统计学第八章

合集下载

统计学-第八章 假设检验

统计学-第八章  假设检验
验和单侧检验。以总体均值μ 的检验为例:
假设 原假设
双侧检验
单侧检验
左侧检验 右侧检验
H0 : m =m0 H0 : m m0 H0 : m m0
备择假设 H1 : m ≠m0 H1 : m <m0 H1 : m >m0
三、假设检验的程序---
4.例题分析
[例8.1] 某品牌洗衣粉在它的产品说明书中声称:平 均净含量不少于1250克。从消费者的利益出发,有关研 究人员要通过抽检其中的一批产品来验证该产品制造商 的说明是否属实。试写出用于检验的原假设与备择假设。
2.接受域:概率P>的区域,为大概率区域,称之 为原假设的接受区域。
3.拒绝域:概率P≤的区域,为小概率区域,称之 为原假设的拒绝区域。
三、假设检验的程序---
1.拒绝原假设H1 原则:临界值
2.接受原假设H0 原则:临界值
检验统计值的绝 对值大于临界值;
检验统计值的绝 对值小于临界值;
假设 H0为真实 H0为不真实
接受H0 判断正确
采伪错误()
拒绝H0 弃真错误()
判断正确
四、假设检验中的两类错误
第I类()错误和第II类()错误的关系
和的关系就像 翘翘板,小就 大, 大就小。
你要同时减少两类 错误的惟一办法是 增加样本容量!
关乎决策:三个与其
与其,人为地把显著性水平固定按某一水平上,不 如干脆选取检验统计量的P值;
第二节 一个正态总体的假设检验
二、均值m的假设检验
3.给出显著性水平(0.01、0.05或0.1)
4.确定接受域和拒绝域(以双侧检验为例)

2已知:当Z Z 2
,则拒绝原假设,反之则接受H0;

统计学(第八章抽样推断)

统计学(第八章抽样推断)

统计学(第⼋章抽样推断)第⼋章抽样推断【教学⽬的】抽样推断是统计研究中⼀种重要的分析⽅法。

通过本章的学习,要求掌握利⽤样本统计资料来推断总体数量特征的原理及⽅法;深刻理解抽样推断的概念及特点;了解抽样误差产⽣的原因,并对抽样误差、抽样平均误差、抽样极限误差加以区别,掌握抽样平均误差、抽样极限误差的计算;掌握点估计和区间估计的⽅法;掌握必要样本单位数的确定⽅法。

第⼀节抽样推断概述⼀、抽样推断的概念及特点(⼀)概念按随机原则从总体中抽取部分单位,根据这部分单位的信息对总体的数量特征进⾏科学估计与推断的⽅法。

包括抽样调查和统计推断抽样调查:⼀种⾮全⾯调查,按随机原则从总体中抽取部分单位进⾏调查以获得相关资料,以推断总体统计推断:根据抽样调查所获得的信息,对总体的数量特征作出具有⼀定程度的估计和推断。

(⼆)特点1.按随机原则(等可能性原则)抽取调查单位.随机抽样的⽬的是为了排除⼈的主观影响,使每个样本都有系统的可能性被抽中,使样本对总体具有充分的代表性。

随机性原则是保证抽样推断正确性的⼀个重要前提条件。

随机抽样不是随便抽样。

2.根据部分推断总体的数量特征3.抽样推断的结果具有⼀定的可靠性和准确性,抽样误差可以事先计算和控制其他特点有经济性、时效性、准确性、灵活性等(三)抽样推断的应⽤ 1.不可能进⾏全⾯调查时 2.不必要进⾏全⾯调查时 3.检查⽣产过程正常与否4.对全⾯调查资料进⾏补充修正时⼆、抽样的⼏个基本概念 1.样本容量与样本个数(1)样本容量:样本是从总体中抽出的部分单位的集合,这个集合的⼤⼩称为样本容量,⼀般⽤n 表⽰,它表明⼀个样本中所包含的单位数。

