第三章模拟信号的数字化传输
模拟信号数字化过程的三个步骤
模拟信号数字化过程的三个步骤嘿,咱来唠唠模拟信号数字化的三个步骤哈。
第一个步骤是抽样。
这抽样就好比是从一大锅汤里舀一勺尝尝。
模拟信号就像那锅汤,连绵不断的。
咱得从这连续的信号里挑出一些点来,就像从汤里舀出一勺一样。
比如说,一个声音信号是一直变化的,咱们不能把每一个瞬间的声音都记录,那太麻烦啦。
所以就每隔一段时间取一个样,这个时间间隔很重要,就像舀汤的频率一样。
要是间隔太长,就像好久才舀一勺汤,那可能就错过很多味道啦,信号就会丢失很多信息。
要是间隔太短呢,又像不停地舀汤,太浪费啦,而且也没必要。
就像咱听广播,广播的信号抽样得合适,咱才能听清楚声音。
第二个步骤是量化。
这量化啊,就像是把抽样得到的东西分类。
比如说,咱把身高分成几个档,一米五以下是一档,一米五到一米六是一档,这样类推。
对于抽样后的模拟信号,咱们得把信号的幅度划分成不同的等级。
就像把声音的大小分成几个等级,小声、中等声、大声之类的。
这个等级划分得越细,还原出来的信号就越准确。
但是划分太细也有麻烦,就像把身高划分得太细,每厘米一个档,那太复杂啦。
这量化就像是给信号穿上了一件有尺码的衣服,让它变得规规矩矩的,方便后面的处理。
第三个步骤是编码。
这编码就像是给量化后的信号编个密码。
为啥要编密码呢?因为这样才能让机器读懂这些信号,然后存储或者传输。
就像咱们写信,得用大家都懂的文字来写。
编码就是把量化后的信号变成机器能识别的代码,比如用0和1组成的代码。
这就好比把不同尺码的衣服用一种特别的方式标记,机器看到这个标记就知道这是啥衣服啦。
咱举个例子哈。
就像咱们用手机录声音。
手机录声音的时候,首先就是抽样,它会按照一定的频率从声音这个模拟信号里抽取样本。
然后进行量化,把声音的大小分成不同的等级,这样就把连续变化的声音变成了一个个有等级的信号。
最后进行编码,把这些等级信号变成手机能存储的代码,这样声音就被数字化啦,咱们就能把声音存在手机里,想啥时候听就啥时候听。
自动控制原理-模拟信号的数字化
和 fH 之间,则必须的最低抽样率为:
f s 2B 2 f H nB/ n
带通信号的最小抽样速率也可用以下公式:
fs 2B1 M / N
其中:N是小于 f H /B的最大整数(当 f H 刚好是 B的整数倍时,N就为该倍数)
M fH / B N
插值:把量化信号恢复成模拟信号
平滑:恢复成原来的模拟信号
量化特性及噪声分析
所谓量化特性:是指量化输入信号x(n)与 量化输出信号y(n)之间的函数关系。信号的量化 特性主要取决于量化器的特性和信号本身的特性。
量化的结果使信号只能取有限个量化电平值之 一,所以量化过程不可避免地要造成误差,这种 量化误差产生的噪声叫做量化噪声。
其中第一位 C1表示量化值的极性正负后面的7位分为段落 码和段内码两部分,用于表示量化值的绝对值。其中第2至4 位( C2C3C4)是段落码,共计3位,可以表示8种斜率的段落; 其他4位( C5C6C7C8)为段内码,可以表示每一段落内的16种 量化电平。段内码代表的16个量化电平是均匀划分的。
7
f fH
H
(
f
)
1 0
xo (t)
h(t)
xs (t)
1 Ts
sin 2 fHt 2 fHt
k
x(kTs )
(t
kTs )
1 Ts
k
x(kTs )
sin 2 fH (t kTs ) 2 fH (t kTs )
1 Ts
k
x(kTs )sa[2
fH (t
kTs )]
(c)
fs+fL
f
带通信号的抽样频谱(fs=2fH)
数字音视频技术讲义第三章 模拟信号数字处理
短距离传送PCM信号是采用并行 传送方式,即每一个抽样的N个码位 以及为收、发同步用的抽样时钟, 在n+1条传输线中并行传送。 中、远距离传输时采用全串行传 送方式,即对n个码位首先进行并/ 串转换,然后在同一条线路上依次 传出。
*3.2 彩色电视图像信号的 数字编码
• ~两种PCM编码方式:全信号编码和分 量编码。 • 全信号编码是对彩色电视信号直接进行 编码。 • 分量编码是对亮度信号及两个色差信号 (或对三个基色信号)分别进行编码。
• 满足正交结构的条件是抽样频率是 行频的整数倍。 • 根据副载频与行频的偏置关系,只 当时fs=4fsc才形成正交抽样结构。 • 抽样频率较高可降低模拟低通滤波 器及数字滤波器的设计难度。随着 器件速度的提高和成本的下降,4fsc 抽样频率目前被广泛地采用。
二、量化等级
• 在全信号编码中,一般采用四舍五入的 均匀量化。主观实验表明,为获得满意 的图像质量,一般采用8bit量化。当编解 码次数较多时,考虑到量化噪波的累积, 应采用9-10bit量化。
3.2.2 分量编码
一、抽样频率 • 主观实验表明,当亮度信号Y的带宽为 5.8~6MHz、两个色差信号R-Y和B-Y的 带宽2MHz时,可获得满意的图像质量。 • 分量编码时,一般应先根据需要,用低 通滤波器适当地限制三个分量信号的带 宽。所选定的抽样频率应不小于2.2倍信 号最高频率。
