江苏省无锡市2020年高考数学 第二十九讲 圆锥曲线运算技巧练习
【2020年高考必备】高考数学圆锥曲线小题解题技巧
圆锥曲线高考小题解析一、 考点分析1. 点、直线、斜率和倾斜角之间的关系;2. 直线与圆的位置关系判断,以及圆内弦长的求法;3. 掌握椭圆、双曲线、抛物线基础内容,特别是参数之间的计算关系以及独有的性质;4. 掌握圆锥曲线内弦长的计算方法(弦长公式和直线参数方程法);5. 通过研究第二定义,焦点弦问题,中点弦问题加深对图形的理解能力;6. 动直线过定点问题和动点过定直线问题;7. 定值问题;8. 最值问题。
二、 真题解析1. 直线与圆位置关系以及圆内弦长问题1.【2018全国1文15】直线1y x =+与圆22230x y y ++-=交于,A B 两点,则||AB =___________解析:2222230(1)4x y y x y ++-=⇒++=,圆心坐标为(0,1)-,半径2r =圆心到直线1y x =+的距离d =||AB ==2.【2018全国2理19文20】设抛物线2:4C y x =的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于,A B 两点,||8AB =(1)求l 的方程;(2)求过点,A B 且与C 的准线相切的圆的方程。
解析:(1)直线过焦点,因此属于焦点弦长问题,可以利用焦点弦长公式来求 根据焦点弦长公式可知22||8sin pAB θ==,则sin θ=tan 1θ= 则l 的直线方程为1y x =-(2)由(1)知AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+设所求圆的圆心坐标为00(,)x y ,则00220005(1)(1)162y x y x x =-+⎧⎪⎨-++=+⎪⎩ 解得00003112-6x x y y ==⎧⎧⎨⎨==⎩⎩或 因此所求圆的方程为2222(3)(2)1(11)(+6)1x y x y -+-=-+=或通过这个题目注意一个在抛物线中不常用的结论:在抛物线中以焦点弦为直径的圆与准线相切,证明过程如下:在上图中过焦点的直线与抛物线交于,A B 两点,取AB 的中点M ,三点分别向准线作垂线,垂足分别为,,C D N ,因为1()2MN AC BD =+,,AC AF BD BF ==,所以11()22MN AF BF AB =+=,所以AB 为直径的圆与准线相切。
江苏省无锡市2020年高考数学 圆锥曲线的离心率求法
2020年高考数学 圆锥曲线篇圆锥曲线离心率的求法经典回顾1、已知点为椭圆上任意一点,、分别为椭圆的左、右焦点,为△的内心,若成立,则λ的值为【解析】试题分析:设△的内切圆的半径为r ,为△的内心,,所以∴=+|,|21||21||212121F F PF r PF r λ |,|||||2121F F PF PF λ=+因为为椭圆上任意一点,、分别为椭圆的左、右焦点,由椭圆的定义得a PF PF 2||||21=+,得2222,22ba ab a a -=∴-⨯=λλ.考点:三角形面积的计算及三角形内心的性质. 离心率求值 焦点三角形中2、在ABC △中,90A ∠=o,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .[解析]=+====BC AC ABe k BC k AC k AB ,5,3,4123、已知21,F F 为椭圆的两个焦点,P 为椭圆上一点,若3:2:1::211221=∠∠∠PF F F PF F PF ,则此椭圆的离心率为 _________.[解析] 13- [三角形三边的比是2:3:1]4、在ABC △中,3,2||,300===∠∆ABC S AB A .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .【解题思路】由条件知三角形可解,然后用定义即可求出离心率 [解析] 3sin ||||21=⋅=∆A AC AB S ABC , 32||=∴AC ,2cos ||||2||||||22=⋅-+=A AC AB AC AB BCP 22221(0)x y a b a b+=>>1F 2F I 12PF F 1212PIF PIF F IF S S S λ∆∆∆+=22a b-12PF F I 12PF F 1212PIF PIF F IF S S S λ∆∆∆+=P 22221(0)x y a b a b+=>>1F 2F2132322||||||-=+=+=BC AC AB e 【名师指引】(1)离心率是刻画椭圆“圆扁”程度的量,决定了椭圆的形状;反之,形状确定,离心率也随之确定(2)只要列出c b a 、、的齐次关系式,就能求出离心率(或范围) (3)“焦点三角形”应给予足够关注5、已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且321π=∠PF F ,椭圆的离心率为1e ,双曲线的离心率2e ,则=+222131e e . 【答案】4 【解析】试题分析:不妨设椭圆的标准方程为:2222111x y a b += ,双曲线的标准方程为:2222221x y a b -=公共焦点()()12,0,,0F c F c - ,则有:2222221122,a b c c a b =+=+在12PF F ∆中,因为321π=∠PF F ,由余弦定理得:222121212122cos PF PF PF PF F PF F F +-⋅∠=所以,222121212PF PF PF PF F F +-⋅= 所以,22121212()3PF PF F F PF PF +-=⋅22121212()PF PF F F PF PF --=-⋅即:2222112212443,44a c PF PF a c PF PF -=-=-所以,()2222221212223131a a a c a c c c ⎛⎫-=--⇒-=-- ⎪⎝⎭2222121211131314e e e e ⎛⎫⇒-=--⇒+= ⎪⎝⎭ 所以,答案应填:4.考点:1、椭圆的定义、标准方程与简单几何性质;2、双曲线的定义、标准方程与简单几何性质.6、设1e ,2e 分别为具有公共焦点1F 与2F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足021=⋅PF PF ,则2212221)(e e e e +的值为 2 [解析] .用好定义 设a PF PF 2||||21=+,m PF PF 2||||21=-,m a PF +=∴||1,m a PF -=||2,2224)()(c m a m a =-++21122221222=+∴=+∴e e c m a 位置关系 7、如图所示,椭圆中心在原点,F 是左焦点,直线1AB 与BF 交于D,且ο901=∠BDB ,则椭圆的离心率为[解析] B .=⇒=-⇒-=-⋅e ac c a c b a b 221)(215- 8、在平面直角坐标系中,椭圆2222x y a b+=1( a b >>0)的焦距为2,以O 为圆心,a 为半径的圆,过点2,0a c ⎛⎫⎪⎝⎭作圆的两切线互相垂直,则离心率e = .[解析]=⇒=e a c a 22229、椭圆的左焦点为,若关于直线的对称点是椭圆上的点,则椭圆的离心率为( ) A .B .C .D .【答案】D .【解析】 试题分析:设关于直线的对称点的坐标为,则,所以 ,,将其代入椭圆方程可得,化简可得,解得,故应选.考点:1、椭圆的定义;2、椭圆的简单几何性质;2222:1(0)x y C a b a b+=>>F F 30x y +=A C C 1231-331-(,0)F c -30x y +=A(m,n)(3)13022nm c m c n ⎧⋅-=-⎪⎪+⎨-⎪⋅+=⎪⎩2c m =3c n =22223441c ca b +=42840e e -+=31e =-D10、已知F 2,F 1是双曲线的上,下两个焦点,点F 2关于渐近线的对称点恰好落在以F 1为圆心,|OF 1|为半径的圆上,则双曲线的离心率为( ) A .2 B . C .3 D .【答案】A 【解析】试题分析:设点F 2关于渐近线的对称点为,由已知得,解得,又以F 1为圆心,|OF 1|为半径的圆的方程为,把点M 的坐标代入上式得,又,所以,解得。
江苏省无锡市高考数学第二十九讲圆锥曲线运算技巧练习
2015年高考数学 圆锥曲线篇玩转定义定义在解题中的妙用1短轴长为5,离心率32=e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为 2已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为3已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB =______________。
4已知P 为椭圆2212516x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆22(3)4x y -+=上的点,则PM PN +的最小值为5设F 1,F 2分别是椭圆x 225+y 216=1的左,右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.6已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|PA |+|PF |的最小值,并求出取最小值时点P 的坐标.定义+性质 7已知点B A ,是椭圆22221x y m n+=(0m >,0n >)上两点,且BO AO λ=,则λ= 8、P 是椭圆12222=+by a x 上一点,1F 、2F 是椭圆的两个焦点,求||||21PF PF ⋅的最大值与最小值9、如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点 则1234567PF P F P F P F P F P F P F ++++++=________________10如图2所示,F 为双曲线1169:22=-y x C 的左焦点,双曲线C 上的点i P 与()3,2,17=-i P i 关于y 轴对称,则F P F P F P F P F P F P 654321---++的值是11、P 是双曲线)0,0(12222>>=-b a by a x 左支上的一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则的内切圆的圆心的横坐标为12、点P 是椭圆x 225+y 216=1上一点,F 1,F 2是椭圆的两个焦点,且△PF 1F 2的内切圆半径为1,当P 在第一象限时,P 点的纵坐标为________. 