概率论第三章答案
概率论答案 - 李贤平版 - 第三章
第三章 随机变量与分布函数1、直线上有一质点,每经一个单位时间,它分别以概率p 或p -1向右或向左移动一格,若该质点在时刻0从原点出发,而且每次移动是相互独立的,试用随机变量来描述这质点的运动(以n S 表示时间n 时质点的位置)。
2、设ξ为贝努里试验中第一个游程(连续的成功或失败)的长,试求ξ的概率分布。
3、c 应取何值才能使下列函数成为概率分布:(1);,,2,1,)(N k Nck f Λ==(2),,2,1,!)(Λ==k k c k f k λ 0>λ。
4、证明函数)(21)(||∞<<-∞=-x e x f x 是一个密度函数。
5、若ξ的分布函数为N (10,4),求ξ落在下列范围的概率:(1)(6,9);(2)(7,12);(3)(13,15)。
6、若ξ的分布函数为N (5,4),求a 使:(1)90.0}{=<a P ξ;(2)01.0}|5{|=>-a P ξ。
7、设}{)(x P x F ≤=ξ,试证)(x F 具有下列性质:(1)非降;(2)右连续;(3),0)(=-∞F 1)(=+∞F 。
8、试证:若αξβξ-≥≥-≥≤1}{,1}{12x P x P ,则)(1}{21βαξ+-≥≤≤x x P 。
9、设随机变量ξ取值于[0,1],若}{y x P <≤ξ只与长度x y -有关(对一切10≤≤≤y x ),试证ξ服从[0,1]均匀分布。
10、若存在Θ上的实值函数)(θQ 及)(θD 以及)(x T 及)(x S ,使)}()()()(ex p{)(x S D x T Q x f ++=θθθ,则称},{Θ∈θθf 是一个单参数的指数族。
证明(1)正态分布),(20σm N ,已知0m ,关于参数σ;(2)正态分布),(200σm N ,已知0σ,关于参数m ;(3)普阿松分布),(λk p 关于λ都是一个单参数的指数族。
但],0[θ上的均匀分布,关于θ不是一个单参数的指数族。
概率论~第三章习题参考答案与提示
第三章 习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
22.已知 X 、 Y 分别服从正态分布 N (0,32 ) 和 N (1,42 ) ,且 X 与Y 的相关系数 ρ XY = −1/ 2 ,设 Z = X / 3 + Y / 2 ,求:
(1)求数学期望 EZ ,方差 DZ ; (2)Y 与 Z 的相关系数 ρYZ ; 答案与提示:本题要求熟悉数学期望、方差、协方差的性质、计算及有关正态 分布的性质。
X
Y
0
1
0
0.1
0.2
1
0.3
0.4
求:(1) EX , EY , DX , DY ;
(2)( X , Y )的协方差,相关系数,协方差阵,相关阵。
答案与提示: (1) EX = 0.7 , DX = 0.21, EY = 0.6 , DY = 0.24 。
(2) EXY = 0.4 ; Cov ( X ,Y ) = −0.02 , ρXY = 0.089 ;
(1) X 的概率密度;
(2)Y = 1 − 2 X 的概率密度。
答案与提示:考查服从正态分布随机变量的概率密度的一般表达形式、参数的
几何意义及正态分布随机变量的性质。
(1) f (x) = 1 e−(x−1.7)2 /6 (−∞ < x < +∞) 6π
(2) f ( y) = 1 e−( y+2.4)2 / 24 2 6π
概率论与数理统计第三章课后习题答案
概率论与数理统计第三章课后习题答案概率论与数理统计第三章课后习题答案习题三1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律.【解】X和Y的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和Y的联合分布律如表:(2)随机变量(X ,Y )的分布函数;(3)P {0≤X <1,0≤Y <2}.【解】(1)由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===??得 A =12(2)由定义,有(,)(,)d d yx F x y f u v u v -∞-∞=??(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--??-->>?==?? 其他(3){01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e)0.9499.x y P X Y x y -+--=<≤<≤==--≈?5.设随机变量(X ,Y )的概率密度为f (x ,y )=<<<<--.,0,42,20),6(其他y x y x k(1)确定常数k ;(2)求P {X <1,Y <3};(3)求P {X <1.5};(4)求P {X +Y ≤4}. 【解】(1)由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==??故18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=??130213(6)d d 88k x y y x =--=?? (3)11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y<<=如图 1.542127d (6)d .832x x y y =--=?(4)24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y+≤+≤=如图b 240212d (6)d .83xx x y y -=--=??题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2)P {Y ≤X }.题6图【解】(1)因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ?<而55e ,0,()0,.y Y y f y -?>=?其他所以(,),()()XY f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --<<>?==??且其他.5()(,)d d 25e d d y y xDP Y X f x y x y x y-≤≤=如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xy x x y x-==-+≈7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度. 【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+?>>?==?其他.8.设二维随机变量(X ,Y )的概率密度为f (x ,y )=4.8(2),01,0,0,.y x x y x -≤≤≤≤??求边缘概率密度.【解】()(,)d X fx f x y y+∞-∞=?x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ??--≤≤?=??其他()(,)d Y f y f x y x+∞-∞=?12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ?-?-+≤≤?=??其他题8图题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=<<-.,0,0,其他e y x y求边缘概率密度.【解】()(,)d Xf x f x y y +∞-∞=?e d e ,0,=0,.0,y x x y x +∞--??>?=??其他()(,)d Y f y f x y x+∞-∞=?0e d e ,0,=0,.0,yy x x y y --??>?=??其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=≤≤.,0,1,22其他y x y cx(1)试确定常数c ;(2)求边缘概率密度. 【解】(1) (,)d d (,)d d Df x y x y f x y xy+∞+∞-∞-∞如图2112-14=d d 1.21xx cx y y c ==??得214c =.(2)()(,)d X f x f x y y+∞-∞=?212422121(1),11,d 840,0,.x x x x x y y ??--≤≤??==其他()(,)d Y f y f x y x+∞-∞=?522217d ,01,420,0,.y y x y x y y -??≤≤??==其他11.设随机变量(X ,Y )的概率密度为f (x ,y )=?<<<.,0,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d Xf x f x y y +∞-∞=?1d 2,01,0,.x x y x x -?=<111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞=+-<<??其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ?<其他, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y<<?-?==-<<?+其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1)求X 与Y 的联合概率分布;(2) X 与Y 是否相互独立?【解】(1) X 与Y 的联合分布律如下表1 3511C 10=3522C 10= 3533C 10= 610 2 0 3511C 10=3522C 10= 310 30 02511C 10=110{}i P Y y =110310(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===?=≠===g 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03 (1)求关于X 和关于Y 的边缘分布;(2) X 与Y 是否相互独立?【解】(1)X 和Y 的边缘分布如下表2 5 8 P {Y=y i } 0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38(2) 因{2}{0.4}0.20.8P X P Y ===?g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.XYX Y14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率. 【解】(1)因1,01,()0,Xx fx <21e ,1,()20,yY y f y -?>?==其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -?<<>?=g 独立其他题14图(2) 方程220aXa Y ++=有实根的条件是 2(2)40X Y ?=-≥故X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=??21/2001d e d 212[(1)(0)]0.1445.x yx yπ-==-Φ-Φ=??15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}ZXF z P Z z P z Y =≤=≤(1) 当z ≤0时,()0ZF z =(2)当0<="" p="">)(如图a) 3366102222101010()d d d d yz Z zxy zF z x y y x x y x y +∞≥==??33610231010=d 2z zy yzy +∞-=题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y xx y x y +∞≥==??336231010101=d 12y yzy z +∞-=-即11,1,2(),01,20,.Z z z zf z z ?-≥=<<??其他故21,1,21(),01,20,.Z z z f z z ?≥=<<??其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率. 【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<="" p="">44144180160[1{180}]120[1(1)](0.158)0.00063.P X ?-=-<=-Φ=-Φ==17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,…. 证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以{}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U于是{}{,},ik P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .0{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki k i n i k i n k ii kk n ki k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-= ? ?-= ???-??= ???∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn,Y =μ1′+μ2′+…+μn ′,X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.19.设随机变量(X ,Y )的分布律为(1) 求P {X =2|Y =2},P {Y =3|X =0};(2)求V =max (X ,Y )的分布律;(3)求U =min (X ,Y )的分布律;(4)求W =X +Y 的分布律.【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑{3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑(2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤= 10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑0,1,2,3,4,5i =所以V 的分布律为(3){}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k i k i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3,i =于是 (4)类似上述过程,有26 3 9 4 9 2 520.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1)求P {Y >0|Y >X };(2)设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R+≤?=其他(1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=> 0(,)d (,)d y y xy xf x y f x y σσ>>>=π2π/405π42π/401d d π1d d πRR r r R r r R θθ=??3/83;1/24==(2){0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=??21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===?(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x≤≤<≤?=其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x=≤≤?=其他所以1(2).4Xf=22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和Y 的边缘分布律中的部分数值.试将其余。