• 三个分量信号的抽样频率之间以及它们与 行频之间,一般应有整数倍的关系,以便 于时分复用和形成正交抽样结构。• 考 虑 525 行 制 和 625 行 制 的 兼 容 性 , Y/RY/B-Y的抽样频率为:13.5/6.75/6.75MHz。 • 色差信号的抽样频率为亮度信号的2/4,简 称为4:2:2标准。根据标准,525行制亮 度信号的每行样点数为858,625行制为864, 色差信号每行样点数均为亮度信号的一半 。
模拟信号数字化过程
模拟信号数字化过程数字化信号的数字化需要三个步骤:抽样、量化和编码。
抽样是指⽤每隔⼀定时间的信号样值序列来代替原来在时间上连续的信号,也就是在时间上将模拟信号离散化。
量化是⽤有限个幅度值近似原来连续变化的幅度值,把模拟信号的连续幅度变为有限数量的有⼀定间隔的离散值。
编码则是按照⼀定的规律,把量化后的值⽤⼆进制数字表⽰,然后转换成⼆值或多值的数字信号流。
这样得到的数字信号可以通过电缆、微波⼲线、卫星通道等数字线路传输。
在接收端则与上述模拟信号数字化过程相反,再经过后置滤波⼜恢复成原来的模拟信号。
上述数字化的过程⼜称为脉冲编码调制。
抽样话⾳信号是模拟信号,它不仅在幅度取值上是连续的,⽽且在时间上也是连续的。
要使话⾳信号数字化并实现时分多路复⽤,⾸先要在时间上对话⾳信号进⾏离散化处理,这⼀过程叫抽样。
所谓抽样就是每隔⼀定的时间间隔T,抽取话⾳信号的⼀个瞬时幅度值(抽样值),抽样后所得出的⼀系列在时间上离散的抽样值称为样值序列。
抽样后的样值序列在时间上是离散的,可进⾏时分多路复⽤,也可将各个抽样值经过量化、编码变换成⼆进制数字信号。
理论和实践证明,只要抽样脉冲的间隔T≤1/(2fm)(或f≥2fm)(fm是话⾳信号的最⾼频率),则抽样后的样值序列可不失真地还原成原来的话⾳信号。
例如,⼀路电话信号的频带为300~3400Hz,fm=3400Hz,则抽样频率fs≥2×3400=6800Hz。
如按6800Hz的抽样频率对300~3400Hz的电话信号抽样,则抽样后的样值序列可不失真地还原成原来的话⾳信号,话⾳信号的抽样频率通常取8000Hz。
对于PAL制电视信号。
视频带宽为6MHz,按照CCIR601建议,亮度信号的抽样频率为13.5MHz,⾊度信号为6.75MHz。
量化抽样把模拟信号变成了时间上离散的脉冲信号,但脉冲的幅度仍然是模拟的,还必须进⾏离散化处理,才能最终⽤数码来表⽰。
这就要对幅值进⾏舍零取整的处理,这个过程称为量化。
通信原理课件:模拟信号的数字传输
数字信号传输过程中的误差
讨论数字信号传输过程中的量化误差、信道误差和解调误差,并探索如何降 低这些误差。
数字信号传输过程的相关参数
介绍采样率、量化位数和信噪比等与数字信号传输相关的重要参数,并解释它们的意义和影响。
数字信号传输的应用
探索数字音频的传输、视信号的数字传输以及数字通信系统在各个领域的应 用。
结论与总结
总结数字传输技术的优势与不足,并展望未来数字传输技术的发展趋势。
通信原理课件:模拟信号 的数字传输
模拟信号的数字传输是通信原理中的重要概念。通过将模拟信号转换为数字 信号,我们可以实现更高的传输效率和更低的传输误差。
模拟信号的数字传输概述
模拟信号与数字信号的差异以及模拟信号的数字传输的必要性。探讨模拟信 号的数字PCM)、Δ-调制(Delta)和组合型编码(DPCM)等常用的模拟信号数字化方法。
模拟信号的数字化
模拟信号的数字化一、 实验原理与目的模拟信号的数字化包括:抽样,量化和编码。
本文主要是对模拟信号从采样到量化再到编码的整个过程做一个比较全面的matlab仿真,同时也对不同的采样频率所采取的信号进行了比较。
模拟信号首先被抽样,通常抽样是按照等时间间隔进行的,虽然在理论上并不是必须如此的。
模拟信号抽样后,成为了抽样信号,它在时间上离散的,但是其取值仍是连续的,所以是离散的模拟信号。
第二步是量化,量化的结果使抽样信号变成量化信号,其取值是离散的。
故量化信号已经是数字信号了,它可以看成多进制的数字脉冲信号。
第三步是编码,最基本的和最常用的编码方法是脉冲编码调制(PCM ),它将量化后的信号变成二进制码。
由于编码方法直接和系统的传输效率有关,为了提高传输效率,常常将这种PCM 信号进一步作压缩编码,再在通信系统中传输。
二、 抽样抽样:在等时间间隔T 上,对它抽取样值,在理论上抽样可以看作是用周期单位冲激脉冲和模拟信号相乘,在实际上是用周期性窄脉冲代替冲激脉冲与模拟信号相乘。
对一个带宽有限的连续模拟信号进行抽样时,若抽样速率足够大,则这些抽样值就能够完全代替原模拟线号,并且能够由这些抽样值准确地恢复出原模拟信号。
因此,不一定要传输模拟信号本身,可以只传输这些离散的抽样值,接受端就能恢复原模拟信号。
描述这一抽样速率条件的定律就是著名的抽样定律,抽样定律为模拟信号的数字化奠定了理论基础。
抽样定律指出采样频率是:2sH ff对于本文中的信号定义为()(sin)s t A t 其中2ft 。
三、 量化模拟信号抽样后变成在时间上离散的信号,但是仍然是模拟信号,这个抽样信号必须经过量化后成为数字信号。
本文主要采用的是均匀量化,设模拟信号的取值范围是在a 和b 之间,量化电平时M,则在均匀量化时的量化间隔为b a M且量化区间的端点为i a i m若量化输出电平是i q取为量化间隔的中点,则:12i i im m q显然,量化输出电平和量化前信号的抽样值一般不同,即量化输出电平有误差。