13、椭圆的左,右焦点分别为弦过,若的内切圆的周长为两点的坐标分别为则= . 14、在中,.若以为焦点的椭圆经过点,则该椭圆的离心率 .定义+性质+最值问题15、已知实数满足,求的最大值与最小值16、椭圆上的点到直线l:的距离的最小值为___________. 17椭圆的内接矩形的面积的最大值为命题陷阱18设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为-4,求此椭圆方程.19已知,一曲线上的动点到距离之差为6,则双曲线的方程为20双曲线的渐近线为,则离心率为 21已知双曲线的渐近线方程是,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ;特殊解题技巧22椭圆的一条弦被平分,那么这条弦所在的直线方程是方法与技巧双曲线标准方程的求法 (1)当已知双曲线的焦点不明确而又无法确定时,其标准方程可设为x 2m -y 2n=1 (mn >0),这样可避免讨论和复杂的计算;也可设为Ax 2+By 2=1 (AB <0),这种形式在解题时更简便;(2)当已知双曲线的渐近线方程bx ±ay =0,求双曲线方程时,可设双曲线方程为b 2x 2-a 2y 2=λ(λ≠0),据其他条件确定λ的值; (3)与双曲线x 2a 2-y 2b 2=1有相同的渐近线的双曲线方程可设为x 2a 2-y 2b2=λ (λ≠0),据其他条件确定λ的值.失误与防范1.区分双曲线中的a ,b ,c 大小关系与椭圆中的a ,b ,c 大小关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.2.双曲线的离心率e ∈(1,+∞),而椭圆的离心率e ∈(0,1). 3.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b2=1 (a >0,b >0)的渐近线方程是y =±a bx .4.若利用弦长公式计算,在设直线斜率时要注意说明斜率不存在的情况.5.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.。
2020届高考专题之圆锥曲线常见的五种解题方法
圆锥曲线常见的五种解题方法一.弦的垂直平分线问题【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定.......理.产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
解:依题意知,直线的斜率存在,且不等于0。
设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。
由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。
则线段AB 的中点为22211(,)22k k k--。
线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 。
AB =221k k =+2d k=21k +=k =满足②式此时053x =。
例题分析1:已知抛物线y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b=,∴220x x +-=,由弦长公式可求出AB ==.二.共线向量问题1:如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E.I )求曲线E 的方程;II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足FH λ=,求λ的取值范围.解:(1).0,2=⋅= ∴NP 为AM 的垂直平分线,∴|NA|=|NM| 又.222||||,22||||>=+∴=+AN CN NM CN ∴动点N 的轨迹是以点 C (-1,0),A (1,0)为焦点的椭圆.且椭圆长轴长为,222=a焦距2c=2. .1,1,22===∴b c a ∴曲线E 的方程为.1222=+y x (2)当直线GH 斜率存在时,设直线GH 方程为,12,222=++=y x kx y 代入椭圆方程 得.230.034)21(222>>∆=+++k kx x k 得由设),,(),,(2211y x H y x G)2(216213),1(21821422212221k k x x k k k k x x +=+=+-=+-=+则)2,()2,(,2211-=-∴=y x y x λλ 又,,2121x x x x =∴=∴λλ,)21(332)21(33221)2()1(2222+=+=++⇒kk k λλ.331.316214.316)21(3324,2322<<<++<∴<+<∴>λλλ解得kk .131,10<<∴<<λλ 又 又当直线GH 斜率不存在,方程为.31,31,0===λFH FG x )1,31[,131的取值范围是即所求λλ<≤∴ 2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =的焦点,离心率为5.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-.解:设椭圆C 的方程为22221x y a b+= (a >b >0)抛物线方程化为24x y =,其焦点为(0,1),则椭圆C 的一个顶点为(0,1),即 1b =由5c e a ===,∴25a =,椭圆C 的方程为2215x y +=(2)证明:右焦点(2,0)F ,设11220(,),(,),(0,)A x y B x y M y ,显然直线l 的斜率存在,设直线l 的方程为 (2)y k x =-,代入方程2215x y += 并整理,得2222(15)202050k x k x k +-+-=∴21222015k x x k +=+,212220515k x x k -=+ 又110(,)MA x y y =-,220(,)MB x y y =-,11(2,)AF x y =--,22(2,)BF x y =--,而 1MA AF λ=, 2MB BF λ=,即110111(0,)(2,)x y y x y λ--=--,220222(0,)(2,)x y y x y λ--=--∴1112x x λ=-,2222x x λ=-,所以 121212121212122()2102242()x x x x x x x x x x x x λλ+-+=+==----++3、已知△OFQ 的面积S=26, 且m =∙。
【2020届】高考数学圆锥曲线专题复习:圆锥曲线解答题12大题型解题套路归纳
【高考数学中最具震撼力的一个解答题!】注:【求解完第一问以后,】→WILL COME ACROSS圆锥曲线题10大题型:(1)弦长问题(2)中点问题(3)垂直问题(4)斜率问题(5)对称问题(6)向量问题(7)切线问题(8)面积问题(9)最值问题(10)焦点三角形问题。
中的2-----4类;分门别类按套路求解;1.考(总与三个问题有关):(1)———————;(2)——————————;(3)—————————;2.圆锥曲线题,直线代入圆锥曲线的“:---------------------------------------------------; ——————————————————————————————————————;3.圆锥曲线题-------------------;---------------------------------------------;————————————;—————————;——————————;—————————————————;———————————;——————————————;4.STEP1:首先看是否属于3种特殊弦长:(1)圆的弦长问题;(2)中点弦长问题(3)焦点弦长问题;→(1)圆的弦长问题:(2法)首选方法:垂径定理+勾股定理:图示:--------------------------------;公式为:-------------------------;其中求“点线距”的方法:———————;次选:弦长公式;→(2)中点弦长问题:(2法)首选方法:“点差法”椭圆:(公式一)--------------------------------;(公式二)--------------------------------;副产品:两直线永远不可能垂直!原因:___________;【两直线夹角的求法:(夹角公式)___________;】双曲线(公式一)--------------------------------;(公式二)--------------------------------;抛物线:形式一:___________;(公式一)--------------------------------;(公式二)--------------------------------;形式2:___________;(公式一)--------------------------------;(公式二)--------------------------------;附:“点差法”步骤:椭圆:“点”_______________________;___________________________;“差”__________________________________;“设而不求法”_______________________________;“斜率公式”+“中点公式”_____________________;___________;___________;→得公式:(公式一)-------------------;(公式二)---------------------;附:“点差法”步骤:抛物线;形式一___________;:“点”_______________________;_____________________;“差”_________________________;“设而不求法”___________________;“斜率公式”+“中点公式”_____________;___________;___________;→得公式:(公式一)---------------------;(公