⼀般地,样本单位数⼤于30个的样本称为⼤样本,不超过30个的样本称为⼩样本。

(2)样本个数:⼜称样本可能数⽬,它是指从⼀个总体中可能抽取多少个样本。

样本个数的多少与抽样⽅法有关。

2.总体参数与样本统计量(1)总体参数:总体分布的数量特征就是总体参数,也是抽样统计推断的对象。

统计学第八章课后题及答案解析

统计学第八章课后题及答案解析

第八章一、单项选择题1.时间数列的构成要素是()A.变量和次数 B.时间和指标数值C.时间和次数 D.主词和时间2.编制时间数列的基本原则是保证数列中各个指标值具有()A.可加性 B.连续性C.一致性 D.可比性3.相邻两个累积增长量之差,等于相应时期的()A.累积增长量 B.平均增长量C.逐期增长量 D.年距增长量4.统计工作中,为了消除季节变动的影响可以计算()A.逐期增长量 B.累积增长量C.平均增长量 D.年距增长量5.基期均为前一期水平的发展速度是()A.定基发展速度 B.环比发展速度C.年距发展速度 D.平均发展速度6.某企业2003年产值比1996年增长了1倍,比2001年增长了50%,则2001年比1996年增长了()A.33% B.50%C.75% D.100%7.关于增长速度以下表述正确的有()A.增长速度是增长量与基期水平之比 B.增长速度是发展速度减1C.增长速度有环比和定基之分 D.增长速度只能取正值8.如果时间数列环比发展速度大体相同,可配合()A.直线趋势方程 B.抛物线趋势方程C.指数曲线方程 D.二次曲线方程二、多项选择题1.编制时间数列的原则有()A.时期长短应一致 B.总体范围应该统一C.计算方法应该统一 D.计算价格应该统一E.经济内容应该统一2.发展水平有()A.最初水平 B.最末水平C.中间水平 D.报告期水平E.基期水平3.时间数列水平分析指标有()A.发展速度 B.发展水平C.增长量 D.平均发展水平E.平均增长量4.测定长期趋势的方法有()A.时距扩大法 B.移动平均法C.序时平均法 D.分割平均法E.最小平方法三、填空题1.保证数列中各个指标值的_______是编制时间数列的最主要规则。

2.根据采用的基期不同,增长量可以分为逐期增长量和_______增长量两种。

3.累积增长量等于相应的_______之和。

两个相邻的_______之差,等于相应时期的逐期增长量。

统计学第八章 抽样推断

统计学第八章 抽样推断


和P的使用及使用条件
(1)σ2取最大值;(2)P取接近于0.5的值
(3)可以用样本 s或2 代p替;(4)可以用估计值或实验值代替。
计算例题:
在10000只电池中,随机抽检1%的产品进行检查,检查结果如下:
电流强度 (安培) 4-4.5 4.5-5 5-5.5 5.5-6 6-6.5 6.5-7
2
f
P 2N 0 1 P 2 N1
f
N
P2N0 1 P2 N1 P2Q 1 P2 P
N
N
P2Q Q2P PQP Q PQ P1 P
例(1):已知某产品的合格率为95%,则其标准差为:
0.951 0.95 21.79%.
2、样本指标(统计量)
根据样本总体各单位的数量标志值或属性计算所得的指 标,称为样本指标。样本指标通常包括:
统计指标 抽样平均数 抽样成数 抽样平均数的标准差 抽样成数的标准差 抽样平均数的方差
抽样成数的方差
未分组资料
x x n
p n1 n
sx
xx 2
n
分组资料
x xf f
sx
x
2
x
f
f
sP p(1p)
s2
2
xx
x
n
sP2 p(1 p)
s2
2
xx f
x
f
四、抽样方法(P151)
(二)抽样极限误差的意义
(三)抽样极限误差的计算
平均数的抽样极限误差
Δx
t
μ x
成数的抽样极限误差
Δp
t
μ p
正态分布图示
68.27%
95.45%
99.73%