第3章习题解答
《数字通信系统原理》教材习题解答第三章练习题33-1 填空(1)模拟信号在数字通信系统中的传输,首先必须把模拟信号转变为 数字信号 ,转换的方法有 脉冲编码调制 和增量调制等。
(2)衡量量化性能好坏的常用指标是 量化信噪比。
此值越大,说明量化性能越 好。
(3)非均匀量化的PCM 中,信号功率小时,量化噪声功率 小,适用于动态范围较宽的信号。
(4)目前,数字通信系统中采用两种压扩特性:一种是A 律压扩特性:另一种是 μ律压扩特性 。
(5)采用增量调制的目的是 简化模拟信号的数字化方法 :采用自适应增量调制的目的是 提高小信号的量化信噪比。
补充题:1.线性PCM 的量化噪声与信号功率大小有关吗?无关,它适用于动态范围小的信号。
2.在对数PCM 中,量化噪声功率与信号功率的定性关系是信号功率小,量化噪声功率就小,适用于动态范围大的信号。
在对数M 中,信号在某一段落内变化时,量化噪声功率是否变化?不变。
3.在对数PCM 和自适应增量调制中,抗噪声能力强的是自适应增量调制,量化噪声小的是对数PCM 。
4.均匀量化器的量化信噪比与编码位数的关系是编码增加1位,量化信噪比增大6dB ,非均匀量化器可以提高小信号的量化信噪比。
5.若A 律13折线PCM 编码器输入信号为直流且幅度等于最小量化间隔的1.5倍,则编码器的输出为10000001。
6.线性PCM 编码器的抽样信号频率为8kHz ,当信息速率由80kbit/s 下降到56kbit/s 时,量化信噪比增大18dB 。
3-2 试画出PCM 通信的原理图,并简述PCM 通信的过程。
3-3 PAM 信号、量化信号和PCM 信号属于什么类型的信号?3-4 对基带信号t t t g ππ4cos 3cos 2)(+=进行理想抽样。
(1)为了在接收端不失真地从已抽样信号中恢复出,怎样选取抽样间隔?(2)若抽样间隔为0.2s ,试画出已抽样信号的频谱。
解:(1)基带信号可以看成是低通信号,由于Hz f m 2=根据抽样定理,得Hz f f m s 42=≥(2)由已知得,抽样频率为Hz f s 52.01==。
模拟信号的数字化过程
模拟信号的数字化过程
模拟信号的数字化过程是指将连续变化的模拟信号转化为离散的数字信号的过程。
这个过程包括采样、量化和编码三个步骤。
1. 采样:采样是指在一段时间内以固定的时间间隔对模拟信号进行采样,获得一系列离散的采样值。
采样定理指出,为了正确地恢复模拟信号,采样率(采样频率)至少要是模拟信号的两倍。
2. 量化:量化是指将连续的采样值映射为有限个离散的取值。
量化过程中,将连续的采样值转换为最接近的离散取值,并用固定的精度表示。
采样值的表示精度决定了数字信号的分辨率。
3. 编码:编码是指将量化后的离散采样值转化为二进制编码,以便于数字信号的存储、传输和处理。
常用的编码方式有脉冲编码调制(PCM)、Δ调制(DM)、压缩编码(如Huffman
编码)等。
通过以上三个步骤,模拟信号就被转化为一系列离散的数字样本,即数字化的信号。
数字化的信号可以用于数字通信、数字存储、数字处理等各种应用。
在接收端,通过逆向的过程进行解码、量化和还原,可以恢复出近似的模拟信号。
电信模拟信号的数字传输
电信模拟信号的数字传输引言电信模拟信号是指连续变化的信号,其数值在一定时间和幅度范围内连续变化,例如声波信号和视频信号。
然而,随着科技的进步和数字技术的发展,数字信号成为了主流。
数字信号通过将连续变化的模拟信号转换成离散的数字形式,使得信号的处理和传输更加稳定和可靠。
本文将介绍电信模拟信号通过数字传输的基本原理和常见方法。
模拟信号的数字化和样点化在数字传输中,首先需要对模拟信号进行数字化和样点化。
数字化是将连续的模拟信号转换为离散的数字信号,而样点化则是将连续信号在一定的时间间隔内进行采样。
数字化的过程中,一个常用的方法是使用模数转换器(ADC)。
ADC将连续的模拟信号按照一定的采样率进行采样,并将每个采样值转换为对应的数字表示。
采样率决定了取样的频率,通常以每秒采样次数(赫兹)来表示。
样点化是将连续信号在一定的时间间隔内进行采样,并将每个采样值表示为数字形式。
采样间隔决定了模拟信号在时间领域中离散化程度的密集程度。
常用的采样间隔是每秒采样次数(赫兹)的倒数。
数字信号的压缩和编码在模拟信号转换为数字信号后,接下来需要对数字信号进行压缩和编码。
压缩是指通过减少数字信号中的冗余信息来减小信号的数据量。
常用的压缩算法有无损压缩和有损压缩。
无损压缩保持信号的完整性,减小大小,但不会影响信号的质量。
而有损压缩则会牺牲一部分信号的质量来减小信号的数据量。
编码是将数字信号转换为特定的编码形式,以便在传输过程中进行解码。
常见的编码方法包括脉冲编码调制(PCM)和差分脉冲编码调制(DPCM)。
PCM将每个样本值按照一定的规则编码为固定长度的二进制数,而DPCM则根据当前样本值与前一样本值的差异来编码。
数字信号的传输和解码在数字信号的传输中,需要通过信道将数字信号从发送端传输到接收端。
由于信道存在噪声和其他干扰,可能会引起信号失真。