式二)--------------------;附:“点差法”步骤:抛物线:形式二:____________;“点”_______________________;_________________;“差”__________________________________;“设而不求法”______________________;“斜率公式”+“中点公式”_____________;___________;___________;→得公式:(公式一)-------------------;(公式二)--------------------------------;法二次选:中点公式;→(2)焦点弦长问题:(2(公式一)左焦点弦长:--------------------------------;图示:__________________;右焦点弦长:--------------------------------;图示:__________________;公式一适用于:__________________________;(公式二)--------------------------------;其中:________________;适用于:__________________________; ________;公式一:__________________;图示:_____________________;公式一适用于:__________________________;焦点弦公式二:____________________;公式2适用于:__________________________;→ STEP2:除了这三种特殊弦长以外,其余弦长求解都用【弦长公式】(保底方法);【弦长公式】3类型:【类1】___________;___________;_______________;适用于:__________________________;【类2】___________;____________;_______________;适用于:__________________________;【类3】___________;____________;_______________;适用于:__________________________;5.【2次选-------------------------;--------------------------;--------------------------;---------;6. 2种特殊的垂直问题:(1【2法】:法一:“圆的直径式方程”____________________________________;法二:向量垂直法:____________________;____________________________________; (2)“原点张角垂直问题”首选方法:向量垂直法+韦达定理【最快!】图示:_____________________;套路:___________________;_______________________________;7.“结论法+代入法最快!”【2题型】(1)结论一:【原点对称】_______________________________;结论二:【任意点对称】_______________________________;(2【x 轴对称】_______________________________;结论二:【y轴对称】_______________________________;结论三【x=a对称】------------------------------------------;结论四【y=b对称】:______________________;结论5【y=x对称】:__________________________;结论6【y=-x对称】:_______________________________;结论7【y=x+c对称】:___________________;结论8【y=-x+c对称】:_____________________;结论9【任意直线Ax+By+C=0对称】:_______________________________;8.【大纲内2题型】(1)题:【3套路8结论】(1)“点线距等于半径”________________________;(2)斜率乘积等于-1;______________;(3)勾股定理:__________________;结论:(1)【切线长公式】_______________________;(2)【圆心在原点时】_______________________;(3)【切点弦直线方程】_______________________;(4)_______________________;(5)_______________________;(6)_______________________;(7)________________________;(2【导数法】(2形式)【形式一】________;____________________;【形式二】_________;__________________________;9.圆锥曲线题题型六:固定套路:_________+___________+_____________+___________+__________ ___+___________+_____________;【相关结论】:【两焦半径】左焦半径_____________;右焦半径_____________;特别的,通径:______________;半通径:______________;【三边长】_____________;_____________;_____________;【周长】_____________;【两焦半径乘积】_____________;【焦点三角形面积】_____________;_____________;作用:_____________;_____________;【余弦定理式】_____________;_____________;_____________;【正弦定理式】________;【求解离心率】__________;_________;________;__________;_____;【焦点三角形中内心公式】_____________________;10.“向量法最快”!平解几中,向量问题均采用“坐标运算”最佳!】首先:坐标化→→【平面向量10公式】【向量平行】_____________________;【向量垂直】_____________________;【向量夹角公式】_____________________;【加减式】_____________________;【数乘式】_____________________;【向量数量积公式】_____________________;【向量模的公式】_____________________;【量模转化公式】_____________________;【向量平方差公式】_____________________;【向量完全平方公式】_____________________;11.【2类】(1】→→“成锐角时《=》向量数量积>0;”“成钝角时《=》向量数量积<0;”“成直角时《=》向量数量积=0;”(2)【2法】(1)向量数量积公式_____________________;(2)两直线夹角公式_____________________;12.圆锥曲线题题型9_____________________;_____________________;_____________________;【凡与垂直相关的斜率问题】首选:斜率乘积等于-1。
高中数学圆锥曲线解题技巧方法总结及高考试题和答案练习题.docx
精选圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如方程8=表示的曲线是_____(答:双曲线的左支)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。
若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___)(2)双曲线:焦点在x 轴上:2222by a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
方程22Ax By C +=表示双曲线的充要条件是什么?(ABC≠0,且A ,B 异号)。
如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
圆锥曲线的解题技巧和方法2020完美打印版
圆锥曲线的解题技巧三、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法)入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 过A (2,1) 的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P典型例题 设P(x,y)(1)求证离心率βαβαsin sin )sin(++=e ; (2 (3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题 (1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。
(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。
【2020届】高考数学圆锥曲线专题复习:圆锥曲线之轨迹方程的求法
圆锥曲线之轨迹方程的求法(一)【复习目标】□1. 了解曲线与方程的对应关系,掌握求曲线方程的一般步骤;□2. 会用直接法、定义法、相关点法(坐标代换法)求方程。
【基础练习】1.到两坐标轴的距离相等的动点的轨迹方程是( )A .y x =B .||y x =C .22y x =D .220x y +=2.已知点(,)P x y 4,则动点P 的轨迹是( )A .椭圆B .双曲线C .两条射线D .以上都不对3.设定点1(0,3)F -、2(0,3)F ,动点P 满足条件129(0)PF PF a a a+=+>,则点P 的轨迹( ) A .椭圆 B .线段 C. 不存在 D .椭圆或线段4.动点P 与定点(1,0)A -、(1,0)B 的连线的斜率之积为1-,则P 点的轨迹方程为______________.【例题精选】一、直接法求曲线方程根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简。
即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。
例1.已知ABC ∆中,2,AB BC m AC==,试求A 点的轨迹方程,并说明轨迹是什么图形.练习:已知两点M (-1,0)、N (1,0),且点P 使MP MN ,PM PN ,NM NP 成公差小于零的等差数列。
点P 的轨迹是什么曲线?二定义法若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程。
例1.⊙C :22(16x y +=内部一点0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于BQ R A P o yx P ,求点P 的轨迹方程.例2.设动点(,)(0)P x y x ≥到定点1(,0)2F 的距离比它到y 轴的距离大12。
记点P 的轨迹为曲线C 求点P 的轨迹方程;练习.若动圆与圆1)2(:221=++y x C 相外切,且与直线1=x 相切,则动圆圆心轨迹方程是 .三代入法有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的。
2020年高考数学秒杀技巧:圆锥曲线
2020年新高考数学秒杀技巧:圆锥曲线圆锥曲线历年都是高考的重点,难点,热点,考试分值占比17-27分,2020年新高考改革后,依然会作为热门考点,考试形式有:单项选择题,多项选择题,填空题,解答题,猜测2020年新高考数学数列知识板块会出现一道选择题,一道填空题,一道解答题,分值占比约22分。
圆锥曲线知识点计算量繁琐,很难拿取满分,较多的知识点有多种方法,选择合适的方法既快又准,高考尽量多拿分,如何快速准确地多拿分,需要对知识点了然于胸,并且熟练掌握秒杀技巧,下面我将从近三年高考真题及模拟题为蓝本,用解题技巧秒杀,相信同学们只要认真领会精髓,将技巧运用自如,必能获得满分。
课前知识储备椭圆的标准方程:(1)当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;(2)当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;要点一、椭圆的简单几何性质我们根据椭圆12222=+by a x )0(>>b a 来研究椭圆的简单几何性质椭圆的范围椭圆上所有的点都位于直线x=±a 和y=±b 所围成的矩形内,所以椭圆上点的坐标满足|x|≤a ,|y|≤b.椭圆的对称性对于椭圆标准方程22221x y a b +=,把x 换成―x ,或把y 换成―y ,或把x 、y 同时换成―x 、―y ,方程都不变,所以椭圆22221x y a b+=是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
椭圆的顶点①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆22221x y a b+=(a >b >0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A 1(―a ,0),A 2(a ,0),B 1(0,―b ),B 2(0,b )。
(完整word)高中数学圆锥曲线解题技巧方法总结及高考试题和答案,推荐文档
圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如方程8=表示的曲线是_____(答:双曲线的左支)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+bya x (0ab >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。
若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___)(2)双曲线:焦点在x 轴上:2222by a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
方程22Ax By C +=表示双曲线的充要条件是什么?(ABC≠0,且A ,B 异号)。
如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
2020年高考数学圆锥曲线及解题技巧
椭圆与双曲线的性质椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若在椭圆上,则过的椭圆的切线方程是.000(,)P x y 22221x y a b +=0P 00221x x y y a b +=6. 若在椭圆外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线000(,)P x y 22221x y a b+=方程是.00221x x y ya b +=7. 椭圆 (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点,则椭圆22221x y a b+=12F PF γ∠=的焦点角形的面积为.122tan2F PF S b γ∆=8. 椭圆(a >b >0)的焦半径公式:22221x y a b+=,( , ).10||MF a ex =+20||MF a ex =-1(,0)F c -2(,0)F c 00(,)M x y 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆的不平行于对称轴的弦,M 为AB 的中点,则,22221x y a b +=),(00y x 22OM AB b k k a ⋅=-即。
0202y a x b K AB -=12. 若在椭圆内,则被Po 所平分的中点弦的方程是.000(,)P x y 22221x y a b +=2200002222x x y y x y a b a b +=+13. 若在椭圆内,则过Po 的弦中点的轨迹方程是.000(,)P x y 22221x y a b +=22002222x x y yx y a b a b+=+双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)。
(完整版)圆锥曲线解题技巧和方法综合(经典)
圆锥曲线解题方法技巧归纳第一、知识储备:1. 直线方程的形式(1) 直线方程的形式有五件:点斜式、两点式、斜截式、截距式、 一般式。
(2) 与直线相关的重要内容①倾斜角与斜率 k tan , [0, )② 点 到 直 线 的 距 离 d Ax 0 By 0 CA 2B 2tan3)弦长公式直线 y kx b 上两点 A(x 1, y 1), B( x 2 , y 2 )间的距离: AB 1 k 2 x 1 x 2(1 k 2 )[( x 1 x 2)2 4x 1x 2] 或 AB 1 k 12 y 1 y 2 (4)两条直线的位置关系①l 1 l 2 k 1k 2=-1 ② l 1 //l 2 k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:22x y1(m 0,n 0且 m n) mn 距离式方程:(x c)2 y 2 (x c)2 y 22a 参数方程:x acos ,y bsin(2)、双曲线的方程的形式有两种③夹角公式:k21222标准方程:x y1(m n 0)mn距离式方| (x c)2 y 2 (x c) 2 y 2 | 2a(3) 、三种圆锥曲线的通径你记得吗?椭圆:2b;双曲线:2b;抛物线:2 p aa(4) 、圆锥曲线的定义你记清楚了吗?b 2tan2 P 在双曲线上时, S F PF b cot| PF |2 | PF |2 4c 2 uuur uuuur uuur uuuur 其中 F 1PF 2,cos |PF 1||PF 1||P |F P 2F |2 | 4c ,u P u F ur1?u P u Fuur 2|u P uu F r 1 ||uu P u Fur2|cos(6) 、 记 住 焦 半 径 公 式 : ( 1 )椭圆焦点在 x 轴上时为 a ex 0 ;焦点在 y 轴上时为 a ey 0,可简记为“左加右减,上加下减”(2)双曲线焦点在 x 轴上时为 e|x 0 | a(3) 抛物线焦点在 x 轴上时为 | x 1 | 2p ,焦点在 y 轴上时为 | y 1 | 2p(6)、椭圆和双曲线的基本量三角形你清楚吗?第二、方法储备1、点差法(中点弦问题)2y1的弦 AB 中点则有3如: 已知 F 1、 22F2是椭圆 x4 y3 1的两个焦点, 平面内一个动点 M 足 MF 1MF 2 2 则动点 M 的轨迹是(A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式: P 在椭圆上时, S F 1PF 2设 A x 1, y 1B x 2,y 2 , M a,b 为椭圆 x42 2 2 2 2 2 2 2 x 1 y 1 1, x 2 y 2 1;两式相减得 x 1 x 2y 1 y 24 3 4 3 4 3x 1 x 2 x 1 x 2y 1 y 2 y 1 y 23a4 3kAB =4b2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到 一个二次方程, 使用判别式 0,以及根与系数的关系, 代入弦 长公式,设曲线上的两点 A( x 1, y 1), B(x 2 , y 2 ) ,将这两点代入曲线方 程得到 ○1 ○2 两个式子,然后 ○1-○2 ,整体消元······,若有两个 字母未知数, 则要找到它们的联系, 消去一个,比如直线过焦点, 则可以利用三点 A 、B 、 F 共线解决之。
2020高考数学复习—圆锥曲线练习试卷含答案
高考数学复习—圆锥曲线练习试卷 第Ⅰ卷 (选择题 共50分)一、选择题(10×5′=50′)1.已知有向线段PQ 的起点P (-1,1),终点Q (2,2), 若直线l :x +my +m =0与有向线段PQ 的延长线相交,如图所示, 则m 的取值范围是 ( )A.⎪⎭⎫ ⎝⎛23,31 B.⎪⎭⎫ ⎝⎛--32,3 C.(-∞,-3) D.⎪⎭⎫ ⎝⎛+∞-,322.若P (x 1,y 1)是直线l :f (x ,y )=0上的一点,Q (x 2,y 2)是直线l 外一点,则方程f (x ,y )=f (x 1,y 1)+f (x 2,y 2)表示的直线 ( )A.与l 重合B.与l 相交于点P C.过点Q且与l 平行 D.过点Q 且与l 相交 3.直线l :y =kx +1(k ≠0),椭圆E :1422=+y m x .若直线l 被椭圆E 所截弦长为d ,则下列直线中被椭圆E 所截弦长不是d 的直线是 ( )A.kx +y +1=0B.kx -y -1=0C.kx +y -1=0D.kx +y =04.若m 、n 是不大于6的非负整数,则C m 6x 2+C n 6y 2=1表示不同的椭圆的个数为 ( )A.A 27B.C 26C.A 24D.C 245.在椭圆上一点A 看两焦点F 1、F 2的视角为直角,设AF 1的延长线交椭圆于点B ,又|AB |=|AF 2|,则椭圆的离心率e 可能为 ( )第1题图A.2-22B.36- C.2-1 D.23-6.F 1、F 2分别为椭圆1422=+y x 的左、右焦点,AB 为其过点F 2且斜率为1的弦,则A F 1·B F 1的值为 ( )A.523 B.326 C.546 D.57.如果把圆C :x 2+y 2=1沿向量a =(1,m )平移到C ′,且C ′与直线3x -4y =0相切,则m 的值为 ( )A.2或-21 B.2或21 C.-2或21 D.-2或-218.在圆x 2+y 2=5x 内,过点⎪⎭⎫⎝⎛23,25有n 条弦的长度成等差数列,最小弦长为数列的首项a 1,最大弦长为a n ,若公差d ∈⎥⎦⎤⎢⎣⎡31,61,那么n 的取值集合为( )A.{3,4,5}B.{4,5,6}C.{3,4,5,6}D.{4,5,6,7} 9.若当p (m ,n )为圆x 2+(y -1)2=1上任意一点时,不等式m+n+c ≥0恒成立,则c 的取值范围是 ( )A.-1-2≤c ≤2-1 B.2-1≤c ≤2+1C.c ≤-2-1 D.c ≥2-110.过抛物线y 2=8(x +2)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,使|AF |>|BF |,过点A 作与x 轴垂直的直线交抛物线于点C ,则△BCF的面积是 ( )A.64B.32C.16D.8 二、填空题(4×4′=16′)11.一个圆周上有10个点,每两点连成一条弦,这些弦在圆内的交点最多有 个.12.设圆C 经过点M (-2,0)和点N (9,0),直线l 过坐标原点,圆C 与直线l 相交于点P 、Q ,当直线l 绕原点在坐标平面内旋转时,弦PQ 长度的最小值是 .13.函数y =x1的图象是平面上到两定点距离之差的绝对值等于定长的点的轨迹,则这个定长是 .14.椭圆12222=+b y a x (a>b>0)的两焦点为F 1、F 2,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为 . 三、解答题(4×10′+14′=54′)15.对任意的实数λ,直线(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2)的距离为d ,求d 的取值范围.16.已知椭圆E :12222=+b y a x (a>b>0),以F 1(-c ,0)为圆心,以a-c 为半径作圆F 1,过点B 2(0,b )作圆F 1的两条切线,设切点为M 、N.(1)若过两个切点M 、N 的直线恰好经过点B 1(0,-b )时,求此椭圆的离心率;(2)若直线MN 的斜率为-1,且原点到直线MN 的距离为4(2-1),求此时的椭圆方程;(3)是否存在椭圆E ,使得直线MN 的斜率k 在区间(-33,22)内取值?若存在,求出椭圆E 的离心率e 的取值范围;若不存在,请说明理由.17.椭圆的焦点在y 轴上,中心在原点,P 为椭圆上一点,F 1、F 2为椭圆两焦点,点P 到两准线的距离分别为556和5512,且PF 1⊥PF 2.(1)求椭圆的方程;(2)过点A (3,0)的直线l 与椭圆交于M 、N 两点,试判断线段MN 的中点Q 与点B (0,2)的连线能否过椭圆的顶点,若能则求出l 的方程,若不能则说明理由.18.椭圆E 的中心在原点O ,焦点在x 轴上,离心率e =32,过点C (-1,0)的直线l 交椭圆于A 、B 两点,且满足:CA =λBC .(1)若λ为常数,试用直线l 的斜率k (k ≠0)表示△OAB 的面积; (2)若λ为常数,当△OAB 的面积取得最大值时,求椭圆E 的方程;(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程.19.有一张矩形纸片ABCD,如图(1)所示那样折叠,使每次折叠后,点A都落在DC边上,试确定:是否存在一条曲线,使这条曲线上的每一点都是某条折痕(满足以上条件)与该曲线的切点,且每条折痕与该曲线相切[如图(2)].第19题图圆锥曲线练习参考答案一、选择题1.B 易知k PQ =31)1(212=---,直线x+my+m =0过点M (0,-1).当m =0时,直线化为x =0,一定与PQ 相交,所以m ≠0. 当m ≠0时,k 1=-m1.考虑直线l 的两个极限位置.(1)l 经过点Q ,即直线为l 1,则k 1l =2302)1(2=---.(2)l 与PQ 平行,即直线为l 2,则k 2l =k PQ =31.∴31<-m1<23.∴-3<m <-32.故选B.2.C 由题意知f (x 1,y 1)=0,f (x 2,y 2)=m (m 为非零常数).所以方程f (x ,y )=f (x 1,y 2)+f (x 2,y 2),即f (x ,y )-m=0.所以f (x )表示的直线过点Q,且平行于直线l .3.D 因为A 、B 、C 三个选项分别是直线l 关于x 轴、原点、y 轴的对称直线,又椭圆E 关于x 轴、原点、y 轴都对称,所以A 、B 、C 三个选项所表示的直线被椭圆E 所截弦长都是d .故选D.4.C 因为C m6只有4个不同的值,故选C.5.B 由题意知|AF 1|≠|AF 2|.∴2(|AF 1|2+|AF 2|2)>(|AF 1|+|AF 2|)2.∴2×4c 2>4a 2.∴e =ac >22≈0.707.对照备选答案,只有B 可能.6.C 分析 本题可把直线AB 与椭圆两方程联立求出A 、B 坐标后写出A F 1、B F 1的坐标表示,再按定义进行.也可先求出向量A F 2、B F 2,利用A F 1·B F 1=(21F F +A F 2)·(21F F +B F 2)来做.解法一 ⎪⎩⎪⎨⎧-==+3,1422x y y x 消去y 得5x 2-83x +8=0,设A (x 1,y 1),B (x 2,y 2). ∴A F 1·B F 1=(x 1+3,y 1)·(x 2+3,y 2)=(x 1+3,x 1-3)·(x 2+3,x 2-3)=(x 1+3)(x 2+3)+(x 1-3)(x 2-3)=2(x 1x 2+3)=2(58+3)=546,选C.解法二 设直线AB 方程为⎪⎪⎩⎪⎪⎨⎧=+=223t y t x ,代入椭圆方程1422=+y x ,有5t 2+26t -2=0A F 1·B F 1=(21F F +A F 2)·(21F F +B F 2)=(21F F )2+21F F ·(A F 2+B F 2)+A F 2·B F 2=(23)2+23·⎪⎪⎭⎫ ⎝⎛-562·21+⎪⎭⎫ ⎝⎛-52=546.选C. 7.A 平移后圆的方程为(x -1)2+(y -m )2=1.由题意知平移后所得的圆的圆心到直线的距离d =2243|43|+-m =1,解得m =2或-21.8.D 如图,⊙C 的圆心为C (0,25),半径R =|CB |=25,最短弦a 1=|AB |=4,最长弦a n =|DE |=5.由a n =a 1+(n -1)d ,得d =1111-=--n n a an ,已知d ∈⎥⎦⎤⎢⎣⎡31,61,∴n -1∈[3,6],n ∈[4,7],即n =4,5,6,7.选D.9.D 本题是解析几何题型,而又求数的范围,故适合用数形结合思想直观解之.如图,圆C 恒在直线y =-x-c 上方,至少直线l 与圆相切于A 点,若l 交y 轴于B ,∵k l =-1,∴△ABC 为等腰直角三角形.|AB |=|AC |=1,|BC |=2,必有B (-2+1,0),即直线的纵截距-c ≤-2+1时圆恒在直线l 上方,∴c ≥2-1.选D.10.C 分析 如图由抛物线关于x 轴对称知∠AFC =90°,第8题图解第9题图解△BFC 为Rt △,只须求FB 、FC 之长即可.解 抛物线顶点为(-2,0),且焦参数p =4,知焦点F (0,0)为原点. ∴直线AB 的方程为y=x ,代入抛物线方程:x 2=8(x +2). 即(x -4)2=32,∴x =4±42.故有A (4+42,4+42),B (4-42,4-42),C (4+42,-4-42).由条件知∠AFx =∠CFx =45°,∴在△BFC 中∠BFC =90°. ∴S △BFC =21|FB|·|FC |=212222)424()424()424()424(--++⋅-+-=22)424()424(+-=32-16=16.∴选C.二、填空题11.210 分析 本题直接求解较难,可转化为求圆的内接四边形的个数(由于每一个四边形,对应着对角线的一个交点),从而使问题简化.解 在圆内相交于一点的两弦,可作为一个四边形的两条对角线,它对应着一个圆内接四边形.反之,每一个圆内接四边形,都对应着对角线的一个交点.这样,圆内接四边形与弦在圆内的交点可建立一一对应的关系.因此,弦在圆内的交点最多有C 410=210个.12.62当直线l 绕原点O 旋转到使OC 垂直于l 时,|PQ |最小.因为O 为PQ 的中点,所以由相交弦定理得|OP ||OQ |=|OM ||ON |=18,即|OP |2=18,所以|OP |=32.所以|PQ |=2|OP |=62.13.22 由⎪⎩⎪⎨⎧==.,1x y x y 得A (-1,-1)、B (1,1),所以2a =|AB |=22.14.3-1 设过左焦点F 1的正三角形的边交椭圆于点A ,则|AF 1|=c ,|AF 2|=3c .∴2a =(1+3)c .∴e =ac =13312-=+. 三、解答题15.解 将原方程化为(2x -y -6)+λ(x-y -4)=0,它表示的是过两直线2x -y -6=0和x -y -4=0交点的直线系方程,但其中不包括直线x -y -4=0.因为没有λ的值使其在直线系中存在.解方程组⎩⎨⎧=--=--.04,062y x y x 得⎩⎨⎧-==.2,2y x 所以交点坐标为(2,-2).当所求直线过点P和交点时,d 取最小值为0;当所求直线与过点P和交点的直线垂直时,d 取最大值,此时有d =24)22()22(22=--++.但是此时所求直线方程为x-y -4=0.而这条直线在直线系中不存在.所以d 的取值范围是[)24,0.16.解 (1)圆F 1的方程是(x+c )2+y 2=(a-c )2,因为B 2M 、B 2N 与该圆切于M 、N 点,所以B 2、M 、F 1、N 四点共圆,且B 2F 1为直径,则过此四点的圆的方程是(x +2c )2+(y -2b )2=422b c+,从而两个圆的公共弦MN 的方程为cx +by +c 2=(a-c )2,又点B 1在MN 上,∴a 2+b 2-2ac =0,∵b 2=a 2-c 2, ∴2a 2-2ac -c 2=0,即e 2+2e -2=0,∴e =3-1.(负值已舍去)(2)由(1)知,MN 的方程为cx+by+c 2=(a-c )2,由已知-bc =-1. ∴b=c ,而原点到MN 的距离为d =aa ac bc c a c |2||)(|22222-=+--=|2c-a |=(2)a ,∴a =4,b2=c2=8,所求椭圆方程是181622=+y x; (3)假设这样的椭圆存在,由(2)则有-22<-b c <-33,∴33<b c <22,∴31<22bc <21,∴31<222c a c -<21.故得2<222c c a -<3,∴3<22ca <4,求得21<e <33,即当离心率取值范围是(21,33)时,直线MN 的斜率可以在区间(22,-33)内取值.17.解 (1)设椭圆的方程为12222=+a y b x (a>b>0),c =22b a -, |PF 1|=m ,|PF 2|=n ,则由题意和椭圆的性质得m+n =2a ,n =2m ,m 2+n 2=4c 2,551822=ca解得a =3,b =2,c =5.故所求的椭圆方程为19422=+y x . (2)由(1)知直线l 与椭圆相交时斜率一定存在,故设l 的方程为y =k (x -3),代入19422=+y x ,整理得(9+4k 2)x 2-24k 2x +36k 2-36=0 由Δ=(-24k 2)2-4(9+4k 2)(36k 2-36)>0, 得-553553<<k .设M (x 1,y 1),N (x 2,y 2),Q (x 0,y 0)则x 0=222149122k k x x +=+,y 0=k (x 0-3)=-24927k k+当k =0时,Q 为坐标原点,BQ 过椭圆顶点(0,3)和(0,-3),此时l 的方程为y =0;当k ≠0时,x 0≠0,则直线BQ 的方程为y =002x y -x +2,若直线BQ 过顶点(2,0),则002x y -×2+2=0,即x 0+y 0=2,所以22249274912k k k k +++=2⇒4k 2-27k -18=0, 解得k =8113327-或k =8113327+(舍去)此时l 的方程为y =8113327-x +2若直线BQ 过顶点(-2,0),则002x y -×(-2)+2=0,即x 0-y 0=-2,所以22249274912k kk k +-+=-2⇒20k 2+27k +18=0.方程无实根,直线l 不存在 18.解 设椭圆方程为12222=+b y a x (a>b >0). 由e =ac=32及a 2=b 2+c 2得a 2=3b 2,故椭圆方程为x 2+3y 2=3b 2①(1)∵直线l :y =k (x +1)交椭圆于A (x 1,y 1),B (x 2,y 2)两点,并且CA =λBC (λ≥2),∴(x 1+1,y 1)=λ(-1-x 2,-y 2),即⎩⎨⎧λ-=+λ-=+2121)1(1y y x x ②把y =k (x +1)代入椭圆方程,得(3k 2+1)x 2+6k 2x +3k 2-3b 2=0,且k 2(3b 2-1)+b 2>0,∴x 1+x 2=-13622+k k , ③x 1x 2=1333222+-k b k , ④∴S △OAB =21×1×|y 1-y 2|=21|λ+1|·|y 2|=2|1|+λ·|k |·|x 2+1|. 联立②、③得x 2+1=)13)(1(22+λ-k ,∴S △OAB =11-λ+λ·13||2+k k (k ≠0),(2)S △OAB =11-λ+λ·||1||31k k +≤32111⋅-λ+λ(λ≥2).当且仅当3|k |=||1k ,即k =±33时,S △OAB 取得最大值,此时,x 1+x 2=-1,又∵x 1+1=-λ(x 2+1), ∴x 1=11-λ,x 2=1-λλ-,代入④得3b 2=22)1(1-λ+λ故此时椭圆的方程为x 2+3y2=22)1(1-λ+λ(λ≥2).(3)由②、③联立得:x 1=1)13)(1(22-+λ-λ-k ,x 2=1)13)(1(22-+λ--k , 将x 1、x 2代入④,得3b 2=1)13()1(422++⋅-λλk .由k2=λ-1得3b 2=1)23()1(42+-λ⋅-λλ=⎥⎥⎦⎤⎢⎢⎣⎡-λ-λ+-λ)23()1(2)1(13422+1. 易知,当λ≥2时,3b 2是λ的减函数,故当λ=2时,(3b 2)max =3. 故当λ=2,k =±1时,椭圆短半轴长取得最大值,此时椭圆方程为x 2+3y 2=3.19.解 以AD 的中点为原点建立直角坐标系(如图), 设|AD |=p ,则点A 的坐标为(0,-2p ).A ′是DC 上任意一点,EF 是A 与A ′重合时的折痕,易证:EF 是AA ′的中垂线,过A ′作A ′T ⊥DC ,交EF 于T ,设T 的坐标为(x ,y ),于是有|A ′T |=2p -y ,|AT |=22)2(p y x ++,由|TA ′|=|AT |,得 (2p -y )2= x 2+(y +2p )2,整理得y =-p21x 2,由此可知点T 的轨迹为一段抛物线,下面证明每一条折痕EF 与抛物线y =-p21x 2相切于点T ,设AA ′的斜率为k ,则易得k =A x p ',由于EF 是AA ′的中垂线,所以EF 的方程为y =-)2(A A xx p x ''-. 联立直线EF与抛物线的方程:⎪⎪⎩⎪⎪⎨⎧-=--=''.21),2(2x py xx p x y A A第19题图解得x 2-2x A ′·x +x 2A ′=0,(x -x A ′)2=0,解得重根x =x A ′,直线EF 与抛物线y =-p21x 2相切于点T ,故存在一条曲线(抛物线),这条曲线(抛物线)上的每一点都是某条折痕与该曲线的切点,且每条折痕与该曲线相切.。
【2020届】高考数学圆锥曲线专题复习:圆锥曲线综合题答案
【2020届】高考数学圆锥曲线专题复习:圆锥曲线综合题答案解几综合题答案1.解:(Ⅰ)由已知得()(,) 11 22OA OB m n mn ?=?=-=-分14m n ∴?= …………4分(Ⅱ)设P 点坐标为(x ,y )(x >0),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+- …………5分∴)x m ny m n =+=-?? 消去m ,n 可得2243y x mn -=,又因14mn = 8分∴ P 点的轨迹方程为221(0)3y x x -=>它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支…………9分(Ⅲ)设直线l 的方程为2x ty =+,将其代入C 的方程得 223(2)3ty y +-=即 22(31)1290t y ty -++=易知2(31)0t -≠(否则,直线l的斜率为,它与渐近线平行,不符合题意)又22214436(31)36(1)0t t t ?=--=+>设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==--∵ l 与C 的两个交点,M N 在y 轴的右侧12122121222222(2)(2)2()491224313134031x x ty ty t y y t y y t t t t t t t =++=+++-=?+?+--+=->-∴ 2310t -<,即2103t <<又由 120x x +>同理可得 2103t << …………11分由3ME EN =得1122(2,)3(2,)x y x y --=- ∴121223(2)3x x y y -=-??-=?由122222123231t y y y y y t +=-+=-=--得 22631t y t =-由21222229(3)331y y y y y t =-=-=-得 222331y t =--消去2y 得2222363(31)31t t t =--- 解之得:2115t = ,满足2103t << …………13分故所求直线l 存在,其方程为:15250x y --=或15250x y +-= 2. (I )由已知()y M ,0,()y x N -, 2分则()()422,,22=-=-?=?y x y x y x MN OP ,即12422=-y x 4分(II )设()11,y x A ,()22,y x B ,如图,由QB QA ⊥可得()()()()022,2,221212211=+--=-?-=?y y x x y x y x QB QA 5分①若直线x AB ⊥轴,则21x x =,24||||2121-==x y y此时()()()02422221212121=---=+--x x y y x x ,则0128121=+-x x ,解之得,61=x 或21=x但是若21=x ,则直线AB 过Q 点,不可能有QB QA ⊥所以61=x ,此时Q 点到直线AB 的距离为4 7分②若直线AB 斜率存在,设直线AB 的方程为m kx y +=,则=-+=4222y x m kx y ()042412222=+++-m kmx x k 则()()>+--=?≠-0421241601222222m k m k k ,即>+-≠-024012222k m k又124221--=+k km x x ,12422221-+=k m x x 9分∴()()()22121m x x km x x k m kx m kx y y +++=++=124122124124222222222222222--=--+---+=k m k k m m k k m k k k m k∴()()()()2121221122,2,2y y x x y x y x +--=-?-=?()=+++-=21212142y y x x x x 01241248128124222222222=--+--+-+-+k m k k k k km k m 则012822=++k km m ,可得k m 6-=或k m 2-=若k m 2-=,则直线AB 的方程为()2-=x k y ,此直线过点Q ,这与QB QA ⊥矛盾,舍若k m 6-=,则直线AB 的方程为k kx y 6-=,即06=--k y kx 12分此时若0=k ,则直线AB 的方程为0=y ,显然与QB QA ⊥矛盾,故0≠k ∴41141|4|22<+=+-=k k k d 13分由①②可得,4max =d 14分3. 解:① 设1122(,),(,),(,)P x y Q x y R x y112211()(,)[(,)(,)]22OR OP OQ x y x y x y =+?=+121222x x x y y y +?=+?=??..........1’由222x x y y +=?+=,易得右焦点(1,0)F ......................2’ 当直线l x ⊥轴时,直线l 的方程是:1x =,根据对称性可知(1,0)R ........3’ 当直线l 的斜率存在时,可设直线l 的方程为(1)y k x =-代入E 有2222(21)4220k x k x k +-+-=2880k ?=+>2122421k x x k +=+....................................................5’于是(,):R x y x =21222221x x k k +=+ (1)y k x =-消去参数k 得2220x y x +-=而(1,0)R 也适上式,故R 的轨迹方程是2220x y x +-=..................8’②设椭圆另一个焦点为'F ,在'PF F ?中0'120,|'|2,PFF F F ∠==设||PF m =,则|'|PF m = 由余弦定理得2220)222cos120m m m =+-??m ?=.............10’同理,在'QF F ?,设||QF n =,则|'|QF m = 也由余弦定理得2220)222cos60n n n =+-??n ?=’于是1111||||PF QF m n +=+=+=..........................14’ 4. 解:(I )设B(x 0,y 0),A(x 1,y 1),C(x 2,y 2)∵双曲线1131222=-x y 的离心率为125,∴F 对应的准线方程为512=y ,由双曲线的定义得|,512|125||,125|512|||11-=∴=-y AF y AF …………(12分)又A 在双曲线的上半支,∴y 1≥12,)4().512(125||),512(125||)3().512(125||201分分 -=-=-=∴y CF y BF y AF∵|AF|,|BF|,|CF|构成等差数列,∴2|BF|=|AF|+|CF|,∴26113126)(21022210==-=+=x x y y y y 得代入,∴点B 的坐标为)6,26(.…………………………(6分)(II )∵在l 上任取一点P (不同于D 点),都存在实数λ,使得(+=λ,∴在∠APC 的角平分线上,………………………………(7分)∵线段AC 的中点为D 点,∴△APC 是等腰三角形,PD 是线段AC 的垂直平分线,………………(8分)∴设直线l 的方程为),2(6212121x x x y y x x y +----=-),(13,11312,11312,)(2621222122221212122212121y y x x x y x y y y x x x y y x x y -=-∴=-=---+---=-∴作差得又,21362121+---=-∴x y y x x y l 的方程为直线………………(11分)故直线l 恒过点(0,225).…………………………(12分) 5. 解:(I )设椭圆的标准方程为12222=+by a x ,因B 1F 1B 2F 2是正方形,所以b=c ,又a 2= b 2+ c 2,所以b a 2=,…………①由于椭圆上的左(右)顶点到左(右)焦点的距离最近,所以12-=-c a ,②由①②知1,2===c b a ,∴椭圆的标准方程为:.1222=+y x (II )当直线的斜率存在,设直线MN 的方程为2+=kx y 解方程组=++=122y x kx y消去.230,034)21(222>>?=+++k kx x k y 得由得设),(),,(2211y x N y x M ,则221214k k x x +-=+……………… ③ .213221k x x +=………………④又因M 在DN 之间,所以DN DM λ=,即212211),2,()2,(x x y x y x λλ=∴-=-,于是λλλλ212212212221)1(,)1(,x x x x x x x x x x =+++=+=,……………⑤ 将③④代入⑤得λλ2222213)1()214(k k k +=++-,整理得.)1(316121,)1(3121162222λλλλ++=+∴+=+k k …………………………8分 .331,34)1(3161,341211,23222<<<+<∴<+<∴>λλλ由此解得kk又.131,10<<∴<<λλ …………………………………………………………10分当直线的斜率不存在时,直线MN 的方程为x 31,0==这时,.31=∴λ ……………………………………………………………………………11分综上所述,λ的取值范围是.1,31??∈λ …………………………………………12分 6. 解:(1)由于2||,221121==F F NF F F ,+===-==∴.,1||1,2||22221221c b a NF caF F c 解得==1222b a ,从而所求椭圆的方程为.1222=+y x (4分)(2)N B A NB NA ,,,∴=λ 三点共线,而点N 的坐标为(-2,0).设直线AB 的方程为)2(+=x k y ,其中k 为直线AB 的斜率,依条件知k ≠0.由=++=12),2(22y x x k y 消去x 得22)21(22=+-y y k ,即.02412222=+-+y k y kk 根据条件可知??≠<+?-=?.0,0128)4(222k kk k 解得.22||0<<="">设),(),,(2211y x B y x A ,则根据韦达定理,得+=+=+.122,1242221221k k y y k k y y 又由),2(),2(,2211y x y x +=+=λλ得=+=+∴.),2(22121y y x x λλ 从而+=+=+.122,124)1(222222k k y k k y λλ 消去.128)1(222+=+k y λλ得(8分)令3151],31,51[,)1()(212≤<≤∈+=λλλλλλφ任取,则22212121)1()1()()(λλλλλφλφ+-+=-.0)11)((2121>--=λλλλ(10分)]31,51[)(是区间λφ∴上的减函数,从而)51()()31(φλφφ≤≤,即536)(316≤≤λφ, 5361283162≤+≤∴k ,解得.22||0,21626221<<≤≤-≤≤-k k k 适合或因此直线AB 的斜率的取值范围是].2 1,62[]62,21[ -- (12分)7. 解:(Ⅰ)∵0MN AF ?=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =,∴ ||||2||ME MF m EF +=>, (4)分∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =,∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).……………………………6分(Ⅱ)设11(,)Q x y ∵ 0(,)2mP y ,PF FQ λ=,∴ 1011(1),2.m x y y λλ?-=--=? ∴ 1101(1),21.m x y y λλλ?=+-=-??……………………………8分由点P 、Q 均在椭圆W 上,∴ 22220222211,411(1) 1.2(1)y m y m m m λλλ?+=?-+-+=?-?……………………………10分消去0y 并整理,得2211m m m λ-+=-,由221121m m m -+-≤≤及1m >,解得12m <≤.……………………………14分8. 解:(I )设点P y y P y y M ),,4(),,4(222121、M 、A 三点共线,,4,14,4414,2121211222121211=∴+=+--=+=∴y y y y y y y y y y y y k k DM A M 即即………(2分).544212221=+?=?∴y y y y OM …………………………………………………(3分)设∠POM =α,则.5cos ||||=??α.5sin ||||,25=??∴=αS ROM 由此可得tanα=1.……………………(5分)又.45,45),,0(??=∴∈与故向量απα……………………(6分)(II )设点M y y Q ),,4(323、B 、Q 三点共线,,QM BQ k k =∴)9(.04,4))(1(,141,441431312331331233232131233分即即即=+++-=++∴+=-+--=+y y y y y y y y y y y y y y y y y y,0444,4,432322121=+++?∴==y y y y y y y y 即即.(*)04)(43232=+++y y y y ……………………………………(10分))4(4,4442232232232232y x y y y y PQ y y y y y y k PQ-+=-∴+=--=的方程是直线即.4)(,4))((323222322x y y y y y y x y y y y =-+-=+-即……………………(12分)由(*)式,,4)(43232++=-y y y y 代入上式,得).1(4))(4(32-=++x y y y 由此可知直线PQ 过定点E (1,-4).故存在定一点 E (1,-4),使PE ∥.QF …………………………………………(14分)9. (Ⅰ)解:由题意可知,平面区域D 如图阴影所示.设动点P (x ,y ),则|x +y |2?|x -y |2=1,即|x 2-y 2|=2.………………………………4分∵P ∈D .∴x +y >0,x -y >0,即x 2-y 2>0.∴x 2-y 2=2(x >0).即曲线C 的方程为x 22-y 22=1(x >0).…………6分(Ⅱ)解法一:设A (x 1,y 1),B (x 2,y 2),∴以线段AB 为直径的圆的圆心Q (x 1+x 22,y 1+y 22),∵以线段AB 为直径的圆与y 轴相切,∴半径r =12|AB |=x 1+x 22.即|AB |=x 1+x 2.①……………………………………………………………………8分∵曲线C 的方程为x 22-y 22=1(x >0),∴F (2,0)为其焦点,相应的准线方程为x =1,离心率e =2.根据双曲线的定义可得, |AF |x 1-1=|BF |x 2-1=2,∴|AB |=|AF |+|BF |=2(x 1-1)+2(x 2-1)=2(x 1+x 2)-22.②…………………12分由①,②可得,x 1+x 2=2(x 1+x 2)-22.由此可得x 1+x 2=4+22.∴线段AB 的长为4+22.……………………………………………………………14分(Ⅱ)解法二:∵曲线C 的方程为x 22-y 2=1(x >0),∴F (2,0)为其焦点,相应的准线为l :x =1,离心率e =2.分别过A ,B 作AA '⊥l ,BB '⊥l ,垂足分别为A ',B '.设AB 中点Q ,过Q 点作QQ '⊥y 轴,垂足为Q '.由双曲线的定义可得,|AF ||AA '|=|BF ||BB '|=2,∴|AF |=2|AA '|,|BF |=2|BB '|.…………………10分 |AB |=|AF |+|BF |=2(|AA '|+|BB '|) 根据梯形中位线性质可得 |AA '|+|BB '|=2(|QQ '|-1).∴|AB |=2?2(|QQ '|-1).①…………………………12分∵以线段AB 为直径的圆与y 轴相切,∴|QQ '|=12|AB |.②把②代入①得|AB |=22(12|AB |-1),解得|AB |=4+22.……………………………………………………………………14分(Ⅱ)解法三:设A (x 1,y 1),B (x 2,y 2).∵直线AB 过点F (2,0),当AB ⊥x 轴时,|AB |=22,以线段AB 为直径的圆与y 轴相离,不合题意.∴设直线AB 的方程为y =k (x -2).代入双曲线方程x 2-y 2=2得,x 2-k 2(x -2)2=2,即(1-k 2)x 2+4k 2x -(4k 2+2)=0,∵直线与双曲线交于A ,B 两点,∴k ≠±1.∴x 1+x 2=4k 2k 2-1,x 1x 2=4k 2k 2-1.∴|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)[? ??4k 2k 2-12-4?4k 2+2k 2-1]……………………………………………………9分∵以线段AB 为直径的圆与y 轴相切,∴圆的半径12|AB |与圆心到y 轴的距离12(x 1+x 2)相等.即12(1+k 2)[? ??4k 2k 2-12-4?4k 2+2k 2-1]=12(x 1+x 2).∴12(1+k 2)[? ??4k 2k 2-12-4?4k 2+2k 2-1]=12?4k 2k 2-1.………………………………………12分化简得k 4 -2k 2-1=0,解得k 2=1+2(k 2=1-2不合,舍去).经检验,当k 2=1+2时,直线与曲线C 有两个不同的交点。
高中数学圆锥曲线解题方法归纳
高中数学圆锥曲线解题方法归纳圆锥曲线是高中数学中的一个重要部分,包括椭圆、双曲线和抛物线。
这些曲线通常通过平面截取圆锥的不同部分来形成。
为了更好地理解和解决这类问题,我们需要掌握一些基本的解题方法。
1. 定义法:根据圆锥曲线的定义来解题。
例如,椭圆和双曲线的定义是两个焦点到曲线上任一点的距离之和或差为一个常数。
抛物线的定义是一个点到固定点(焦点)和固定直线(准线)的距离相等。
2. 参数方程法:对于一些复杂的圆锥曲线问题,我们可以使用参数方程来表示曲线上点的坐标。
这样可以将几何问题转化为代数问题,便于计算。
3. 切线法:对于一些与圆锥曲线切线相关的问题,我们可以使用切线性质来解题。
例如,切线到曲线上任一点的距离在切点处达到最小值。
4. 极坐标法:将问题转化为极坐标形式,利用极坐标的性质来解题。
例如,在极坐标下,距离和角度的关系可以简化为数学表达式。
5. 几何法:利用圆锥曲线的几何性质来解题。
例如,椭圆的焦点到椭圆中心的距离等于椭圆上任一点到椭圆中心的距离减去椭圆半径。
6. 代数法:通过代数运算来解题。
例如,解联立方程来找到满足多个条件的点的坐标。
7. 数形结合法:结合图形和数学表达式来解题。
通过观察图形,可以更好地理解问题的本质,从而找到合适的解题方法。
以上是高中数学中圆锥曲线解题的一些基本方法。
需要注意的是,每种方法都有其适用的范围和局限性,需要根据具体问题选择合适的方法。
同时,这些方法也不是孤立的,有时需要综合运用多种方法来解决一个复杂的问题。
通过大量的练习和总结,我们可以提高解决圆锥曲线问题的能力。
高考数学圆锥曲线及解题技巧
第 1 页圆锥曲线解体技巧 椭圆与双曲线的对偶性质椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=. 8.椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.第 2 页11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考数学 圆锥曲线篇
玩转定义
定义在解题中的妙用
1短轴长为5,离心率32=e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为 2已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点为F 1,F 2,离心率为33
,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为
3已知21F F 、为椭圆19
252
2=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB =______________。
4已知P 为椭圆22
12516
x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆22(3)4x y -+=上的点,则PM PN +的最小值为
5设F 1,F 2分别是椭圆x 225+y 216=1的左,右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.
6已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|PA |+|PF |的最小值,并求出取最小值时点P 的坐标.
定义+性质 7已知点B A ,是椭圆22
221x y m n
+=(0m >,0n >)上两点,且λ=,则λ= 8、P 是椭圆122
22=+b
y a x 上一点,1F 、2F 是椭圆的两个焦点,求||||21PF PF ⋅的最大值与最小值
9、如图,把椭圆22
12516
x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点 则1234567PF P F P F P F P F P F P F ++++++=________________
10如图2所示,F 为双曲线1169:22=-y x C 的左焦点,双曲线C 上的点i P 与()3,2,17=-i P i 关于y 轴对称,则F P F P F P F P F P F P 654321---++的值是
11、P 是双曲线)0,0(122
22>>=-b a b
y a x 左支上的一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则的内切圆的圆心的横坐标为
12、点P 是椭圆x 225+y 2
16
=1上一点,F 1,F 2是椭圆的两个焦点,且△PF 1F 2的内切圆半径为1,当P 在第一象限时,P 点的纵坐标为________. 13、椭圆的左,右焦点分别为弦过,若的内切圆的周长为
两点的坐标分别为则= . 14、在中,.若以为焦点的椭圆经过点,则该椭圆的离心率 .
定义+性质+最值问题
15、已知实数
满足,求的最大值与最小值
16、椭圆上的点到直线l:的距离的最小值为___________. 17椭圆的内接矩形的面积的最大值为
命题陷阱
18设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为
-4,求此椭圆方程.
19已知
,一曲线上的动点到距离之差为6,则双曲线的方程为
20双曲线的渐近线为,则离心率为 21已知双曲线的渐近线方程是,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ;
特殊解题技巧
22椭圆
的一条弦被平分,那么这条弦所在的直线方程是
方法与技巧
双曲线标准方程的求法 (1)当已知双曲线的焦点不明确而又无法确定时,其标准方程可设为x 2m -y 2
n
=1 (mn >0),这样可避免讨论和复杂的计算;也可设为Ax 2+By 2
=1 (AB <0),这种形式在解题时更简便;
(2)当已知双曲线的渐近线方程bx ±ay =0,求双曲线方程时,可设双曲线方程为b 2x 2-a 2y 2=λ(λ≠0),据其他条件确定λ的值; (3)与双曲线x 2a 2-y 2b 2=1有相同的渐近线的双曲线方程可设为x 2a 2-y 2
b
2=λ (λ≠0),据其他条件确定λ的值.
失误与防范
1.区分双曲线中的a ,b ,c 大小关系与椭圆中的a ,b ,c 大小关系,在椭圆中a 2=b 2+c 2
,而在双曲线中c 2=a 2+b 2.
2.双曲线的离心率e ∈(1,+∞),而椭圆的离心率e ∈(0,1). 3.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2
b
2=1 (a >0,b >0)的渐近线方程是y =±a b x .
4.若利用弦长公式计算,在设直线斜率时要注意说明斜率不存在的情况.
5.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.。