统计学——第八章 统计调查组织与实施

统计学——第八章 统计调查组织与实施

二、调查团队的组成及职责 (一)实施主管的职责
• 实施主管的职责主要有以下几个方面 :
1. 深入了解调查研究项目的性质、目的、以 及具体的实施要求 2. 负责制定实施计划和培训计划 3. 负责挑选实施督导和调查员(如果需要的 话) 4. 负责培训实施督导和调查员 5. 负责实施过程中的管理和质量控制 6. 负责评价督导和调查员的工作
(6)敌意--引起被调查者不强烈不满而影响后续回答。 (7)主办--对主办或赞助方的态度影响回答的客观性。
由于访问员的实际操作不当而产生的偏差。进行监督、
提醒
二、调查实施中的质量控制
1.督导
督导内容 督导方法 工作管理、再培训、财务和后勤管理。 现场指导、质量控制和检查、处理舞弊行为。
四、调查员应掌握的技巧
3.电话调查的技巧。
检验样本的可用性。受电话普及率的影响,抽样时要确定 样本可用。 事先准备好联系表。注明联系人的姓名、性别、电话号码、 调查时间等,以便调查顺利进行。 根据被调查者的背景确定调查的适当时间。可预约时间, 提高回收率。 做好试验性调查以确保被调查者能够理解问题。 调查时尽 量使用口语 在对公司人员进行电话调查时,不要使用职位头衔。 不同 公司可能有不同的称谓。 对公司人员进行调查时应能使对方说出被调查者的名字。 调查中随时通报调查的进展情况。
行动。如询问问题、记录均应标准化。
调查员必须知道的信息
7.调查员偏误:使调查员了解自己行为所致的偏误。 8.应答者的偏误:使调查员了解有应答者为讨好调 查员,会发生伪造的答案。 9.访问程序:掌握问卷及资料记录的程序。 10 .向调查员宣布时间要求、工作纪律等。
对调查员态度的培训
1. 认识自己工作的重要性,强调本次调查的重要性,对社

统计学第八章 时间序列分析

统计学第八章 时间序列分析

季节指数
乘法模型中的季节成分通过季节指数来反映。 季节指数(季节比率):反映季节变动的相
对数。 1、月(或季)的指数之和等于1200%(或
400%) 。 2、季节指数离100%越远,季节变动程度
越大,数据越远离其趋势值。
用移动平均趋势剔除法计算季节指数
1、计算移动平均值(TC),移动期数为4或 12,注意需要进行移正操作。
移动平均的结果 4000 3500 3000 2500 2000 1500 1000 500 0
Example 2
移动平均法可以作为测定长期趋势的一种 较为简单的方法,在股市技术分析中有广 泛的应用。比如对某只股票的日收盘价格 序列分别求一次5日、10日、一个月的移动 平均就可以得到其5日、10日、一个月的移 动平均股价序列,进而得到5日线、10日线、 月线,用以反映股价变动的长期趋势。
1987 1800 1992 1980 1997 2880
1988 1620 1993 2520 1998 3060
1989 1440 1994 2559 1999 2700
4000
3500
销售收入
3000
2500
2000
1500
1000
500
0
年份
2000 2001 2002 2003 2004
销售 收入 3240 3420 3240 3060 3600
部分数据
销售 收入
t
1985 1080
1
1986 1260
2
1987 1800
3
1988 1620
4
1989 1440
5
……