因此,传输过程中需要对信号进行调制和解调。
调制是将数字信号转换为适合传输的模拟信号。
数字信号
通信系统可以分为模拟和数字通信系统两大类。
数字通信系统有很多优点,应用非常广泛,已经成为现代通信的主要发展趋势。
自然界中很多信号都是模拟量,我们要进行数字传输就要将模拟量进行数字化,将模拟信号数字化,处理可以分为抽样,量化,编码,这三个步骤。
下图是模拟信号数字传输的过程原理图:下图是模拟信号数字化过程:1.1抽样是把时间上连续的模拟信号变成一系列时间上离散的抽样值得过程。
抽样定理:设一个频带限制的(0,fit)Hz内的时间连续信号m(t)如果它不少于2fit次/s的速率进行抽样,则m(t)可以由抽样值完全确定。
抽样定理指出,由样值序列无失真恢复原信号的条件是fs大于等于2fit,为了满足抽样定理,要求模拟信号的频谱限制在0~fit之内。
为此,在抽样之前,先设置一个前置低通滤波器,将模拟信号的带宽限制在fit以下,如果前置低通滤波器特性不良或抽样频率过低都会产生折叠噪声。
抽样频率小于2倍频谱最高频率时,信号的频谱有混叠。
抽样频率大于2倍频谱最高频率时,信号灯频谱无混叠。
取样分为冲激取样和矩形脉冲取样,这里只详细介绍冲激取样的原理和过程,矩形脉冲取样的原理和冲激取样的是一样的,只不过取样函数变成了矩形脉冲序列。
数学运算与冲激取样是一样的。
冲激取样就是通过冲激函数进行取样。
上图就是简化的信号转换离散的数字信号抽样过程,其中f(t)是连续的时间信号,也就是模拟信号,在送到乘法器上与s(t)取样脉冲序列进行乘法运算,事实上取样脉冲序列就是离散的一个个冲激函数,右边部分的fs(t)就是变成了一个个离散的函数点了。
下面给出抽样的数字运算过程。
下面给出抽样过程的冲激抽样的函数过程:因此:另外要注意的是,采样间隔的周期要足够的小,采样率要做够的大,要不然会出现如下图所示的混叠现象,一帮情况下TsWs=2π,Wn>2Wn。
1.2对离散数字信号序列量化量化就是利用预先规定的有限个电平来表示模拟信号抽样值得过程。
数字通信系统传输模拟信号的步骤
数字通信系统是一种利用数字技术来传输和处理信息的通信系统。
在数字通信系统中,传输模拟信号是其中一个重要的步骤。
本文将从以下四个方面探讨数字通信系统传输模拟信号的步骤。
一、采样在数字通信系统中,信号首先需要经过采样的步骤。
采样是指将连续时间信号在一定时间间隔内取样,转换成离散时间信号。
在进行采样时,需要确定采样频率,即在一秒钟内对信号进行取样的次数。
采样频率的选择需要根据信号的带宽进行决定,通常选择的采样频率是信号带宽的两倍以上,以避免出现混叠失真。
二、量化采样得到的信号是连续幅度的,为了将其转换成数字形式,还需要经过量化的步骤。
量化是指将连续幅度范围划分成若干个离散值,并将每个采样值与最接近的离散值相对应。
在量化时,需要确定量化级数和量化误差。
量化级数越多,表示对信号的描述越准确,但同时会增加数据的存储和传输需求。
量化误差则是指量化所引入的误差,通常采用均方根误差来描述。
三、编码经过采样和量化后,信号的幅值和时间都已经离散化了,但还需要经过编码步骤将其转换成数字形式。
编码是将量化后的信号转换成二进制形式的过程。
在数字通信系统中,常用的编码方式包括脉冲编码调制(PCM)、Δ调制(DM)等。
编码的目的是为了方便信号的传输和处理,并且可以提高传输的可靠性和抗干扰能力。
四、传输最后一步是将经过采样、量化和编码的数字信号进行传输。
数字信号的传输可以通过有线或者无线的方式进行。
在有线传输中,可以利用光纤、同轴电缆等介质进行传输;而在无线传输中,则通过无线电波来进行传输。
在传输过程中,需要注意信号的调制解调、信道编码等环节,以提高传输的性能和可靠性。
数字通信系统传输模拟信号的步骤主要包括采样、量化、编码和传输四个方面。
这些步骤的合理实现可以有效地保证模拟信号在数字通信系统中的准确传输和可靠处理。
希望通过本文的介绍,读者对于数字通信系统传输模拟信号的步骤有更为深入的了解。
数字通信系统传输模拟信号的步骤是数字通信中至关重要的部分, 可以看出传输模拟信号需要多个步骤, 下文将进一步讨论这些步骤的细节和相关技术。
现代通信原理与技术
现代通信原理与技术《现代通信原理与技术(第三版)》张辉课后思考题答案第⼀章绪论1-1.什么是数字信号和模拟信号?两者的区别是什么?答:数字信号是⼀种离散的、脉冲有⽆的组合形式,是负载数字信息的信号;模拟信号是指信号⽆论在时间上或是在幅度上都是连续的。
区别:模拟信号的信号参量的取值连续(不可数,⽆穷多),⽽数字信号的信号参量只可能取有限个值。
1-2.何谓数字通信?简述数字通信系统的主要优缺点?答:数字通信是⽤数字信号作为载体来传输消息,或⽤数字信号对载波进⾏数字调制后再传输的通信⽅式。
它可传输电报、数字数据等数字信号,也可传输经过数字化处理的语声和图像等模拟信号。
优点:(1)抗⼲扰能⼒强,且噪声不积累;(2)差错可控,可以采⽤信道编码技术使误码率降低,提⾼传输的可靠性;(3)易于与各种数字终端接⼝,⽤现代计算机技术对信号进⾏处理,加⼯,变换,存储,从⽽形成智能⽹;(4)易于集成化,从⽽使通信设备微型化;(5)易于加密处理,且保密强度⾼。
