°C–±15–mVLIFETIME DRIFT CHARACTERISTICSSensitivity Error Lifetime Drift E sens_drift–±1–% T otal Output Error Lifetime Drift E tot_drift–±1–%1 Typical values with +/- are 3 sigma values.2 Percentage of I P , with I P = I PR(max).3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.xKMATR-30AU PERFORMANCE CHARACTERISTICS: T A Range K, valid at T A = – 40°C to 125°C, V CC = 5 V, unless oth-erwise specifiedCharacteristic Symbol Test Conditions Min. Typ.1 Max. Units NOMINAL PERFORMANCECurrent Sensing Range I PR0–30A Sensitivity Sens I PR(min) < I P < I PR(max)–132–mV/AZero Current Output Voltage V IOUT(Q)Unidirectional; I P = 0 A–V CC ×0.1–VACCURACY PERFORMANCETotal Output Error2E TOT I P = I PR(max), T A = 25°C to 125°C–2.5±0.7 2.5% I P = I PR(max), T A = –40°C to 25°C–±2.5–%TOTAL OUTPUT ERROR COMPONENTS 3: E TOT = E SENS + 100 × V OE/(Sens × I P)Sensitivity Error E SENS T A = 25°C to 125°C, measured at I P = I PR(max)–2±0.72% T A = –40°C to 25°C, measured at I P = I PR(max)–±2.5–%Offset Voltage V OE I P = 0 A, T A = 25°C to 125°C–15±715mV I P = 0 A, T A = –40°C to 25°C–±20–mVLifetime Drift CharacteristicsSensitivity Error Lifetime Drift E sens_drift–±1–% T otal Output Error Lifetime Drift E tot_drift–±1–%1 Typical values with +/- are 3 sigma values.2 Percentage of I P , with I P = I PR(max).3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.xKMATR-65AB PERFORMANCE CHARACTERISTICS: T A Range K, valid at T A = – 40°C to 125°C, V CC = 5 V, unless oth-erwise specifiedCharacteristic Symbol Test Conditions Min. Typ.1 Max. Units NOMINAL PERFORMANCECurrent Sensing Range I PR–65–65A Sensitivity Sens I PR(min) < I P < I PR(max)–30.75–mV/AZero Current Output Voltage V IOUT(Q)Bidirectional; I P = 0 A–V CC ×0.5–VACCURACY PERFORMANCETotal Output Error2E TOT I P = I PR(max), T A = 25°C to 125°C–2.5±1 2.5% I P = I PR(max), T A = –40°C to 25°C–±3–%TOTAL OUTPUT ERROR COMPONENTS 3: E TOT = E SENS + 100 × V OE/(Sens × I P)Sensitivity Error E SENS T A = 25°C to 125°C, measured at I P = I PR(max)–2±12% T A = –40°C to 25°C, measured at I P = I PR(max)–±2.8–%Offset Voltage V OE I P = 0 A, T A = 25°C to 125°C–15±515mV I P = 0 A, T A = –40°C to 25°C–±20–mVLIFETIME DRIFT CHARACTERISTICSSensitivity Error Lifetime Drift E sens_drift–±1–% T otal Output Error Lifetime Drift E tot_drift–±1–%1 Typical values with +/- are 3 sigma values.2 Percentage of I P , with I P = I PR(max).3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.CHARACTERISTIC PERFORMANCExKMATR-20ABAverage +3 Sigma -3 SigmaCHARACTERISTIC PERFORMANCExKMATR-30ABCHARACTERISTIC PERFORMANCExKMATR-30AUSensitivity (Sens)The change in sensor IC output in response to a 1 A change through the primary conductor. The sensitivity is the product of the magnetic coupling factor (G/A) (1 G = 0.1 mT) and the linear IC amplifier gain (mV/G). The linear IC amplifier gain is programmed at the factory to optimize the sensitivity (mV/A) for the full-scale current of the device.Nonlinearity (E LIN )The nonlinearity is a measure of how linear the output of the sen-sor IC is over the full current measurement range. The nonlinear-ity is calculated as:1– [{[{V IOUT (I PR (max)) – V IOUT(Q)× 100 (%)E LIN =2 × V IOUT (I PR (max)/2) –V IOUT(Q)where V IOUT (I PR(max)) is the output of the sensor IC with the maximum measurement current flowing through it andV IOUT (I PR(max)/2) is the output of the sensor IC with half of the maximum measurement current flowing through it.Zero Current Output Voltage (V IOUT(Q))The output of the sensor when the primary current is zero. For a unipolar supply voltage, it nominally remains at 0.5 × V CC for a bidirectional device and 0.1 × V CC for a unidirectional device. For example, in the case of a bidirectional output device, V CC = 5.0 V translates into V IOUT(Q) = 2.50 V . Variation in V IOUT(Q) can be attributed to the resolution of the Allegro linear IC quiescent voltage trim and thermal drift.Offset Voltage (V OE )The deviation of the device output from its ideal quiescent value of 0.5 × V CC (bidirectional) or 0.1 × V CC (unidirectional) due to nonmagnetic causes. To convert this voltage to amperes, divide by the device sensitivity, Sens.Total Output Error (E TOT )The difference between the current measurement from the sensor IC and the actual current (I P ), relative to the actual current. This is equivalent to the difference between the ideal output voltage and the actual output voltage, divided by the ideal sensitivity, relative to the current flowing through the primary conduction path:E TOT (I P )V IOUT_ideal (I P ) – V IOUT (I P )Sens ideal (I P ) × I P× 100 (%)=The Total Output Error incorporates all sources of error