2003 3060
19

统计学第八章时间数列

统计学第八章时间数列

2020/1/19
增长速度growth rate 表明现象的增长程度
某现 基象 期报 水 告 平 报期 告 基的 期 期 基 增 水 水 期 长 平 平 发 水 量 展 平 1速
环比增长速度=环比发展速度-1 定基增长速度=定基发展速度-1
2020/1/19
增 1长 的 % 绝 环 对 逐 比 期 增 1 值 增 0 长 0上 长 1速 0 期 量 0度 水平
n 1
n 1
(5)间隔不相等不连续时点的时点数列
2020/1/19
aa1 2a2t1a2 2a3t2an12 antn1 t1t2tn1
增长量和平均增长量 •增长量growth amount
总量指标报告期水平与基期水平之差,表明 该指标在一定时期内增加或减少的绝对数量。
社会经济现象以若干年为周期的 涨落起伏相同或基本相同的一种 波浪式的变动
随机变动(I)
客观社会经济现象由于天灾、人 祸、战乱等突发事件或偶然因素 引起是无周期性波动
2020/1/19
一般模型 加法模型
Y=T+S+C+I
乘法模型 Y=T×S×C×I
分解方法
加法模型 T=Y-(S+C+I)
乘法模型
2020/1/19
✓水平法(几何平均法)
n
X
n
Xi
i1
n
an a0
适用:水平指标的平均发展速度计算
2020/1/19
✓方程法(累计法)
a 0 x a 0 x 2 a 0 x 3 a 0 x n a i
xx2x3xnai a0
适用:侧重于考察中长期间的累计总量
平均增长速度 = 平均发展速度-100% 表明现象在一个较长时期中逐期平均增长变化的程度

统计学第八章课后习题答案

统计学第八章课后习题答案

8.1解:建立假设: H0:μ=4.55;H1:μ≠4.55这是双侧检验,并且方差已知,检验的统计量 Z 值为:=-1.833而=1.96>|-1.833|,因此不能拒绝原假设,即可认为现在生产的铁水平均含碳量为 4.558.2解:建立假设: H0:μ≥700;H1:μ<700这是左侧检验,并且方差已知,检验统计量 Z 为:Z==-2而-=-1.645>-2,因此拒绝原假设,即在显著性水平 0.05 下这批元件是不合格的。

8.3解:建立假设: H0:μ≤250;H1:μ>250这是右侧检验,并且方差已知,检验的统计量 Z 值为:Z==3.33 而=1.645<3.33,因此拒绝原假设,即这种化肥使小麦明显增产。

8.4解:建立假设: H0:μ=100;H1:μ≠1009/108.055.4484.4−=Z Z 025.036/60700680−Z 05.025/30250270−Z05.0由样本数据可得: ==99.978S===1.212这是双侧检验,并且方差未知,又是小样本,故采用 t 统计量,检验统计量的值为: t==-0.054而(8)=2.306>|-0.054|,因此不拒绝原假设,即该日打包机工作正常8.5、由题意先建立假设,显然不符合标准的比例越小越好,由于采用的是产品质量抽查,即使总体不合标准的比例没有超过5%,属于合格范围,采用右单侧检验。

P=6/50=12%属于单侧检验,当α=0.05时,有,因此拒绝原假设,即认为该批食品不能出厂n X ni ix∑==195.100....7.983.99+++1)(12−−∑=n x ni i x 8)978.995.100(...978.99-7.98978.99-3.99222−+++)()(9/2122.1100-978.99t025.0%5:%,5:1>≤ππH H o 27.250%)51(%5%5%12=−−−=Z 27.2645.105.0<=Z8.6、由题意建立假设:单侧检验,并且方差未知,n=15,属于小样本,故采用t 统计量,检验统计量的值为:α=0.05,,因此不能拒绝原假设,认为该厂家的广告不真实8.7、建立假设:,由样本数据可以得出,这是单侧检验,并且方差未知,是小样本,因此采用t 检验量,检验统计量的值为25000:,25000:10>≤μμH H 549.115/50002500027000/0=−=−=n s x t μ549.1761.1)14(05.0>=t 225,22510>≤H H 5.24116170485 (2121012801591)=++++++==∑=nxx ni i7.9815)5.241170(....)5.241280()5.241159(12221=−++−+−=−=∑=n xs ni in s x t /μ−=669.016/7.982255.241=−=通过查表可得出,,因此不能拒绝原假设,没有理由认为元件的平均寿命显著地大于225小时。

统计学第八章

统计学第八章
19
8.1.3 两类错误
项目
没有拒绝H0
拒绝H0
H0为真
1-α(正确)
α(弃真错误)
H0为假
β(取伪错误)
1-β(正确)
假设检验中各种可能结果的概率
20
8.1.3 两类错误
α和β的关系: 1、 α和β的关系就像跷跷板, α小β就大, α大β就小。因为, 要减少弃真错误α,就要扩大接受域。而扩大接受域,就必然导致取 伪错误的可能性增加。因此,不能同时做到犯两种错误的概率都很 小。要使α和β同时变小,唯一的办法就是增大样本量。 α和β两者的 关系就像是区间估计当中可靠性和精确性的关系一样。 2、在假设检验中,大家都在执行这样一个原则,即首先控制犯α错 误原则。
一般来说,在研究问题的过程中,我们想要予以反对的那个结论, 我们就把它作为原假设。
比如,一家研究机构估计,某城市当中家庭拥有汽车的比例超过 30%。为了验证这种估计是否正确,该研究机构随机的抽取了一个样本 进行检验。试陈述用于检验的原假设和备择假设。
解:研究者想要收集证据予以支持的假设是:“该城市中家庭拥有 汽车的比例超过30%”。因此,原假设是总体比例小于等于30%,备择 假设是总体比例大于30%。可见,通常我们应该先确定备择假设,再确 定原假设。
6
8.1.2 假设的表达式
在假设检验中,一般要先设立一个假设(比如从来没做过坏事),然 后从现实世界的数据中找出假设与现实的矛盾,从而否定该假设。所以, 在多数统计教材当中,假设检验都是以否定事先设定的那个假设为目标的。
如果搜集到的数据分析结构不能否定该假设,只能说明我们掌握的现 实不足以否定该假设,但不能说明该假设一定成立。这是假设检验做结论 的时候尤其要注意的一点。比如一个人在数次的观察中都没有干坏事,但 并不说明他从来都没干过坏事。

统计学第八章课后作业答案

统计学第八章课后作业答案

第八章练习题
一、单项选择
(1)当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于( )。

A.相关关系
B.函数关系
C.回归关系
D.随机关系
(2)相关系数的取值范围是( )。

A. 0≤r ≤1
B. -1<r <1
C. -1≤r ≤1
D. -1≤r ≤0
(3)一元线性回归方程y=12+3.6x,如x每增加1个单位,则y平均增加( )。

A. 12个单位
B. 15.6个单位
C. 3.6个单位
D. 8.4个单位
(4)一元线性回归方程中的两个变量( )。

A.都是随机变量
B.地位是对等的
C.都是给定的量
D.一个是自变量,另一个是因变量
二、多项选择题
(5)相关系数表明两变量之间的关系( )。

A.线性关系
B.因果关系
C.变异关系
D.相关方向
E.相关的密切程度
(6)如果两个变量之间的相关系数是1,则这两个变量是( )。

A.负相关关系
B.正相关关系
C.完全相关关系
D.不完全相关关系
E.零相关
(7)在一元线性回归分析中( )。

A.自变量是可控变量,因变量是随机变量
B.两个变量不是对等的关系
C.利用回归方程,两个变量可以相互推算
D.根据回归系数可判定相关的方向
E.自变量是随机变量,因变量是可控变量
(8)利用一元线性回归方程,可以( )。

A.进行两个变量的互相推算
B.用自变量推算因变量
C.用因变量推算自变量
D.确定两个变量的变动关系
E.研究两个变量之间的密切程度。

统计学_第八章__时间序列分析

统计学_第八章__时间序列分析
第八章 时间序列分析
1978—2003年GDP和最终消费(亿元) 140000 120000 100000 80000 60000 40000 20000 0
年 份 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001
GDP 最终消费
4、二者关系 (1)各逐期增长量之和等于相应的累计增长量
an a0 (a1 a0 ) (a2 a1 ) (a3 a2 ) (an an1 )
(2)相邻两期的逐期增长量之和等于相应的 累计增长量;相邻两期的累计增长量之差等于 相应的逐期增长量
(二)平均增长量 1、概念 一段时期内平均每期增加或者减少的绝 对数量。或者说是逐期增长量的序时平均数。 2、计算公式
a0 a1 a 2 a n 或 a n 1
af a f