缺点: (1)占⽤频带较宽;(2)技术要求复杂,尤其是同步技术要求精度很⾼;(3)进⾏模/数转换时会带来量化误差。
1-3. 画出数字通信系统的⼀般模型,并简述各⼩⽅块的主要功能。
答:如下各⼩⽅块主要功能:信息源:信源(信息源,也称发终端)的作⽤是把待传输的消息转换成原始电信号,如电话系统中电话机可看成是信源。
信息源编码器:主要实现信源编码。
信源编码的作⽤之⼀是提⾼信息传输的有效性,即通过某种数据压缩技术来减少冗余度(减少信息码元数⽬)和降低数字信号的码元数率。
信道编码器:实现信道编码的功能。
信道编码是以提⾼信息传输的可靠性为⽬的的编码。
通常通过增加信源的冗余度来实现。
采⽤的⼀般⽅法是增⼤码率或带宽。
与信源编码正好相反。
数字调制器:主要实现数字调制功能。
数字调制就是把数字基带信号的频谱搬移到⾼频处,形成适合在信道中传输的频带信号。
信道:传输信号的物理媒质。
数字解调器:对频带信号进⾏相⼲解调或⾮相⼲解调还原为数字基带信号。
模拟信号的数字传输
量化负责把时间离散和幅度连续的抽样信号 转换为时间和幅度离散的数字信号
编码负责将量化后的信号编码形成一个二进 制码组,即形成数字信号
本书的 封面
走信息路 读北邮书
A/D转换三个过程
抽样实现了模拟信号的时间离散, 量化实现了信号的幅度离散, 编码实现了数字信号的二进制序列表示。
走信息路 读北邮书
本书的 封面
均匀量化及其量化误差
走信息路 读北邮书
本书的 封面
均匀量化与量化误差
均匀量化对于大信号和小信号引起的量化误 差是均匀分布的
均匀量化对小信号是不利的,有可能会导致 信号强度低于噪声的情况而把信号淹没。
均匀量化的量化台阶是常数,所以对大信号 影响较小,对小输入信号非常不利,即量化 噪声对信号的影响程度不同,而通信系统中 的语音信号多为小信号,为了克服这个缺点, 改善小信号时的信噪比,在实际应用中常采 用非均匀量化。
信号经过抽样后还应当包含原信号中所有 信息,也就是说能无失真的恢复原模拟信 号。
抽样速率的下限是由奈奎斯特抽样定理确 定的。
走信息路 读北邮书
本书的 封面
奈奎斯特抽样定理
一个频带限制在0~fm内的低通信号m(t),如 果抽样频率fs≥2fm,则可以由抽样序列无失 真地重建恢复原始信号m(t)。
也就是说,若要传输模拟信号,不一定要传 输模拟信号本身,只需传输满足抽样定理要 求的抽样值即可。
模拟信号数字化传输框图
图5-1 模拟信号数字化传输系统框图
由图5-1可见,模拟信号数字化传输一般需三个步骤:
(1)编码:模数转换(A/D),把模拟信号数字化, 将原始的模拟信号转换为时间离散和值离散的数 字信号;
模拟信号数字无线传输系统的设计
目录摘要 (1)关键词 (1)Abstract (1)Key words (2)1 前言 (2)1.1 选题的目的与意义 (2)1.2 简述模拟信号与数字信号 (2)2 设计任务与要求 (2)2.1 设计任务 (2)2.2 基本要求 (3)3 总体方案设计与方案论证 (3)3.1总体方案设计 (3)3.2 方案论证与选择 (4)3.2.1 无线传输方式的选择 (4)3.2.2 模数转换 (4)4 硬件电路与软件设计的实现 (8)4.1 硬件电路的实现 (8)4.1.1 控制处理器外围电路 (10)4.1.2 红外发射电路的实现 (10)4.1.3 模数转换电路的实现 (10)4.2 软件设计 (11)4.2.1 发射机软件设计 (11)5 系统调试与调试中的问题 (12)5.1 模数转换的调试 (12)5.2 红外发射接收的调试 (12)参考文献 (13)附录 (13)附录 1 发射机程序 (13)模拟信号数字无线传输系统的设计摘要通信系统分为模拟通信系统和数字通信系统,如果我们在发送端的信息源中包括一个模/数转换装臵,在接收端包括一个数/模转换装臵,在发送端与接收端之间通过红外作为载波进行通信,则可以实现模拟信号数字无线传输。
本文主要从三个方面进行设计与实现:(1)AT89S51单片机对A/D转换器的控制,从而对模拟信号进行抽样、量化、编码后转换为数字信号;(2)单片机对数字信号进行编码与38Khz 红外载波调制通过红外线发射;(3)接收机接收到的调制信号经红外接收头进行解调还原数字信号,再经单片机的处理,通过D/A,以及信号的放大,最后再经过低通滤波器还原成模拟信号,从而实现模拟信号数字无线传输演示的全过程。
关键词:模拟信号数字传输;无线传输;红外通信;模数转换Analog Digital Wireless Transmission CommunicationSystemAbstractCommunication system is divided into analog communication systems and digital communication systems, if we send the client's information sources include a A / D converter, the receiver includes a D / A converter, in between the transmitter and the receiver as