信息安全数学基础(A)答案

合集下载

信息安全数学基础期末考试试卷及答案(A卷)

信息安全数学基础期末考试试卷及答案(A卷)

信息安全数学基础期末考试试卷及答案(A卷)装订线装订线三、解同余方程(本大题共2小题,每小题10分,共20分)1.求解一次同余方程1714(mod21)x 。

2.解同余方程组2(mod3)3(mod5)2(mod7) xxx≡≡≡⎧⎪⎨⎪⎩四、证明题(本大题共3小题,每小题7分,共21分)2.f是群G到G'的一个同态,{}=∈=,其f a a G f a e'ker|,()中e'是G'的单位元。

证明:ker f是G的正规子群。

3. 证明:如果p 和q 是不同的素数,则111(mod )q p p q pq --+=。

五、应用题(共11分)RSA 公钥加密算法的密钥生成步骤如下:选择 两个大的素数p 和q ,计算n =pq 。

选择两个正整数e 和d ,满足:ed =1(mod ()n )。

Bob 的公钥是(n ,e ),对外公布。

Bob 的私钥是d ,自己私藏。

如果攻击者分解n 得到p =47,q =23,并且已知e =257,试求出Bob 的私钥d 。

答案 一、填空题(每空2分,共24分) 1. 两个整数a ,b ,其最大公因数和最小公倍数的关系为[,](,)ab a b a b =。

2. 给定一个正整数m ,两个整数a ,b 叫做模m 同余,如果|m a b -,记作(mod )a b m ≡;否则,叫做模m 不同余,记作a ≡(mod )b m 。

3. 设m ,n 是互素的两个正整数,则()mn ϕ=()()m n ϕϕ。

4. 设1m >是整数,a 是与m 互素的正整数。

则使得1(mod )e a m ≡成立的最小正整数e 叫做a 对模m 的指数,记做()m ord a 。

如果a 对模m 的指数是()m ϕ,则a 叫做模m 的 原根 。

5. 设n 是一个奇合数,设整数b 与n 互素,如果整数n 和b 满足条件11(mod )n b n -≡,则n 叫做对于基b 的拟素数。

信息安全数学基础习题答案 2

信息安全数学基础习题答案 2

信息安全数学基础习题答案第一章整数的可除性1.证明:因为2|n 所以n=2k , k∈Z5|n 所以5|2k ,又(5,2)=1,所以5|k 即k=5 k1,k1∈Z7|n 所以7|2*5 k1 ,又(7,10)=1,所以7| k1即k1=7 k2,k2∈Z 所以n=2*5*7 k2即n=70 k2, k2∈Z因此70|n2.证明:因为a3-a=(a-1)a(a+1)当a=3k,k∈Z 3|a 则3|a3-a当a=3k-1,k∈Z 3|a+1 则3|a3-a当a=3k+1,k∈Z 3|a-1 则3|a3-a所以a3-a能被3整除。

3.证明:任意奇整数可表示为2 k0+1,k0∈Z(2 k0+1)2=4 k02+4 k0+1=4 k0 (k0+1)+1由于k0与k0+1为两连续整数,必有一个为偶数,所以k0 (k0+1)=2k所以(2 k0+1)2=8k+1 得证。

4.证明:设三个连续整数为a-1,a,a+1 则(a-1)a(a+1)= a3-a由第二题结论3|(a3-a)即3|(a-1)a(a+1)又三个连续整数中必有至少一个为偶数,则2|(a-1)a(a+1)又(3,2)=1 所以6|(a-1)a(a+1) 得证。

5.证明:构造下列k个连续正整数列:(k+1)!+2, (k+1)!+3, (k+1)!+4,……, (k+1)!+(k+1), k∈Z对数列中任一数 (k+1)!+i=i[(k+1)k…(i+1)(i-1)…2*1+1], i=2,3,4,…(k+1)所以i|(k+1)!+i 即(k+1)!+i为合数所以此k个连续正整数都是合数。

6.证明:因为1911/2<14 ,小于14的素数有2,3,5,7,11,13经验算都不能整除191 所以191为素数。

因为5471/2<24 ,小于24的素数有2,3,5,7,11,13,17,19,23经验算都不能整除547 所以547为素数。

由737=11*67 ,747=3*249 知737与747都为合数。

信息安全数学基础习题答案 2

信息安全数学基础习题答案 2

信息安全数学基础习题答案第一章整数的可除性1.证明:因为2|n 所以n=2k , k∈Z5|n 所以5|2k ,又(5,2)=1,所以5|k 即k=5 k1,k1∈Z7|n 所以7|2*5 k1 ,又(7,10)=1,所以7| k1即k1=7 k2,k2∈Z 所以n=2*5*7 k2即n=70 k2, k2∈Z因此70|n2.证明:因为a3-a=(a-1)a(a+1)当a=3k,k∈Z 3|a 则3|a3-a当a=3k-1,k∈Z 3|a+1 则3|a3-a当a=3k+1,k∈Z 3|a-1 则3|a3-a所以a3-a能被3整除。

3.证明:任意奇整数可表示为2 k0+1,k0∈Z(2 k0+1)2=4 k02+4 k0+1=4 k0 (k0+1)+1由于k0与k0+1为两连续整数,必有一个为偶数,所以k0 (k0+1)=2k所以(2 k0+1)2=8k+1 得证。

4.证明:设三个连续整数为a-1,a,a+1 则(a-1)a(a+1)= a3-a由第二题结论3|(a3-a)即3|(a-1)a(a+1)又三个连续整数中必有至少一个为偶数,则2|(a-1)a(a+1)又(3,2)=1 所以6|(a-1)a(a+1) 得证。

5.证明:构造下列k个连续正整数列:(k+1)!+2, (k+1)!+3, (k+1)!+4,……, (k+1)!+(k+1), k∈Z对数列中任一数 (k+1)!+i=i[(k+1)k…(i+1)(i-1)…2*1+1], i=2,3,4,…(k+1)所以i|(k+1)!+i 即(k+1)!+i为合数所以此k个连续正整数都是合数。

6.证明:因为1911/2<14 ,小于14的素数有2,3,5,7,11,13经验算都不能整除191 所以191为素数。

因为5471/2<24 ,小于24的素数有2,3,5,7,11,13,17,19,23经验算都不能整除547 所以547为素数。

由737=11*67 ,747=3*249 知737与747都为合数。

信息安全数学基础课后答案(陈恭亮著)清华大学出版社

信息安全数学基础课后答案(陈恭亮著)清华大学出版社

性除可的数整
章一第
案答题 习础基学数全安息信
2
)7492 *1 -2 773 ( * )347 - (+74 92 *802= )528 *3 - 7492 ( *802+528 * )911 - (= )2 74 * 1 - 528 ( * )9 11 - (+ 27 4 *9 8= )3 53 *1 -274 ( *98+3 53 *03 -= ) 911 *2 -35 3 ( * ) 03 - (+ 91 1 *9 2= )511 *1 -911 ( *9 2+511 -= )4 *82 -51 1 ( *1 -4= 3 * 1 - 4 = 1�解� 2� 155= t 6 2 2 1 - = s 以所 3 161 * )6221 - (+98 53 *155= ) 31 6 1 * 2 - 9 8 5 3 ( * 1 5 5+ 3 1 6 1 * ) 4 2 1 - (= ) 36 3 *4 -3 161 ( * )4 21 - (+ 36 3 *5 5= )1 61 *2 -363 ( *55+1 61 *41 -= )14 *3 -161 ( *41 -14 *31= )83 *1 -14 ( * 31+83 -= )3 *21 -8 3 ( *1 -3= 2 * 1 - 3 = 1�解� 1� �23 2 =� ) 1 + n ( 2 , n 2�以所 2 *n=n2 2 + n 2 * 1 = ) 1 + n ( 2�解� 2� 1 =� 1 - t 2 , 1 + t 2�以所 1 *2=2 1+2 * )1 - t (=1 - t2 2 + ) 1 - t 2 ( * 1 = 1 + t 2�解� 1� �92 2 =� 2 8 2 , 2 0 2�以所 2 *2=4 2+ 4 * 9=8 3 4+8 3 * 1=2 4 8 3+2 4 * 1=0 8 24+08 *2=202 0 8 + 2 0 2 * 1 = 2 8 2�解� 2� 5 = ) 5 8 , 5 5 (以所 5 * 5= 5 2 5+ 5 2 * 1= 0 3 5 2+ 0 3 * 1= 5 5 0 3 + 5 5 * 1 = 5 8�解� 1� �82 。个多穷无有数素的 3 + k 4 如形�确正论结原 。立成不设假以所�式形的 3 + k 4 为即�数素的式形 1 - k 4 为 N i p� N 以所 ) n ,… , 2 , 1 = i ( np *… *2p *1 p* 3≥ 1-np *… *2p *1 p*4= N 造构 1-k4=1-`k4=3+k4 为因 np ,… ,2p ,1p 为记�个限有有只数素的 3 + k 4 如形设假 法证反�明证� 3 1 。他其证可理同 。证得论结�立成不设假此因�数的 1 - k 3 出得能不�式形的 1 + k 3 是还的到

信息安全数学基础课后答案完整版Word版

信息安全数学基础课后答案完整版Word版

第一章参考答案(1) 5,4,1,5.(2) 100=22*52, 3288=23*3*137.(4) a,b可以表示成多个素因子的乘积a=p1p2––pr, b=q1q2––qs,又因为(a,b)=1,表明a, b没有公共(相同)素因子. 同样可以将a n, b n表示为多个素因子相乘a n=(p1p2––pr)n, b n=(q1q2––qs)n明显a n, b n也没有公共(相同)素因子.(5)同样将a, b可以表示成多个素因子的乘积a=p1p2––pr, b=q1q2––qs,a n=(p1p2––pr)n, b n=(q1q2––qs)n,因为a n| b n所以对任意的i有, pi的n次方| b n,所以b n中必然含有a的所有素因子, 所以b中必然含有a的所有素因子, 所以a|b.(6)因为非零a, b, c互素,所以(a, b)=(a, c)=1,又因为a=p1p2––pr,b=q1q2––qs, ab=p1p2––prq1q2––qs, 又因为a, b, c互素, 所以a, b, c中没有公共(相同)素因子, 明显ab和c也没有公共(相同)素因子.所以(ab, c)= (a, b)(a, c).(7)2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,9 7,101,103,107, 109, 113, 127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199.(11)对两式进行变形有21=0(mod m), 1001=0(mod m),可以看出要求满足的m即使求21和1001的公约数, 为7和1.(12)(70!)/(61!)= 62*63*––*70=(-9)*(-8)*––*(-1)=-9!=-362880=1(mod 71). 明显61!与71互素, 所以两边同乘以61!, 所以70!=61!(mod 71).(13)当n为奇数时2n=(-1)n=-1=2(mod 3), 两边同时加上1有2n+1=0(mod 3), 所以结论成立.当n为偶数时2n=(-1)n=1(mod 3), 两边同时加上1有2n+1=2(mod 3), 所以结论成立.(14)第一个问:因为(c,m)=d, m/d为整数.假设ac=k1m+r, bc=k2m+r,有ac=k1d(m/d)+r, bc=k2d(m/d)+r所以ac=bc(mod m/d),因为(c,m/d)=1,所以两边可以同除以一个c, 所以结论成立.第二个问题:因为a=b(mod m), 所以a-b=ki *mi,a-b是任意mi的倍数,所以a-b是mi 公倍数,所以[mi]|a-b.(利用式子:最小公倍数=每个数的乘积/最大公约数, 是错误的, 该式子在两个数时才成立)(15)将整数每位数的值相加, 和能被3整除则整数能被3整除, 和能被9整除则整数能被9整除, (1)能被3整除, 不能被9整除,(2)都不能,(3)都不能,(4)都不能第二章答案(5)证明:显然在群中单位元e满足方程x2=x, 假设存在一个元素a满足方程x2=x, 则有a2=a, 两边同乘以a-1有a=e. 所以在群中只有单位元满足方程x2=x.(6)证明:因为群G中每个元素都满足方程x2=e, 所以对群中任意元素a,b 有aa=e, bb=e, (ab)2=abab=e. 对abab=e, 方程两边左乘以a, 右乘以b有aababb=(aa)ba(bb)=ba=aeb=ab, 有ab=ba, 所以G是交换群.(7)证明:充分性:因为在群中对任意元素a,b有(ab)2=a2b2即abab=aabb, 方程两边左乘以a的逆元右乘以b的逆元, 有a-1ababb-1= a-1aabbb-1, 有ab=ba, 所以G是交换群.必要性:因为群G是交换群, 所以对任意元素a,b有ab=ba, 方程两边左乘以a右乘以b有abab=aabb, 有(ab)2=a2b2.(8)证明:因为xaaba=xbc,所以x-1xaxbaa-1b-1=x-1xbca-1b-1,所以存在唯一解x=a-1bca-1b-1使得方程成立。

信息安全数学基础习题答案

信息安全数学基础习题答案

信息安全数学基础习题答案信息安全数学基础习题答案1.简答题 a) 什么是信息安全?信息安全是指保护信息的机密性、完整性和可用性,以防止未经授权的访问、使用、披露、干扰、破坏或篡改信息的行为。

b) 什么是加密?加密是指通过对信息进行转换,使其无法被未经授权的人理解或使用的过程。

加密算法通常使用密钥来对信息进行加密和解密。

c) 什么是对称加密算法?对称加密算法是一种使用相同的密钥进行加密和解密的算法。

常见的对称加密算法有DES、AES等。

d) 什么是非对称加密算法?非对称加密算法是一种使用不同的密钥进行加密和解密的算法。

常见的非对称加密算法有RSA、ECC等。

e) 什么是哈希函数?哈希函数是一种将任意长度的数据映射为固定长度的输出的函数。

哈希函数具有单向性,即很难从哈希值逆推出原始数据。

2.选择题 a) 下列哪种算法是对称加密算法? A. RSA B. AES C. ECC D.SHA-256答案:B. AESb) 下列哪种算法是非对称加密算法? A. DES B. AES C. RSA D. SHA-256答案:C. RSAc) 下列哪种函数是哈希函数? A. RSA B. AES C. ECC D. SHA-256答案:D. SHA-2563.计算题 a) 使用AES算法对明文进行加密,密钥长度为128位,明文长度为64位。

请计算加密后的密文长度。

答案:由于AES算法使用的是128位的块加密,所以加密后的密文长度也为128位。

b) 使用RSA算法对明文进行加密,密钥长度为1024位,明文长度为64位。

请计算加密后的密文长度。

答案:由于RSA算法使用的是非对称加密,加密后的密文长度取决于密钥长度。

根据经验公式,RSA算法中加密后的密文长度为密钥长度的一半。

所以加密后的密文长度为1024/2=512位。

c) 使用SHA-256哈希函数对一个长度为128位的明文进行哈希计算,请计算哈希值的长度。

答案:SHA-256哈希函数的输出长度为256位。

信息安全数学基础答案

信息安全数学基础答案

信息安全数学基础答案【篇一:信息安全数学基础习题答案】xt>第一章整数的可除性1.证明:因为2|n 所以n=2k , k?z5|n 所以5|2k ,又(5,2)=1,所以5|k 即k=5 k1 ,k1?z 7|n 所以7|2*5 k1 ,又(7,10)=1,所以7| k1 即k1=7 k2,k2?z 所以n=2*5*7 k2 即n=70 k2, k2?z因此70|n32.证明:因为a-a=(a-1)a(a+1)3当a=3k,k?z 3|a 则3|a-a3当a=3k-1,k?z 3|a+1 则3|a-a3当a=3k+1,k?z 3|a-1 则3|a-a3所以a-a能被3整除。

3.证明:任意奇整数可表示为2 k0+1, k0?z22(2 k0+1)=4 k0+4 k0+1=4 k0 (k0+1)+1由于k0与k0+1为两连续整数,必有一个为偶数,所以k0(k0+1)=2k2所以(2 k0+1)=8k+1 得证。

34.证明:设三个连续整数为a-1,a,a+1 则(a-1)a(a+1)= a-a3由第二题结论3|(a-a)即3|(a-1)a(a+1)又三个连续整数中必有至少一个为偶数,则2|(a-1)a(a+1)又(3,2)=1所以6|(a-1)a(a+1) 得证。

5.证明:构造下列k个连续正整数列:(k+1)!+2, (k+1)!+3, (k+1)!+4,……, (k+1)!+(k+1), k?z对数列中任一数 (k+1)!+i=i[(k+1)k…(i+1)(i-1)…2*1+1],i=2,3,4,…(k+1) 所以i|(k+1)!+i即(k+1)!+i为合数所以此k个连续正整数都是合数。

1/26.证明:因为191<14 ,小于14的素数有2,3,5,7,11,13经验算都不能整除191所以191为素数。

1/2因为547<24 ,小于24的素数有2,3,5,7,11,13,17,19,23经验算都不能整除547所以547为素数。

信息安全数学基础 课后习题答案,裴定一,徐详 编著 ,人民邮电出版社

信息安全数学基础 课后习题答案,裴定一,徐详 编著 ,人民邮电出版社

·
·
(1

1 ql
)
= (q1
q1 · · · ql − 1) · · · (ql
− 1)
=
s ϕ(s)
2.10 (1)
n = pt11 · · · ptrr ,p1 < p2 < · · · < pr.
Ç ϕ(n)
=
n(1

1 p1
)
··
·
(1

1 pr
),
´ ϕ(n)
=
1 2
n

r
(1 −
i=1
Q=
12 · 22 · · · · ·
p−1 2
2
=
(−1)
p−1 2
(p

1)!

(−1)
p+1 2
(mod p)
3.7
−2 p
=
−1 p
·
2 p
=
(−1)
p−1 2
·
(−1)
p2 −1 8
=
t1
É ´ ≥ t2, a + b = pt2 (pt1−t2 a1 + b1)
ordp(a + b) ≥ t2 =min{ordp(a),ordp(b)},
´ t1> t2, pt1−t2 a1 + b1 = 0, (p, pt1−t2 a1 + b1) = 1,
Á¸Ï ¦
³ « 1.6 1, 2, · · · , n
£
£ 6v − 1|u
3.1 1, 1, 1, 1, 1, −1, 1
إ إ 3.3
i)
5 227

信息安全数学基础习题答案.pdf

信息安全数学基础习题答案.pdf

“信息安全数学基础”习题答案第一章1、证明: (1)|()|()()|a b b ma m Z c d d nc n Z bd acmn mn Z ac bd ⇒=∈⇒=∈∴=∈∵,,,即。

(2)12111112|,|,,|11(3)|(),,k k k k a b a b a b a b c b c b c c c c ∴−+++∵ ,根据整除的性质及递归法,可证得:,其中为任意整数。

2、证明:1-2(2)(3,5)13|5|15|,(15,7)17|105|a a a a a =∴=∴∵∵∵根据例题的证明结论知:,又且,又,且,。

3、证明:1n p n p n >>因为,且是的最小素因数,若假设n/p 不是素数,则有121223131312,2,,,,2,,k k n p p p p k p p p p k n p p p p n p p n n p n n p =×××≥≥==×≥∴≥≤>> (其中为素数且均)若,则即,与题设矛盾,所以假设不成立,即为素数得证。

7、证明:首先证明形如6k -1的正整数n 必含有6k -1形式的素因子,这显然是成立的。

因为如果其所有素因数均为6k +1形式,则12,(61,1,2,,)j i i n p p p p k i j =×××=+= ,从而得到n 是形如6k +1形式的正整数,这与题设矛盾。

其次,假设形如6k -1的素数为有限个,依次为1212,,6s s q q q n q q q = ,考虑整数-1, 则n 是形如6k -1的正整数,所以n 必有相同形式的素因数q ,使得使得q = q j (1≤j ≤s )。

由整数的基本性质(3)有:12|(6)1s q q q q n −= ,这是不可能的。

故假设错误,即存在无穷多个形如4k -1的素数得证。

2n3n最小非负余数最小正余数绝对值最小余数最小非负余数最小正余数绝对值最小余数3 0、1 1、3 0、1 0、1、2 1、2、3 -1、0、14 0、1 1、4 0、1 0、1、3 1、3、4 -1、0、1 8 0、1、4 1、4、8 1,0 0、1、3、5、7 1、3、5、7、8 3、1、-3、-1、0 10 0、1、4、5、6、9 1、4、5、6、9、10 -4、-1、0、1、4、5 0,1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,10-5,-4,-3,-2,-1,0,1,2,3,413、解: (1)259222137222376(222,259)37372592221,1,1s t =×+=×⇒==−×∴==−(2)139571316827136821316823122(1395,713)31317136821713(13957131)2713(1)1395,1,2s t =×+=×+=×⇒==−×=−−×=×+−×∴=−=16、解: (1)(112,56)5611256[112,56]112(112,56)=×== (2)(67,335)6767335[67,335]335(67,335)=×== (3)(1124,1368)411241368[1124,1368]384408(1124,1368)=×==(7,4)1,0,7(1)4211,24410,1,2,771||1000142||100040,1,1427c s t k x k k k y k x k y x kk y k ==∴×−+×=∴=−=⎧=−=−⎪⎪=±±⎨⎪==⎪⎩≤⎧∴≤⎨≤⎩=−⎧∴=±±⎨=⎩∵ 而不定方程的一切解为: 其中,又方程的全部解为 ,其中 ,第二章1、解:(1) 错误。

信息安全数学基础参考试卷

信息安全数学基础参考试卷

,考试作弊将带来严重后果!华南理工大学期末考试XXXX 级《信息安全数学基础》试卷A1. 考前请将密封线内填写清楚;2. 所有答案请直接答在试卷上;3.考试形式:闭卷;不许使用计算器;选择题(在每小题的备选答案中只有一个正确答案,将正确答案序号填入下): (每题2分,共10分)1.设 m 是大于 1 的整数, a 是满足(a , m )=1 的整数,则 ( )。

(1) a m ≡a (mod ϕ (m )), (2) a ϕ (m )≡a (mod m ), (3) a m ≡1 (mod ϕ (m )), (4) a ϕ (m )≡1 (mod m )。

2.设m 是一个正整数,a , b 是整数,下面正确的是( )。

(1) 若ad ≡bd (mod m ),则 a ≡b (mod m ); (2) 若a ≡b (mod m ) , 则 ak ≡bk (mod mk );(3) 若a ≡ b (mod m ),正整数 d | (a , b , m ),则mod()a b m d d d≡; (4) a ≡b (mod m ), 如果m | d ,则 a ≡b (mod d )。

3.整数kn 和k (n +2)的最大公因数(kn , k (n +2))=( )。

(1) 1或2, (2) | kn |, (3) | n | 或 | kn |, (4) | k | 或2| k | 。

4.设 a =23×32×54×116 ,b =22×36×74×113,使得a' | a ,b' | b ,a' ×b'=[a ,b ],a',b' )=1 的a',b' 分别为( )。

(1) 54 ×116 ,22×36×74, (2) 23×54 ,36×74×113, (3) 23×54 ×116 ,36×74, (4) 23×54 ×116 ,36×74×1135.集合F 上定义了“+”和“ · ”两种运算。

最新。信息安全数学基础习题答案

最新。信息安全数学基础习题答案

最新。

信息安全数学基础习题答案信息安全数学基础习题答案第⼀章整数的可除性1.证明1:因为2|n 所以n=2k , k1Z5|n 所以5|2k ,⼜(5,2)=1,所以5|k 即k=5 k1,k11Z7|n 所以7|2*5 k1 ,⼜(7,10)=1,所以7| k1即k1=7 k2,k21Z所以n=2*5*7 k2即n=70 k2, k21Z因此70|n证明2:n是2、5、7的公倍数,所以[2,5,7]|n,⼜知2、5、7互素,所以[2,5,7]=2*5*7=70,即70|n。

2.证明:因为a3-a=(a-1)a(a+1)当a=3k,k22(mod)a b p≡Z 3|a 则3|a3-a当a=3k-1,k p a b-Z 3|a+1 则3|a3-a当a=3k+1,k p a b+Z 3|a-1 则3|a3-a所以a3-a能被3整除。

3.证明:任意奇整数可表⽰为2 k0+1, k022(mod)≡Za b p(2 k0+1)2=4 k02+4 k0+1=4 k0 (k0+1)+1由于k0与k0+1为两连续整数,必有⼀个为偶数,所以k0 (k0+1)=2k所以(2 k0+1)2=8k+1 得证。

4.证明:设三个连续整数为a-1,a,a+1 则(a-1)a(a+1)= a3-a由第⼆题结论3|(a3-a)即3|(a-1)a(a+1)⼜三个连续整数中必有⾄少⼀个为偶数,则2|(a-1)a(a+1)⼜(3,2)=1 所以6|(a-1)a(a+1) 得证。

5.证明:构造下列k个连续正整数列:(k+1)!+2, (k+1)!+3, (k+1)!+4,……, (k+1)!+(k+1), k p a b-Z对数列中任⼀数 (k+1)!+i=i[(k+1)k…(i+1)(i-1)…2*1+1], i=2,3,4,…(k+1)所以i|(k+1)!+i 即(k+1)!+i为合数所以此k个连续正整数都是合数。

6.证明:因为1911/2<14 ,⼩于14的素数有2,3,5,7,11,13经验算都不能整除191 所以191为素数。

信息安全数学基础课后答案

信息安全数学基础课后答案

信息安全数学基础课后答案1、8.如果直角三角形的三条边为2,4,a,那么a的取值可以有()[单选题] *A. 0个B. 1个C. 2个D. 3个(正确答案)2、向量与向量共线的充分必要条件是()[单选题] *A、两者方向相同B、两者方向相同C、其中有一个为零向量D、以上三个条件之一成立(正确答案)3、2005°角是()[单选题] *A、第二象限角B、第二象限角(正确答案)C、第二或第三象限角D、第二或第四象限角4、若39?27?=321,则m的值是()[单选题] *A. 3B. 4(正确答案)C. 5D. 65、22.如果|x|=2,那么x=()[单选题] *A.2B.﹣2C.2或﹣2(正确答案)D.2或6、4.小亮用天平称得牛奶和玻璃杯的总质量为0.3546㎏,用四舍五入法将0.3546精确到0.01的近似值为()[单选题] *A.0.35(正确答案)B.0.36C.0.354D.0.3557、38.如果m2+m=5,那么代数式m(m﹣2)+(m+2)2的值为()[单选题] *A.14(正确答案)B.9C.﹣1D.﹣68、第三象限的角的集合可以表示为()[单选题] *A. {α|180°<α<270°}B. {α|180°+k·360°<α<270°+k·360°}(正确答案)C. {α|90°<α<180°}D. {α|90°+k·360°<α<180°+k·360°}9、10.若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长[单选题] *A. 12(正确答案)B. 13C. 15D. 1410、下列表示正确的是()[单选题] *A、0={0}B、0={1}C、{x|x2 =1}={1,-1}(正确答案)D、0∈φ11、已知sina<0且cota>0,则是()[单选题] *、第一象限角B、第一象限角C、第三象限角(正确答案)D、第四象限角12、9.已知关于x,y的二元一次方程组的解满足x+y=8,则k的值为( ) [单选题] * A.4B.5C.-6D.-8(正确答案)13、二次函数y=3x2-4x+5的一次项系数是()。

《信息安全数学基础》部分课后习题答案

《信息安全数学基础》部分课后习题答案

《信息安全数学基础》课后作业及答案第1章课后作业答案 (2)第2章课后作业答案 (6)第3章课后作业答案 (13)第4章课后作业答案 (21)第5章课后作业答案 (24)第6章课后作业答案 (27)第7章课后作业答案 (33)第8章课后作业答案 (36)第9章课后作业答案 (40)第10章课后作业答案 (44)第11章课后作业答案 (46)第12章课后作业答案 (49)第13章课后作业答案 (52)第1章课后作业答案习题1:2, 3, 8(1), 11, 17, 21, 24, 25, 312. 证明:存在整数k,使得5 | 2k + 1,并尝试给出整数k的一般形式。

证明k = 2时,满足5 | 2k + 1。

5 | 2k + 1,当且仅当存2k + 1 = 5q。

k, q为整数。

即k = (5q– 1)/2。

只要q为奇数上式即成立,即q = 2t + 1,t为整数即,k = 5t + 2,t为整数。

3. 证明:3 3k + 2,其中k为整数。

证明因为3 | 3k,如果3 | 3k + 2,则得到3 | 2,矛盾。

所以,3 3k + 2。

8. 使用辗转相除法计算整数x, y,使得xa + yb = (a, b):(1) (489, 357)。

解489 = 357×1 + 132,357 =132 × 2 + 93,132 = 93 × 1 + 39,93 = 39 × 2 + 15,39 = 15 × 2 + 9,15 = 9 × 1 + 6,9 = 6 × 1 + 3,6 = 3 × 2 + 0,所以,(489, 357) = 3。

132 = 489 – 357×1,93 = 357 – 132 × 2 = 357 – (489 – 357×1) × 2 = 3 × 357 – 2 ×489,39 = 132 – 93 × 1 = (489 – 357×1) – (3 × 357 – 2 ×489) × 1 = 3 ×489 – 4× 357,15 = 93 – 39 × 2 = (3 × 357 – 2 × 489) – (3 ×489 – 4× 357) × 2 = 11× 357 – 8 × 489,9 = 39 – 15 × 2 = (3 ×489 – 4× 357) – (11× 357 – 8 × 489) × 2 = 19 × 489 – 26× 357,6 = 15 – 9 × 1 = (11× 357 –8 × 489) – (19 × 489 – 26× 357) = 37 ×357 – 27 × 489,3 = 9 – 6 × 1 = (19 × 489 – 26× 357) – (37 × 357 – 27 × 489) = 46 ×489 – 63 × 357。

信息安全数学基础课后答案完整版

信息安全数学基础课后答案完整版

第一章参考答案(1)5,4,1,5.(2)100=22*52, 3288=23*3*137.(4)a,b可以表示成多个素因子的乘积a=p1p2––p r, b=q1q2––q s,又因为(a, b)=1,表明a, b没有公共(相同)素因子. 同样可以将a n, b n表示为多个素因子相乘a n=(p1p2––p r)n, b n=(q1q2––q s)n明显a n, b n也没有公共(相同)素因子.(5)同样将a, b可以表示成多个素因子的乘积a=p1p2––p r, b=q1q2––q s,a n=(p1p2––p r)n,b n=(q1q2––q s)n,因为a n| b n所以对任意的i有, p i的n次方| b n, 所以b n中必然含有a的所有素因子, 所以b中必然含有a的所有素因子, 所以a|b. (6)因为非零a, b, c互素,所以(a, b)=(a, c)=1,又因为a=p1p2––p r, b=q1q2––q s, ab=p1p2––p r q1q2––q s, 又因为a, b, c互素, 所以a, b, c中没有公共(相同)素因子, 明显ab和c也没有公共(相同)素因子.所以(ab, c)= (a, b)(a, c).(7)2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107, 109, 113, 127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199. (11)对两式进行变形有21=0(mod m), 1001=0(mod m),可以看出要求满足的m 即使求21和1001的公约数, 为7和1.(12)(70!)/(61!)= 62*63*––*70=(-9)*(-8)*––*(-1)=-9!=-362880=1(mod 71). 明显61!与71互素, 所以两边同乘以61!, 所以70!=61!(mod 71).(13)当n为奇数时2n=(-1)n=-1=2(mod 3), 两边同时加上1有2n+1=0(mod 3), 所以结论成立.当n为偶数时2n=(-1)n=1(mod 3), 两边同时加上1有2n+1=2(mod 3), 所以结论成立.(14)第一个问:因为(c,m)=d, m/d为整数.假设ac=k1m+r, bc=k2m+r,有ac=k1d(m/d)+r, bc=k2d(m/d)+r所以ac=bc(mod m/d),因为(c,m/d)=1,所以两边可以同除以一个c, 所以结论成立.第二个问题:因为a=b(mod m), 所以a-b=k i*m i,a-b是任意m i的倍数,所以a-b是m i公倍数,所以[m i]|a-b.(利用式子:最小公倍数=每个数的乘积/最大公约数, 是错误的, 该式子在两个数时才成立)(15)将整数每位数的值相加, 和能被3整除则整数能被3整除, 和能被9整除则整数能被9整除, (1)能被3整除, 不能被9整除,(2)都不能,(3)都不能,(4)都不能第二章答案(5)证明:显然在群中单位元e满足方程x2=x, 假设存在一个元素a满足方程x2=x, 则有a2=a, 两边同乘以a-1有a=e. 所以在群中只有单位元满足方程x2=x. (6)证明:因为群G中每个元素都满足方程x2=e, 所以对群中任意元素a,b 有aa=e, bb=e, (ab)2=abab=e. 对abab=e, 方程两边左乘以a, 右乘以b有aababb=(aa)ba(bb)=ba=aeb=ab, 有ab=ba, 所以G是交换群.(7)证明:充分性:因为在群中对任意元素a,b有(ab)2=a2b2即abab=aabb, 方程两边左乘以a的逆元右乘以b的逆元, 有a-1ababb-1= a-1aabbb-1, 有ab=ba, 所以G是交换群.必要性:因为群G是交换群, 所以对任意元素a,b有ab=ba, 方程两边左乘以a右乘以b有abab=aabb, 有(ab)2=a2b2.(8)证明:因为xaaba=xbc,所以x-1xaxbaa-1b-1=x-1xbca-1b-1,所以存在唯一解x=a-1bca-1b-1使得方程成立。

信息安全数学基础习题答案

信息安全数学基础习题答案

4
21.解: (1)因为 875961*2753≡[(36mod9)(17mod9)]mod9 ≡0(mod9) 2410520633≡26(mod9) ≡8(mod9) 所以等式 875961*2753=2410520633 不成立 (2)因为 14789*23567≡[(29mod9)(23mod9)]mod9 ≡1(mod9) 348532367≡41(mod9) ≡5(mod9) 所以等式 14789*23567=348532367 不成立 (3)因为 24789*43717≡[(30mod9)(22mod9)]mod9 ≡3(mod9) 1092700713≡30(mod9) ≡3(mod9) 所以等式 24789*43717=1092700713 可能成立 (4)这种判断对于判断等式不成立时简单明了,但对于判断等式成立时,可能会较 复杂。 22.解:因为 7 为素数,由 Wilso 定理知:(7-1)! ≡-1(mod7) 即 6!≡-1(mod7) 所以 8*9*10*11*12*13≡1*2*3*4*5*6(mod7) ≡6!(mod7) ≡-1(mod7) 31.证明:因为 c1,c2,…,c ϕ (m)是模 m 的简化剩余系 对于任一 ci,有 m-ci 也属于模 m 的简化剩余系 所以 ci+(m-ci)≡0(modm) 因此 c1+c2+…+c ϕ (m)≡0(modm) 32.证明:因为 a ϕ (m)≡1(modm) 所以 a ϕ (m)-1≡0(modm) a ϕ (m)-1=(a-1)(1+a+ a2+…+ a ϕ (m)-1) ≡0(modm) 又(a-1,m)=1 所以 1+a+ a2+…+ a ϕ (m)-1 ≡0(modm) 33.证明:因为 7 为素数,由 Fermat 定理知 a7 ≡a(mod7) 又( a ,3 ) =1 所以 (a,9)=1 由 Euler 定理 知 a ϕ (9) ≡ a6 ≡ 1(mod9) a(mod9) 又(7,9)=1, 所以 a7≡a(mod7*9) 即 a7≡a(mod63) 34.证明:因为 32760=23*32*5*7*13 又(a,32760)=1 所以(a,2)=(a,3)=(a,5)=(a,7)=(a,13)=1 有:a ϕ (13)≡1(mod13) 即 a12≡1(mod13) a ϕ (8)≡a4≡1(mod8) 即 a12≡1(mod8) a ϕ (5)≡a4≡1(mod5) 即 a12≡1(mod5) a ϕ (7)≡a6≡1(mod7) 即 a12≡1(mod7) a ϕ (9)≡a6≡1(mod9) 即 a12≡1(mod9) 又因为[5,7,8,9,13]=32760 所以 a12≡1(mod32760) 35.证明:因为(p,q)=1 p,q 都为素数 所以 ϕ (p)=p-1, ϕ (q)=q-1 由 Euler 定理知:p ϕ (q)≡1(modq) q ϕ (p)≡1(modp) 即 pq-1≡1(modq) qp-1≡1(modp) 又 qp-1≡0(modq) pq-1≡0(modp) 所以 pq-1+qp-1≡1(modq) qp-1+pq-1≡1(modp) 又[p,q]=pq 所以 pq-1+qp-1≡1(modpq) 36.证明:因为(m,n)=1 由 Euler 定理知:m ϕ (n)≡1(modn) n ϕ (m)≡1(modm) 所以 m ϕ (n)+n ϕ (m)≡(m ϕ (n)modn)+ (n ϕ (m)modn)≡1+0≡1(modn)

《信息安全数学基础》(许春香 著) 课后习题答案 电子科技大学出版社

《信息安全数学基础》(许春香 著) 课后习题答案 电子科技大学出版社

www.kh 课d后a答案w网.com
必要性:因为群 G 是交换群, 所以对任意元素 a,b 有 ab=ba, 方程两边左乘以 a 右乘 以 b 有 abab=aabb, 有(ab)2=a2b2. (9) 证明:对群中任意元素 a,b 有 ab(ab)-1=e, 方程两边先左乘以 a 的逆元有 b(ab)-1=a-1, 在 左乘以 b 的逆元有(ab)-1=b-1a-1, 所以结论成立. (12) 证明:显然 mZ 是群 Z 的一个非空子集, 验证封闭性, 结合律, 单位元, 逆元, 得出 mZ 是一个群, 所以 mZ 是 Z 的子群. (因为对 mZ 中任意元素 am, bm 有 am-bm=(a-b)m, 因为 a-b∈Z, 所以(a-b)m∈mZ, 所以 mZ 是群 Z 的一个子群). (13) 证明:设群 G 的两个子群为 G1, G2, 则对任意 a,b∈G1∩G2 有 ab-1∈G1, ab-1∈G2, 所 以 ab-1∈G1∩G2, 所以 G1∩G2 也是 G 的子群. (14) 证明:设 G 是一个群, 对任意 a,b∈G, 存在一个 G 到 H 的映射 f,并且 f(ab)=f(a)f(b). 对任意 f(a),f(b)∈H 有 f(a)f(b)=f(ab)∈H, 所以 H 满足运算的封闭性. 对任意 f(a),f(b),f(c)有 (f(a)f(b))f(c)=f(ab)f(c)=f((ab)c), f(a)(f(b)f(c))=f(a)f(bc)=f(a(bc)), 又 因 为 (ab)c=a(bc), 所 以 (f(a)f(b))f(c)=f(a)(f(b)f(c)), 所以 H 满足结合律. 对任意 f(a)∈H, 有 f(ae)=f(a)=f(a)f(e), 所以 f(e)是 H 的单位元, 对任意的 f(a)∈H, 有 f(aa-1)=f(e)=f(a)f(a-1), 所以 f(a)的逆元为 f(a-1). 所以 H 是一个群. (16) 证明:设 a 到 a-1 的一一映射为 f.

信息安全数学基础期末考试试卷及答案(A卷)

信息安全数学基础期末考试试卷及答案(A卷)

信息安全数学基础期末考试试卷及答案(A卷)信息安全数学基础期末考试试卷及答案(A卷)⼀、填空题(本⼤题共8⼩题,每空2分,共24分)1.两个整数a,b,其最⼤公因数和最⼩公倍数的关系为。

2.给定⼀个正整数m,两个整数a,b叫做模m同余,如果 ____________________________ ,记作a三b(modm);否则,叫做模m不同余,记作 ________________________ 。

3.设m,n是互素的两个正整数,则 ?(m n)= ______________________________ 。

e ..4.设m 1是整数,a是与m互素的正整数。

则使得a三1(modm)成⽴的最⼩正整数e叫做a对模m的指数,记做 ________________ 如果a对模m的指数是? (m),贝U a叫做模m的________________ 。

5.设n是⼀个奇合数,设整数b与n互素,如果整数n和b满⾜条件______________________ ,贝U n叫做对于基b的拟素数。

6.设G,G是两个群,f是G到G的⼀个映射。

如果对任意的a,b G,都有__________________ ,那么f叫做G到G'的⼀个同态。

7.加群Z的每个⼦群H都是 _______________________________ 群,并且有H M O A或H = _____________________ 。

8.我们称交换环R为⼀个域,如果R对于加法构成⼀个 ____________ ,戌=R\{0}对于乘法构成⼀个 ____________ 。

⼆、计算题(本⼤题共3⼩题,每⼩题8分,共24分)1.令a =1613, b =3589。

⽤⼴义欧⼏⾥德算法求整数s,t,使得sa tb ⼆(a,b)。

2.求同余⽅程x2三2(mod67)的解数。

3.计算3模19的指数。

叫⑶。

三、解同余⽅程(本⼤题共2⼩题,每⼩题10分,共20分)1.求解⼀次同余⽅程17x =14(mod 21)。

信息安全数学基础习题答案

信息安全数学基础习题答案
所以n=2*5*7 k2 即n=70 k2, k2 Z
因此70|n
2.证明:因为a3-a=(a-1)a(a+1)
当a=3k,k Z 3|a 则3|a3-a
当a=3k-1,k Z 3|a+1 则3|a3-a
当a=3k+1,k Z 3|a-1 则3|a3-a
所以a3-a能被3整除。
3.证明:任意奇整数可表示为2 k0+1, k0 Z
(2 k0+1)2=4 k02+4 k0+1=4 k0 (k0+1)+1
由于k0与k0+1为两连续整数,必有一个为偶数,所以k0 (k0+1)=2k
所以(a+b,4)=4
37.证明:反证法
假设n为素数,则n| a2- b2=(a+b)(a-b)
由1.4定理2知n|a+b或n|a-b,与已知条件矛盾
所以假设不成立,原结论正确,n为合数。
40.证明:(1)假设是21/2有理数,则存在正整数p,q,使得21/2=p/q,且(p, q)=1
=13*41-14*(161-3*41)
=-14*161+55*(363-2*161)
=55*363+(-124)*(1613-4*363)
=(-124)*1613+551*(3589-2*1613)
所以(2t+1,2t-1)=1
(2)解:2(n+1)=1*2n+2
2n=n*2
所以(2n,2(n+1))=2
32.(1)解:1=3-1*2
=3-1*(38-12*3)
=-38+13*(41-1*38)

2005级信息安全数学基础试卷-A-答案

2005级信息安全数学基础试卷-A-答案

,考试作弊将带来严重后果!华南理工大学期末考试《信息安全数学基础》试卷A -答案1. 考前请将密封线内填写清楚; 所有答案请直接答在试卷上; .考试形式:闭卷;选择题:(每题2分,共20分)1. (2) 。

2. (3)。

3. (1) 。

4. (3)。

5. (2) 。

6. (3) 。

7. (4)。

8. (3) 。

9. (4)。

10. (3)填空题:(每题2分,共20分)1.设m 是正整数,a 是满足a | m 的整数,则一次同余式:ax ≡ b (mod m )有解的充分必要条件是 (a , m )|b 。

当同余式ax ≡ b (mod m ) 有解时,其解数为 d =(a , m ) 。

.设m 是正整数,则m 个数0, 1, 2, … , m -1中 与 m 互素的整数的个数 m 的欧拉(Euler)函数,记做ϕ (m )。

3.设m 是正整数,若同余式 x 2≡a (mod m ),(a , m )=1 有解,则a 叫m 的平方剩余。

4.设a , b 是正整数,且有素因数分解 s i p p p a i s s ,,2,1,0,2121 =≥=αααα,s i p p p b i s s,,2,1,0,2121 =≥=ββββ,则 , 。

5.如果a 对模m 的指数是 ϕ (m ) ,则a 叫做模m 的原根。

6.设m 是一个正整数,若 r 1, r 2, …, r ϕ (m )是ϕ (m )个 与 m 互素的整数,并且两两模 m 不同余,则r 1, r 2, …, r ϕ (m )是模m 的一个简化剩余系。

7.Wilson 定理:设p 是一个素数,则 (p -1)!≡-1 (mod p ) 。

8.2007年1月18日是星期四,第220070118天是星期 三 。

9.(中国剩余定理) 设m 1, …, m k 是k 个两两互素的正整数,则对任意的整数b 1, …, b k 同余式组 x ≡ b 1 (mod m 1)… … … …x ≡ b k (mod m k )有唯一解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州大学2007-2008学年第二学期考试试卷(标准答案) A
信息安全数学基础
注意事项:
1. 请考生按要求在试卷装订线内填写姓名、学号和年级专业。

2. 请仔细阅读各种题目的回答要求,在规定的位置填写答案。

3. 不要在试卷上乱写乱画,不要在装订线内填写无关的内容。

4. 满分100分,考试时间为120分钟。

一、设a,b 是任意两个不全为零的整数,证明:若m 是任一整数,则 [am,bm]=[a,b]m.(共10分) 解:
2
2[,](3(,)(3(,)(2(
,)
[,](2abm
am bm am bm abm a b m abm
a b a b m =
==
=分)
分)
分)
分)
= =
二、设
n=pq,其中p,q 是素数.证明:如果
2
2
=(mod ),,,a b n n a b n a b -+宎宎 则(,)1,(,)1n a b n a b ->+>(共10分)
证明:由2
2
2
2
=(mod ),|-,|()()a b n n a b n a b a b +-得即a a (2分)
又n pq =,则|()(),|()|(),pq a b a b p p a b p a b +-+-因为是素数,于是或a a a (2分) 同理,|()|()q a b q a b +-或a a (2分)
由于,n a b n a b -+宎 ,所以如果|()p a b +a ,则|()q a b -a ,反之亦然. (2分) 由|()p a b +a 得(,)1n a b p +=> (1分) 由|()q a b -a 得(,)1n a b q -=> (1分)
三、求出下列一次同余数的所有解.(共10分)
32(m od 7)x ≡
解:(1)求同余式31(m od 7)x ≡的解,运用广义欧几里得除法得:
5(m od 7)
x ≡ (5分)
(2)求同余式32(m od 7)x ≡的一个特解: 10(m
od 7)x ≡ (4分) (3)写出同余式32(m od 7)x ≡的全部解: 102(m od 7),0x t t ≡+= (1分)
四、求解同余式组:(共15分)
1234(m o d 5)(m o d 6)(m o d 7)(m o d 11)
x b x
b x b x b =⎧⎪=⎪⎨
=⎪⎪=⎩
解:令m=5.6.7.11=2310
12
34
6.7.11462(15.7.11385(15.6.11330(15.6.7210(1M M
M M
========分)分)
分)分)
分别求解同余式'
M 1(m od ),1,2,3,4i i i M m i ≡= 得到:'
'
'
'
12343,1,1,1(4M M M M ====分) 故同余式的解为:
12343462385330210(mod 2310)(2x b b b b ≡⋅⋅+⋅+⋅+⋅分)
五、求满足方程2
3
:51(mod 7)E y x x =++的所有点. (共10分)
解:对x=0,1,2,3,4,5,6,分别求出y.
2
2222220,1(m od 7),1,6(m od 7)(21,0(m od 7),(22,5(m od 7),(13(m od 7),(11(m od 7),1,6(m od 7)(25,4(m od 7),2,5(m od 7)(16,2(m od 7),3,4(m od 7)(1x y y x y x y y y y x y y x y y =≡≡=≡≡=≡≡≡≡=≡≡=≡≡分)y 0(mod7)分)无解分)x=3,无解分)
x=4,分)分)分)
六、判断同余式2
137(mod 227)x ≡是否有解.(共15分)
解:因为227是素数,2
137
901235
253227227
227227
227227⎛⎫⋅⋅⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫


⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
--===- (分)
又2
2271
226228
8
8
21(1)=13227⋅⎛⎫
⎪⎝⎭
-=(-)
=-- (分)
又2
51
512271
8
22
52272
1==11322755⋅⎛⎫
⎛⎫⎛⎫
⎪ ⎪ ⎪⎝⎭
⎝⎭⎝⎭
---=(-)(-)=- (分) 因此,13713227⎛⎫
⎪⎝⎭
=- (分) 同余式2
137(mod 227)x ≡无解. (3分)
七、设1m >是整数,a 是与m 互素的整数,假如()m ord a st =,那么
()s
m ord a t =.(共10分)
解: 由()m ord a st =得:()1(mod )5st
s t
a
a m =≡(分)
由()m ord a st =知,t 是同余式()1(mod )s t
a m ≡成立的最小正整数, 故,()s
m ord a t =. (5分)
.
八、证明整数环Z 是主理想环. (共10分)
证:设I 是Z 中的一个非零理想.当a I ∈时,有00(1)a I a a I =
∈=-∈及-.(2分) 因此,I 中有正整数存在. (1分)
设d 是I 中的最小正整数,则()I d = (1分) 事实上,对任意a I ∈,存在整数q,r 使得 (1分) ,0a dq r r d =+≤< (1分)
这样,由a I ∈及dq I ∈,得到r a dq I =-∈. (1分)
但r d <以及d 是I 中的最小正整数.因此,r=0,()a dq d =∈.(1分) 从而()I d ⊂,(1分)
又显然()d I ⊂.故()I d =,故Z 是主理想. (1分)
九、设p 是素数,则()P p =是整数环Z 的素理想. (共10分)
证:对任意整数a,b ,若(),|ab P p p ab ∈=则. (3分) 于是||.p a p b 或 (3分)
因此得到,a P b P ∈∈或. (3分)
因此,()P p =是整数环Z 的素理想. (1分)。

相关文档
最新文档