and is afunction of I P . At relatively high currents, E TOT will be mostly due toDEFINITIONS OF ACCURACY CHARACTERISTICSFigure 1: Output Voltage versus Sensed CurrentFigure 2: Total Output Error versus Sensed Currentsensitivity error, and at relatively low currents, E TOT will be mostly due to Offset V oltage (V OE ). In fact, at I P = 0, E TOT approaches infinity due to the offset. This is illustrated in Figure 1 and Figure 2. Figure 1 shows a distribution of output voltages versus I P at 25°C and across temperature. Figure 2 shows the corresponding E TOT versus I P .APPLICATION INFORMATION Estimating Total Error versus Sensed CurrentThe Performance Characteristics tables give distribution(±3 sigma) values for Total Error at I PR(max); however, one oftenwants to know what error to expect at a particular current. Thiscan be estimated by using the distribution data for the compo-nents of Total Error, Sensitivity Error, and Offset V oltage. The±3 sigma value for Total Error (E TOT) as a function of the sensedcurrent (I P) is estimated as:E(I) = TOT P100 × VOESens × IPE+SENS2()2Here, E SENS and V OE are the ±3 sigma values for those errorterms. If there is an average sensitivity error or average offsetvoltage, then the average Total Error is estimated as:Sens × IPE(I) = E+TOT P SENSAVG AVG100 × VOE AVGThe resulting total error will be a sum of E TOT and E TOT_A VG.Using these equations and the 3 sigma distributions for Sensitiv-ity Error and Offset V oltage, the Total Error versus sensed current(I P) is shown here for the ACS724KMATR-20AB. As expected,as one goes towards zero current, the error in percent goestowards infinity due to division by zero (refer to Figure 3).Figure 3: Predicted Total Error as a Function of SensedCurrent for the ACS724KMATR-20ABDEFINITIONS OF DYNAMIC RESPONSE CHARACTERISTICSPower-On Time (t PO)When the supply is ramped to its operating voltage, the device requires a finite time to power its internal components before responding to an input magnetic field.Power-On Time (t PO) is defined as the time it takes for the output voltage to settle within ±10% of its steady-state value under an applied magnetic field, after the power supply has reached its minimum specified operating voltage (V CC(min)) as shown in the chart at right (refer to Figure 4).Rise Time (t r)The time interval between: a) when the sensor IC reaches 10% of its full-scale value; and b) when it reaches 90% of its full-scale value (refer to Figure 5). The rise time to a step response is used to derive the bandwidth of the current sensor IC, in which ƒ(–3 dB) = 0.35 / t r . Both t r and t RESPONSE are detrimentally affected by eddy current losses observed in the conductive IC ground plane.Propagation Delay (t pd )The propagation delay is measured as the time interval between: a) when the primary current signal reaches 20% of its final value, and b) when the device reaches 20% of its output corresponding to the applied current (refer to Figure 5).Response Time (t RESPONSE)The time interval between: a) when the primary current signal reaches 90% of its final value, and b) when the device reaches 90% of its output corresponding to the applied current (refer to Figure 6).V CC90% VV CCFigure 4: Power-On TimeFigure 5: Rise Time and Propagation Delay Figure 6: Response TimeNOT TO SCALEAll dimensions in millimeters.Figure 7: High-Isolation PCB LayoutFigure 8: Package MA, 16-Pin SOICWPACKAGE OUTLINE DRAWINGFor Reference Only –Not for Tooling Use(Reference MS-013AA)NOT TO SCALE Dimensions in millimetersDimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shownA BCBranding scale and appearance at supplier discretion= Supplier emblem= Last two digits of year of manufacture = Week of manufacture = Lot numberN Y W L Terminal #1 mark areaCPCB Layout Reference ViewReference land pattern layout (reference IPC7351 SOIC127P600X175-8M);all pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerancesFor the latest version of this document, visit our website:NumberDateDescription–December 11, 2015Initial release1January 8, 2016Added ACS724KMATR-65AB-T variant2March 18, 2016Added ACS724KMATR-30AB-T variant, UL/TUV certification; removed solder balls reference in DescriptionRevision HistoryCopyright ©2016, Allegro MicroSystems, LLCAllegro MicroSystems, LLC reserves the right to make, from time to time, such departures from the detail specifications as may be required topermit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro’s product can reasonably be expected to cause bodily harm.The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, LLC assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.。

闭环霍尔电流传感器的设计与测试

闭环霍尔电流传感器的设计与测试

独创性声明
本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作 及取得的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不 包含任何其他个人或集体已经发表或撰写过的研究成果。 对本文的研究做 出贡献的个人和集体, 均已在文中以明确方式标明。 本人完全意识到本声 明的法律结果由本人承担。 学位论文作者签名:
本论文属于
不保密□。
(请在以上方框内打“√” )
学位论文作者签名:
指导教师签名:
日期: 年 月

日期: 年 月
华 中 科 技 大 学 硕 士 学 位 论 文
摘 要
闭环霍尔电流传感器的发展在近十几年非常迅猛,广泛应用于汽车电子、工业控 制、伺服电机、UPS 电源、军事等领域。传统的分流器、互感器由于测量的精度低、 可靠性差,所以设计与研究性能更好、可靠性更高、价格更低的闭环霍尔电流传感器 是研究的热点。 目前闭环霍尔电流传感器可靠性低、 加工要求高、 小规模生产成本高, 因此,本文通过对霍尔电流传感器材料、器件的选择和加工工艺的改进,使闭环霍尔 电流传感器在精度和可靠性方面具有显著的优势。 采用数值模拟和实验相结合的方法对闭环霍尔电流传感器进行了优化,研究了铁 芯气隙的宽度、霍尔元件的大小、次级线圈的规格和 PCB 板焊接所出现的缺陷对闭 环霍尔电流传感器灵敏度、线性度和精度的影响。气隙的宽度对电流传感器的灵敏度 和精度影响较大,气隙的宽度为 1.1mm 时,铁芯所聚集的磁感应强度是最大的,漏磁 是最小的, 此时产品的灵敏度是最好的; 霍尔元件的选择对灵敏度和线性度影响很大, 选择 HW302B 时,由于其具有超高灵敏度、空间分辨率高,对提高整个产品的灵敏度 和线性度是非常有利的;次级线圈选用 0.8× 1.5mm 的扁平型漆包线,能提高绕制工艺 的进度和产品的精度。在上述研究的基础上,对闭环电流传感器进行了优化和改进, 对改进以后的产品的实验测试表明结果与理论研究是一致的。 数值模拟研究了磁感应强度随着气隙的宽度的变化情况,表明随着气隙宽度的增 大,磁感应强度在减小,霍尔元件感应的信号会减弱,所发出的信号偏小会导致补偿 电流减小,从而会导致闭环霍尔电流传感器精度变差。对次级线圈缠绕面积对磁感应 强度的影响采用麦克斯韦方程进行模拟,随着次级线圈缠绕面积的增大,所产生的磁 感应强度减小,导致铁芯中的剩磁增加。 研究了放大电路、反馈电路和温度补偿电路,重点分析了在工程应用中印刷电路 板焊接时的主要缺陷,提出了检查缺陷的方法。

霍尔式转速传感器-全球百科

霍尔式转速传感器-全球百科

霍尔式转速传感器-全球百科
霍尔式转速传感器是基于“霍尔效应”的磁感应接近开关式传感器。

这类半导体器件早已采用集成电路工艺制作成体积很小的器件,上有多种规格的产品可供选用,包括PNP和NPN输出由路和常升式、常闭式、锁定式,输出端可以连接继电联负载,最简便的连接一个1kΏ左右的电阻。

电源电压有DC5±0.5V和5~16V、8~16V、4.5~24V等多种规格。

开关导通的对应永久磁体的S极和N极两种,还有一类为自锁型,即S极导通,N极关断。

在1个Φ20~50的铝或铜合金加工的测速轮盘上嵌装入2个Φ4~6mm、厚3mm的N与S极分别向外的磁钢,即可适用于各类霍尔开关测速传感器。

这种传感器输出略低于供电电压的矩形波电脉冲,频率范围0~100kHz,频响10-12~10-4s,可用于测量0.01r/min超低转速至几十万转/min 的超高转速。

除振动以外的干扰因素少,测速精度高,缺点是嵌装磁钢受到测速盘结构及拖动负载能力的限制。

霍尔检测器的原理及应用

霍尔检测器的原理及应用

霍尔检测器的原理及应用1. 霍尔检测器简介霍尔检测器是一种检测磁场的传感器,利用霍尔效应来测量磁场的强度和方向。

它由霍尔元件、信号处理电路和输出接口组成。

霍尔元件通常是由半导体材料制成的,可以通过电流和磁场的交互作用产生电势差。

霍尔检测器广泛应用于各种领域,包括电子设备、汽车工业、航空航天等。

2. 霍尔效应霍尔检测器利用霍尔效应来检测磁场。

霍尔效应是指当电导体中有磁场作用时,沿垂直于电流方向的方向上会产生一定方向的电势差。

这种效应是由荷尔德·约翰·霍尔在19世纪发现的。

3. 霍尔检测器的原理霍尔检测器的原理基于霍尔效应。

当霍尔元件通电时,电流在元件内部流动。

当磁场作用于霍尔元件时,由于电流与磁场交互作用,会在元件两侧产生电势差。

这个电势差被称为霍尔电压,它与磁场的强度和方向有关。

4. 霍尔检测器的应用霍尔检测器广泛应用于各种领域,以下列举其中几个应用场景:•磁传感器:霍尔检测器能够测量磁场的强度和方向,因此在磁传感器中得到了广泛应用。

它可以用于测量磁场的漏磁、磁场的方向等。

•车速传感器:车速传感器是利用霍尔检测器来检测车辆的速度。

霍尔检测器被安装在车辆的传动轴上,并与车辆的计算机系统相连,能够准确测量车辆的速度。

•电流传感器:霍尔检测器可以通过测量磁场的变化来检测电流的大小。

它被广泛应用于电力系统中,能够实时监测电流的变化,并保证系统的安全运行。

•地磁传感器:霍尔检测器可以用于地磁传感器,通过测量地球磁场的变化来判断地磁变化的情况。

它被用于导航系统、地震监测等领域。

•安全系统:霍尔检测器可以用于安全系统中,如安全门、防盗系统等。

通过检测磁场的变化,可以及时报警,保护人员和财产的安全。

5. 霍尔检测器的优缺点霍尔检测器具有以下优点: - 灵敏度高:霍尔检测器对磁场变化非常敏感,可以检测到微弱的磁场变化。

- 响应速度快:霍尔检测器的响应速度非常快,可以实时监测磁场的变化。

- 可靠性高:霍尔检测器由于采用半导体材料制成,具有稳定的性能和长寿命。

霍尔式传感器课件PPT

霍尔式传感器课件PPT

光驱用的无刷电动机内部结构
将被测电流导线逐根夹到钳形表的环形铁心中 当外加磁场强度低于释放点时,OC门重新变为高阻态,输出高电平。 金属的自由电子密度太大,因而霍尔常数小,霍尔电势也小,故金属材料不宜制作霍尔元件 若磁感应强度B不垂直于霍尔元件,而是与其法线成某一角度 时,实际上作用于霍尔元件上的有效磁感应强度是其法线方向(与薄 片垂直的方向)的分量,即Bcos ,这时的霍尔电势为 霍尔式接近开关用于转速测量演示 齿盘的转动使磁路的磁阻随气隙的改变而周期性地变化,霍尔器件输出的微小脉冲信号经隔直、放大、整形后可以确定被测物的转速。 将被测电流的导线穿过霍尔电流传感器的检测孔。 霍尔元件的输出电压一般较小,需要用放大电路放大其输出电压。 霍尔电势与导体厚度d成反比: 在基片外面用金属或陶瓷、环氧树脂等封装作为外壳。 以下哪一个激励电流的数值较为妥当? 为了获得较好的放大效果,需采用差分放大电路。 当放大后的电压UO大于施密特触发器“开启”阈值电压时,施密特整形电路翻转,输出高电平,使V导通,这种状态我们称之为开状 态。 半导体中电子迁移率(电子定向运动平均速度)比空穴迁移率高,因此N型半导体较适合于制造灵敏度高的霍尔元件。
霍尔电势与导体厚度d成反比: 为了提高霍尔电势值, 霍尔元件制成薄片形状。
磁场不垂直于霍尔元件时的霍尔电动势
若磁感应强度B不垂直于霍尔元件,而是 与其法线成某一角度 时,实际上作用于霍尔
元件上的有效磁感应强度是其法线方向(与薄
片垂直的方向)的分量,即Bcos,这时的霍尔
电势为
EH=KHIBcos
结论:
1mA 2mA 80mA 五、霍尔传感器的应用 五、霍尔传感器的应用 半导体中电子迁移率(电子定向运动平均速度)比空穴迁移率高,因此N型半导体较适合于制造灵敏度高的霍尔元件。 半导体薄片置于磁感应强度为B 的磁场中,磁场方向垂直于薄片,当有电流I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH,这种现象称为霍尔效应。 回差越大,抗振动干扰能力就越强。 二、霍尔元件的结构和基本电路 高斯计:接受所测物体的电磁波频率,然后转换成参数量显示出来。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

霍尔开关传感器 HA-0724PA-B
霍尔开关电路由反向电压保护器、精密电压调节器、霍尔电压发生器、差分放大器、施密特触发器、温度补偿器和互补型集电极开路输出器等七部分组成,它具有工作电压范围宽、磁灵敏度高、负载和反向保护能力强等特点。

该电路由于具有高达400 mA的负载能力,并且是互补型输出,因此,它是无刷风扇最理想的器件。

电压调节器:当电源电压从3.5V~20V变化时,保证该电路正常工作。

反向保护器:当应用电源反接或在使用过程中受到反向脉冲电压的干扰时,对电路起保护作用,保护电压可达30V;
霍尔电压发生器:将变化的磁信号转换成相应的电信号。

差分放大器:将霍尔电压发生器输出的微弱电压信号放大。

施密特触发器:将差分放大器输出的模拟信号转换成数字信号。

温度补偿器:确保集成电路在-20℃~+85℃之间可靠地工作。

互补输出器:输出电流可直接驱动无刷风机的两组绕组。

当无刷风机接通电源时,若霍尔电压发生器受到交变磁场的作用,输出端(2)和(3)的电位状态也随着发生变化,从而改变负载(风机绕组)电流的方向,使风机正常运转。

产品型号大全:
分类静电电容式接近开关
可逆计数器
专用
特点采用专用IC定位精度高、防水、耐震、反应速度

外形编

HA HB HC HD HL
外观尺

ф6.5 M8 X 1 M12 X 1 M18 X 1 M18 X 1
检测距

7mm 8mm 10mm 15mm 10mm
额定工作电
压10-30V DC
0-
250V AC
10-30V DC
0-
250V AC
10-30V DC
0-
250V AC
10-30V DC
0-
250V AC
4-30V DC
0-
250V AC
可检物

永磁体永磁体永磁体永磁体永磁体
响应频

≥20KHZ ≥20KHZ ≥20KHZ ≥20KHZ ≥20KHZ
外壳材

金属镀铬金属镀铬金属、塑料金属、塑料金属、塑料
工作环境温
度-25℃~
85℃
-25℃~
85℃
-25℃~
85℃
-25℃~
85℃
-25℃~
85℃
防护等级IEIP67 IP67 IP67 IP67 IP67

绝缘电

50MΩ以上50MΩ以上50MΩ以上50MΩ以上50MΩ以上具
备型号DC型NP



HA-0724NA HB-0824NA HC-1024NA HD-1524NA HL-1024NA


HA-0724NB HB-0824NB HC-1024NB HD-1524NB HL-1024NB




HC-1024NC HD-1524NC
PN



HA-0724PA HB-0824PA HC-1024PA HD-1524PA HL-1024PA


HA-0724PB HB-0824PB HC-1024PB HD-1524PB HL-1024PB




HC-1024PC HD-1524PC

线


HA-0724LA HB-0824LA HC-1024LA HD-1524LA HL-1024LA


HA-0724LB HB-0824LB HC-1024LB HD-1524LB HL-1024LB

AC型二线
制常

HA-0722LA HB-0822LA HC-1022LA HD-1522LA HL-1022LA
二线
制常

HA-0722LB HB-0822LB HC-1022LB HD-1522LB HL-1022LB。

相关文档
最新文档