by infrared carrier to communicate, you can transmit analog signal digital infrared communications. This article mainly focuses on three aspects: (1) AT89S51microcontroller on the A / D chip to control the analog signal sampling, quantization, encoded into digital signals; (2) single chip digital signal processing and modulation 38KHZ IR through infrared emission; (3) base station receives the first modulated signal by the infrared receiver to demodulate digital signal reduction by the microcontroller processing, through the D / A, and signal amplification and finally through the reduction of low-pass filter into an analog signal, in order to achieve different place communication.Key words: Analog signal digital transmission ;wireless transmission ;infrared communication ;analog _digital conversion1前言1.1选题的目的与意义移动通信是现代通信技术和计算机技术高度发展和紧密结合的产物。
通信原理考试复习大纲(10电子+通信)
通信原理考试复习大纲第一章绪论1.通信系统的一般模型框图。
2.评价一个通信系统优劣的主要性能指标。
(分别对应模拟和数字通信系统)3.码元速率、信息速率的概念及关系。
4.比特率、波特率、误码率和误信率的定义。
5.离散信源的统计特性。
6.信息量、熵(平均信息量)和信道容量的公式、定义及计算。
7.最大熵出现的条件及计算式。
8.由香农公式推出的结论(四条,还有一个具有指导意义的结论)。
第二章信道1.信道分类2.天波、地波、视线传播3.信道的数学模型:调制信道、编码信道第三章模拟信号的数字化1.脉冲编码调制(PCM)的基本原理及框图。
2.调制定理、低通和带通抽样定理及公式计算。
3.自然抽样、平顶抽样、理想抽样4.对数量化——A律和μ律压扩,重点是A律压缩特性各方面问题。
5.编码——码型选择(重点是折叠二进制码)、码位选择及安排、逐次比较编码器原理(参看课件)6.线性码与非线性码之间的对应关系(参看课件及例题)第四章时分复用和频分复用1.复用的目的和分类。
2.频分复用、时分复用原理及应用。
3.PCM基群——PCM30/32路(A律压扩特性)制式和PCM24路(μ律压扩特性)帧结构及参数求解。
第五章数字信号的基带传输1.基带传输系统的基本结构框图。
2.常见数字基带信号的码型(包括单极性非归零码、双极性不归零码、单极性归零码、双极性归零码、差分码、数字双相码、密勒码、传号反转码(CMI码)、AMI码、HDB3码),会画图。
3.部分响应基带传输系统的定义、差错传播及克服方法。
4.眼图模型及各部分含义。
第六章m序列产生、性质及应用。
第七章数字信号的载波传输1.二进制幅度(振幅)键控(2ASK)原理、调制实现方法(模拟相乘和数字键控法)、解调原理框图。
2.二进制移频键控(2FSK)原理、调制实现方法(模拟调频和数字键控法)、解调(非相干解调和相干解调)原理框图、常用而且简便的解调方法是过零检测法原理框图。
3.二进制移相键控(2PSK)原理、调制实现方法(模拟相乘和数字键控法)、相干解调原理框图。
数字通信系统的模型
数字通信系统的模型∙数字通信系统的分类∙数字通信系统可进一步细分为数字频带传输通信系统、数字基带传输通信系统、模拟信号数字化传输通信系统。
1. 数字频带传输通信系统数字通信的基本特征是,它的消息或信号具有“离散”或“数字”的特性,从而使数字通信具有许多特殊的问题。
例如前边提到的第二种变换,在模拟通信中强调变换的线性特性,即强调已调参量与代表消息的基带信号之间的比例特性;而在数字通信中,则强调已调参量与代表消息的数字信号之间的一一对应关系。
另外,数字通信中还存在以下突出问题:第一,数字信号传输时,信道噪声或干扰所造成的差错,原则上是可以控制的。
这是通过所谓的差错控制编码来实现的。
于是,就需要在发送端增加一个编码器,而在接收端相应需要一个解码器。
第二,当需要实现保密通信时,可对数字基带信号进行人为“扰乱”(加密),此时在收端就必须进行解密。
第三,由于数字通信传输的是一个接一个按一定节拍传送的数字信号,因而接收端必须有一个与发端相同的节拍,否则,就会因收发步调不一致而造成混乱。