B、如果是间断时点数列,计算方法为: 『两个假设条件: 一是假设上期期末水平等于本期期初水平; 二是假设现象在间隔期内数量变化是均匀的。』 Ⅰ、间隔期相等的时点数列,采用“首尾(首末)折半 法”计算。 先计算各间隔期的平均数;然后再将这些平均数进行 简单算术平均。例如:
第一节
时间序列分析概述
一、时间序列的概念和作用
(一)、概念: 1、时间序列:将不同时间的某一统计指标数据按照 时间的先后顺序排列起来而形成的统计序列,也称时间 数列或动态数列。 2、基本构成要素(从形式上看): 一是时间顺序(现象所属的时间)。可以是年份、季 度、月份或其他任何时间,称时间要素(常用t表示); 二是不同时间的统计数据(现象在不同时间上的观察 值)。可以是绝对数、相对数、平均数,称数据要素 (常用小写的英文字母a、b、c表示)。

统计学第八章

统计学第八章

第八章 时间数列分析一、单项选择题1.时间序列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值大小排列的C 前者是根据时间顺序排列的,后者是根据变量值大小排列的D 前者是根据变量值大小排列的,后者是根据时间顺序排列的 2.时间序列中,数值大小与时间长短有直接关系的是( )A 平均数时间序列B 时期序列C 时点序列D 相对数时间序列 3.发展速度属于( )A 比例相对数B 比较相对数C 动态相对数D 强度相对数 4.计算发展速度的分母是( )A 报告期水平B 基期水平C 实际水平D 计划水平 5.某车间月初工人人数资料如下:则该车间上半年的平均人数约为( )A 296人B 292人C 295 人D 300人6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为( )A 150万人B 150.2万人C 150.1万人D 无法确定 7.由一个9项的时间序列可以计算的环比发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 8.采用几何平均法计算平均发展速度的依据是( )A 各年环比发展速度之积等于总速度B 各年环比发展速度之和等于总速度C 各年环比增长速度之积等于总速度D 各年环比增长速度之和等于总速度9.某企业的科技投入,2010年比2005年增长了58.6%,则该企业2006—2010年间科技投入的平均发展速度为( )A 5%6.58B 5%6.158C 6%6.58D 6%6.15810.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( ) A 简单平均法 B 几何平均法 C 加权序时平均法 D 首末折半法 11.在测定长期趋势的方法中,可以形成数学模型的是( )A 时距扩大法B 移动平均法C 最小平方法D 季节指数法 12.动态数列中,每个指标数值相加有意义的是( )。

A.时期数列 B.时点数列 C.相对数数列 D.平均数数列 13.按几何平均法计算的平均发展速度侧重于考察现象的( ) A.期末发展水平 B.期初发展水平C.中间各项发展水平D.整个时期各发展水平的总和14.累计增长量与其相应的各逐期增长量的关系表现为( ) A.累计增长量等于相应各逐期增长量之和 B.累计增长量等于相应各逐期增长量之差 C.累计增长量等于相应各逐期增长量之积 D.累计增长量等于相应各逐期增长量之商15.已知某地区2010年的粮食产量比2000年增长了1倍,比2005年增长了0.5倍,那么2005年粮食产量比2000年增长了( )。

统计学第8章 时间序列分析

统计学第8章 时间序列分析

a n 1
a0
(二)增长速度(增减速度)
增长速度=
增减量 基期水平
报告期水平 基期水平 基期水平
报告期水平 基期水平 1
发展速度1
环比增长速度= an an1 an 1
an1
an1
=环比发展速度 - 100%
定基增长速度= an a0 an 1
a0
a0
=定基发展速度 - 100%
例题:
时间序列的构成要素与模型
(构成要素与测定方法)
时间序列的构成要素
长期趋势
季节变动
循环波动 不规则波动
线性趋势 非线性趋势
按月(季)平均法
移动平均法
二次曲线 指数曲线
趋势剔出法
半数平均法
修正指数曲线
最小平方法
Gompertz曲线 Logistic曲线
剩余法
线性趋势
一、移动平均法
(Moving Average Method)
移动平均法(趋势图)
200
汽 150

产 100

(万辆)50
产量 五项移动平均趋势值 五项移动中位数
0
1981
1985
1989
1993
1997
(年份)
图11-1 汽车产量移动平均趋势图
移动平均法特点
1、对原数列有修匀作用,移动项数越大,修匀 作用越强。
2、移动平均时,项数为奇数时,只需一次移动 平均,其平均值作为移动平均项中间一期; 当为偶数时,需再进行一次相邻两平均值的 移动平均。
年份
销售额 逐 期 增 减 量 环比发展速度 定基增长速
(万元) (万元)
(%)
度(%)

统计学原理第八章相关分析与回归分析

统计学原理第八章相关分析与回归分析

21
例1:P354页,第1题
企业 产量 X 单位成 XY
X2
Y2
序号 (4件) 本(元)Y
1
2
52
104
4
2704
2
3
54
162
9
2916
3
4
52
208
16
2704
4
4
48
192
16
2304
5
5
48
240
25
2304
6
6

24
46
276
36
2116
300
1182
106 15048
即:∑X=24,∑Y=300, ∑XY=1182,
• 2) X倚Y的直线方程的确定
• 根据最小平方法的原理:(x xc )2 最小值
• 将xc = c + dy代入上述公式中,分别对c和d 求一阶偏导数,并令偏导数等于0,就可以
得出两个正规方程:
x nc dy yx cy dy2
d
nyx y n y2 (
x
y )2
c x dy
举例:P355,第4题。
• 偏相关:在复相关中,当假定其他变量不 变时,其中两个变量间的相关关系称为偏 相关。例如,在假定人们收入水平不变的 条件下,某种商品的需求与其价格水平的 关系就是一种偏相关。
9
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象
之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个
• 曲线相关:如果现象之间的相关关系近似 地表现为某种曲线形式时,就称这种相关 关系为曲线相关。

统计学第八章时间数列

统计学第八章时间数列
环比增长速度=逐期增长量/前一期水平
=(报告期水平-前一期水平)/前一期水平 =环比发展速度-1(或100%)
发展速度与增长速度
2、定基增长速度。 定基增长速度是报告期的累计增长量与 某一固定基期水平之比,说明现象在较 长时间内总的增长速度。公式如下:
定基增长速度=累计增长量/某一固定期水平 =报告期水平-某一固定期水平)/某一固定期 水平 =定基发展速度-1(或100%)
1、移动平均法。 移动平均法是对原时间数列逐项求 序时平均数,平均项数固定,并逐 项移动得出由这些平均数构成的新 数列,它可以消除某些因素及随机 因素的影响,显示出现象的长期趋 势。
测定长期趋势的方法
设时间数列的水平顺次为: a1,a2,a3, an 若取三项平均移动平均形成的新数 列为:
a1 a 2 a 3 a 2 a3 a 4 a2 , a3 , 3 3
第八章 时间数列
第一节 第二节 第三节 第四节 时间数列概述 时间数列的水平指标 时间数列的速度指标 动态数列的因素分析
第八章 时间数列
第一节 时间数列概述 一、时间数列的概念及作用 二、时间数列的种类 三、编制时间数列的原则
时间数列的概念及作用
一)时间数列的概念
时间数列亦称动态数列,是将反映某现象的 统计指标在不同时间上的数值,按时间先后 顺序排列而形成的一种数列;如:
动态数列影响因素及其分解 模型
3、循环变动(以C表示) 循环变动是指现象以若干年为一周 期,近乎规律性的盛衰交替变动。 如经济危机就是循环变动,每一循 环周期都要经历危机、萧条、复苏 和高涨四个阶段。
动态数列影响因素及其分解 模型
4、随机变动(以I表示) 随机变动亦称不规则变动或剩余变 动,是动态数列除了上述三种变动 之外剩余的一种变动,是偶然因素 引起的一种随机波动。如自然灾害、 战争等无法预见的因素引起的波动。

统计学第八章 单因素方差分析(1)

统计学第八章 单因素方差分析(1)

称为处理平方 处理平方 和,记为 SSA
总平方和SST=处理平方和SSA+误差平方和SSe
即, ( y ij − y •• ) = n∑ ( y i • − y •• ) + ∑∑ ( y ij − y i• ) 2 ∑∑
2 i =1 j =1 i =1 i =1 j =1 a n 2 a a n
i =1 j =1
a
n
= n∑ ( y i• − y •• ) + 2∑ [( y i• − y •• )∑ ( y ij − y i• )] + ∑∑ ( y ij − y i • )
2 i =1 i =1 j =1 i =1 j =1
a
a
n
a
n
j =1
∑ ( y ij − y i • ) = 0
换句话说,采用两两t检验法,要进行45次t检验,程序太繁琐。
原因(2):检验的I 型错误增大,从而检验的 可靠性低
a = 2 时, H 0 只有一个,即
µ 1= µ 2
a = 3 时, H 0 有 3 个,即 µ 1= µ 2, µ 2= µ 3, µ 1= µ 3
a = 5时,H 0 有10个,即µ1=µ 2,µ 2=µ3, , µ 4=µ5 L
二、方差分析的几个概念
1、方差分析(analysis of variance):将试验数据的总变异分 解成不同来源的变异,从而评定不同来源的变异相对重要性 的一种统计方法。 2、试验指标(experiment index):为衡量试验结果的好坏或 处理效应的高低,在试验中具体测定的性状或观测的项目。 3、试验因素(experiment factor):试验中所研究的影响试验 指标的因素:单因素、双因素或多因素试验。 4、因素水平(level of factor):因素的具体表现或数量等级。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S12
/
S
2 2
2 1
S12 / S22
F
2 2
F 1
2
2
样本容量的确定
1 事先设定的值: 2 需要估计的值: 3 样本容量的确定
, X
2或 pq
*估计总体均值时

X z
2
n
z2 2
n
2
2X
(重置抽样)
Nz 2 2
n
(N
2
1)2 X
z2
2
(不重置抽样)
2
*估计总体比率时
由 p z
2
p(1 p) n
3 两个正态总体—方差未知且不等
[(X1 X2) Z
2
2 1
2 2
]
n1 n2
[(X1 X 2) t SP
2
1 1] n1 n2
[(X1 X 2) t
2
S12 S22 ] n1 n2
4 两个非正态总体—方差未知(大样本) [(X1 X 2) z
2
S12 S22 ] n1 n2
• 总体比率的置信区间
(大样本)
( ~p z ~p )或( ~p z s~p )
2
2

两个总体比率之差的置信区间
(大样本)
[(~p1 ~p2) z
2Leabharlann ~p1(1 ~p1) ~p2(1 ~p2) ]
n1
n2
• 正态分布总体方差的置信区间
(n 1)S 2
2
2
(n 1)S 2
2 1
]
2
2
• 两个正态总体方差比的置信区间
z2 p(1 p)
n
2
2 p
(重置抽样)
Nz2 p(1 p)
n
(N
2
1) 2 P
z2
p(1
p)
(不重置抽样)
2
第 8章 参数估计
参数的点估计
以总体参数的近似值作为其真值的估计 § 估计优良性的判别标准
无偏性 有效性 一致性 充分性
常用的点估计量
1 样本均值 2 样本方差 3 样本比率
参数的区间估计
给出一个随机区间并指出以多大的概率包含未 知参数
置信区间
(ˆl , ˆu )
§ 评价标准
置信度 p(ˆl ˆu ) 越大越好
• 总体均值的置信区间
1 正态总体—方差已知 2 非正态总体—方差已知(大样本) 3 小样本—方差未知 4 大样本—方差未知
(X Z x )
2
(X Z x )
2
( X t (n1)sx ) 2
( X Z sx )
2
• 两个总体均值之差的置信区间
1 两个正态总体—方差已知 2 两个正态总体—方差未知但相等
相关文档
最新文档