概率论第三章习题及答案
02
题目8
一个盒子里有100个球,其中红球有30个,蓝球有40个,黄球有20个,
绿球有10个。随机抽取一个球并记录其颜色,然后放回盒子中。连续抽
取三次,求三次抽取中抽到红球的次数的期望值。
03
题目9
一个袋子中有5个红球和5个蓝球,从中随机抽取3个球,求抽取到红球
的个数X的分布律。
02 答案部分
基础题目答案
在处理复杂事件时,应先分解 为简单事件,再根据概率的加
法原则进行计算。
注意区分必然事件和不可能事 件,它们在概率论中具有特殊
地位。
知识点回顾与巩固
知识点回顾 概率的基本性质:概率具有非负性、规范性、有限可加性。
事件的独立性及其性质。
知识点回顾与巩固
条件概率的定义及其性质。 贝叶斯公式的应用场景和推导方法。
挑战题目解题思路与技巧
总结词
综合运用知识
详细描述
对于挑战题目,需要综合运用概率论中的知识,如随机变量的分布、随机过程的性质等。 要能够准确理解题目的背景和要求,构建合适的概率模型,并运用适当的数学方法进行求 解。
示例
题目问的是“一个袋子中有3个红球和2个白球,每次从中随机取出1个球并放回,连续取 5次。求取出的5个球中至少有3个红球的概率。”解题时,应先计算取出的5个球中都是 白球的概率,再用1减去这个概率,得出至少有3个红球的概率。
未来学习计划与展望
• 学习随机过程的基本概念和性质,了解常见的随 机过程如泊松过程、马尔可夫链等。
未来学习计划与展望
展望
学习概率论与其他数学分支的交叉知识,如统计学、线 性代数等。
将概率论的知识应用于实际问题和科学研究,加深对理 论知识的理解和掌握。
概率论第三章习题解答
第三章习题解1 在一箱子中装有12只开关,其中2 只是次品,在其中任取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样。
定义随机变量X ,Y 如下:0,1X ⎧=⎨⎩若第一次取出的是正品,,若第一次取出的是次品。
0,Y 1⎧=⎨⎩若第二次取出的是正品,,若第二次取出的是次品。
试分别就(1),(2)两种情况写出X ,Y 的联合分布律。
解 (1)放回抽样由于每次抽取时都是12只开关,第一次取到正品有10种可能,即第一次取到正品的概率为 105{0}126P X ===, 第一次取出的是次品的概率为 21{1}126P X === 同理,第二次取到正品的概率105{0}126P Y ===第二次取到次品的概率为21{1}126P Y ===由乘法公式得X ,Y 的联合分布率为{,}{|}{}{}{}P X i Y j P Y j X i P X i P X i P Y j =========,0,1i =,0,1j =。
具体地有5525{0,0}6636P X Y ===⨯=,515{0,1}6636P X Y ===⨯=, 155{1,0}6636P X Y ===⨯=,111{1,1}6636P X Y ===⨯=用表格的形式表示为(2 5{0}6P X ==,1{1}6P X == 因为第二次抽取时,箱子里只有11只开关,当第一次抽取的是正品,则箱子中有9只正品)。
所以9{0|0}11P Y X ===, 2{1|0}11P Y X === 10{0|1}11P Y X ===, 1{1|1}11P Y X ===则5945{0,0}61166P X Y ===⨯= 5210{0,1}61166P X Y ===⨯=,11010{1,0}61166P X Y ===⨯=,111{1,1}61166P X Y ===⨯= 用表格表示为2 (14只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律。
概率论答案-李贤平版-第三章
第三章 随机变量与分布函数1、直线上有一质点,每经一个单位时间,它分别以概率p 或p -1向右或向左移动一格,若该质点在时刻0从原点出发,而且每次移动是相互独立的,试用随机变量来描述这质点的运动(以n S 表示时间n 时质点的位置)。
2、设ξ为贝努里试验中第一个游程(连续的成功或失败)的长,试求ξ的概率分布。
3、c 应取何值才能使下列函数成为概率分布:(1);,,2,1,)(N k Nck f ==(2),,2,1,!)( ==k k ck f kλ 0>λ。
4、证明函数)(21)(||∞<<-∞=-x e x f x 是一个密度函数。
5、若ξ的分布函数为N (10,4),求ξ落在下列范围的概率:(1)(6,9);(2)(7,12);(3)(13,15)。
6、若ξ的分布函数为N (5,4),求a 使:(1)90.0}{=<a P ξ;(2)01.0}|5{|=>-a P ξ。
7、设}{)(x P x F ≤=ξ,试证)(x F 具有下列性质:(1)非降;(2)右连续;(3),0)(=-∞F1)(=+∞F 。
8、试证:若αξβξ-≥≥-≥≤1}{,1}{12x P x P ,则)(1}{21βαξ+-≥≤≤x x P 。
9、设随机变量ξ取值于[0,1],若}{y x P <≤ξ只与长度x y -有关(对一切10≤≤≤y x ),试证ξ服从[0,1]均匀分布。
10、若存在Θ上的实值函数)(θQ 及)(θD 以及)(x T 及)(x S ,使)}()()()(ex p{)(x S D x T Q x f ++=θθθ,则称},{Θ∈θθf 是一个单参数的指数族。
证明(1)正态分布),(20σm N ,已知0m ,关于参数σ;(2)正态分布),(200σm N ,已知0σ,关于参数m ;(3)普阿松分布),(λk p 关于λ都是一个单参数的指数族。
但],0[θ上的均匀分布,关于θ不是一个单参数的指数族。
概率论习题第三章答案
第三章连续型随机变量3.1设随机变量 ξ 的分布函数为F (x ),试以F (x )表示下列概率: 。
)()4();()3();()2();()1(a P a P a P a P >≥≤=ξξξξ 。
)(解:)0(1)()4();(1)()3();0()(P 2);()0()()1(+-=>-=≥+=≤-+==a F a P a F a P a F a a F a F a P ξξξξ3.2函数x211F(x)+=是否可以作为某一随机变量的分布函数,如果在其它场合恰当定义。
在其它场合恰当定义;)(,0)3(,0)2(1<<∞-∞<<∞<<∞-x x x 解:(1)F(x)在),(∞-∞内不单调,因而不可能是随机变量的分布函数; (2)F(x)在)0∞,(内单调下降,因而也不可能是随机变量的分布函数; (3)F(x)在),(-0∞内单调上升、连续且,若定义 ⎩⎨⎧≥<<∞=01)()(~x x X F x F -则)(~x F 可以是某一随机变量的分布函数。
3.3函数 sinx 是不是某个随机变量ξ的分布函数?如果ξ的取值范围为[]。
,);(,);(,)(⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ230302201 解:(1)当⎥⎦⎤⎢⎣⎡∈2,0πx 时,sinx 0≥且1sin 20=⎰πxdx ,所以 sinx 可以是某个随机变量的分布密度; (2) 因为12sin 0≠=⎰πxdx ,所以sinx 不是随机变量的分布密度; (3) 当 ⎥⎦⎤⎢⎣⎡∈23,ππx 时,sinx<=0所以sinx 不是随机变量的分布密度。
3.4设随机变量ξ具有对称的分布函数p(x),即p(x)=p(-x) 证明:对任意的a>0,有[][]。
--故上式右端=知由证:)1)(21a)P(1a)(3)P(1;-2F(a))(21)(1)1(,)(2)()()2(;)(21)()(1)(1)(1)(1)(1)()()1(.)(F 12)()3(;1)(2)()2(;(p 21)(1)()1(00000-=<=>-=-==<-=--=-=-=+=-==--=>-=<-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-∞-∞-∞-∞--∞-a F dxx p a F dx x p dx x p a P dx x p dx x p dx x p a F dx x p dxx p dx x p dx x p a F a a P a F a P dx x a F a F a a a a a aaaaaa ξξξξξ3.5设)(1x F 与)(2x F都是分布函数,证明F(x)=aF(x)+bF(x)也是一个分布函数,并由此讨论,分布函数是否只有离散型和连续型这两种类型? 证:因为)(1x F与 )(2x F 都是分布函数,于是F(x1)=aF1(x1)+bF2(x2)<= aF1(x1)+bF2(x2)= F(x2) 又F(x-0)= aF1(x1-0)+bF2(x2-0) = aF1(x)+bF2(x)= F(x) 所以,F(x)也是分布函数。
概率论第三章课后习题答案_课后习题答案
第三章 离散型随机变量率分布。
,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1.343.0441.0189.0027.03210027.0)7.01()()0()0(189.0)7.01()7.01(7.03)(3)1()1()1()1(441.0)7.01(7.07.03)(3)2()2()2()2(343.0)7.0()()3()3()(0)(1)()()(2)()()(3)(},,,{)},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(3,2,1332183217653214323321187654321821321321321321321321321321⎪⎪⎭⎫ ⎝⎛=-======-⨯-⨯⨯===+=+====-⨯⨯⨯===+=+===================Ω==的分布列为所以,,则简记为将,,则代表击中目标的次数,令则次射中”,“第解:设ξξξξξξξξξξξξξξωξωξωξωξωξωξωξωξωξξωωωA A A P P P A A A P P P P P A A A P P P P P A A A P P P A A A A A A A A A A A A A A A A A A A A A A A A i i A i i i。
出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2118805499101112123)3(132054109112123)2(13227119123)1(129)0(32101919110111111211213110191111211213111191121311219=⨯⨯⨯=⋅⋅⋅===⨯⨯=⋅⋅===⨯=⋅=====C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令.1188054132054132271293210⎪⎪⎭⎫ ⎝⎛的分布列为所以,ξ废品数的概率分布。
概率论第三章习题及答案
PX x , Y y
j i
j 1, 2,
返回主目录
第三章 习题课
已知联合分布律求边缘分布律
X 以及Y 的边缘分布律也可以由 下表表示
Y X
y1 p11
p21
y2 p12
p22
… … … … …
yj
p1 j
… … …
pi
p1
p2
x1
x2
p2 j
对于任意固定的 Y, 对于任意固定的 X,
F ( , y ) 0;
F ( x,) 0;
F (,) 0;
F (,) 1.
返回主目录
第三章 习题课
3) F (x , y)=F(x+0, y), F (x, y)=F(x, y+0), 即 F (x, y)关于 x 右连续,关于 y 也右连续.
2 则称随机变量 X, Y 服从参数为 1, 2, 12, 2 ,
X, Y ~ N 1, 2, , , 2, 1 1. i i 1 , 2, i 0 i 1
2 1 2 2
的正态分布,记作
Y 的取值为 y1, y2, , y j ,
则称
设 X, Y 二维离散型随机变量,X 的取值为
pij P X xi , Y y j
i,j 1, 2,
X, Y 的(联合)分布律. 为二维离散型随机变量
第三章 习题课
二维离散型随机变量的联合分布律
X, Y 的联合分布律也可以由 下表表示
Y X
x1 x2
(完整版)概率论第三章第四章习题及答案
第三章 多维随机变量及其分布
n
解:(1)P{X n} P{X n,Y m}
m0
n e14 (7.14)m (6.86)nm
m0
m!(n m)!
e14 n
n! (7.14)m (6.86)nm
n! m0 m!(n m)!
e14 (7.14 6.86)n 14n e14 , n 0,1,2,
返回主目录
第三章 多维随机变量及其分布
(3)P{Y m | X 20} C2m0 0.51m0.4920m , m 0,1,2, ,20.
P{Y m | X n} Cnm 0.51m0.49nm , m 0,1,2, , n
返回主目录
第三章 多维随机变量及其分布
11.设随机变量(X,Y)的联合概率密度为
0, FU (u) un ,
1,
u 0, 0 u 1,
u 1.
返回主目录
第四章 随机变量的数字特征
U 的密度函数为
nun1, x (0,1),
fU (u)
0,
其他.
0, FU (u) un ,
1,
u 0, 0 u 1,
u 1.
E(U )
ufU (u)du
e14 (7.14)m (6.86)nm m!(n m)!
e
1414n n!
Cnm
7.14 14
m
6.86 14
nm
Cnm 0.51m0.49nm , m 0,1,2, , n
P{X n,Y m} e14 (7.14)m (6.86)nm , m!(n m)!
m 0,1,2, , n; n 0,1,2, .
cxey ,0 x y ,
概率论第三章习题解答(全)
.j
Y
0 1 2 3
1 8 1 8
0 0
0
0 0
2 8 2 8
0
1 8 1 8 1 4
1 8 3 8 3 8 1 8
pi.
7
1 4
1 2
设二维随机变量 ( X , Y ) 的概率密度为
4.8 y (2 x), 0 x 1, 0 y x f ( x, y ) 0, 其它.
2 C32C2 3 P{ X 2, Y 0} 35 35 2 C32C2 3 , 35 35
P{ X 2, Y 1}
P{ X 2, Y 2}
P{ X 3, Y 0}
P{ X 3, Y 1}
3 1 C3 C2 2 , 35 35
P{ X 3, Y 2} P{} 0
P{ X 0, Y 0} P{} 0 (因为盒子里总共只有 7 只球,每次取 4 只球,而红
球 2 只,故不可能白球和黑球同时都取不到)
P{ X 0, Y 1} P{} 0 ,
P{ X 0, Y 2}
2 2 0 C2 C2 C3 1 4 C7 35
(1)确定常数 k ; (2)求 P{ X 1, Y 3} ; (3)求 P{ X 1.5} ; (4) P{ X Y 4} 。 解 由
f ( x, y )dxdxy 1 得
2 4 0 2
f ( x, y )dxdxy dx k (6 x y )dy
P{ X 1, Y 0} P{} 0
1 2 1 C3 C2 C2 6 P{ X 1, Y 2} 。 35 35 1 1 C32C2 C2 12 , 35 35 3 1 C3 C2 2 , 35 35
概率论与数理统计第三、四章答案
第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。
解:由习题二第2题计算结果0112{0}={1}=33p p p p ξξ====,得12201333E ξ=⨯+⨯= 一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。
解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果<见下表>,按定义计算周长的数学期望960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,〔1〕计算圆半径的期望值;〔2〕(2)E R π是否等于2ER π?〔3〕能否用2()ER π来计算远面积的期望值,如果不能用,又该如何计算?其结果是什么?解〔1〕100.1110.4120.3130.211.6ER =⨯+⨯+⨯+⨯= 〔2〕由数学期望的性质有(2)223.2E R ER πππ==〔3〕因为22()()E R E R ππ≠,所以不能用2()E R π来计算圆面积的期望值。
利用随机变量函数的期望公式可求得222222()()(100.1110.4120.3130.2)135.4E R E R ππππ==⨯+⨯+⨯+⨯= 或者由习题二第31题计算结果,按求圆面积的数学期望1000.11210.41440.31690.2)135.4E ηπππ=⨯+⨯+⨯+⨯=4. 连续随机变量ξ的概率密度为,01(,0)()0,a kx x k a x ϕ⎧<<>=⎨⎩其它又知0.75E ξ= ,求k 和a 的值 解 由1010()11324a a kx dx kx dx a k E kx x dx a ϕξ+∞-∞===+=⋅==+⎰⎰⎰解得2,3a k ==5.计算服从拉普拉斯分布的随机变量的期望和方差〔参看习题二第16题〕。
概率论第三章习题参考解答
概率论第三章习题参考解答1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为ξ0 1 P1/32/3因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3+2η, ξ与η的分布律如下表所示:: 求周长的期望值, 用两种方法计算, 一种是利用矩形长与宽的期望计算, 另一种是利用周长的分布计算.解: 由长和宽的分布率可以算得E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×0.2=29.9E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得E ζ=2(E ξ+E η)=2×(29.9+20)=99.8而如果按ζ的分布律计算它的期望值, 也可以得E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104×0.06=99.8 验证了期望的性质.4. 连续型随机变量ξ的概率密度为⎩⎨⎧><<=其它)0,(10)(a k x kx x aϕ又知Eξ=0.75, 求k 和a 的值。
解: 由性质⎰+∞∞-=1)(dx x ϕ得111)(|10110=+=+==++∞∞-⎰⎰a kx a k dx kx dx x a aϕ即k =a +1(1)又知75.022)(|10211=+=+===+++∞∞-⎰⎰a kx a k dx kx dx x x E a a ϕξ得k =0.75a +1.5(2)由(1)与(2)解得0.25a =0.5, 即a =2, k =36. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较.解: (1) 15个数的平均数为(90+50+150+110+90+90+110+90+50+110+90+70+50+70+150)/15 = 91.33 (2) 按上表计算期望值为(10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/188 =96.177. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值解: 假设种子甲的每公顷产量数为, 种子乙的每公顷产量数为, 则 E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=49598. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有E ξi =10, Dξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此∑==1001i i ξξ,则ξ的数学期望和标准差为gD D D kgg E E E i ii i i i i i 1011001)(1000101001001100110011001=⨯==⎪⎭⎫⎝⎛====⨯==⎪⎭⎫ ⎝⎛=∑∑∑∑====ξξξσξξξξ9. 已知100个产品中有10个次品,求任意取出的5个产品中次品数的期望值.解: 假设ξ为取出5个产品中的次品数, 又假设ξi 为第i 次取出的次品数, 即, 如果第i 次取到的是次品, 则ξi =1否则ξi =0, i =1,2,3,4,5, ξi 服从0-1分布,而且有 P {ξi =0}=90/100, P {ξi =1}=10/100, i =1,2,3,4,5因此, E ξi =10/100=1/10, 因为∑==51i iξξ因此有5.010155151=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i E E E ξξξ10. 一批零件中有9个合格品和3个废品, 在安装机器时, 从这批零件中任取一个, 如果取出的是废品就不再放回去. 求取得第一个合格品之前, 已经取出的废品数的数学期望和方差. 解: 假设在取到第一个合格品之前已取出的废品数为ξ, 则可算出0045.02201101112123}3{041.02209109112123}2{2045.0119123}1{75.0129}0{==⋅⋅====⋅⋅===⋅=====ξξξξP P P P因此有319.009.0409.0)(409.090045.04041.02045.03.030045.02041.02045.0222===-==⨯+⨯+==⨯+⨯+=ξξξξξE E D E E11. 假定每人生日在各个月份的机会是同样的, 求3个人中生日在第一个季度的平均人数. 解: 设三个随机变量ξi ,(i =1,2,3), 如果3个人中的第i 个人在第一季度出生, 则ξi =1, 否则ξi =0, 则ξi 服从0-1分布, 且有 P (ξi =1)=1/4, 因此E ξi =1/4, (i =1,2,3)设ξ为3个人在第一季度出生的人数, 则ξ=ξ1+ξ2+ξ3, 因此Eξ=E (ξ1+ξ2+ξ3)=3Eξi =3/4=0.7512. ξ有分布函数⎩⎨⎧>-=-其它1)(x e x F xλ, 求E ξ及D ξ. 解: 因ξ的概率密度为⎩⎨⎧>='=-其它)()(x e x F x xλλϕ, 因此 ()λλλϕξλλλλλ11)(0=-=+-=-===∞+-∞+-∞+-+∞-+∞-+∞∞-⎰⎰⎰⎰xx xxxe dx e xe e xd dx ex dx x x E()2220222222)(|λξλλϕξλλλλ==+-=-===⎰⎰⎰⎰∞+-∞+-+∞-+∞-+∞∞-E dx xe ex e d x dx ex dx x x E x x x x22222112)(λλλξξξ=-=-=E E D13. ⎪⎩⎪⎨⎧<-=其它1||11)(~2x x x πϕξ, 求E ξ和D ξ.解: 因φ(x )是偶函数, 因此Eξ=0,则D ξ=Eξ2-(Eξ)2=Eξ2 因此有⎰⎰-===+∞∞-1222212)(dx xx dx x x E D πϕξξ令θθθd dx x cos ,sin ==则上式=2112sin 21212cos 2sin 12||20202022=+=+=⎰⎰ππππθπθπθθπθθπd d 即D ξ=1/2=0.516. 如果ξ与η独立, 不求出ξη的分布直接从ξ的分布和η的分布能否计算出D (ξη), 怎样计算?解: 因ξ与η独立, 因此ξ2与η2也独立, 则有[]()()222222)()()(ηξηξξηξηξηE E E E E E D -=-=17. 随机变量η是另一个随机变量ξ的函数, 并且η=e λξ(λ>0), 若E η存在, 求证对于任何实数a 都有λξλξEe ea P a⋅≤≥-}{.证: 分别就离散型和连续型两种情况证. 在ξ为离散型的情况: 假设P (ξ=x i )=p i , 则λξλξλλλξEe e e E p e p ep a P a a i i a x ax i a x ax i i i i i --∞=-≥-≥==≤≤=≥∑∑∑][){)(1)()(在ξ为连续型的情况假设ξ的概率密度为φ(x ), 则λξλξλλλϕϕϕξEe e Ee dx x e dx x edx x a P a a a x aa x a--+∞∞--+∞-+∞==≤≤=≥⎰⎰⎰)()()()()()(}{证毕.18. 证明事件在一次试验中发生次数的方差不超过1/4.证: 设ξ为一次试验中事件A 发生的次数, 当然最多只能发生1次, 最少为0次, 即ξ服从0-1分布, P {ξ=1}=P (A )=p , P {ξ=0}=1-p =q ,则4121412124141)1(222≤⎪⎭⎫ ⎝⎛--=-⋅+-=-=-=p p p p p p p D ξ19. 证明对于任何常数c , 随机变量ξ有 D ξ=E (ξ-c )2-(Eξ-c )2证: 由方差的性质可知D (ξ-c )=Dξ, 而2222)()()]([)()(c E c E c E c E c D ---=---=-ξξξξξ证毕.20. (ξ,η)的联合概率密度φ(x ,y )=e -(x +y )(x ,y >0), 计算它们的协方差cov (ξ,η). 解: 由φ(x ,y )=e -(x +y )(x ,y >0)可知ξ与η相互独立, 因此必有cov (ξ,η)=0.21. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求ξ与η的协方差.,P {ξ=2}=P {η=2}=2/3, P {ξ=1}=P {η=1}=1/3, E ξ=E η=35322311=⨯+⨯38314312312},{)(2121=⨯+⨯+⨯====∑∑==i j j i ijP E ηξξη则913538)(),cov(22-=-=⋅-=ηξξηηξE E E22. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 求ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: ξ与的联合分布表及各边缘分布计算表如下表所示: 因此1212260121=⨯+⨯+⨯-=ξE 1225125412512=⨯+⨯=ξE 144275144251225)(22=-=-=ξξξE E D 3613311121311270=⨯+⨯+⨯=ηE 1083731121912=+⨯=ηE 129627512961691237129616910837)(22=-⨯=-=-=ηηηE E D 36133112131)(-=-⨯-=ξηE则4322211236171336131253613)(),cov(-=⨯⨯-=⋅--=⋅-=ηξξηηξE E E 相关系数804.027522127543236122211296275144275432221),cov(-=-=⨯⨯⨯-=⨯-==ηξηξρD D, 计算ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: 由上表的数据的对称性可知与η的边缘分布一样, 算出为 P (ξ=-1)=P (η=-1)=3/8 P (ξ=0)=P (η=-0)=2/8P (ξ=1)=P (η=1)=3/8 由对称性可知Eξ=Eη=0831831=⨯+⨯-. 081818181)(=+--=ξηE 因此cov (ξ,η)=E (ξη)-E (ξ)E (η)=0 则ρ=0而P (ξ=0,η=0)=0≠P {ξ=0}P {η=0}=1/16因此ξ与η不独立. 这是一个随机变量间不相关也不独立的例子.24. 两个随机变量ξ与η, 已知Dξ=25, Dη=36, ρξη=0.4, 计算D (ξ+η)与D (ξ-η). 解:374.065236252),cov(2)]()[()]([)(854.065236252),cov(2)]()[()]([)(2222=⨯⨯⨯-+=-+=-+=---==---=-=⨯⨯⨯++=++=++=-+-==+-+=+ξηξηρηξηξηξηξηηξξηξηξηξρηξηξηξηξηηξξηξηξηξD D D D D D E E E E E D D D D D D D E E E E E D。
概率论第三章答案
习题三1. 箱子里装有12只开关,其中只有2 只次品,从箱中随机地取两次,每次取一只,且设随机变量X ,Y 为⎩⎨⎧=⎩⎨⎧=.,1,0;,1,0若第二次取得次品若第二次取得正品若第一次取得次品若第一次取得正品,Y ,X试就放回抽样与不放回抽样两种情况,写出X 与Y 的联合分布律. 解:先考虑放回抽样的情况:.361122122}1,1{,3651210122}0,1{,3651221210}1,0{,362512101210}0,0{=⨯====⨯====⨯====⨯===Y X P Y X P Y X P Y X P则此种情况下,X 与Y 的联合分布律为再考虑不放回抽样的情况.661111122}1,1{,3351110122}0,1{,3351121210}1,0{,22151191210}0,0{=⨯====⨯====⨯====⨯===Y X P Y X P Y X P Y X P2. 将一硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示在三次中出现正面次数与出现反面次数之差的绝对值,试写出(X,Y )的联合分布律及边缘分布律.解:由已知可得:X 的取值可能为0,1,2,3;Y 的取值可能为1,3;则由硬币出现正面和反面的概率各为21,可知83212121}1,2{,0}3,1{,83212121}1,1{,81212121}3,0{(0}0,0{2313=⨯⨯=======⨯⨯====⨯⨯======C Y X P Y X P C Y X P Y X P Y X P 此种情况不可能发生).81212121}3,3{0}1,3{0}3,2{=⨯⨯=========Y X P Y X P Y X P3. 把三个球随机地投入三个盒子中去,每个球投入各个盒子的可能性是相同的,设随机变量X 与Y 分别表示投入第一个及第二个盒子中的球的个数,求二维随机变量(X,Y)的概率分布及边缘分布. 解:由已知可得:X 的取值可能为0,1,2,3;Y 的取值可能为0,1,2,3;则271313131}0,0{=⨯⨯===Y X P , 91313131}1,0{13=⨯⨯===C Y X P 91313131}2,0{23=⨯⨯===C Y X P ,271313131}3,0{=⨯⨯===Y X P91313131}0,1{13=⨯⨯===C Y X P ,92313131}1,1{1213=⨯⨯===C C Y X P 91313131}2,1{13=⨯⨯===C Y XP 0}3,1{===Y X P ,91313131}0,2{23=⨯⨯===C Y X P91313131}1,2{23=⨯⨯===C Y XP0}3,2{}2,2{======Y X P Y X P 271313131}0,3{33=⨯⨯===C Y X P 0}3,3{}2,3{}1,3{=========Y X P Y X P Y X P则二维随机变量(X,Y )的概率分布及边缘分布为4. 设(X,Y)的概率密度为⎪⎩⎪⎨⎧<<<<--=.,0,42,20),6(81),(其它y x y x y x f求:(1) P ﹛(x,y )∈D ﹜, 其中D=﹛(x,y )|x<1,y<3﹜; (2) P ﹛(x,y )∈D ﹜, 其中D=﹛(x,y )|x+y<3﹜. 解:(1) ∵D={(x,y)|x<1,y<3}∴83)6(81),(}),{(103213=--==∈⎰⎰⎰⎰∞-∞-dxdy y x dxdy y x f D y x P(2) ∵D={(x,y)|x+y<3}∴245)6(81),(}),{(1032=--==∈⎰⎰⎰⎰-xDdxdy y x dxdy y x f D y x P 5. 设(X,Y)的概率密度为⎪⎩⎪⎨⎧≤++-=.,0,),(),(22222其它R y x y x R c y x f 求:(1) 系数c ;(2) (X,Y)落在圆()R r r y x <≤+222内的概率. 解:(1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f ,得1)(22222=+-⎰⎰≤+dxdy y x R c R y x ,可求得33R c π=(2) 设222|),{(r y x y x D ≤+=,则)321(3)(3),(}),{(3223222R r R dxdy y x R R dxdy y x f D Y X P Dr y x -=+-==∈⎰⎰⎰⎰≤+ππ6. 已知随机变量X 和Y 的联合概率密度为⎩⎨⎧≤≤≤≤=.,0,10,10,4),(其他y x xy y x f求X 和Y 的联合分布函数.解:∵随机变量X 和Y 的联合概率密度为⎩⎨⎧≤≤≤≤=.,0,10,10,4),(其他y x xy y x f∴当x<0,或y<0时,F(x,y)=0; 当10,10≤≤≤≤y x 时,2204=y} Y x, P{X =y)F(x,y x XYdXdY x y⎰⎰=≤≤当1,10>≤≤y x 时,20104=y} Y x, P{X =y)F(x,x XYdXdY x ⎰⎰=≤≤当10,1≤≤>y x 时,21004=y} Y x, P{X =y)F(x,y XYdXdY y⎰⎰=≤≤当1,1>>y x 时,14=y} Y x, P{X =y)F(x,1010⎰⎰=≤≤XYdXdY综上可得,X 和Y 的联合分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤<<1,1 110,1 1,10 10,10 0,00=y)F(x,2222y x y x y y x x y x yx y x 或7. 设二维随机变量(X,Y)的概率密度为⎩⎨⎧<<<≤+=.,0,60,60),(),(其他y x y x k y x f(1) 求常数k ;(2) 求 P ﹛0<x<2,1<y ≤3﹜; (3) 求X,Y 的边缘概率密度; (4) 判断X 与Y 是否相互独立.解:(1) 由概率密度的性质有⎰⎰+∞∞-+∞∞=1),(dxdy y x f 即1)(6060⎰⎰=+dxdy y x k ,有2161=1216k k ∴= (2) ⎰⎰=+=≤<<<2031181)(2161}31,20{dxdy y x y x P (3) X 的边缘概率密度为⎰+∞∞-=dy y x f x f X ),()(∴当0≤x<6时,363)(2161)(6+=+=⎰x dy y x x f X 当x<0或x ≥6时,显然有0)(=x f X⎪⎩⎪⎨⎧<≤+=∴.,0,60,363)(其他x x x f XY 的边缘概率密度为⎰+∞∞-=dx y x f y f Y ),()( ∴当0<y<6时,363)(2161)(6+=+=⎰y dy y x y f Y 当y ≤0或x ≥6时,显然有0)(=y f Y⎪⎩⎪⎨⎧<<+=∴.,0,60,363)(其他y y y f Y(4) 的表达式易知,及从)()(y f x f Y X ),()()(y x f y f x f Y X ≠ ∴X 与Y 不相互独立.8.已知随机变量X 1和X 2的概率分布为而且P{X 1X 2=0}=1.(1) 求X 1和X 2的联合分布; (2) 问X 1和X 2是否独立?为什么? 解:由1}0{21==X X P ,可知021=X X 必然成立.0}0{21=≠∴X X P由}1,1{}1,0{}1,1{}1{2121212=======-===X X P X X P X X P X P 得21}1{}1,0{221=====X P X X P 同理可得:41}0,1{,41}0,1{2121=====-=X X P X X P , 而}0,1{}1,0{}0,1{}0,0{}0{2121212121==+==+=-=+====X X P X X P X X P X X P X X P 04141211}0,1{}1,0{}0,1{}0{}0,0{2121212121=---===-==-=-=-====X X P X X P X X P X X P X X P 综上可得,1X 和2X 的联合分布为(2)}0{}0{}0,0{2121==≠==X P X P X X P可知1X 和2X 不独立.9. 设随机变量X 与Y 相互独立,且都服从()b b ,- 上的均匀分布,求方程02=++Y tX t 有实根的概率.解:方程02=++Y tX t 有实根的充要条件是042≥-Y X ,由于随机变量X 与Y 相互独立,所以随机变量(X ,Y )的联合概率密度为⎪⎩⎪⎨⎧<<-<<-=其他,0,,,41),(2b y b b x b by x f下面分两种情况讨论: (1)当40≤<b 时,如图24214),(}4{4222b dy dx b dxdy y x f y X P Dbbx b+===≥⎰⎰⎰⎰-- (2) 当4>b 时,如图bdy dx b dxdy b dxdy b dxdy y x f y X P Dbbbx D D32141414),(}4{224222221-=-=-===≥⎰⎰⎰⎰⎰⎰⎰⎰-综上可得:方程02=++Y tX t 有实根的概率为⎪⎪⎩⎪⎪⎨⎧>-≤<+=≥-.4,321,40,2421}04P{2b bb bY X另解:方程02=++Y tX t 有实根的充要条件是 042≥-Y X令),(,121x F X Z Z 其分布函数为=),(,422x F Y Z Z 其分布函数为-= 则当x<0时,0)(1=x F Z 则当0≤x ≤b 2时{}x X x P x X P X Z P x F Z ≤≤-=≤=≤=}{}{)(211由于X 与Y 都服从()b b ,-上的均匀分布,即其密度函数各为⎪⎩⎪⎨⎧≤≤-=⎪⎩⎪⎨⎧≤≤-=其他其他,0,21)(,0,21)(Y by b by f bx b bx f X 当0≤x ≤b 2时,bxdt b x F xx Z ==⎰-21)(1 当x >b 2时显然有.1)(1=x F Z∴Z 1的概率密度函数为⎪⎩⎪⎨⎧≤≤=.00,2)(21其他b x bxx F Z而当时,b x 4≥1)4(01}4{1}4{)(2=-≤--=-<-=≤-=b x x Y P x Y P x F Z 当-4b<x<4b 时,bxb x b dt b x Y P x F xb Z 821)4(211}4{1)(42+=≤-≤--=-<-=⎰--当x ≤-4b 时,0)4(11}4{1)(2=≥--=-<-=b xx Y P x F Z∴Z 2的概率密度函数为⎪⎩⎪⎨⎧≤≤-=.44,81)(2其他b x b b x F Z又由于随机变量X 与Y 相互独立,∴Z 1 和Z 2也相互独立. 又设Z= Z 1 +Z 2,,则,分布函数为其密度函数为dx x z f x f f x F x Z Z Z Z Z ⎰+∞∞--=)()()z ()()(f 而⎰∞--=-=≥=≥-02)(1)0(1}0{}04{dz z f F Z P Y X P Z Z ∵b>0,而当z ≤-4b ,]4,4[b b x -∈时,04≤+b z 此时0)(=z f Zb dx b xb z f b b z b b z Z 818121)(44402=⋅=-≤<-⎰+时,当 即⎪⎪⎪⎩⎪⎪⎪⎨⎧-≥-≤<-+-≤=.4,81,44,84,4,0)(222b b z bb b z b b bz b z z f Z ),时,(即当04402≤-≤<b b b242182112181841}04P{04442222bb b dz b dz bb z Y X b b bb b+=+--=-+-=≥-⎰⎰--- ),时,(即》当0442>-b b b bdz b b z Y X b321841}04P{0422-=+-=≥-⎰- 综上可得:方程02=++Y tX t 有实根的概率为⎪⎪⎩⎪⎪⎨⎧>-≤<+=≥-.4,321,40,2421}04P{2b bb bY X10. 设(X,Y )的概率密度为⎩⎨⎧<<=-.,0,0,),(其他y x e y x f y求边缘概率密度和{}.1≤+Y X P 解:X 的边缘概率密度为⎰+∞∞-=dy y x f x f X ),()(,当x ≤0时,0)(=x f X 当x>0时,⎰+∞--==x x y X e dy e x f )( Y 的边缘概率密度为⎰+∞∞-=dx y x f y f Y ),()(当x ≤0时,0)(=y f Y ,当y>0时,⎰--==yy y Y ye dx e y f 0)(⎩⎨⎧>≤=⎩⎨⎧>≤=∴--000)(.000)(y yey y f x ex x f yY xX而⎰⎰⎰⎰⎰-------+=-==≤+==≤+2102111210121)(}1|),{((),(1}Y P{X ee dx e e dy e dx y x y x D dxdy y xf x x xxy D其中11. 设X,Y 相互独立,其概率密度为⎩⎨⎧≤>=⎩⎨⎧≤≤=-.0,0,0,)(.,0,10,1)(y y e y f x x f y Y X 其他求Z=X+Y 的概率密度.解:由已知得 ⎰+∞∞--=dx x z f x f z f Y X Z )()()( 当z<0时,)0,10(0)(≤-≤≤=x z x z f Z 时当 当0≤z ≤1时,z z z x Z e dx e z f ---==⎰1)(0 当z >1时,z z x Z e e dx e z f ---==⎰)1()(1∴Z=X+Y 的概率密度为⎪⎩⎪⎨⎧>-≤≤-<=--1)1(10100)(z e e z e z z f z zZ12. 设随机变量(X,Y )的概率密度为⎩⎨⎧<<<<=.,0,10,0,3),(其他x x y x y x f求Z=X —Y 的概率密度. 解:∵Z=X —Y 的分布函数为 ⎰⎰⎰⎰≤-+∞∞-+∞-==≤-=≤=zY X zx Z dyy x f dx dxdy y x f z Y X P z Z P z F ),(),(}{}{)(∴Z=X —Y 的概率密度为⎰+∞∞--==dx z x x f z F z f Z Z ),()()('⎩⎨⎧<<<<=.,0,10,0,3),(其他x x y x y x f0)(,0x 1=∴≤-≥z f z z Z 时,当, ,0)(,x 0=∴≥-≤z f x z z Z 时,当),1(23xdx 3)(1021z z f z Z Z -==<<⎰时,当 ∴Z=X —Y 的概率密度为⎪⎩⎪⎨⎧<<-=.,0,10),1(23)(2其他z z z f Z13. 设随机变量(X,Y )的概率密度为(),,21),(22222+∞<<∞-=+-y x ey x f y x σπσ求22Y X Z +=的概率密度.解:设22Y X Z +=的分布函数为)(z F Z当0≤Z 时,0}{}{)(22=≤+=≤=z Y X P z Z P z F Z 当0>Z 时,222222222222022222212121}{)(σπσσσπσθπσz zY X y x y x Z erdred dxdy ez Z P z F -≤++-+-===≤=⎰⎰⎰⎰∴22Y X Z +=的概率密度⎪⎩⎪⎨⎧>≤=-.0,21,0,0)(222z ez z F z Z σσ14. 设二维随机变量(X,Y )在矩形(){}10,20|,≤≤≤≤=y x y x G 上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率密度f(s). 解:由已知可得随机变量(X,Y )的概率密度为⎪⎩⎪⎨⎧≤≤≤≤=.,010,20,21),(其他,y x y x f设边长为X 和Y 的矩形面积S 的分布函数为F(s),则 ⎰⎰≤=≤=≤=sxy )f(x,s}{}{)dxdy y XY P s S P s F (∴.0)0=≤s F S (时,当2)ln 2(ln 2222121)y ,()20220102ss s s dx x s dy dx dy dx dy x f dx s F S sx s s s x s +-=+=+==<<∴⎰⎰⎰⎰⎰⎰⎰(时,当)1(121)22≥==≥⎰⎰xsdy dx s F S x s(时,当 ∴矩形面积S 的概率密度⎪⎩⎪⎨⎧≥≤<<-=2,0,020),ln 2(ln 21)(s s s s s f 或15.设X 和Y 为两个随机变量,且{}{},740{}0,730,0=≥=≥=≥≥Y P X P Y X P 求{}.0),max(≥Y X P解:{}{}0,00,0}0{<≥+≥≥=≥Y X P Y X P X P {}{}173740,0}0{0,0=-=≥≥-≥=<≥∴Y X P X P Y X P 同理可求{}710,0=≥<Y X P{}{}{}{}10,00,00,00,0=<<+≥<+<≥+≥≥Y X P Y X P Y X P Y X P 又{}7271717310,0=---<<∴Y X P {}{}{}.757210,010),max(10),max(=-=<<-=<-=≥∴Y X P Y X P Y X P16. 设(X,Y )的联合概率密度为 (),,10021),(1001002122+∞<<∞-•=⎪⎪⎭⎫ ⎝⎛+-y x ey x f y x π求:(1){};Y X P < (2)边缘概率密度; (3) ).|(|x y f X Y 解:(1)由已知,得⎰⎰⎰⎰<∞+∞-∞+⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+-•=•=<yxy x y x dy edx dxdy e Y X P x 100100211001002122221002110021}{ππ同理可知⎰⎰∞+∞-∞+⎪⎪⎭⎫ ⎝⎛+-•=>yy x dx edy Y X P 100100212210021}{π}{}{Y X P Y X P >=<∴而0}{==Y X P又1}{}{}{==+>+<Y X P Y X P Y X P21}{}{=>=<∴Y X P Y X P (2)X 的边缘概率密度为)(210110021),()(20010010021222+∞<<-∞=•==-∞+∞-⎪⎪⎭⎫ ⎝⎛+-∞+∞-⎰⎰x edy edy y x f x f x y x X ππ由于f(x,y)关于x,y 地位的对称性,得)(2101)(2002+∞<<-∞=-y ey f y Y π17. 设X,Y 是相互独立且服从同一分布的两个随机变量,已知X 的分布律为),3,2,1(31}{===i i X P 又设},,min{},,max{Y X Y X ==ηξ试写出变量),(ηξ的分布律及边缘分布律并求}.{ηξ==P解:由已知得:,913131}1{}1{}1,1{}1,1{=⨯=========Y P X P Y X P P ηξ0}3,1{}2,1{======ηξηξP P,9231313131}2{}1{}1{}2{}2,1{}1,2{}1,2{=⨯+⨯===+=====+=====Y P X P Y P X P Y X P Y X P P ηξ,913131}2{}2{}2,2{}2,2{=⨯=========Y P X P Y X P P ηξ,0}3,2{===ηξP,9231313131}3{}1{}1{}3{}3,1{}1,3{}1,3{=⨯+⨯===+=====+=====Y P X P Y P X P Y X P Y X P P ηξ,9231313131}3{}2{}2{}3{}3,2{}2,3{}2,3{=⨯+⨯===+=====+=====Y P X P Y P X P Y X P Y X P P ηξ913131}3,3{}3,3{=⨯======Y X P P ηξ则变量),(ηξ的分布律及边缘分布律为:而.31919191}{=++===ηξP18. 设X 关于Y 的条件概率密度为⎪⎩⎪⎨⎧<<=其他,,0,0,3)|(32|y x yx y x f Y X而Y 的概率密度为⎩⎨⎧<<=其他,,0,10,5)(4y y y f Y求.21⎭⎬⎫⎩⎨⎧>X P解:由已知得:⎩⎨⎧<<<<=•=其他,010,0,15)()|(),(2|y y x y x y f y x f y x f Y Y X ⎰⎰⎰⎰==+∞<<-∞>==>∴121212644715}),21x {D (),(}21{P Y Dydx x y dxdy y x f X 其中19. 设(X,Y )的概率密度为 ⎩⎨⎧≤≤≤≤+=其他,0,10,10,),(y x y x y x f求:(1)},max{Y X Z =的概率密度; (2)},min{Y X Z =的概率密度.解:(1) 设},max{Y X Z =的分布函数为)(z F Z ,概率密度为)(z f Z ,则当0≤Z 时,0),(}},{max{}{)(},max{==≤=≤=⎰⎰≤zY X Z dxdy y x f z Y X P z Z P z F当10≤<Z 时,33302},max{22)2()(),(}{)(z zz dx xz z dyy x dx dxdy y x f z Z P z F zz zzY X Z =+=+=+==≤=⎰⎰⎰⎰⎰≤当z>1时, ⎰⎰≤≤≤≤=+=≤=10101)(}{)(y x Z dxdy y x z Z P z F},max{Y X Z =∴的概率密度为⎩⎨⎧≤≤=.,0,10,3)(2其他z z z f Z(2) 设},min{Y X Z =的分布函数为的分布函数为)(z F Z ,概率密度为)(z f Z ,则当1≥Z 时,101},{1}}{min{1}{1}{)(=-=>>-=><-=>-=≤=Z Y Z X P Z Y X P z Z P z Z P z F Z 则当0≤Z 时,11},{1}}{min{1}{1}{)(=-=>>-=><-=>-=≤=Z Y Z X P Z Y X P z Z P z Z P z F Z 则当10<<Z 时,⎰⎰-+=+-=>>-=≤=1132)(1},{1}{)(zz Z z z z dy y x dx Z Y Z X P z Z P z F},min{Y X Z =∴的概率密度为⎩⎨⎧≤≤-+=.,0,10,321)(f 2其他z z z z Z20. 假设一电路装有三个同种电器元件,其工作状态相互独立,且无故障工作时间都服从参数为0>λ的指数分布,当三个元件都无故障时,电路正常工作,否则整个电路不能正常工作.试求电路正常工作的时间T 的概率分布.解:用)3,2,1(=i X i 表示第i 个电气元件无故障工作的时间,则321,,X X X相互独立且同分布,其分布函数为⎩⎨⎧≤>-=-0,00,1)(x x e x F x λ 设G(t)是T 的分布函数.当t ≤0时,G(t)=0;当t>0时,有t e t F t X P t X P t X P t X t X t X P t T P t T P t G λ333213211)](1[1}{}{}{1},,{1}{1}{)(--=--=>>>-=>>>-=>-=≤=⎩⎨⎧≤>-=∴-.0,0,0,1)(3t t e t G t λ 电器正常工作的时间T 的概率分布服从参数为λ3的指数分布.友情提示:部分文档来自网络整理,供您参考!文档可复制、编制,期待您的好评与关注!。
概率论第三章答案.docx
习题3T1.而且戶{尤/=0} = 1・求&和及的联合分布律.解由P{X}X2 =0} = 1知P{X x X2 H 0} = 0.因此K和基的联合分布必形11Pi—— 122⑵注意到P{/ = 0, %. =()} =(),而戶{尤=()}・P{A\ = ()} = - ^ 0,所以X 和星 4不独立.2.-盒子中有3只黑球、2只红球和2只白球,在其中任取4只球.以X 表示取到黑球 的只数,以丫表示取到红球的只数.求/和丫的联合分布律.解 从7只球中取4球只有=35种取法.在4只球中,黑球有Z 只,红 球有丿只(余下为白球4 一,一 j 只)的取法为C ;C 扌 CjT, i = 0,1,2,3,丿=0,1,2,, + 丿 W 4.于是有C°c 2c 2 1P{X = 0y Y = 2}= 3 2 2 = — t P{X = l,Y = l}: 35 35p{x = i,y = 2} = CCG == 2,y =o}: 35 35F{X = 2,Y = 1}= WG =!£ p{x = 2,y = 2}: 35 35P{X = 3,Y = 0} =宝O, P{X = 3,Y = l]c\c\c\6-35 ■35' 广2 x^r() _ 3 「 35-35'gc ; 3 35 ~35' 厂 3「l 「0 c 3c 2c 2 2/(兀』)=^(6 -X- y),0<x<2,2< y <4,0,其它.求:⑴ 常数A ;(2) P{%<l,y<3};(3) P{%<1.5);(4) P{X + Y^4}.35 35 35 35 P{x = o,y = O } = P {X = O ,Y = I } = P {X = I ,Y = 0} = p{x = 3,y = 2} = o.xp(/f — x— 9)1 00 w p v T UH MX )V U Hm VX5:(D)」IOO IP r.—A 、—9) L r E JIC I m JI 一 r Ixp(\ Ix 19)1000=y v K=p「v i p x p (\H )/・=丄d v x sr Q )Z 20 i l A、—9)「T x p(亠— x— 9)亠T v 一・ I n(亠 — 寸)I 寸)1 Ie 〒 i i r r LZ二8 •s'尸(4—寸)T+(亠—寸)el 」Z二8ip 〔 M —寸)7 — (4 — 寸)(4— 9)1」r-—x (\ — 9)」l 00p(o w c r x )s7H (寸 w x + x s:M E l oo —en 剧 M G — 寸v/亠 V07V X V W O S-•£>黑*«匣(寸o x (z o ) w 凶论畏g O N E H )、m 逐凶心H-镒泗去皂床•寸H\ + X ®M 址(寸)4.二维随机变量(X, Y )的概率密度为/(X 』)=试确定并求P [(X,Y )E G},G:x2WyWx,0WxWl.解 由 1 = J j f (x, y)dxdy = drj , kxydy = — j 0 -^(1 - x 4)dx = — t o s 2 o 6解得k = 6. F{ (X, Y) w G} = J ; dr J : 6xydy = 3j\(x 25・设二维随机变量(X 丫)概率密度为求关于X 和丫边缘概率密度.解(儿Y )的概率密度/(x j )在区域G:OWxWl,OWyWx 外取零值•因而,图3-8第4题积分区域kxy,十0,其它.因而f(x 9y) =4.8 尹(2-x), 0, oWxWi, 0£尹£兀,其它.0<x< 1,其它.2.4(2-兀)x[ 0,0<x< 1,其它.=L •心'J'4.8j<2-x)dr,0,0<y<l,其它.2.4X3-4y + y), 0,Ovyvl,其它.4®(2 — x)4几试求:(i)x和丫的联合概率分布;(2)P{X + Y ^1}.解(1)见本章第三节三(4).(2)P{X + y Wl} = \-P{X + Y>\} = \-P{X = \,Y = \} =1-- = -.4 4解⑴由于P{X = 2} = 0.3 + 0 +0.1+ 0.2 = 0.6 以在条件x=2下Y的条件分布律为P{Y = 1\X = 2]P{^ = 2,y = l} 0.3 _£2或写成P[Y = 4\X = 2} =P{X = 2}'"0.6_P{X = 2,Y = 2} 0P{X = 2}_0.6P{X = 2,y = 3) 0.1P{X = 2}~0.6P{X = 2,r = 4} 0.20,丄61P{X = 2}0.6 3Y = k 1 2 3 4P{Y = k\X = 2}121613 若UW —1,右(7 > —1,若UW1,若u>\・习题3-21.设(X 丫)的分布律为下丫的条件分布律;(2) P{X22|yW2}.在条件於2P{Y = 2\X = 2}P{Y = 3\X = 2]到p (r ^2} = P{r = i}+P{y = 2} = o.i+o.3+o+o+o.2 = o.6.P[X^2,Y^2} = P[X = 2,Y = }} + P[X = 2J Y = 2}+ P{X = 3,Y = l} + P{X = 3y Y = 2} =0.3+ 0 + 0 +0.2 = 0.5 ・2.设平面区域D 由曲线_y =丄及直线y = 0,x = l,x = e 2所围成,二维随机变量3, X)X在区域Q 上服从均匀分布,求(X X)关于X 的边缘概率密度在x=2处的值・解 由题设知D 的面积为丄dx = lnx|" =2.—,(x, y)e D y 因此(XX)的密度为 /(x, y) = <2 0,其它.+8f(x.y)dy ・显然,当XW1或兀头2时,厶,(兀)= 0;当1 vjcvM 时,厶d) = F A (2)= ~-3.设二维随机变戢(X, K)的概率密度为1, 0 < x < 1,0 < j/ < 2x,0,其它.求:⑴区”的边缘概率密度f x MJr (y^(2)F{YW2 2解(1)当0vxvin 寸,f x (x) = f (x,y)dy = £ dy = 2x ; 当 xWO 时或x$l 时,/Y (X )= 0.2x, 0 v x v 1, 0, 其它.f(x 9y)dx= (ydx = l-^- 22f因此P{X^2\Y^2} =W2}P{Y W2}05 _5 0£~61 1—dy =—・故 ° 2「 2x fx M =当Ov 严2时,厶(刃=当y WO 吋或y $2时,/;(y) = O.y 亠I — —, 0 < v < 2,故fy (y) = 20, 其它.(2)当 zWO 时,巧(z) = o ; 当 z$2 时,巧(Z )= l;当()VV2 时,F 7(Z ) = P{2X-Y^Z }= JJ /(x, y)d.xdyz胡 dxfl.dy + 關仁 1.®2Z" =Z ----- ・4,1 — 9 0 < z < 2,厶⑵=FXz) =2 0, 其它.4.设G 是由直线尸X,尸3, x=\所围成的三角形区域,二维随机变fi(X,y )在Gt 服从二维均匀分布.求:(1)(X7)的联合概率密度;(2) P{Y-X^\}; (3)关于X 的边缘概率密度.解 ⑴由于三角形区域G 的面积等于2,所以(X,Y)的概率密度为⑵记区域D = {(x,y)\y-x^\]与G 的交集为G (),则其中S G °为Go 的面积.±4Z !I JJg}扌丄0,(x.y)电 G.⑶X 的边缘概率密度f x (X )=r +8J —oof(x, y)dy •所以,当X .1,3]时,几(x) =「:⑪J (3 - X).J x 2 2当x v 1 或x > 3 时,/丫(x) = 0. 因此./\ W = < 2(1_%),XE卩⑶’0, 其它.习题3-3设与柑互独立,且分布律分别为下表:求二维随机变最(儿的分布律.解由于X与丫相互独立,所以冇P{X = Xi,Y = y.} = P{X = x i}-P{Y = yj},i == 0,2,5,6.J因此可得二维随机变量Y)的联合分布律Pir A- 〃•丿(匸 12 丿二123)・2—G + # =匕故可得方程组31 1 z 1 _ = _•(□ + _)・19 3921解得 ex = —, 0 =—.9 92 1经检验,当CX = —, P =—吋,对于所有的匸1,2; 7=1,2,3均有Pij= Pi ,p.j bX.i2 1 a = _,p =—时.x 与y 相互独立••993.设随机变量Y 的概率密度为 \be (x+y \(1)试确定常数b ・9 118匚因此当0 < x < 1, j/ > 0,其它.问Q,0为何值时X 与Y 相互独立?/=](2) 求边缘概率密度f x (x)y f Y (y). (3) 问X 与Y 是否相互独立?解⑴由1 = j J f(x,y)dxdy = j ^e _<v+r>dydx e~'dye -'dr = b(l -e _,),l-e _, e~v,0<x<l, 宁 1-e" 0, e _y , _y>0,0, 其它.⑶ 由于f(x,y) = f x (x)* f Y (y) f 所以x 与Y 相互独立.设X 和Y 是两个相互独立的随机变量,X 在(0, 1)上服从均匀分布,Y 的概率密度为r了 /、 丄e 2, y >0,0,求X 和Y 的联合概率密度.设关于a 的二次方程为a 2 +2Xa + Y = 0t 试求。
概率论第三章练习答案
(C)
A.97
B.79
C.61
D.29
7.设已知随机变量 与 的相关系数 = 0 ,则 与 之间的关系为:
(D
)
A. 独立
B. 相关
C. 线性相关
D. 线性无关
8.设 X, Y 为两个独立的随机变量, 已知 X 的均值为 2, 标准差为 10, Y 的均值为 4, 标
准差为 20, 则与 Y − X 的标准差最接近的是[ D ]
3.已知(X,Y)的联合密度为 (x) =
(B ) A、0
B、0.25
C、0.5
4xy 0
0 x, y 1
其它
,则 F(0.5,2)=
D、0.1
F(0.5,2)= PX 0.5,Y 2
=
0.5
1
4xydxdy = 4
0.5
xdx
1
ydy
=
1 (利用图像)
00
0
0
4
4.如果 X 与 Y 满足 D(X+Y)=D(X-Y),则必有 ( ) A.X 与 Y 独立 B.X 与 Y 不相关 C.D(Y)=0 D .D ( X) D( Y) = 0
A 10
B 15
C 30
D 22
D(Y − X)= DX + DY = 100 + 400 = 500
400 500 900, 20 500 30
9.设随机变量 X~N(-3,1),Y~N(2,1),且 X 与 Y 独立,设 Z=X-2Y+7,
则 Z~
(A)
A.N(0,5) B.N(0,-3) C.N(0,46)
+ +(x,y)dxdy = 1 − −
即 + + ce−(x+ y)dxdy = 1 c = 1 00
概率论课后习题第3章答案
第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。
概率论参考答案 刘金山 主编 第3章
pij p⋅ j pij p i⋅
, i = 1,2, "
P{Y = y j | X = xi } =
, j = 1,2, "
在 Y = 4 的条件下, X 的条件分布律;
P{ X = 1| Y = 4} = 0 P{ X = 2 | Y = 4} = 1 6
P{ X = 3 | Y = 4} = 0 P{ X = 4 | Y = 4} = 0
xi ≤ x yi ≤ y
1 6
⎧0, ⎪1 ⎪ , ⎪ F ( x, y ) = ⎨ 2 ⎪5 , ⎪6 ⎪1, ⎩
5. 因为 X 与 Y 相互独立,所以
x < −1或y < 0;
− 1 ≤ x < 0, y ≥ 0;
x ≥ 0,0 ≤ y < 1; x ≥ 0, y ≥ 1.
P { X = x, Y = y} = P { X = x} ⋅ P {Y = y}
1 = 0. 6 1 = 1. 6 1 =0. 6 1 = 0. 6
3 0 4 0
X
P
1 0
2 1
(2) X 的边缘分布律 P{ X = 2} = p2⋅ = p21 + p22 + p23 + p24 = 0 + 由条件分布率
1 1 1 +0+ = 6 6 3
P{Y = y j | X = xi } =
1
13 2 xy 3 f X ( x) = ∫ f ( x , y ) dy = ∫ xy dy = 02 −∞ 2 +∞ 23
2
=
0 2Leabharlann x , 2 = 3y2,3x2 y 2 fY ( y ) = ∫ f ( x , y ) dx = ∫ xy dx = 02 −∞ 4
概率论第三章部分习题解答
x EX
f ( x )dx
2
有关方差的定理: 定理1
推论:Db
DaX b a 2 DX
0; D X b DX ; D(aX ) a 2 DX .
6
定理2: 若X与Y 独立, D X Y DX DY
n n 推论:D X i D X i i 1 i 1
所以X 的概率分布列为
X
PX xi
0
3 4
1
9 44
2
9 220
3
1 220
3 9 9 1 EX 0 1 2 3 0.3. 4 44 220 220 9 1 3 2 9 9 2 2 2 2 3 EX 0 1 2 . 44 220 220 22 4 9 9 2 2 DX EX EX 0.319. 22 100 X DX 0.565.
推论 (1)Ea a
定理2
E X Y E X E Y
n n 推论: E X i EX i . i 1 i 1
定理3 若X、Y 独立,则有:
E XY E X E Y
n n 推论 若X1 , X 2 ,, X n相互独立,则 X i EX i . E i 1 i 1
1、X与Y 的协方差(或相关矩):
定义 cov( X , Y ) E{[ X E ( X )][Y E (Y )]}. 注 ⑴ 离散型随机变量:
cov X , Y xi EX y j EY p xi , y j .
i j
概率论与数理统计第三章课后习题答案
习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin0sin sin0sin4346362(31).4=--+=-g g g g题3图说明:也可先求出密度函数,再求概率。
4.设随机变量(X,Y)的分布密度f(x,y)=⎩⎨⎧>>+-.,0,0,0,)43(其他yxA yxe求:(1)常数A;(2)随机变量(X,Y)的分布函数;(3)P{0≤X<1,0≤Y<2}.【解】(1)由-(34)00(,)d d e d d112x yAf x y x y A x y+∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得A=12(2)由定义,有(,)(,)d dy xF x y f u v u v-∞-∞=⎰⎰(34)340012e d d(1e)(1e)0,0,0,0,y y u vx yu v y x-+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y≤<≤<12(34)3800{01,02}12e d d(1e)(1e)0.9499.x yP X Yx y-+--=<≤<≤==--≈⎰⎰5.设随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<<<--.,0,42,2),6(其他yxyxk(1) 确定常数k ; (2) 求P {X <1,Y <3}; (3) 求P {X <}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83x x x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25ed d yy xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xy x x y x -==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他.8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ; (2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰522217d ,01,420,0,.y y x y x y y -⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.x x y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他 |1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立【解】(1) X 与Y 的联合分布律如下表3 4 5{}i P X x =YX13511C 10= 3522C 10= 3533C 10= 610 23511C 10= 3522C 10= 310 3 02511C 10= 110{}i P Y y =110 310 610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠===g 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为 2 5 8(1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立 【解】(1)X 和Y 的边缘分布如下表2 5 8 P {Y=y i }{}i P X x =(2) 因{2}{0.4}0.20.8P X P Y ===⨯g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y eXYXY(1)求X和Y的联合概率密度;(2)设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率.【解】(1)因1,01,()0,Xxf x<<⎧==⎨⎩其他;21e,1,()20,yYyf y-⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.yX Yx yf x y X Y f x f y-⎧<<>⎪=⎨⎪⎩g独立其他题14图(2) 方程220a Xa Y++=有实根的条件是2(2)40X Y∆=-≥故X2≥Y,从而方程有实根的概率为:22{}(,)d dx yP X Y f x y x y≥≥=⎰⎰21/2001d e d212[(1)(0)]0.1445.xyx yπ-==-Φ-Φ=⎰⎰15.设X和Y分别表示两个不同电子器件的寿命(以小时计),并设X和Y相互独立,且服从同一分布,其概率密度为f(x)=⎪⎩⎪⎨⎧>.,0,1000,10002其他xx求Z=X/Y的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z zP z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x yx y +∞≥==⎰⎰⎰⎰ 336231010101=d 12y y zy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<gg g 44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以{}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii k k n k i k n k P X i P Y k i n n p q p qi k i n n p qi k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布. 19.设随机变量(X ,Y )的分布律为(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律.【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,5i =所以V 的分布律为(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3,i =于是(4)类似上述过程,有20.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1) 求P {Y >0|Y >X }; (2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.xy R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=⎰⎰⎰⎰π2π/405π42π/401d d π1d d πRR r rR r r R θθ=⎰⎰⎰⎰3/83;1/24==(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和Y 的边缘分布律中的部分数值.试将其余数值填入表中的空白处.【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-= 而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====g ,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x === 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+== 即1,3111{},4248P X x Y y =++==从而131{,}.12P X x Y y === 同理21{},2P Y y ==223{,}8P X x Y y === 又31{}1j j P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=L .(2) {,}{}{|}P X n Y m P X n P Y m X n ======ge C (1),,0,1,2,.!m m n mnnp p n m n n n λλ--=-≤≤=g L 24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为1 0 11 0 1a 0b0 0.1 c其中a ,b ,c 为常数,且X 的数学期望E (X )=,P {Y ≤0|X ≤0}=,记Z =X +Y .求:XY(1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +=1 即 a+b+c = .由()0.2E X =-,可得0.1a c -+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为2,1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为Z 2 1 0 1 2P(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.习题四1.设随机变量X 的分布律为1 0 12求E (X ),E (X 2),E (2X +3). 【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯=(3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 【解】设任取出的5个产品中的次品数为X ,则X 的分布律为故 ()0.58300.34010.07020.00730405E X =⨯+⨯+⨯+⨯+⨯+⨯ 0.501,= 52()[()]iii D X x E X P ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=L3.设随机变量X 的分布律为1 0 1且已知E (X )=,E (X 2)=,求P 1,P 2,P 3. 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=g g ……②,222212313()(1)010.9E X P P P P P =-++=+=g g g ……③由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少【解】记A ={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑g 全概率公式001{}{}1().NNk k k P X k kP X k N N n E X N N========∑∑g5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-=6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U =2X +3Y +1; (2) V =YZ4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X -g 因独立 1184568.=⨯-⨯=7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X2Y ),D (2X 3Y ).【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ). 【解】因1001(,)d d d d 1,2xf x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k =210()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;,0,10,2其他x x f Y (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他 求E (XY ).【解】方法一:先求X 与Y 的均值 12()2d ,3E X x x x ==⎰g 5(5)5()e d 5e d e d 51 6.z y y z z E Y y yz z z +∞+∞+∞=-----=+=+=⎰⎰⎰令由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=g方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩g 其他于是11(5)2(5)552()2ed d 2de d 6 4.3y y E XY xy x x y x x y y +∞+∞----===⨯=⎰⎰⎰⎰g g10.设随机变量X ,Y 的概率密度分别为f X (x )=⎩⎨⎧≤>-;0,0,0,22x x x e f Y (y )=⎩⎨⎧≤>-.0,0,0,44y y y e 求(1) E (X +Y );(2) E (2X 3Y 2).【解】22-200()()d 2ed [e ]e d xx x X X xf x x x x x x +∞+∞+∞--+∞-∞==-⎰⎰⎰g201e d .2x x +∞-==⎰401()()d 4e dy .4y Y E Y yf y y y +∞+∞--∞==⎰⎰g22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰g 从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯=11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求(1) 系数c ;(2) E (X );(3) D (X ). 【解】(1) 由222()d e d 12k x cf x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 222()()d()2e d k x E X xf x x x k x x +∞+∞--∞==⎰⎰g22220π2ed .k x kx x +∞-==⎰(3) 22222221()()d()2e.k x E X x f x x x k x k +∞+∞--∞==⎰⎰g 故 222221π4π()()[()].24D X E X E X k k k⎛-=-=-= ⎝⎭ 12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=于是,得到X 的概率分布表如下:X 0 1 2 3 P由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和200元/41/411{100}{1}e d e 4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e.P Y P X -=-=<=-故1/41/41/4()100e(200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元).14.设X 1,X 2,…,X n 是相互独立的随机变量,且有E (X i )=μ,D (X i )=σ2,i =1,2,…,n ,记∑==n i i S X n X 12,1,S 2=∑=--n i i X X n 12)(11. (1) 验证)(X E =μ,)(X D =n2σ;(2) 验证S 2=)(11122∑=--ni i X n X n ;(3) 验证E (S 2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑g22111111()()n nn i i i i i i i D X D X D X X DX n n n ===⎛⎫== ⎪⎝⎭∑∑∑g 之间相互独立 2221.n n nσσ==g (2) 因222221111()(2)2nnnniii ii i i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX ===+-=-∑∑g故22211()1ni i S X nX n ==--∑. (3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+同理因2(),()E X u D X nσ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥ ⎪-⎝⎭⎣⎦∑g g15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X ,Y )=1,计算:Cov (3X2Y +1,X +4Y3).【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=-(因常数与任一随机变量独立,故Cov(X ,3)=Cov(Y ,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的. 【解】设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰g同理E (Y )=0. 而 Cov(,)[()][()](,)d d X Y x E x y E Y f x y x y +∞+∞-∞-∞=--⎰⎰g222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关. 下面讨论独立性,当|x |≤1时,1()X f x y 当|y |≤1时,1()Y f y x . 显然()()(,).X Y f x f y f x y ≠g 故X 和Y 不是相互独立的.17.设随机变量(X ,Y )的分布律为1 0 110 1验证X和Y是不相关的,但X和Y不是相互独立的.【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律易求得X,Y及XY的分布律,其分布律如下表X11P 382838Y101P 382838XY101P 284828由期望定义易得E(X)=E(Y)=E(XY)=0.从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0,即X与Y的相关系数为0,从而X和Y是不相关的.又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=-g从而X与Y不是相互独立的.18.设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov(X,Y),ρXY.【解】如图,S D=12,故(X,Y)的概率密度为题18图2,(,),(,)0,x y Df x y∈⎧=⎨⎩其他.()(,)d d DE X xf x y x y =⎰⎰1101d 2d 3xx x y -==⎰⎰g22()(,)d d DE X x f x y x y =⎰⎰11201d 2d 6xx x y -==⎰⎰从而222111()()[()].6318D XE X E X ⎛⎫=-=-= ⎪⎝⎭同理11(),().318E Y D Y == 而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-g . 从而112XY ρ-===-19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY . 【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x x x y y +∞+∞-∞-∞==+=⎰⎰⎰⎰g ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰g 从而222ππ()()[()] 2.162D XE X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+- 又 π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故 2ππππ4Cov(,)()()()1.2444X Y E XY E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭g222222π4Cov(,)(π4)π8π164.πππ8π32π8π32()()2162XYX Y D X D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+-g 20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X 2Y 和Z 2=2X Y 的相关系数.【解】由已知知:D (X )=1,D (Y )=4,Cov(X ,Y )=1.从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X Y D Y =--+=-+=⨯-⨯+⨯=故 121212513.26()()134Z Z D Z D Z ρ===⨯g21.对于两个随机变量V ,W ,若E (V 2),E (W 2)存在,证明:[E (VW )]2≤E (V 2)E (W 2).这一不等式称为柯西许瓦兹(Couchy Schwarz )不等式.【证】令2(){[]},.g t E V tW t R =+∈显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈g g可见此关于t 的二次式非负,故其判别式Δ≤0, 即2220[2()]4()()E VW E W E V ≥∆=-g2224{[()]()()}.E VW E V E W =-g故222[()]()()}.E VW E V E W ≤g22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X ~E (λ),E (X )=1λ=5. 依题意Y =min(X ,2). 对于y <0,f (y )=P {Y ≤y }=0. 对于y ≥2,F (y )=P (X ≤y )=1.对于0≤y <2,当x ≥0时,在(0,x )内无故障的概率分布为P {X ≤x }=1eλx,所以F (y )=P {Y ≤y }=P {min(X ,2)≤y }=P {X ≤y }=1ey/5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题三1. 箱子里装有12只开关,其中只有2 只次品,从箱中随机地取两次,每次取一只,且设随机变量X ,Y 为⎩⎨⎧=⎩⎨⎧=.,1,0;,1,0若第二次取得次品若第二次取得正品若第一次取得次品若第一次取得正品,Y ,X试就放回抽样与不放回抽样两种情况,写出X 与Y 的联合分布律. 解:先考虑放回抽样的情况:.361122122}1,1{,3651210122}0,1{,3651221210}1,0{,362512101210}0,0{=⨯====⨯====⨯====⨯===Y X P Y X P Y X P Y X P则此种情况下,X 与Y 的联合分布律为再考虑不放回抽样的情况.661111122}1,1{,3351110122}0,1{,3351121210}1,0{,22151191210}0,0{=⨯====⨯====⨯====⨯===Y X P Y X P Y X P Y X P2. 将一硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示在三次中出现正面次数与出现反面次数之差的绝对值,试写出(X,Y )的联合分布律及边缘分布律.解:由已知可得:X 的取值可能为0,1,2,3;Y 的取值可能为1,3;则由硬币出现正面和反面的概率各为21,可知83212121}1,2{,0}3,1{,83212121}1,1{,81212121}3,0{(0}0,0{2313=⨯⨯=======⨯⨯====⨯⨯======C Y X P Y X P C Y X P Y X P Y X P 此种情况不可能发生).81212121}3,3{0}1,3{0}3,2{=⨯⨯=========Y X P Y X P Y X P3. 把三个球随机地投入三个盒子中去,每个球投入各个盒子的可能性是相同的,设随机变量X 与Y 分别表示投入第一个及第二个盒子中的球的个数,求二维随机变量(X,Y)的概率分布及边缘分布. 解:由已知可得:X 的取值可能为0,1,2,3;Y 的取值可能为0,1,2,3;则271313131}0,0{=⨯⨯===Y X P , 91313131}1,0{13=⨯⨯===C Y X P 91313131}2,0{23=⨯⨯===C Y X P ,271313131}3,0{=⨯⨯===Y X P 91313131}0,1{13=⨯⨯===C Y X P ,92313131}1,1{1213=⨯⨯===C C Y X P 91313131}2,1{13=⨯⨯===C Y X P 0}3,1{===Y X P ,91313131}0,2{23=⨯⨯===C Y X P91313131}1,2{23=⨯⨯===C Y X P0}3,2{}2,2{======Y X P Y X P271313131}0,3{33=⨯⨯===C Y X P 0}3,3{}2,3{}1,3{=========Y X P Y X P Y X P则二维随机变量(X,Y )的概率分布及边缘分布为4. 设(X,Y)的概率密度为⎪⎩⎪⎨⎧<<<<--=.,0,42,20),6(81),(其它y x y x y x f求:(1) P ﹛(x,y )∈D ﹜, 其中D=﹛(x,y )|x<1,y<3﹜; (2) P ﹛(x,y )∈D ﹜, 其中D=﹛(x,y )|x+y<3﹜. 解:(1) ∵D={(x,y)|x<1,y<3}∴83)6(81),(}),{(103213=--==∈⎰⎰⎰⎰∞-∞-dxdy y x dxdy y x f D y x P (2) ∵D={(x,y)|x+y<3}∴245)6(81),(}),{(1032=--==∈⎰⎰⎰⎰-xDdxdy y x dxdy y x f D y x P 5. 设(X,Y)的概率密度为⎪⎩⎪⎨⎧≤++-=.,0,),(),(22222其它R y x y x R c y x f 求:(1) 系数c ;(2) (X,Y)落在圆()R r r y x <≤+222内的概率. 解:(1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f ,得1)(22222=+-⎰⎰≤+dxdy y x R c R y x ,可求得33R c π=(2) 设222|),{(r y x y x D ≤+=,则)321(3)(3),(}),{(3223222R r R dxdy y x R R dxdy y x f D Y X P Dr y x -=+-==∈⎰⎰⎰⎰≤+ππ6. 已知随机变量X 和Y 的联合概率密度为⎩⎨⎧≤≤≤≤=.,0,10,10,4),(其他y x xy y x f求X 和Y 的联合分布函数.解:∵随机变量X 和Y 的联合概率密度为⎩⎨⎧≤≤≤≤=.,0,10,10,4),(其他y x xy y x f∴当x<0,或y<0时,F(x,y)=0;当10,10≤≤≤≤y x 时,2204=y} Y x , P{X =y)F(x ,y x XYdXdY x y⎰⎰=≤≤当1,10>≤≤y x 时,20104=y} Y x , P{X =y)F(x ,x XYdXdY x ⎰⎰=≤≤当10,1≤≤>y x 时,21004=y} Y x , P{X =y)F(x ,y XYdXdY y⎰⎰=≤≤当1,1>>y x 时,14=y} Y x , P{X =y)F(x ,1010⎰⎰=≤≤XYdXdY综上可得,X 和Y 的联合分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤<<1,1 110,1 1,10 10,100,00=y)F(x,2222y x y x y y x x y x y x y x 或7. 设二维随机变量(X,Y)的概率密度为 ⎩⎨⎧<<<≤+=.,0,60,60),(),(其他y x y x k y x f(1) 求常数k ;(2) 求 P ﹛0<x<2,1<y ≤3﹜; (3) 求X,Y 的边缘概率密度; (4) 判断X 与Y 是否相互独立.解:(1) 由概率密度的性质有⎰⎰+∞∞-+∞∞=1),(dxdy y x f 即1)(6060⎰⎰=+dxdy y x k ,有2161=1216k k ∴= (2) ⎰⎰=+=≤<<<2031181)(2161}31,20{dxdy y x y x P(3) X 的边缘概率密度为⎰+∞∞-=dy y x f x f X ),()(∴当0≤x<6时,363)(2161)(6+=+=⎰x dy y x x f X 当x<0或x ≥6时,显然有0)(=x f X⎪⎩⎪⎨⎧<≤+=∴.,0,60,363)(其他x x x f XY 的边缘概率密度为⎰+∞∞-=dx y x f y f Y ),()( ∴当0<y<6时,363)(2161)(6+=+=⎰y dy y x y f Y 当y ≤0或x ≥6时,显然有0)(=y f Y⎪⎩⎪⎨⎧<<+=∴.,0,60,363)(其他y y y f Y(4) 的表达式易知,及从)()(y f x f Y X ),()()(y x f y f x f Y X ≠ ∴X 与Y 不相互独立.8.已知随机变量X 1和X 2的概率分布为而且P{X 1X 2=0}=1.(1) 求X 1和X 2的联合分布; (2) 问X 1和X 2是否独立?为什么? 解:由1}0{21==X X P ,可知021=X X 必然成立.0}0{21=≠∴X X P由}1,1{}1,0{}1,1{}1{2121212=======-===X X P X X P X X P X P 得21}1{}1,0{221=====X P X X P 同理可得:41}0,1{,41}0,1{2121=====-=X X P X X P , 而}0,1{}1,0{}0,1{}0,0{}0{2121212121==+==+=-=+====X X P X X P X X P X X P X X P 04141211}0,1{}1,0{}0,1{}0{}0,0{2121212121=---===-==-=-=-====X X P X X P X X P X X P X X P 综上可得,1X 和2X 的联合分布为(2)}0{}0{}0,0{2121==≠==X P X P X X P可知1X 和2X 不独立.9. 设随机变量X 与Y 相互独立,且都服从()b b ,- 上的均匀分布,求方程02=++Y tX t 有实根的概率.解:方程02=++Y tX t 有实根的充要条件是042≥-Y X ,由于随机变量X 与Y 相互独立,所以随机变量(X ,Y )的联合概率密度为⎪⎩⎪⎨⎧<<-<<-=其他,0,,,41),(2b y b b x b by x f下面分两种情况讨论: (1)当40≤<b 时,如图24214),(}4{4222b dy dx b dxdy y x f y X P Dbbx b+===≥⎰⎰⎰⎰-- (2) 当4>b 时,如图bdy dx b dxdy b dxdy b dxdy y x f y X P Dbbbx D D32141414),(}4{224222221-=-=-===≥⎰⎰⎰⎰⎰⎰⎰⎰-综上可得:方程02=++Y tX t 有实根的概率为⎪⎪⎩⎪⎪⎨⎧>-≤<+=≥-.4,321,40,2421}04P{2b bb bY X另解:方程02=++Y tX t 有实根的充要条件是 042≥-Y X令),(,121x F X Z Z 其分布函数为=),(,422x F Y Z Z 其分布函数为-= 则当x<0时,0)(1=x F Z 则当0≤x ≤b 2时{}x X x P x X P X Z P x F Z ≤≤-=≤=≤=}{}{)(211由于X 与Y 都服从()b b ,-上的均匀分布,即其密度函数各为⎪⎩⎪⎨⎧≤≤-=⎪⎩⎪⎨⎧≤≤-=其他其他,0,21)(,0,21)(Y by b by f bx b bx f X 当0≤x ≤b 2时,bxdt b x F xx Z ==⎰-21)(1 当x >b 2时显然有.1)(1=x F Z∴Z 1的概率密度函数为⎪⎩⎪⎨⎧≤≤=.00,2)(21其他b x bxx F Z而当时,b x 4≥1)4(01}4{1}4{)(2=-≤--=-<-=≤-=b x xY P x Y P x F Z 当-4b<x<4b 时,bxb x b dt b x Y P x F xb Z 821)4(211}4{1)(42+=≤-≤--=-<-=⎰--当x ≤-4b 时,0)4(11}4{1)(2=≥--=-<-=b xx Y P x F Z∴Z 2的概率密度函数为⎪⎩⎪⎨⎧≤≤-=.44,81)(2其他b x b b x F Z又由于随机变量X 与Y 相互独立,∴Z 1 和Z 2也相互独立. 又设Z= Z 1 +Z 2,,则,分布函数为其密度函数为dx x z f x f f x F x Z Z Z Z Z ⎰+∞∞--=)()()z ()()(f而⎰∞--=-=≥=≥-02)(1)0(1}0{}04{dz z f F Z P Y X P Z Z ∵b>0,而当z ≤-4b ,]4,4[b b x -∈时,04≤+b z 此时0)(=z f Zb dx bx b z f b b z b b z Z 818121)(44402=⋅=-≤<-⎰+时,当即⎪⎪⎪⎩⎪⎪⎪⎨⎧-≥-≤<-+-≤=.4,81,44,84,4,0)(222b b z bb b z b b bz b z z f Z ),时,(即当04402≤-≤<b b b 242182112181841}04P{04442222bb b dz b dz b b z Y X b b bb b+=+--=-+-=≥-⎰⎰--- ),时,(即》当0442>-b b b bdz b b z Y X b321841}04P{0422-=+-=≥-⎰- 综上可得:方程02=++Y tX t 有实根的概率为⎪⎪⎩⎪⎪⎨⎧>-≤<+=≥-.4,321,40,2421}04P{2b bb bY X10. 设(X,Y )的概率密度为⎩⎨⎧<<=-.,0,0,),(其他y x e y x f y求边缘概率密度和{}.1≤+Y X P 解:X 的边缘概率密度为⎰+∞∞-=dy y x f x f X ),()(,当x ≤0时,0)(=x f X 当x>0时,⎰+∞--==x x y X e dy e x f )(Y 的边缘概率密度为⎰+∞∞-=dx y x f y f Y ),()(当x ≤0时,0)(=y f Y ,当y>0时,⎰--==yy y Y ye dx e y f 0)(⎩⎨⎧>≤=⎩⎨⎧>≤=∴--000)(.000)(y yey y f x ex x f yY xX而⎰⎰⎰⎰⎰-------+=-==≤+==≤+2102111210121)(}1|),{((),(1}Y P{X ee dx e e dy e dx y x y x D dxdy y xf x x xxy D其中11. 设X,Y 相互独立,其概率密度为⎩⎨⎧≤>=⎩⎨⎧≤≤=-.0,0,0,)(.,0,10,1)(y y e y f x x f y Y X 其他 求Z=X+Y 的概率密度.解:由已知得 ⎰+∞∞--=dx x z f x f z f Y X Z )()()( 当z<0时,)0,10(0)(≤-≤≤=x z x z f Z 时当 当0≤z ≤1时,z z z x Z e dx e z f ---==⎰1)(0 当z >1时,z z x Z e e dx e z f ---==⎰)1()(1∴Z=X+Y 的概率密度为⎪⎩⎪⎨⎧>-≤≤-<=--1)1(10100)(z e e z e z z f z zZ12. 设随机变量(X,Y )的概率密度为⎩⎨⎧<<<<=.,0,10,0,3),(其他x x y x y x f求Z=X —Y 的概率密度. 解:∵Z=X —Y 的分布函数为 ⎰⎰⎰⎰≤-+∞∞-+∞-==≤-=≤=zY X zx Z dyy x f dx dxdy y x f z Y X P z Z P z F ),(),(}{}{)(∴Z=X —Y 的概率密度为⎰+∞∞--==dx z x x f z F z f Z Z ),()()('⎩⎨⎧<<<<=.,0,10,0,3),(其他x x y x y x f0)(,0x 1=∴≤-≥z f z z Z 时,当, ,0)(,x 0=∴≥-≤z f x z z Z 时,当),1(23xdx 3)(1021z z f z Z Z -==<<⎰时,当 ∴Z=X —Y 的概率密度为⎪⎩⎪⎨⎧<<-=.,0,10),1(23)(2其他z z z f Z13. 设随机变量(X,Y )的概率密度为(),,21),(22222+∞<<∞-=+-y x ey x f y x σπσ求22Y X Z +=的概率密度.解:设22Y X Z +=的分布函数为)(z F Z当0≤Z 时,0}{}{)(22=≤+=≤=z Y X P z Z P z F Z 当0>Z 时,222222222222022222212121}{)(σπσσσπσθπσz zY X y x y x Z erdred dxdy ez Z P z F -≤++-+-===≤=⎰⎰⎰⎰∴22Y X Z +=的概率密度⎪⎩⎪⎨⎧>≤=-.0,21,0,0)(222z e z z F zZ σσ14. 设二维随机变量(X,Y )在矩形(){}10,20|,≤≤≤≤=y x y x G 上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率密度f(s). 解:由已知可得随机变量(X,Y )的概率密度为⎪⎩⎪⎨⎧≤≤≤≤=.,010,20,21),(其他,y x y x f设边长为X 和Y 的矩形面积S 的分布函数为F(s),则 ⎰⎰≤=≤=≤=sxy )f(x,s}{}{)dxdy y XY P s S P s F (∴.0)0=≤s F S (时,当2)ln 2(ln 2222121)y ,()20220102ss s s dx x s dy dx dy dx dy x f dx s F S sx s s s x s+-=+=+==<<∴⎰⎰⎰⎰⎰⎰⎰(时,当)1(121)22≥==≥⎰⎰xsdy dx s F S x s(时,当 ∴矩形面积S 的概率密度⎪⎩⎪⎨⎧≥≤<<-=2,0,020),ln 2(ln 21)(s s s s s f 或15.设X 和Y 为两个随机变量,且{}{},740{}0,730,0=≥=≥=≥≥Y P X P Y X P 求{}.0),m ax (≥Y X P解:{}{}0,00,0}0{<≥+≥≥=≥Y X P Y X P X P {}{}173740,0}0{0,0=-=≥≥-≥=<≥∴Y X P X P Y X P 同理可求{}710,0=≥<Y X P{}{}{}{}10,00,00,00,0=<<+≥<+<≥+≥≥Y X P Y X P Y X P Y X P 又{}7271717310,0=---<<∴Y X P {}{}{}.757210,010),max (10),max (=-=<<-=<-=≥∴Y X P Y X P Y X P16. 设(X,Y )的联合概率密度为 (),,10021),(1001002122+∞<<∞-•=⎪⎪⎭⎫ ⎝⎛+-y x ey x f y x π求:(1){};Y X P < (2)边缘概率密度; (3) ).|(|x y f X Y 解:(1)由已知,得⎰⎰⎰⎰<∞+∞-∞+⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+-•=•=<yxy x y x dy edx dxdy e Y X P x 100100211001002122221002110021}{ππ同理可知⎰⎰∞+∞-∞+⎪⎪⎭⎫ ⎝⎛+-•=>yy x dx edy Y X P 100100212210021}{π}{}{Y X P Y X P >=<∴而0}{==Y X P又1}{}{}{==+>+<Y X P Y X P Y X P21}{}{=>=<∴Y X P Y X P (2)X 的边缘概率密度为)(210110021),()(20010010021222+∞<<-∞=•==-∞+∞-⎪⎪⎭⎫ ⎝⎛+-∞+∞-⎰⎰x edy edy y x f x f x y x X ππ由于f(x,y)关于x,y 地位的对称性,得)(2101)(2002+∞<<-∞=-y ey f y Y π17. 设X,Y 是相互独立且服从同一分布的两个随机变量,已知X 的分布律为),3,2,1(31}{===i i X P 又设},,min{},,max{Y X Y X ==ηξ试写出变量),(ηξ的分布律及边缘分布律并求}.{ηξ==P解:由已知得:,913131}1{}1{}1,1{}1,1{=⨯=========Y P X P Y X P P ηξ0}3,1{}2,1{======ηξηξP P,9231313131}2{}1{}1{}2{}2,1{}1,2{}1,2{=⨯+⨯===+=====+=====Y P X P Y P X P Y X P Y X P P ηξ,913131}2{}2{}2,2{}2,2{=⨯=========Y P X P Y X P P ηξ,0}3,2{===ηξP,9231313131}3{}1{}1{}3{}3,1{}1,3{}1,3{=⨯+⨯===+=====+=====Y P X P Y P X P Y X P Y X P P ηξ,9231313131}3{}2{}2{}3{}3,2{}2,3{}2,3{=⨯+⨯===+=====+=====Y P X P Y P X P Y X P Y X P P ηξ913131}3,3{}3,3{=⨯======Y X P P ηξ则变量),(ηξ的分布律及边缘分布律为:而.31919191}{=++===ηξP18. 设X 关于Y 的条件概率密度为⎪⎩⎪⎨⎧<<=其他,,0,0,3)|(32|y x y x y x f Y X而Y 的概率密度为⎩⎨⎧<<=其他,,0,10,5)(4y y y f Y求.21⎭⎬⎫⎩⎨⎧>X P解:由已知得:⎩⎨⎧<<<<=•=其他,010,0,15)()|(),(2|y y x y x y f y x f y x f Y Y X ⎰⎰⎰⎰==+∞<<-∞>==>∴121212644715}),21x {D (),(}21{P Y Dydx x y dxdy y x f X 其中19. 设(X,Y )的概率密度为⎩⎨⎧≤≤≤≤+=其他,0,10,10,),(y x y x y x f求:(1)},max{Y X Z =的概率密度; (2)},min{Y X Z =的概率密度.解:(1) 设},max{Y X Z =的分布函数为)(z F Z ,概率密度为)(z f Z ,则当0≤Z 时,0),(}},{max{}{)(},max{==≤=≤=⎰⎰≤zY X Z dxdy y x f z Y X P z Z P z F当10≤<Z 时,33302},max{22)2()(),(}{)(z zz dx xz z dyy x dx dxdy y x f z Z P z F zz zzY X Z =+=+=+==≤=⎰⎰⎰⎰⎰≤当z>1时, ⎰⎰≤≤≤≤=+=≤=10101)(}{)(y x Z dxdy y x z Z P z F},max{Y X Z =∴的概率密度为⎩⎨⎧≤≤=.,0,10,3)(2其他z z z f Z(2) 设},min{Y X Z =的分布函数为的分布函数为)(z F Z ,概率密度为)(z f Z ,则当1≥Z 时,101},{1}}{m in{1}{1}{)(=-=>>-=><-=>-=≤=Z Y Z X P Z Y X P z Z P z Z P z F Z 则当0≤Z 时,11},{1}}{m in{1}{1}{)(=-=>>-=><-=>-=≤=Z Y Z X P Z Y X P z Z P z Z P z F Z 则当10<<Z 时,⎰⎰-+=+-=>>-=≤=1132)(1},{1}{)(z zZ z z z dy y x dx Z Y Z X P z Z P z F},min{Y X Z =∴的概率密度为⎩⎨⎧≤≤-+=.,0,10,321)(f 2其他z z z z Z20. 假设一电路装有三个同种电器元件,其工作状态相互独立,且无故障工作时间都服从参数为0>λ的指数分布,当三个元件都无故障时,电路正常工作,否则整个电路不能正常工作.试求电路正常工作的时间T 的概率分布.解:用)3,2,1(=i X i 表示第i 个电气元件无故障工作的时间,则321,,X X X 相互独立且同分布,其分布函数为⎩⎨⎧≤>-=-0,00,1)(x x e x F x λ 设G(t)是T 的分布函数.当t ≤0时,G(t)=0;当t>0时,有te t F t X P t X P t X P t X t X t X P t T P t T P t G λ333213211)](1[1}{}{}{1},,{1}{1}{)(--=--=>>>-=>>>-=>-=≤=⎩⎨⎧≤>-=∴-.0,0,0,1)(3t t e t G t λ 电器正常工作的时间T 的概率分布服从参数为λ3的指数分布.。