另外,为了表述消息内容,基带信号都是按消息特征进行编组的,于是,在收发之间一组组的编码的规律也必须一致,否则接收时消息的真正内容将无法恢复。
在数字通信中,称节拍一致为“位同步”或“码元同步”,而称编组一致为“群同步”或“帧同步”,故数字通信中还必须有“同步”这个重要问题。
综上所述,点对点的数字通信系统模型一般可用图 1-3 所示。
需要说明的是,图中调制器 / 解调器、加密器 / 解密器、编码器 / 译码器等环节,在具体通信系统中是否全部采用,这要取决于具体设计条件和要求。
但在一个系统中,如果发端有调制 / 加密 / 编码,则收端必须有解调 / 解密 / 译码。
通常把有调制器 / 解调器的数字通信系统称为数字频带传输通信系统。
2. 数字基带传输通信系统与频带传输系统相对应,我们把没有调制器 / 解调器的数字通信系统称为数字基带传输通信系统,如图 1-4 所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非均匀量化:所谓非均匀量化,指当信号幅度小时,量化台阶也小,信号幅度大时,量化台阶也大,以改善量化性能。
• 3.2.4 自适应差分脉冲编码调制
● 发展过程:1972年CCITT制定了G.711 64kb/s PCM语音编码标准,CCITT G.711A规 定的A律和μ律PCM采用非线性量化,在64kb/s的速率语音质量能够达到网络等级,当前 已广泛应用于各种数字通信系统中。由于它是一维统计语音信号,当速率进一步减小时, 将达不到网络等级所要求的话音质量。对于许多应用,尤其在长途传输系统中,64kb/s 的速率所占用的频带太宽以至通信费用昂贵,因此人们一直寻求能够在更低的速率上获 得高质量语音编码质量的办法。于是在1984年CCITT又提出了32kb/s标准的G.721 ADPCM 编码。ADPCM充分地使用了语音信号样点间的相关性,利用自适应预测和量化来解决语 音信号的非平稳特点,在32kb/s速率上能够给出符合公用网的要求的网络等级语音质量。
• PCM是一种最典型的语音信号数字化的波形编码方式,其系统原理,首先,在发送端 进行波形编码 (主要包括抽样、量化和编码三个过程),把模拟信号变换为二进制码
组。编码后的PCM码组的数字传输方式可以是直接的基带传输,也可以是调制后的调
制传输。在接收端,二进制码组经译码后还原为量化后的样值脉冲序列,然后经低通
P6
+
1)
8
×本段长度
第8个比较电平=本段的起始电平+(1
2
P5
+
1 4
P6
+
1 8
P7
+
1 16
)
×本段长度
确“1定”P5,P6相P7反P8,时编,为用“ms0”t 分。别经与上第述54、项6比、较7、后8,个可比获较得电段平内进码行。比较,如果ms t 大,相应码编为
• 解码方法
解码的作用是把收到的PCM信号还原成相应的PAM样值信号,即进行D/A变换。A律13折线解码器 原理框图如下图3-10所示,它与逐次比较型编码器中的本地译码器基本相同。所不同的是P8在本 地译码器中不作为反馈信号,而在解码器中还需考虑。
• 码字与码型
• 音信号多采用二进制数字编码。编码时,每个量化级都用若干比特的二进制码组表示, 这一组二进制数字称为码字信号。如果把所有的量化级按其量化电平大小的次序排列起 来,并列出各自对应的码字信号,这个整体就称为码型。对于M个量化电平,可以用N位 二进制码来表示,其中的每一个码组称为一个码字。
• 奈奎斯特取样定理 对于上限频率为fh的带限信号,如果用fs≥2fh的信号对它进行取样,则原信号将
被所得到的取样值完全地确定,可以通过截止频率为fh的理想低通滤波器完全地恢复原信 号 例如:设模拟信号具有图3-3a、b的波形和频谱,其最高频率为fh,取样信号s(t)是一个周 期为Ts的矩形脉冲序列,取样频率为fs,脉冲宽度为τ,幅度为A则其频谱如下图所示。
• 均匀量化
• 下图是一个量化过程的原理示意图。图中,横坐标表示取样电压,从幅度上看,它仍是连 续的,用纵坐标表示量化电平,即幅度被离散处理后的电压
• 化后的信号uk t 是原来信号u(t)的近似,当取样速率一定,量化电平数增加并且量化 电平选择适当时,可以提高量化uk t 与u(t)的近似程度。均匀量化的量化误差为: e t = uk t − u(t)
3.1信源编码(A/D)
• 在通信系统中,信源的任务是把原始消息转换为原始电信号,实际 上就是一个能量变换器,比如电话的送话器就是把声波信号转换成 可以在通信系统中处理的模拟的电信号
信源编码主要任务 • 其一,是将信源送出的模拟电信号数字化,即A/D转换。 • 其二,是将信源输出的数字信号按实际信息的统计特性进行变换,
• 均匀量化的严重缺点:随输入信号幅度的下降,信噪比将严重恶化。因为在量化器确 定后,N和∆确定,随输入信号幅度的下降,相当于被量化的级数小于N,使量化误差 增大,噪声增大。当输入小信号时,因信噪比严重恶化,将使小信号的复原极为困难。
• 非均匀量化
• 为克服均匀量化过程中造成的小信号量化信噪比恶化的缺点,提出了非均匀量化。所谓非均匀 量化,指当信号幅度小时,量化台阶也小,信号幅度大时,量化台阶也大,以改善量化性能。
128 16 2048
代表一个量化单位;第八段最长,它是归一化值的1/2,将它等分16小段后,每一小段归 一化长度为1/32,包含64个最小量化间隔,记为64∆。如果以非均匀量化时的最小量化 间隔∆=1/2048作为输入x轴的单位,那么各段的起点电平分别是0、16、32、64、128、 256、512、1024个量化单位。
• 以上分析是正方向,而语音信号是双极性信号,因此在负方向也有与正方向对称的 一组折线,也是7根,但其中靠近零点的1、2段斜率也为16,与正方向的第1、2段折
线斜率相同,因此可以合并为一根,故而正负方向一共有13根折线组成,称之为13
折线。
3.编码与解码
• 把量化后的信号电平值变换成二进制码组的过程称为编码,其逆过程称为解码或译码。 编码器的任务就是要根据输入的样值脉冲编出相应的8位二进制码,除第一位极性码 外,其它7位二进制码是通过类似于天平称重物的过程来逐次比较确定的。这种编码 器就是PCM通信中常用的逐次比较型编码器,由取样、整流、保持、比较、本地译码 等单元组成
利用数字通信系统传输模拟信号,一般需三个步骤:
• 把模拟信号数字化, 即模数转换(A/D) • 进行数字方式传输 • 把数字信号还原为模拟信号, 即数模转换 (D/A)
模拟信号的数字化传输带来的好处
当数字信号经过多次转换、中继、远距离传输后不会使信噪比恶化,而 模拟信号经过多次中继后会产生额外的信噪比恶化,降低传输信号的质 量。而且,模拟信号数字化以后可以很方便地进行时分或码分多路传输, 从而可有效地提高信道的利用率。
极性码 段落码
段内码
P1
P2P3P4
P5P6P7P8
• 13折线编码方法中,虽然各段内的16个量化级是均匀的,但因段落长度不等,故不同 段落间的量化级是非均匀的。小信号时,段落短,量化间隔小;反之,量化间隔大。13 折线中的第一、二 段最短,只有归一化的1/128,再将它等分16小段,每一小段长度为 1 × 1 = 1 。这是最小的量化级间隔,它仅有输入信号归一化值的1/2048,记为∆,
• 列出每一量化段的起始电平、量化电平,从而可以确定段落码及段内码。
• 段内码的编码方法
段内编码方法和段落码类似,其比较电平可按下式计算:
第5个比较电平=本段的起始电平+ 1 ×本段长度
2
第6个比较电平=本段的起始电平+(1
2
P5
+
1)
4
×本段长度
第7个比较电平=本段的起始电平• 当取样信号对模拟信号进行取样时,相当于将m(t)与s(t)相乘,从而获得如图3-3e 所示的波形,从频谱上看,是将m(t)的频谱搬到s(t)的各项谐波的两边。
• 从图3-3f不难看出,只要各频带之间不发生重叠,则每一个频带都包含了 m(t)的 信息。如果将已取样的信号通过截止频率为fh的理想低通滤波器,就可获得原信号 m(t)。显然各频带要不发生重叠,则需满足如下条件:fs≥2fh。
第三章
模拟信号的数字化传输
本章内容
• 抽样定理及其应用 • 模拟信号的量化、编码与译码 • PCM技术与增量调制技术 • 量化过程及A律13折线编码; • 差分脉冲编码调制的编码、解码过程
数字通信系统具有许多优点而成为当今通信发展的主流方向, 然而自然界的许多信息经各种传感器感知后都是模拟量,例 如电话、电视等通信业务,其信源输出的消息都是模拟信号。
A律13折线具体方法是
把输入x轴和输出y轴用两种不同的方法划分。对x轴在0~1 (归一化)范围内不均匀 分成8段,分段的规律是每次以二分之一对分,对y轴在0~1 (归一化)范围内采用等 分法,均匀分成8段,每段间隔均为1/8。然后把x,y各对应段的交点连接起来构成8 段直线,得到如图3-8所示的折线压扩特性,其中第1、2段斜率相同(均为16),因此 可视为一条直线段,故实际上只有7根斜率不同的折线。
• 由取样定理知,若传递一个模拟基带信号,不需要传送模拟基带信号本身,而只需 传送取样值即可。这种取样过程相当于进行了调制,所以也称脉冲振幅调制 (PAM)。
• 3.2.3 量化 • 量化 就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。 • 量化分为均匀量化和非均匀量化
• 实现非均匀量化的方法之一是把输入量化器的信号x先进行压缩处理,再把 压缩的信号y进行均 匀量化。所谓压缩器就是一个非线性变换电路,微弱的信号被放大,强的信号被压缩。压缩器 的入出关系表示为:
y = f(x)
• 接收端采用与压缩特性相反的扩张器来恢复x。广泛采用的两种对数压扩特性是μ律压扩 和A律压扩。美国采用μ律压扩,我围和欧洲各国均釆用A律压扩。
• PCM中常用的二进制码型有三种:
自然二进制码
折叠二进制码
循环二进制码
• 编码方法
• 在PCM通信编码中,折叠二进码比自然二进码和循环二进码优越,它是A律13折线 PCM30/32路基群设备中所采用的码型。
在13折线编码中,普遍采用8位二进制码,对应有M = 28 = 256个量化级,即正、负输入 幅度范围内各有128个量化级,这需要将 13折线中的每个折线段再均匀划分16个量化级, 由于每个段落长度不均匀,因此正或负输入的8个段落被划分成8x16 = 128个不均匀的量 化级。按折叠二进码的码型,这8位码的安排如下: