三角形培优解析
初中培优竞赛含详细解析 第14讲 三角形
证明:∵ , ∴∠BDE=∠BFC
又∵∠ADC=∠BDE ∴∠BFC=∠ADC
在△BFC和△ADC中
∴
∴ , ,所以、正确
∵AE是∠BAF的角平分线,AE⊥BF,所以△BAF是等腰三角形,AB=AF
易错点:因为蚂蚁爬行必须经过盒面,所以不能凭空理解为连接2点的距离就是最短距离.
8. (2、3) (数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、三角形、解答题)
如图所示,在Rt△ABC中, ,D是AB的中点, 交BC于E,连结CD.求 的值.
分析:我们根据直角三角形斜边上的中线等于斜边的一半,得到2个等腰三角形,可以分别求出两个角,即可解题.
证明:过K作KM∥BC交AB于M,如图.
∵KM∥BC∴
∵ ,∴ ,
又∵ , ∴
∴ 又∵ KA公用
∴ ,
∴
∵ ,
∴ , 又∵
∴
详解:在Rt△ABC中,D为AB的中点,所以 所以 因为 所以
所以
因为DE上AB,所以 所以 所以
答: 的值为
技巧:在直角三角形中,已知中线,用定理可以迅速解题.
9. (2、3) (数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、三角形、解答题)
如图所示,在 中, 于D,AE平分 ,交CD于K,交BC于E,F是BE上的一点,且 求证:
分析:设直角三角形两直角边长分别为a,b,则有
求得 所以三角形的面积是24.
详解:24
技巧:因为直角三角形的面积就等于两条直角边乘积一半,所以我们求出ab即可解题.
八年级数学全等三角形(培优篇)(Word版含解析)
八年级数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,ZABC=120° , AB=10cm,点P是这个菱形内部或边上的一点.若以P,B f C为顶点的三角形是等腰三角形,则P, A(P, A两点不重合)两点间的最短距离为____________ c m .【答案】1OJJ-1O【解析】解:连接3D,在菱形A3CD中,T Z ABC=120° , AB=BC=AD=CD=10 , :. Z A=Z C=60° ,二△ ABD , △ BCD都是等边三角形,分三种情况讨论:①若以边8C为底,则3C垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了"直线外一点与直线上所有点连线的线段中垂线段最短",即当点P与点D重合时,必最小,最小值^4=10 ;②若以边P3为底,ZPCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧3D (除点8外)上的所有点都满足APBC是等腰三角形,当点P在AC上时,AP 最小,最小值为lOjJ-10 ;③若以边PC为底,ZPBC为顶角,以点3为圆心,BC为半径作圆,则弧AC上的点&与点D均满足APBC为等腰三角形,当点P与点A重合时,必最小,显然不满足题意,故此种情况不存在;综上所述,必的最小值为10>/3-10 (cm).故答案为:10x/I—10 .点睹:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.在等腰△遊中,肋丄肚交直线%于点以若妙丄万G则△磁的顶角的度数为【答案】30。
或150。
或90°【解析】试题分析:分两种情况:①3C为腰,②BC为底,根据直角三角形30。
角所对的直角边等于斜边的一半判断岀ZACD=3O°,然后分AD在^ABC内部和外部两种情况求解即可.解:①BC为腰,VAD丄 BC 于点D t AD= - BC f2:.ZACD二30。
全等三角形问题培优
全等三角形问题培优在初中数学学习中,全等三角形是一个很重要的概念。
全等三角形指的是具有相等边长和相等内角的两个三角形。
在解决问题时,我们常常要运用全等三角形的性质。
本文将从这一角度出发,介绍全等三角形问题的培优方法。
一、全等三角形的定义和性质全等三角形是指具有相等边长和相等内角的两个三角形。
在解决问题时,我们可以利用全等三角形的性质来简化计算过程和证明过程。
1. 边边边(SSS)全等条件:如果两个三角形的三边分别相等,则这两个三角形全等。
2. 边角边(SAS)全等条件:如果两个三角形的一个边和其夹角分别相等,并且另一边也相等,则这两个三角形全等。
3. 角边角(ASA)全等条件:如果两个三角形的两个角和夹在两个角之间的边分别相等,则这两个三角形全等。
利用这些全等条件,我们可以在解决问题过程中找到相应的全等三角形,从而得出答案。
二、全等三角形的应用1. 边长和角度比较在问题中,经常会出现两个或多个三角形的边长或内角需要进行比较的情况。
利用全等三角形的性质,我们不需要逐一计算每个边长或者每个内角的数值,只需要通过观察边长和角度的关系,找到全等三角形,就可以简化计算过程。
例如,已知三角形ABC和三角形DEF的三个内角分别相等,我们可以得出这两个三角形全等。
如果已知三角形ABC的一条边的长度为a,而三角形DEF的相应边的长度为b,那么我们就可以直接得出三角形DEF的边长与a的比较结果。
2. 证明问题在几何证明中,全等三角形是常常被用到的工具。
通过找到一个或多个全等三角形,我们可以得到所求证的结论。
例如,我们需要证明两条线段相等,可以通过构造两个全等三角形,使得所求线段等于全等三角形中的某条边。
然后,利用全等三角形的性质,我们可以得到所求线段等于另一条边,从而得到所需要证明的结论。
3. 问题求解在解决具体问题时,全等三角形也是一个很有用的工具。
通过观察问题中的几何关系,我们可以找到并利用全等三角形来简化问题的求解过程。
等边三角形的培优
等边三角形的培优等边三角形是初中数学中一个非常重要的几何图形,它具有独特的性质和广泛的应用。
在数学学习中,对于等边三角形的深入理解和掌握,对于提高学生的几何思维能力和解题能力有着至关重要的作用。
接下来,让我们一起深入探讨等边三角形的培优知识。
一、等边三角形的定义和性质等边三角形,又称正三角形,是指三边长度相等的三角形。
其性质如下:1、三条边相等:这是等边三角形最基本的特征,也是其名称的由来。
2、三个角相等,且均为 60°:由于三角形内角和为 180°,等边三角形的三个角相等,所以每个角都是 180°÷3 = 60°。
3、三线合一:等边三角形的高线、中线、角平分线重合,这一性质在解决很多与等边三角形相关的问题时非常有用。
4、是轴对称图形:有三条对称轴,分别是三边的垂直平分线。
二、等边三角形的判定1、三边相等的三角形是等边三角形。
2、三个角都相等的三角形是等边三角形。
3、有一个角是 60°的等腰三角形是等边三角形。
三、等边三角形中的重要线段1、高线等边三角形的高线同时也是中线和角平分线。
假设等边三角形的边长为 a,那么高线的长度可以通过勾股定理求得:h =√3a / 22、中线中线将等边三角形的对边平分,并且长度等于边长的一半。
3、角平分线角平分线将对应角平分,每个角的角平分线长度相等。
四、等边三角形的面积等边三角形的面积公式为:S =√3a² / 4其中 a 为等边三角形的边长。
五、等边三角形在几何证明中的应用1、证明线段相等在一个几何图形中,如果已知或能证明某个三角形是等边三角形,那么其三条边必然相等,可以利用这一性质证明其他线段相等。
2、证明角相等因为等边三角形的三个角都是 60°,所以可以通过证明一个三角形是等边三角形来得出角相等的结论。
3、构造全等三角形通过构造等边三角形,可以创造出更多的相等条件,从而有助于证明两个三角形全等。
培优专题03 证明三角形全等的基本思路-解析版
∴ VACE ≌ VDCE
∴ AE = DE ,
∴S△ACE:S△ACD=1:2,
同理可得,S△ABE:S△ABD=1:2,
∵S△ABC=12 cm2 ,
∴阴影部分的面积为
S△ACE+S△ABE=
1 2
S△ABC=
1 2
×12=6 cm2 .
故答案为 6.
【点睛】本题主要考查了全等三角形的判定与性质及三角形面积的等积变换,解题关键是明确三角形的中
(
)
A.DF∥ AC
B.∠A=∠D
C.CF=BE
D.AC=DF
【答案】D
【分析】直接利用三角形全等判定条件逐一进行判断即可.
【详解】A. 由 DF∥AC 可得∠ACB=∠DFE,由 AB∥DE,可得∠ABC=∠DEF,又因 AB=DE,利用 AAS
可得△ABC≌△DEF,故本选项不符合题意;
B. 由 AB∥DE,可得∠ABC=∠DEF,又因∠A=∠D,AB=DE,利用 ASA 可得△ABC≌△DEF,故本选项
B.0.8cm
C.4.2cm
D.1.5cm
【答案】B
【分析】根据 BE ^ CE , AD ^ CE 得 ÐE = ÐADC ,则 ÐCAD + ÐACD = 90° ,再由 ÐACB = 90° ,得
ÐBCE + ÐACD = 90° ,则∠BCE = ∠CAD,从而证出 DBCE≌DCAD ,进而得出 BE 的长.
ìBD = CD ïíÐADB = ÐEDC , ïî AD = DE
\DABD≌DECD(SAS) , \CE = AB = 3 , 在 DACE 中, CE - AC < AE < CE + AC ,
培优专题02 与三角形有关的线段和角的问题-解析版
培优专题02 与三角形有关的线段和角的问题1.(2022·全国·八年级专题练习)如图,在ABC V 中,20AB =,18AC =,AD 为中线.则ABD △与ACD △的周长之差为( )A .1B .2C .3D .4【答案】B 【分析】利用三角形中线的定义、三角形的周长公式进行计算即可得出结果.【详解】Q 在ABC V 中,AD 为中线,BD CD \=.ABD C AB BD AD =++Q △,ACD C AC CD AD =++△,20182ABD ACD C C AB AC \-=-=-=V V .故选:B .【点睛】本题考查三角形的中线的理解与运用能力.三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.明确三角形的中线的定义,运用两个三角形的周长的差等于两边的差是解本题的关键.2.(2022·全国·八年级专题练习)如图,ABC V 的面积是2,AD 是ABC V 的中线,13AF AD =,12CE EF =,则CDE △的面积为( )A .29B .16C .23D .49【答案】A【分析】根据中线的性质即可求出S △ACD ,然后根据等高时,面积之比等于底之比,即可依此求出3.(2022·四川成都·七年级期中)如图,ABC V 中,12Ð=Ð,G 为AD 中点,延长BG 交AC 于E ,F 为AB 上一点,且CF AD ^于H ,下列判断,其中正确的个数是( )①BG 是ABD V 中边AD 上的中线;②AD 既是ABC V 中BAC Ð的角平分线,也是ABE V 中BAE Ð的角平分线;③CH 既是ACD V 中AD 边上的高线,也是ACH V 中AH 边上的高线.A .0B .1C .2D .3【答案】C【分析】根据三角形的高,中线,角平分线的定义可知.【详解】解:①G 为AD 中点,所以BG 是ABD △边AD 上的中线,故正确;②因为12Ð=Ð,所以AD 是ABC V 中BAC Ð的角平分线,AG 是ABE △中BAE Ð的角平分线,故错误;③因为CF AD ^于H ,所以CH 既是ACD △中AD 边上的高线,也是ACH V 中AH 边上的高线,故正确.故选:C .【点睛】熟记三角形的高,中线,角平分线是解决此类问题的关键.4.(2018·江苏省江阴市第一中学七年级期中)如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为1,则满足条件的点C 个数是( )A .5B .6C .7D .8【答案】B 【分析】据三角形ABC 的面积为1,可知三角形的底边长为2,高为1,或者底边为1,高为2,可通过在正方形网格中画图得出结果.【详解】解:C 点所有的情况如图所示:由图可得共有6个,故选:B .【点睛】本题考查了三角形的面积的求法,此类题应选取分类的标准,才能做到不遗不漏,难度适中.5.(2022·江苏·七年级专题练习)如图, D 、E 分别在∆ABC 的边 BC 、AC 上,13CD BC =,13CE AC =,CD = 1 ,CE = 1 ,AC , AD 与 BE 交于点O ,已知∆ABC 的面积为 12,则∆ABO 的面积为()A .4B .5C .6D .76.(2019·天津市静海区第二中学八年级期中)如图,在△ABC 中,∠B=70°,∠C=40°,AD 是BC 边上的高,AE 是∠BAC 的平分线,则∠DAE 的度数是()A .15°B .16°C .70°D .18°7.(2021·安徽·中考真题)两个直角三角板如图摆放,其中90BAC EDF Ð=Ð=°,45E Ð=°,30C Ð=°,AB 与DF 交于点M .若//BC EF ,则BMD Ð的大小为( )A .60°B .67.5°C .75°D .82.5°【答案】C 【分析】根据//BC EF ,可得45FDB F Ð=Ð=°,再根据三角形内角和即可得出答案.【详解】由图可得6045B F Ð=°Ð=°,,∵//BC EF ,∴45FDB F Ð=Ð=°,∴180180456075BMD FDB B Ð=°-Ð-Ð=°-°-°=°,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.8.(2022·广西贵港·七年级期末)如图7,AB ⊥BC ,AE 平分∠BAD 交BC 于E ,AE ⊥DE ,∠1+∠2=90°,M ,N 分别是BA ,CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F .下列结论:①AB ∥CD ;②∠AEB +∠ADC =180°;③DE 平分∠ADC ;④∠F =135°,其中正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】先根据AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,∠EAM 和∠EDN 的平分线交于点F ,由三角形内角和定理以及平行线的性质即可得出结论.【详解】解:标注角度如图所示:∵AB ⊥BC ,AE ⊥DE ,∴∠1+∠AEB =90°,∠DEC +∠AEB =90°,∴∠1=∠DEC ,又∵∠1+∠2=90°,∴∠DEC +∠2=90°,∴∠C =90°,∴∠B +∠C =180°,9.(2022·全国·八年级课时练习)如图,将ABC V 沿DH HG EF 、、翻折,三个顶点恰好落在点O 处.若140Ð=°,则2Ð的度数为( )A .12B .60°C .90°D .140°【答案】D【分析】根据翻折变换前后对应角不变,故∠B =∠EOF ,∠A =∠DOH ,∠C =∠HOG ,∠1+∠2+∠HOD +∠EOF +∠HOG =360°,进而求出∠1+∠2的度数.【详解】解:∵将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,∴∠B =∠EOF ,∠A =∠DOH ,∠C =∠HOG ,∠1+∠2+∠HOD +∠EOF +∠HOG =360°,∵∠HOD +∠EOF +∠HOG =∠A +∠B +∠C =180°,∴∠1+∠2=360°-180°=180°,∵∠1=40°,∴∠2=140°,故选:D .【点睛】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出∠HOD +∠EOF +∠HOG =∠A +∠B +∠C =180°是解题关键.10.(2022·全国·八年级专题练习)如图,a b ∥,一块含45°的直角三角板的一个顶点落在直线b 上,若15854¢Ð=°,则∠2的度数为( )A .1036¢°B .1046¢°C .10354¢°D .10454¢°【答案】C 【分析】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,根据等腰三角板的特点可求出∠4,根据三角形内角和即可求出∠5,再根据平角的性质即可求出∠3,进而根据两直线平行同位角相等即可求出∠2.【详解】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,如图,∵直角三角板含一个45°的锐角,∴该三角板为等腰三角形,∴∠4=45°,∵∠1=58°54′,又∵在三角形中有∠1+∠4+∠5=180°,∴∠5=180°-(∠1+∠4)=180°-(58°54′+45°)=180°-103°54′=76°6′,∵∠3+∠5=180°,∴∠3=180°-∠5=180°-76°6′=103°54′,∵a b ∥,∴∠2=∠3,∴∠2=103°54′,故选:C .【点睛】本题主要考查了平行线的性质以及三角形的内角和等知识,掌握两直线平行同位角相等是解答本题的关键.11.(2022·江苏·盐城市初级中学七年级期中)如图,AD 是ABC V 的高,45BAD Ð=°,65C =°∠,则BAC Ð=________.【答案】70°【分析】先由直角三角形的性质求得∠DAC ,然后再根据线段的和差求解即可.【详解】解:AD Q 是ABC V 的高,90ADC °\Ð=,∵65C =°∠=9025DAC C °\Ð-Ð=o ,254570BAC DAC BAD °°°\Ð=Ð+Ð=+=.故答案为:70°.【点睛】本题主要考查了角的和差、直角三角形的性质、三角形高的性质等知识点,掌握直角三角形两锐角互余是解答本题的关键.12.(2022·江苏·扬州中学教育集团树人学校七年级期中)如图,在△ABC 中,点D 在BC 上,点E 、F 在AB 上,点G 在DF 的延长线上,且∠B =∠DFB ,∠G =∠DEG ,若29BEG Ð=°,则∠BDE 的度数为_____.【答案】58°【分析】设BED x Ð=,则29G DEG x Ð=Ð=+°,再根据三角形的内角和定理可得1222EDG x Ð=°-,根据三角形的外角性质可得122B DFB x Ð=Ð=°-,然后在BDE V 中,根据三角形的内角和定理即可得.【详解】解:设BED x Ð=,29BEG Ð=°Q ,29BED G DEG BEG x Ð=Ð=Ð=++\а,1801222EDG G DEG x \Ð=°-Ð-Ð=°-,122BED B DFB EDG x \Ð=Ð=Ð=а-+,()()180********BED BDE B x x Ð+=\Ð=°-а-°-=+°,故答案为:58°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,熟练掌握三角形的内角和定理是解题关键.13.(2022·江苏·扬州市江都区第三中学七年级阶段练习)如图,∠A =45°,∠BCD =135°,∠AEB 与∠AFD 的平分线交于点P .下列结论:①EP ⊥FP ;②∠AEB +∠AFD =∠P ;③∠A =∠PEB +∠PFD .其中正确的结论是______.∵∠AEB与∠AFD的平分线交于点∴12BEPAEP AEB=Ð=ÐÐ∵∠BCD=135°,∴∠BCF=180°-∠BCD=45°14.(2022·全国·八年级专题练习)如图,在△ABC中,AM是△ABC的角平分线,AD是△ABC的高线.猜想∠MAD、∠B、∠C之间的数量关系,并说明理由.15.(2022·全国·八年级单元测试)在△ABC中,BC=8,AB=1;(1)若AC是整数,求AC的长;(2)已知BD是△ABC的中线,若△ABD的周长为10,求△BCD的周长.【答案】(1)8(2)17【分析】(1)根据三角形三边关系“两边之和大于第三边,两边之差小于第三边”得7<AC<9,根据AC是整数得AC=8;(2)根据BD是△ABC的中线得AD=CD,根据△ABD的周长为17和AB=1得AD+BD=9,即可求解.(1)由题意得:BC﹣AB<AC<BC+AB,∴7<AC<9,∵AC是整数,∴AC=8;(2)如图所示:∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为10,∴AB+AD+BD=10,∵AB=1,∴AD+BD=9,∴△BCD的周长=BC+BD+CD=BC+AD+CD=8+9=17.【点睛】本题考查的是三角形的三边关系、三角形的中线的定义,掌握三角形两边之和大于第三边、两边之差小于第三边是解题的关键.16.(2022·河南周口·七年级期末)如图.AD为△ABC的中线,BE为△ABD的中线,EF⊥BC于点F.(1)在△BEF中,请指出边EF上的高;(2)若BD=5,EF=2,求△ACD的面积;(3)若AB=m,AC=n,若△ACD的周长为a,请用含m,n,a的式子表示△ABD的周长.【答案】(1)边EF上的高是BF;(2)S△ACD=10;(3)△ABD的周长为m+a-n.【分析】(1)根据三角形高的定义即可得出边EF上的高是BF;(2)先求得△BDE的面积,然后根据三角形的中线将三角形分成两个三角形得到S△ABE=S△BDE=5,进一步得到S△ACD=S△ABD=10;(3)利用三角形周长公式即可求得.(1)解:∵EF⊥BC于点F,17.(2022·陕西渭南·七年级期末)如图,点A 在CB 的延长线上,点F 在DE 的延长线上,连接AF ,分别与BD 、CE 交于点G 、H .已知∠1=52°,∠2=128°.(1)探索BD 与CE 的位置关系,并说明理由;(2)若∠C =78°,求∠A 的度数.【答案】(1)BD CE ∥,理由见解析(2)50°【分析】(1)由152DGF Ð=Ð=°,∠2=128°,得到∠DGF +∠2=180°,利用“同旁内角互补,两直线平行”可证出BD CE ∥;(2)由BD CE ∥得到78ABD C Ð=Ð=°,由三角形内角和定理求解即可.(1)BD CE ∥,理由:∵152DGF Ð=Ð=°,∠2=128°,∴252128180DGF Ð+Ð=°+°=°,∴BD CE ∥.(2)∵BD CE ∥,∵78ABD C Ð=Ð=°,∴1801180785250A ABD Ð=°-Ð-Ð=°-°-°=°.【点睛】本题考查了平行线的判定与性质、三角形内角和定理,解题的关键是熟练掌握相关性质和定理.18.(2022·江苏·兴化市乐吾实验学校七年级阶段练习)(1)【问题背景】如图1的图形我们把它称为“8字形”,请说明A B C D Ð+Ð=Ð+Ð;(2)【简单应用】如图2,AP 、CP 分别平分BAD Ð、BCD Ð,若35ABC Ð=°,15ADC Ð=°,求P Ð的度数;(3)【问题探究】如图3,直线AP 平分BAD Ð的外角FAD Ð,CP 平分BCD Ð的外角BCE Ð,若35ABC Ð=°,29ADC Ð=°,请猜想P Ð的度数,并说明理由;(4)【拓展延伸】在图4中,若设C a Ð=,B b Ð=,13CAP CAB Ð=Ð,13CDP CDB Ð=Ð,试问P Ð与C Ð、B Ð之间的数量关系为:___.(用a 、b 表示P Ð,不必说明理由)【答案】(1)见解析(2)25P Ð=°(3)32P Ð=°;理由见解析。
培优专题25相似三角形的一线三等角模型-解析版
A.-9
B.-12
C.-15
D.-18
【答案】A
【分析】根据∠AOB=90°,∠ABO=30°,可求出 OA 与 OB 的比,设出点 B 的坐标,再根据相似三角形的
性质,求出点 A 的坐标,可得 ab 的值,进而求出 m 的值.
【详解】解:过 A、B 分别作 AM⊥x 轴,BN⊥x 轴,垂足为 M、N,
3a 3b ∴B(-a,b),A( 3 , 3 ),
3 ∵点 A 在反比例函数 y= x 上,
33 ab
则 3 × 3 =3, ∴ab=9,
m ∵点 B 在反比例函数 y= x 上, ∴-a×b=m=-9, 故选 A.
【点睛】本题考查反比例函数的图象和性质,直角三角形的性质、相似三角形的判定和性质等知识,求出 反比例函数图象上点的坐标是解答前提的关键. 3.(2021·浙江·九年级专题练习)如图,正方形 ABCD 边长为 4,边 B过点 A,则矩形 EDFG 的面积是( )
2. 当一个直角放在平面直角坐标系中时,亦常构造“K 型图”解题
3. 由“K 型图”得到的相似比,基本都可以转化成“特定角”的正切值来计算
4. “K 型图”常和“A 字图”或“8 字图”类的平行相似结合在一起求长度
“K 型图”常见构造方法:过直角订单分别作水平或竖直的直线,再过直角两边顶点分别作直线的垂 线。 如图:
∵四边形 EDFG 为矩形,
∴∠EDF=∠F=90°,
∵∠ADF+∠ADE=90°,∠ADE+∠EDC=90°,
∴∠ADF=∠EDC,
∴△ADF∽△CDE,
AD DF
4 DF
∴ DE DC ,即 DE 4 ,
16
∴DF= DE ,
全等三角形各种类型证明培优
全等三角形各种类型证明培优题目要求证明全等三角形培优,需要说明全等三角形的各种类型。
全等三角形是指所有对应的边和角都相等的两个三角形。
培优是指三角形的三条高线交于同一点,这个点称为高心(或垂心)。
为了证明全等三角形培优,我们需要先了解全等三角形的几种类型:1. SAS(Side-Angle-Side)三边对应分别相等。
如果两个三角形的两边和夹角分别对应相等,则这两个三角形全等。
2. ASA(Angle-Side-Angle)两角和夹边分别相等。
如果两个三角形的两角和夹边分别对应相等,则这两个三角形全等。
3. SSS(Side-Side-Side)三边分别相等。
如果两个三角形的三边分别对应相等,则这两个三角形全等。
4. RHS(Right Angle-Hypotenuse-Side)直角三角形的斜边和一条直角边的长度分别相等。
如果两个直角三角形的斜边和一条直角边的长度分别对应相等,则这两个三角形全等。
现在我们来证明全等三角形培优。
为了证明三角形培优,我们需要先证明三角形的三条高线交于同一点。
首先,我们假设有一个三角形ABC,其三边分别为AB、BC、CA。
三条高线分别为AD、BE、CF,交于点H(高心)。
我们需要证明D、E、F三点共线。
首先,我们可以得知三角形ABC的外接圆,其圆心为O,半径为R。
三角形ABC的外接圆上的任意一条弦,其两端点和圆心构成的向量和为零。
接下来,我们可以根据这个结论来证明点D、E、F三点共线。
我们可以分别考虑三角形的三边上的垂足与圆心的连线:1.连线AO,交垂线AD于点M;2.连线BO,交垂线BE于点N;3.连线CO,交垂线CF于点P。
由于三角形ABC的外接圆上的任意一条弦,其两端点和圆心构成的向量和为零,我们可以得知AM+AN+AP=0。
又因为垂线AD、BE、CF分别垂直于边BC、AC、AB,我们可以得到AM⊥BC,AN⊥AC,AP⊥AB。
由于AM+AN+AP=0,我们可以得知三点M、N、P在一条直线上。
八年级下学期《三角形及其性质》培优知识讲解
八年级下学期《三角形及其性质》培优知识讲解学习目标1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法.2. 理解三角形内角和定理的证明方法;3. 掌握并会把三角形按边和角分类4. 掌握并会应用三角形三边之间的关系.5. 理解三角形的高、中线、角平分线的概念,学会它们的画法.6. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.要点梳理要点一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; ③三角形的顶点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”. (3)三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示. 要点二、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题: ①在三角形中已知任意两个角的度数可以求出第三个角的度数; ②已知三角形三个内角的关系,可以求出其内角的度数; ③求一个三角形中各角之间的关系. 要点三、三角形的分类 1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形; ②钝角三角形:有一个内角为钝角的三角形. 2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角; ③等边三角形:三边都相等的三角形. 要点四、三角形的三边关系定理:三角形任意两边之和大于第三边. 推论:三角形任意两边之差小于第三边. 要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. (3)证明线段之间的不等关系.要点五、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,段.过点A 作AD ⊥BC 于点D . 取BC 边的中点D ,连接AD .作∠BAC 的平分线AD ,交BC 于点D .要点六、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性。
等边三角形的培优
等边三角形的培优在数学的世界里,等边三角形是一个既基础又重要的几何图形。
它那三条相等的边和三个相等的角,蕴含着丰富而有趣的知识。
对于想要在数学学习中更上一层楼的同学来说,深入理解和掌握等边三角形的相关知识,进行培优学习是十分必要的。
一、等边三角形的定义与性质等边三角形,顾名思义,就是三条边长度都相等的三角形。
它的三个内角也都相等,且每个角都是 60 度。
这是等边三角形最基本也是最重要的性质。
为什么等边三角形的每个角都是 60 度呢?我们可以通过三角形内角和为 180 度来证明。
因为三条边相等,所以三个角也相等,那么每个角就是 180 度除以 3,等于 60 度。
等边三角形还有很多其他的性质。
比如,它的三条高、三条中线、三条角平分线都重合且相等。
这一性质在解决很多与等边三角形相关的几何问题时非常有用。
另外,等边三角形是轴对称图形,它有三条对称轴,分别是三条边的中垂线。
二、等边三角形的判定知道了等边三角形的定义和性质,那么如何判定一个三角形是等边三角形呢?第一种判定方法,如果一个三角形的三条边都相等,那么它就是等边三角形,这是最直接的判定方式。
第二种,若一个三角形的三个内角都相等,那么它也是等边三角形。
第三种,如果一个三角形有一个角是 60 度,且它是等腰三角形,那么这个三角形也是等边三角形。
在实际解题中,我们需要根据具体的条件,灵活选择合适的判定方法。
三、等边三角形中的常见题型与解法1、证明题在证明一个三角形是等边三角形时,我们要根据已知条件,选择合适的判定方法进行证明。
例如,已知三角形 ABC 中,AB = AC,且∠A = 60 度,证明三角形 ABC 是等边三角形。
因为 AB = AC,所以三角形 ABC 是等腰三角形。
又因为∠A = 60 度,根据“有一个角是 60 度的等腰三角形是等边三角形”,可以得出三角形 ABC 是等边三角形。
2、计算题在计算与等边三角形相关的边长、角度、面积等问题时,要充分利用等边三角形的性质。
培优专题3:三角形中与角平分线有关的规律探究
30°
.
3. 如图,在△ ABC 中,∠ BAC =90°,∠ ACB =60°,点 P 为 BC 上任意一点,
可以与点 C 重合但不与点 B 重合, AD 平分∠ BAP , BD 平分∠ ABP .
(1)当点 P 与 C 重合时,∠ ADB 的度数为 120°
(2)当 AP ⊥ BC 时,∠ ADB 的度数为 135°
◉答案 解:(2)由题意知∠ B =∠ C + x °.∵ AF 平分∠ BAC ,∴∠
BAE =∠ CAE . 又∵∠ BAE +∠ B +∠ AEB =∠ CAE +∠ C +∠
AEC ,∴∠ B +∠ AEB =∠ C +∠ AEC ,∴∠ AEC =∠ AEB + x °.又
∵∠ AEB +∠ AEC =180°,∴∠ AEB +∠ AEB + x °=180°,∴∠
DB , DC , BC 的延长线上, BE , CE 分别平分∠ MBC ,∠ BCN , BF , CF 分别
52° .
平分∠ EBC ,∠ ECQ ,若∠ F =16°,则∠ A =
第9题图
规律四:角平分线与高线的夹角
方法归纳:三角形同一顶点的高线与角平分线的夹角度数等于另外两角度数之差的
一半.如图,在△ ABC 中, AD ⊥ BC 于点 D , AE 平分∠ BAC ,则∠ EAD =
(∠ B -∠ C )(其中∠ B >∠ C ).
10. (深圳期中)如图,△ ABC 中, AD ⊥ BC , AE 是∠ BAC 的平分线,∠ B =
60°,∠ BAC =84°,则∠ DAE =
1. [模型观念]如图,点 O 是△ ABC 中∠ ABC 的平分线与∠ ACB 的平分线的交点,
(完整版)三角形的证明培优习题解析
三角形的证明培优习题解析1、 如图,△ABC 中,AB=BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,∠BAD=45°,AD 与BE 交于点F ,连接CF .(1)求证:BF=2AE ;(2)若CD= 2,求AD 的长.(1)证:∵AD ⊥BC,∠BAD=45°,∴⊿ADB 是等腰直角三角形,∠ABD=∠BAD∴AD=BD ;∵AB ⊥BC ,BE ⊥AC ,∴∠ACD+∠DAC=90°,∠ACD+∠CBE=90°,∴∠DAC=∠CBE,又∵∠ADC=∠BDF=90°,∴△ADC ≌△BDF(ASA),∴AC=BF,∵AB ⊥BC ,BE ⊥AC ,∴AE=EC ,即AC=2AE ,∴BF=AC=2AE 。
(2)∵△ABF ≌△CBF∴DF=CD=2∴在Rt △CDF 中,CF=22CD DF +=22)2()2(+=4=2∵BE ⊥AC ,AE=EC,∴AF=FC,∴AD=AF+DF=2+2 。
2、如图,△ABC 是边长为6的等边三角形,P 是AC 边上一动点,由A 向C 运动(与A 、C 不重合),Q 是CB 延长线上一点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),过P 作PE ⊥AB 于E ,连接PQ 交AB 于D .(Ⅰ)若设AP=x ,则PC=__________ ,QC=___________ ;(用含x 的代数式表示)(Ⅱ)当∠BQD=30°时,求AP 的长;(Ⅲ)在运动过程中线段ED 的长是否发生变化?如果不变,求出线段ED 的长;如果变化请说明理由.2.解: (1)(6分)解法一:过P 作PE ∥QC则△AFP 是等边三角形,∵P 、Q 同时出发、速度相同,即BQ =AP∴BQ =PF∴△DBQ ≌△DFP ,∴BD =DF∵∠=BQD ∠BDQ =∠FDP =∠FPD =30°,∴BD =DF =FA =31AB =631 =2, ∴AP =2. 解法二: ∵P 、Q 同时同速出发,∴AQ =BQ设AP =BQ =x ,则PC =6-x ,QC =6+x在Rt △QCP 中,∠CQP =30°,∠C =60° ∴∠CQP =90°∴QC =2PC ,即6+x =2(6-x )∴x =2∴AP =2(2)由(1)知BD =DF而△APF 是等边三角形,PE ⊥AF ,∵AE =EF又DE +(BD +AE )=AB =6,∴DE +(DF +EF )=6,即DE +DE =6∵DE =3为定值,即 DE 的长不变3.(3分)(2013•临沂)如图,菱形ABCD 中,AB=4,∠B=60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连接EF ,则△AEF 的面积是 3 .解答: 解:∵四边形ABCD 是菱形,∴BC=CD ,∠B=∠D=60°,∵AE ⊥BC ,AF ⊥CD∴AB •AE=CD •AF ,∠BAE=∠DAF=30°,∴AE=AF ,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF 是等边三角形,∴AE=EF ,∠AEF=60°,∵AB=4,∴AE=2,∴EF=AE=2,过A 作AM ⊥EF ,∴AM=AE •cos60°=3,∴△AEF的面积是:EF•AM=×2×3=3.故答案为:3.4.(3分)(2013•威海)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.解答:解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.5.(11分)(2013•威海)【操作发现】:将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF 的长直角边DE重合.【问题解决】:将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD交于点O,连接CD,如图②.(1)求证:△CDO是等腰三角形;(2)若DF=8,求AD的长.解答:(1)由图①知BC=DE,∴∠BDC=∠BCD,∵∠DEF=30°,∴∠BDC=∠BCD=75°,∵∠ACB=45°,∴∠DOC=30°+45°=75°,∴∠DOC=∠BDC,∴△CDO是等腰三角形;(2)作AG⊥BC,垂足为点G,DH⊥BF,垂足为点H,在Rt△DHF中,∠F=60°,DF=8,∴3,HF=4,在Rt△BDF中,∠F=60°,DF=8,∴3BF=16,∴3,∵AG⊥BC,∠ABC=45°,∴BG=AG=43, ∴AG=DH , ∵AG ∥DH ,∴四边形AGHD 为矩形,∴AD=GH=BF ﹣BG ﹣HF=16﹣43﹣4=12﹣43.6.(本题满分10分)如图,已知四边形ABDE 是平行四边形,C 为边B D 延长线上一点,连结AC 、CE ,使AB=AC.⑴求证:△BAD ≌△AEC ; ⑵若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE 的面积.解析:(1)证明:∵AB=AC,∴∠B=∠ACB.又 ∵四边形ABDE 是平行四边形∴AE ∥BD , AE=BD ,∴∠ACB=∠CAE=∠B ,∴⊿DBA ≌⊿AEC(SAS) ………………4分(2)过A 作AG ⊥BC,垂足为G.设AG=x ,在Rt △AGD 中,∵∠ADC=450,∴AG=DG=x ,在Rt △AGB 中,∵∠B=300,∴BG=x 3,………………6分又∵BD=10.∴BG-DG=BD,即103=-x x ,解得AG=x=5351310+=-.…………………8分∴S 平行四边形ABDE =BD·AG=10×(535+)=50350+.………………10分7.(4分)(2013•淄博)如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则DE 的长为( )解答: ∵BQ 平分∠ABC ,BQ ⊥AE ,∴△BAE 是等腰三角形,同理△CAD 是等腰三角形,∴点Q 是AE 中点,点P 是AD 中点(三线合一),∴PQ 是△ADE 的中位线,∵BE+CD=AB+AC=26﹣BC=26﹣10=16,∴DE=BE+CD ﹣BC=6,8.(2013聊城)如图,在等边△ABC 中,AB=6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为 .解:如图,∵在等边△ABC 中,∠B=60°,AB=6,D 是BC 的中点,∴AD ⊥BD ,∠BAD=∠CAD=30°,∴BD=21AB =621 =3 AD= ==3.根据旋转的性质知,∠EAC=∠DAB=30°,AD=AE ,∴∠DAE=∠EAC+∠BAD=60°,∴△ADE 的等边三角形,∴DE=AD=3,即线段DE 的长度为3.9. (2013•内江)已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACD=∠DCE=90°,D 为AB 边上一点.求证:BD=AE .证明:∵△ABC 和△ECD 都是等腰直角三角形,∴AC=BC ,CD=CE ,∵∠ACD=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD ,∴∠ACE=∠BCD ,在△ACE 和△BCD 中,,∴△ACE ≌△BCD (SAS ),∴BD=AE .10.(2013•湖州)一节数学课后,老师布置了一道课后练习题:如图,已知在Rt △ABC 中,AB=BC ,∠ABC=90°,BO ⊥AC ,于点O ,点P 、D 分别在AO 和BC 上,PB=PD ,DE ⊥AC 于点E ,求证:△BPO ≌△PDE .(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分∠ABO,其余条件不变.求证:AP=CD.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)(1)证明:∵PB=PD,∴∠2=∠PBD,∵AB=BC,∠ABC=90°,∴∠C=45°,∵BO⊥AC,∴∠1=45°,∴∠1=∠C=45°,∵∠3=∠PBO﹣∠1,∠4=∠2﹣∠C,∴∠3=∠4,∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°,在△BPO和△PDE中∴△BPO≌△PDE(AAS);(2)证明:由(1)可得:∠3=∠4,∵BP平分∠ABO,∴∠ABP=∠3,∴∠ABP=∠4,在△ABP和△CPD中∴△ABP≌△CPD(AAS),∴AP=CD.(3)解:CD′与AP′的数量关系是CD′=AP′.理由是:设OP=PC=x,则AO=OC=2x=BO,则AP=2x+x=3x,由(2)知BO=PE,PE=2x,CE=2x﹣x=x,∵∠E=90°,∠ECD=∠ACB=45°,∴DE=x,由勾股定理得:CD=x,即AP=3x,CD=x,∴CD′与AP′的数量关系是CD′=AP′11.(2013菏泽)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.①证明:∵∠ABC=90°,D为AB延长线上一点,∴∠ABE=∠CBD=90°,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);②解:∵AB=CB,∠ABC=90°,∴∠CAB=45°,∵∠CAE=30°,∴∠BAE=∠CAB﹣∠CAE=45°﹣30°=15°,∵△ABE≌△CBD,∴∠BCD=∠BAE=15°,∴∠BDC=90°﹣∠BCD=90°﹣15°=75°;12.(4分)(2013•莱芜)如图,矩形ABCD中,AB=1,E、F分别为AD、CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD= .解:连接EF ,∵点E 、点F 是AD 、DC 的中点,∴AE=ED ,CD=DF=CD=AB=,由折叠的性质可得AE=A'E ,∴A'E=DE ,在Rt △EA'F 和Rt △EDF 中, ∵,∴Rt △EA'F ≌Rt △EDF (HL ),∴A'F=DF=, BF=BA'+A'F=AB+DF=1+=,在Rt △BCF 中,BC==.∴AD=BC=. 13.(7分) (2013北京)在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。
解三角形题型培优(学生版)
5.解三角形1.解三角形6大常考题型【知识必备】1、正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理内容asin A=bsin B=csin C=2Ra2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C变形(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)a∶b∶c=sin A∶sin B∶sin C;(4)a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=b2+c2-a22bc;cos B=c2+a2-b22ac;cos C=a2+b2-c22ab2、三角形面积公式:S△ABC=12ah(h表示边a上的高);S△ABC=12ab sin C=12bc sin A=12ac sin B;3、解三角形多解情况在△ABC中,已知a,b和A时,解的情况如下:A为锐角A为钝角或直角图形a =b sin A b sin A <a <b a ≥关系式b a >b a ≤b解的个数一解两解一解一解无解4、实际应用(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②).(3)方向角:相对于某一正方向的水平角.(1)北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③).(2)北偏西α,即由指北方向逆时针旋转α到达目标方向.(3)南偏西等其他方向角类似.(4)坡角与坡度(1)坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).(2)坡度:坡面的铅直高度与水平长度之比(如图④,5、相关应用(1)正弦定理的应用①边化角,角化边⇔a :b :c =sin A :sin B :sin C②大边对大角大角对大边a >b ⇔A >B ⇔sin A >sin B ⇔cos A <cos i 为坡度).坡度又称为坡比.Ba +b +c③合分比:sin A +sin B +sin Ca +b =sin A +sin B b +c =sin B +sin C a +c =sin A +sin C a =sin A b =sin B c =sin C=2R (2)△ABC 内角和定理:A +B +C =π①sin C =sin (A +B )=sin A cos B +cos A sin B ⇔c =a cos B +b cos A 同理有:a =b cos C +c cos B ,b =c cos A +a cos C .②-cos C =cos (A +B )=cos A cos B -sin A sin B ;A +tan ③斜三角形中,-tan C =tan (A +B )=1Btan -tan ⋅A tan B⇔tan A +tan B +tan C =tan A ⋅tan B ⋅tan C④sin A +2B =cos C 2;cos A +2B=sin C 2⑤在ΔABC 中,内角A ,B ,C 成等差数列⇔B =π3,A +C =2π3.Z 【题型精讲】题型一:【已知边角元素解三角形】必备技巧已知边角元素解三角形技巧正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.1.1(多选)(山东济南一模)在ΔABC中,角A,B,C所对的边分别为a,b,c,下列结论正确的是()A.a2=b2+c2-2bc cos AB.a sin B=b sin AC.a=b cos C+c cos BD.a cos B+b cos A=sin C1.2(多选)(重庆市高三二模)已知在△ABC中,角A,B,C所对的边分别为a,b,c,且A=60°,b=2,c=3+1,则下列说法正确的是A.C=75°或C=105°B.B=45°C.a=6D.该三角形的面积为3+1 21.3在△ABC中,角A,B,C所对的边分别为a,b,c若sin A=35,A=2B,角C为钝角,b=5.(1)求sin(A-B)的值;(2)求边c的长.Z【跟踪精练】1.3.1在△ABC中,角A,B,C所对的边分别为a,b,c,若(a+b)2-c2=ab,则C=()A.π6 B.π3或2π3 C.2π3 D.π6或5π61.3.2在△ABC中,内角A,B,C所对的边分别是a,b,c.若A=π3,a=23,b=22,则B=()A.π4 B.π3 C.π4或3π4 D.π3或2π31.3.3△ABC的内角A、B、C的对边分别为a、b、c,若a=4,b=3,c=2,则中线AD的长为()A.5B.10C.52 D.102题型二:【已知边角关系解三角形】必备技巧已知边角关系解三角形正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.1.1在△ABC中,内角A,B,C的对边分别为a,b,c,已知2cos C a cos B+b cos A=c.(1)若cos A=64,求sin2A+C的值;(2)若c=7,△ABC的面积为332,求边a,b的值.21a △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 1.2的面积为2-b 2sin C .(1)证明:sin A =2sin B ;(2)若a cos C =32b ,求cos A .Z 【跟踪精练】ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A 1.2.1-sin B sin C .(1)求A ;(2)若2a +b =2c ,求sin C .在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,b tan A +b tan B 1.2.2=3ccos A.(1)求角B ;(2)D 是AC 边上的点,若CD =1,AD =BD =3,求sin A 的值.题型三:【判断三角形形状】必备技巧判断三角形形状的方法(1)化边:通过因式分解、配方等得出边的相应关系.(2)化角:通过三角恒等变换,得出内角的关系,此时要注意应用A +B +C =π这个结论.在△ABC 中,已知a 2+b 2-c 2=ab ,且2cos A sin B =sin C 1.1,则该三角形的形状是()A.直角三角形B.等腰三角形C.等边三角形D.钝角三角形在△ABC 中,已知(b +c -a )(b +c +a )=3bc ,且2cos B sin C =sin A ,则△ABC 1.2的形状为()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形Z 【跟踪精练】对于△ABC ,有如下四个命题1.2.1:①若sin2A =sin2B ,则△ABC 为等腰三角形,②若sin B =cos A ,则△ABC 是直角三角形③若sin 2A +sin 2B <sin 2C ,则△ABC 是钝角三角形④若acos 2A =b cos 2B =cC cos 2,则△ABC 是等边三角形.其中正确的命题序号是1.2.2a在△ABC 中,已知a +b =tan Ab +tan B ,则△ABC 的形状一定是()A.等腰三角形B.直角三角形C.等边三角形D.等腰或直角三角形题型四:【三角形解的个数问题】1.1已知在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,则根据条件解三角形时恰有一解的一组条件是()A.a =3,b =4,A =π6 B.a =4,b =3,A =π3C.a =1,b =2,A =π4D.a =2,b =3,A =2π31.2△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,A =30°,a =3,若这个三角形有两解,则b 的取值范围是()A.3<b ≤6B.3<b <6C.b <6D.b ≤6Z 【跟踪精练】1.2.1在△ABC 中,根据下列条件解三角形,则其中有两个解的是()A.b =10,A =45°,C =70°B.a =60,c =48,B =60°C.a =5,b =7,c =8D.a =14,b =16,A =45°1.2.2在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若,满足条件a =3,A =60°的三角形有两个,则b 的取值范围是()A.2,3B.3,33C.3,23D.22,23题型五:【解三角形中的最值范围问题】方法技巧解三角形中最值范围问题基本处理方法1、用余弦定理结合基本不等式求解,2、要求的量转化为某角的三角函数,求函数的最值或值域。
特殊三角形培优专项训练(解析版)
【期末复习】浙教版八年级上册提分专题:特殊三角形培优专项训练一.选择题1.(等腰直角三角形“手拉手”模型)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④【分析】只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断.【解答】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC,∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.2.(共斜边的直角三角形+勾股定理)如图,△ABC中,BC=18,若BD⊥AC于D点,CE⊥AB于E点,F,G分别为BC、DE的中点,若ED=10,则FG的长为()A.2B.C.8D.9【分析】连接EF、DF,根据直角三角形的性质得到EF=BC=9,得到FE=FD,根据等腰三角形的性质得到FG⊥DE,GE=GD=DE=5,根据勾股定理计算即可.【解答】解:连接EF、DF,∵BD⊥AC,F为BC的中点,∴DF=BC=9,同理,EF=BC=9,∴FE=FD,又G为DE的中点,∴FG⊥DE,GE=GD=DE=5,由勾股定理得,FG==2,故选:A.3.(直角三角形勾股定理与面积)如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定【分析】如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,根据△ACG,△BCH,△ABF是等边三角形,求得S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,根据勾股定理得到c2=a2+b2,于是得到结论.【解答】解:如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,∵△ACG,△BCH,△ABF是等边三角形,∴S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,∴S1+S3=(a2+b2)﹣S5﹣S6,∵S2+S4=S△ABF﹣S5﹣S6=c2﹣S5﹣S6,∵c2=a2+b2,∴S1+S3=S2+S4,故选:C.4.(轴对称与勾股定理综合)如图,在△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上,AD=AC,AE ⊥CD,垂足为F,与BC交于点E,则BE的长是()A.3B.5C.D.6【分析】连接DE,由勾股定理求出AB=5,由等腰三角形的性质得出CF=DF,由线段垂直平分线的性质得出CE=DE,由SSS证明△ADE≌△ACE,得出∠ADE=∠ACE=∠BDE=90°,设CE=DE=x,则BE=8﹣x,在Rt△BDE中,由勾股定理得出方程,解方程即可.【解答】解:连接DE,如图所示,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB===10,∵AD=AC=6,AF⊥CD,∴DF=CF,∴CE=DE,BD=AB﹣AD=4,在△ADE和△ACE中,,∴△ADE≌△ACE(SSS),∴∠ADE=∠ACE=90°,∴∠BDE=90°,设CE=DE=x,则BE=8﹣x,在Rt△BDE中,由勾股定理得:DE2+BD2=BE2,即x2+42=(8﹣x)2,解得:x=3;∴CE=3;∴BE=8﹣3=5.故选:B.5.(勾股定理+中点)如图,在△ABC中,D、E分别是BC、AC的中点.已知∠ACB=90°,BE=5,AD=,则AB的长为()A.10B.4C.D.8【分析】设EC=x,DC=y,则直角△BCE中,x2+4y2=BE2=25,在直角△ADC中,4x2+y2=AD2=55,解方程组可求得x、y,在直角△ABC中,根据勾股定理求得AB.【解答】解:设EC=x,DC=y,∠ACB=90°,∴在直角△BCE中,CE2+BC2=x2+4y2=BE2=25.在直角△ADC中,AC2+CD2=4x2+y2=AD2=55,解得x=,y=.在直角△ABC中,AB===8.故选:D.6.(勾股定理与面积规律)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1﹣S2+S3+S4等于()A.4B.6C.8D.12【分析】过F作AM的垂线交AM于D,通过证明S2=S Rt△ABC;S3=S△FPT;S4=S Rt△ABC,进而即可求解.【解答】解:过F作AM的垂线交AM于D,可证明Rt△ADF≌Rt△ABC,Rt△DFK≌Rt△CAT,所以S2=S Rt△ABC.由Rt△DFK≌Rt△CAT可进一步证得:Rt△FPT≌Rt△EMK,∴S3=S△FPT,又可证得Rt△AQF≌Rt△ACB,∴S1+S3=S Rt△AQF=S Rt△ABC.易证Rt△ABC≌Rt△EBN,∴S4=S Rt△ABC,∴S1﹣S2+S3+S4=(S1+S3)﹣S2+S4=S Rt△ABC﹣S Rt△ABC+S Rt△ABC=6﹣6+6=6,故选:B.7.(勾股定理与整体思想)如图,在等腰直角△ABC中,∠BAC=90°,AD是△ABC的高线,E是边AC上一点,分别作EF⊥AD于点F,EG⊥BC于点G,几何原本中曾用该图证明了BG2+CG2=2(BD2+DG2),若△ABD与△AEF的面积和为8.5,BG=5,则CG的长为()A.2B.2.5C.3D.3.5【分析】由S△AEF+S△ABD=8.5,得BD2+DG2=17,从而有BG2+CG2=34,即可得出答案.【解答】解:由题意知:△ABD,△AEF都是等腰直角三角形,∴S△AEF=,S,∵S△AEF+S△ABD=8.5,∴BD2+DG2=17,∵BG2+CG2=2(BD2+DG2),∴BG2+CG2=34,∵BG=5,∴CG==3,故选:C.8.(等边三角形“手拉手”模型)已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列六个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④AN=BM;⑤BD∥MN.⑥CP平分∠BPD其中,正确的有()A.3个B.4个C.5个D.6个【分析】①根据等边三角形的性质得CA=CB,CD=CE,∠ACB=60°,∠DCE=60°,则∠ACE=60°,利用“SAS”可判断△ACD≌△BCE,则AD=BE;②由△ACD≌△BCE得到∠CAD=∠CBE,然后根据“ASA”判断△ACN≌△BCM,即可解决问题;③根据三角形内角和定理可得∠CAD+∠CDA=60°,而∠CAD=∠CBE,则∠CBE+∠CDA=60°,然后再利用三角形内角和定理即可得到∠BPD=120°,即可得到结论;④由△ACD≌△BCE得到∠CAD=∠CBE,然后根据“ASA”判断△ACN≌△BCM,所以AN=BM;⑤由△ACN≌△BCM得到CN=BM,加上∠MCN=60°,则根据等边三角形的判定即可得到△CMN为等边三角形,得到∠CMN=60°,所以∠CMN=∠BCM,于是根据平行线的判定即可得到MN∥BC;⑥作CH⊥BE于H,CQ⊥AD于Q,如图,由△ACD≌△BCE得到CQ=CH,于是根据角平分线的判定定理即可得到CP平分∠BPD.【解答】证明:①∵△ABC和△CDE都是等边三角形,∴CA=CB,CD=CE,∠ACB=60°,∠DCE=60°,∴∠ACE=60°,∴∠ACD=∠BCE=120°,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;②∵△ACD≌△BCE,∴∠CAD=∠CBE,在△ACN和△BCM中,,∴△ACN≌△BCM(ASA),∴AN=BM,∠BMC=∠ANC;故②④正确;③∵∠CAD+∠CDA=60°,而∠CAD=∠CBE,∴∠CBE+∠CDA=60°,∴∠BPD=120°,∴∠APM=60°;故③正确;⑤∵△ACN≌△BCM,∴CN=BM,而∠MCN=60°,∴△CMN为等边三角形;∴∠CMN=60°,∴∠CMN=∠BCM,∴MN∥BC;故⑤正确;⑥作CH⊥BE于H,CQ⊥AD于Q,如图,∵△ACD≌△BCE,∴CQ=CH,∴CP平分∠BPD,故⑥正确.正确的有:①②③④⑤⑥,共6个.故选:D.9.(三角形与特殊三角形性质的综合)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.下列结论正确的有()个.①BF=AC;②CE=BF;③△DGF是等腰三角形;④BD+DF=BC;⑤;A.5B.4C.3D.2【分析】由“AAS”可证△BDF≌△CDA,可得BF=AC,故①正确.由等腰三角形的性质可得AE=EC=AC =BF,故②正确,由角的数量关系可求∠DGF=∠DFG=67.5°,可得DG=DF,即△DGF是等腰直角三角形,故③正确.由全等三角形的性质可得DF=DA,则可得BC=AB=BD+DF,故④正确;由角平分线的性质可得点F到AB的距离等于点F到BC的距离,由三角形的面积公式可求=,故⑤正确,即可求解.【解答】解:∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°﹣45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中,∴△BDF≌△CDA(AAS),∴BF=AC,故①正确.∵∠ABE=∠EBC=22.5°,BE⊥AC,∴∠A=∠BCA=67.5°,∴BA=BC,∵BE⊥AC,∴AE=EC=AC=BF,故②正确,∵BE平分∠ABC,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDC=90°,BH=HC,∴∠BHG=90°,∴∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF,∴△DGF是等腰直角三角形,故③正确.∵△BDF≌△CDA,∴DF=AD,∴BC=AB=BD+AD=BD+DF,故④正确;∵BE平分∠ABC,∴点F到AB的距离等于点F到BC的距离,∴=,故⑤正确,故选:A.10.(折叠与勾股定理求长度)如图,已知长方形纸片ABCD,点E在边AB上,且BE=2,BC=3,将△CBE沿直线CE翻折,使点B落在点G,延长EG交CD于点F处,则线段FG的长为()A.B.C.D.1【分析】由将△CBE沿直线CE翻折,使点B落在点G,可得∠BEC=∠GEC,GE=BE=2,CG=BC=3,CF =EF,设FG=x,则CF=EF=x+2,根据勾股定理可得x2+32=(x+2)2,即可解得答案.【解答】解:∵将△CBE沿直线CE翻折,使点B落在点G,∴∠BEC=∠GEC,GE=BE=2,CG=BC=3,∵四边形ABCD是矩形,∴CD∥AB,∴∠BEC=∠FCE,∴∠GEC=∠FCE,∴CF=EF,设FG=x,则CF=EF=x+2,在Rt△CFG中,FG2+CG2=CF2,∴x2+32=(x+2)2,解得x=,∴FG=,故选:A.11.(三角形与特殊三角形性质的综合)如图,在Rt△ABC中,CA=CB,D为斜边AB的中点,Rt∠EDF在△ABC 内绕点D转动,分别交边AC,BC点E,F(点E不与点A,C重合),下列说法正确的是()①∠DEF=45°;②BF2+AE2=EF2;③CD<EF≤CD.A.①②B.①③C.②③D.①②③【分析】由“ASA”可证△ADE≌△CDF,可得DE=DF,AE=CF,可得∠DEF=∠DFE=45°,EC=BF,可判断①,在直角三角形CEF中,由勾股定理可得BF2+AE2=EF2,可判断②,由特殊位置可求CD的范围,可判断③,即可求解.【解答】解:∵∠ACB=90°,CA=CB,D为斜边AB的中点,∴CD=AD=DB,∠A=∠B=∠ACD=∠BCD=45°,AB⊥CD,∵ED⊥FD,∴∠EDF=∠ADC=90°,∴∠ADE=△CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴DE=DF,AE=CF,∴∠DEF=∠DFE=45°,AC﹣AE=BC﹣CF,故①正确;∴EC=BF,∵CF2+CE2=EF2;∴BF2+AE2=EF2;故②正确;当点E与点A重合时,EF=AC=CD,当DE⊥AC时,则DF⊥BC,∴四边形DECF是矩形,∴EF=CD,∴CD≤EF<CD,故③错误,故选:A.二.填空题12.(中垂线性质定理与特殊角的应用)在△ABC中,∠A=15°,∠C=30°,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,DE=2,则AC的长为.【分析】利用线段垂直平分线的性质,说明△BCE和△ADB是等腰三角形,再利用等腰三角形的性质求出∠BEA和∠BDC的度数,利用特殊的直角三角形的性质求出BE、DB的长,最后利用线段的和差关系得结论.【解答】解:∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴CE=BE,BD=AD.∴∠C=∠CBE=30°,∠A=∠ABD=15°.∴∠BDC=∠A+∠ABD=30°,∠BEA=∠C+∠CBE=60°.∴∠EBD=90°.在Rt△BED中,∵ED=2,∠BDC=30°,∴BE=1,BD=.∴CE=BE,AD=BD.∴AC=CE+AD+ED=1+2+=3+.故答案为:3+.13.(特殊三角形的判定)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.【分析】首先根据旋转的性质得出,△EBE′是直角三角形,进而得出∠BEE′=∠BE′E=45°,即可得出答案.【解答】解:连接EE′∵△ABE绕点B顺时针旋转90°到△CBE′∴∠EBE′是直角,∴△EBE′是直角三角形,∵△ABE与△CE′B全等∴BE=BE′=2,∠AEB=∠BE′C∴∠BEE′=∠BE′E=45°,∵EE′2=22+22=8,AE=CE′=1,EC=3,∴EC2=E′C2+EE′2,∴△EE′C是直角三角形,∴∠EE′C=90°,∴∠AEB=135°.故答案为:135.14.(赵爽弦图)如图由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNPQ的面积分别为S1,S2,S3,若S1+S2+S3=60,则S2的值是.【分析】先设一个直角三角形的面积为x,然后结合正方形ABCD,正方形EFGH,正方形MNPQ的面积关系和S1+S2+S3=60得到S2的值.【解答】解:设一个直角三角形的面积为x,∵图中的三角形全等,∴S1=S2﹣4x,S3=S2+4x,∵S1+S2+S3=60,∴S2﹣4x+S2+S2+4x=60,∴S2=20.故答案为:20.15.(直角三角形的分类讨论)如图,已知Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P是BC边上的一个动点,点B与B′是关于直线AP的对称点,当△CPB'是直角三角形时,BP的长=.【分析】分两种情形:∠PCB′=90°,∠CPB′=90°,利用勾股定理构建方程求解即可.【解答】解:如图1中,当∠PCB′=90°时,设PB=PB′=x.∵AC=3,CB=4,∠ACB=90°,∴AB===5,由翻折的性质可知,AB=AB′=5,在Rt△PCB′中,PC2+CB′2=PB′2,∴(4﹣x)2+22=x2,∴x=,∴PB=.如图2中,当∠CPB′=90°,设PB=y.过点A作AT⊥B′P交B′P的延长线于点T,则四边形ACPT是矩形,∴PT=AC=3,AT=CP=4﹣y,在Rt△ATB′中,AB′2=AT2+B′T2,∴52=(4﹣y)2+(y+3)2,解得y=1或0(0舍弃),∴PB=1,综上所述,PB的值为:1或.16.(将军饮马)如图,在Rt△ABC中,∠A=90°,AB=4,AC=3,M、N、P分别是边AB、AC、BC上的动点,连接PM、PN和MN,则PM+PN+MN的最小值是.【分析】如图,作点P关于AB,AC的对称点E,F,连接PE,PF,P A,EM,FN,AE,AF.首先证明E,A,F共线,则PM+MN+PN=EM+MN+NF≥EF,推出EF的值最小时,PM+MN+PN的值最小,求出P A的最小值,可得结论.【解答】解:如图,作点P关于AB,AC的对称点E,F,连接PE,PF,P A,EM,FN,AE,AF.∵∠BAC=90°,AB=4,AC=3,∴BC===5,由对称的性质可知,AE=AP=AF,∠BAP=∠BAE,∠CAP=∠CAF,∵∠P AB+∠P AC=∠BAC=90°,∴∠EAF=180°,∴E,A,F共线,∵ME=MP,NF=NP,∴PM+MN+PN=EM+MN+NF,∵EM+MN+NF≥EF,∴EF的值最小时,PM+MN+PN的值最小,∵EF=2P A,∴当P A⊥BC时,P A的值最小,此时P A==,∴PM+MN+PN≥,∴PM+MN+PN的最小值为.故答案为:.17.(角平分线与将军饮马)如图,BD是Rt△ABC的角平分线,点F是BD上的动点,已知AC=2,AE=2﹣2,∠ABC=30°,则:(1)BE=.(2)AF+EF的最小值是.【分析】(1)根据直角三角形的性质得到BC=2AC=4,由勾股定理得到AB===2,于是得到结论;(2)作点A关于BD的对称点A′,根据等腰三角形的性质得到点A′落在BC上,求得A′B=AB=2,连接A′E交BD于F,则此时AF+EF的值最小且等于A′E,过E作EH⊥BC于H,根据勾股定理即可得到结论.【解答】解:(1)∵∠BAC=90°,AC=2,∠ABC=30°,∴BC=2AC=4,∴AB===2,∵AE=2﹣2,∴BE=2;故答案为:2;(2)作点A关于BD的对称点A′,∵BD是Rt△ABC的角平分线,∴点A′落在BC上,∴A′B=AB=2,连接A′E交BD于F,则此时AF+EF的值最小且等于A′E,过E作EH⊥BC于H,∴EH=BE=1,BH==,∴A′H=,∴BH=A′H,∴A′E=BE=2,∴AF+EF的最小值是2,故答案为:2.18.(折叠与直角三角形分类讨论)如图,在△ABC中,∠ACB=90°,∠A=30°,BC=2,点D在AB上,连结CD,将△ADC沿CD折叠,点A的对称点为E,CE交AB于点F,△DEF为直角三角形,则CF=.【分析】分两种情况讨论,当∠EFD=90°时和当∠EDF=90°时,然后利用折叠的性质和含30°角的直角三角形三边关系求解.【解答】解:∵∠A=30°,∠ACB=90°,BC=2,∴AB=2BC=4,AC=2,∠B=60°,由折叠得,∠E=∠A=30°,①如图1,当∠EFD=90°时,∠BFC=90°,∵∠B=60°,∴∠BCF=30°,∴BF=BC=×2=1,CF=BF=;②如图2,当∠EDF=90°时,∵∠E=30°,∴∠EFD=60°,∴∠BFC=60°,∵∠B=60°,∴△BFC是等边三角形,∴CF=BC=2,综上所述,当△BFC为直角三角形时,CF=2或.故答案为:2或.三.解答题19.(“两定一动”型等腰三角形分类讨论)如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D为AC边上的动点,点D从点C出发,沿边CA往A运动,当运动到点A时停止,若设点D运动的时间为t秒,点D运动的速度为每秒1个单位长度.(1)当t=2时,CD=,AD=;(请直接写出答案)(2)当△CBD是直角三角形时,t=;(请直接写出答案)(3)求当t为何值时,△CBD是等腰三角形?并说明理由.【分析】(1)根据CD=速度×时间列式计算即可得解,利用勾股定理列式求出AC,再根据AD=AC﹣CD代入数据进行计算即可得解;(2)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;(3)分①CD=BD时,过点D作DE⊥BC于E,根据等腰三角形三线合一的性质可得CE=BE,从而得到CD =AD;②CD=BC时,CD=6;③BD=BC时,过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,再由(2)的结论解答.【解答】解:(1)t=2时,CD=2×1=2,∵∠ABC=90°,AB=8,BC=6,∴AC===10,AD=AC﹣CD=10﹣2=8;(2)①∠CDB=90°时,S△ABC=AC•BD=AB•BC,即×10•BD=×8×6,解得BD=4.8,∴CD===3.6,t=3.6÷1=3.6秒;②∠CBD=90°时,点D和点A重合,t=10÷1=10秒,综上所述,t=3.6或10秒;故答案为:(1)2,8;(2)3.6或10秒;(3)①CD=BD时,如图1,过点D作DE⊥BC于E,则CE=BE,∴CD=AD=AC=×10=5,t=5÷1=5;②CD=BC时,CD=6,t=6÷1=6;③BD=BC时,如图2,过点B作BF⊥AC于F,则CF=3.6,CD=2CF=3.6×2=7.2,∴t=7.2÷1=7.2,综上所述,t=5秒或6秒或7.2秒时,△CBD是等腰三角形.20.(直角三角形判定与角度转化)如图,△ABC是等腰直角三角形,∠HAC=30°,∠ACD=α,点D是线段AH 上的一个动点,连接CD,将线段CD绕C点顺时针旋转90°至点E,连接DE交BC于点F.(1)连接BE,求证:△ACD≌△BCE;(2)当α=15°时,判断△BEF是什么三角形?并说明理由.(3)在点D运动过程中,当△BEF是锐角三角形时,求α的取值范围.【分析】(1)根据同角的余角相等得到∠ACD=∠BCE,利用SAS定理证明△ACD≌△BCE;(2)根据三角形内角和定理求出∠ADC,根据全等三角形的性质求出∠CEB,根据等腰直角三角形的性质求出∠CED,结合图形计算,得到答案;(3)根据三角形内角和定理求出∠ADC,用α表示出∠BEF,根据锐角的概念列式计算即可.【解答】(1)证明:∵∠ACB=∠DCE=90°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)解:△BEF是直角三角形,理由如下:∵∠HAC=30°,∠ACD=15°,∴∠ADC=180°﹣30°﹣15°=135°,∵△ACD≌△BCE,∴∠CEB=∠CDA=135°,∵CE=CD,∠DCE=90°,∴∠CED=∠CDE=45°,∴∠BEF=∠BEC﹣∠CED=135°﹣45°=90°,∴△BEF是直角三角形;(3)解:∵∠HAC=30°,∠ACD=α,∴∠ADC=180°﹣30°﹣α=150°﹣α,∵△ACD≌△BCE,∴∠CEB=∠CDA=150°﹣α,∠CBE=∠CAD=30°,∴∠BEF=∠BEC﹣∠CED=150°﹣α﹣45°=105°﹣α,由题意得:105°﹣α<90°,180°﹣30°﹣(105°﹣α)<90°,解得:15°<α<45°.21.(操作类等腰三角形分类讨论)我们数学八年级上册书本第64页作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成三张小纸片,使每张小纸片都是等腰三角形.你能办到吗?请画出示意图说明理由.小明在做此题时发现有多种剪法,图1为其中一种方法示意图.定义:如果我们用n条线段将一个三角形分成n+1个等腰三角形,我们把这种分法叫做这个三角形的n+1等分线图.显然,如图1所示的剪法是这个三角形的3等分线图.(1)如图2,△ABC为等腰直角三角形,请你画出一个这个△ABC的4等分线的示意图.(2)请你探究:如图3,边长为1的正三角形是否具有4等分线图.若无,请说明理由;若有,请画出所有符合条件的这个正三角形的4等分线图(若两种方法分得的三角形分别成4对全等三角形,则视为一种.)【分析】(1)取三边的中点D,E,F,并连接,即可画出一个这个△ABC的4等分线的示意图;(2)①如图,取三边的中点D,E,F,得4个等边三角形;②作CF⊥AB于点F,取CA和CB的中点D,E,连接DF,EF,得△ADF和△BEF是等边三角形,△CDF和△CEF是底角为30°的等腰三角形;③如图,在CA上取点E,在CB上取点F,使CE=2AE,CF=2BF,再取EF的中点D,连接DA,DB,△AEF是等边三角形,△DAB是等腰三角形,△ADE和△BDF是等腰三角形.【解答】解:(1)如图2,取三边的中点D,E,F,并连接,得4个等腰三角形;(2)①如图,取三边的中点D,E,F,得4个等边三角形;②如图,作CF⊥AB于点F,取CA和CB的中点D,E,连接DF,EF,得△ADF和△BEF是等边三角形,△CDF和△CEF是底角为30°的等腰三角形;③如图,在CA上取点E,在CB上取点F,使CE=2AE,CF=2BF,再取EF的中点D,连接DA,DB,所以△AEF是等边三角形,△DAB是等腰三角形,△ADE和△BDF是等腰三角形.22.(特殊三角形与方程思想)如图,在Rt△ABC中,AB=10,BC⊥AC,P为线段AC上一点,点Q,P关于直线BC对称,QD⊥AB于点D,DQ与BC交于点E,连结DP,设AP=m.(1)若BC=8,求AC的长,并用含m的代数式表示PQ的长;(2)在(1)的条件下,若AP=PD,求CP的长;(3)连结PE,若∠A=60°,△PCE与△PDE的面积之比为1:2,求m的值.【分析】(1)利用勾股定理求出AC,再根据对称性PQ=2PC,可得结论;(2)证明P A=PQ,构建方程求出m即可.(3)证明DE=EQ,设DE=EQ=x,根据BC=5,构建方程求出x,再求出AQ,PQ,可得结论.【解答】解:(1)在Rt△ABC中,∠ACB=90°,AB=10,BC=8,∴AC===6,∵P,Q关于BC对称,∴PC=CQ=6﹣m,∴PQ=2PC=12﹣2m;(2)当AP=PD时,∠A=∠PDA,∵QD⊥AB,∴∠ADQ=90°,∴∠PDQ+∠ADP=90°,∠Q+∠A=90°,∴∠Q=∠PDQ,∴PD=PQ,∴P A=PQ,∴m=12﹣2m,∴m=4,∴CP=AC﹣AP=6﹣4=2;(3)∴CP=CQ,∴S△PEC=S△ECQ,∵S△PDE=2S△PEC,∴S△PDE=S△PEQ,∴DE=QE,设DE=EQ=x,∵∠A=60°,∠ACB=90°,∴∠B=90°﹣60°=30°,∴BE=2x,∵∠ADQ=90°,∴∠Q=90°﹣60°=30°,∴EC=EQ=x,∵BC=AB•=5,∴2x+x=5,∴x=2,∴DQ=2x=4,CQ=PC=EQ•=3,∵AQ=5+3=8,∴m=AP=AQ﹣PQ=8﹣6=2.23.(特殊三角形动点问题)如图,Rt△AOB中,∠AOB=90°,OA=OB=4,点P在直线OA上运动,连接PB,将△OBP沿直线BP折叠,点O的对应点记为O′.(1)若AP=AB,则点P到直线AB的距离是;(2)若点O′恰好落在直线AB上,求△OBP的面积;(3)将线段PB绕点P顺时针旋转45°得到线段PC,直线PC与直线AB的交点为Q,在点P的运动过程中,是否存在某一位置,使得△PBQ为等腰三角形?若存在,请直接写出OP的长;若不存在,请说明理由.【分析】(1)接BP,设点P到直线AB的距离为h,根据三角形的面积公式即可得到结论;(2)分P在x轴的正半轴和负半轴:①当P在x轴的正半轴时,求OP=O'P=AO'=4﹣4,根据三角形面积公式可得结论;②当P在x轴的负半轴时,同理可得结论;(3)分4种情况:分别以P、B、Q三点所成的角为顶角讨论:①当BQ=QP时,如图2,P与O重合,②当BP=PQ时,如图3,③当PB=PQ时,如图4,此时Q与C重合;④当PB=BQ时,如图5,此时Q与A重合,则P与A关于y轴对称,根据图形和等腰三角形的性质可计算OP 的长.【解答】解:(1)连接BP,设点P到直线AB的距离为h,Rt△AOB中,∠AOB=90°,OA=OB=4,∴AB==4,∵AP=AB,∴AP=AB=4,∴S△ABP=AB•h=AP•OB,∴h=OB=4,即点P到直线AB的距离是4,故答案为:4;(2)存在两种情况:①如图1,当P在x轴的正半轴上时,点O′恰好落在直线AB上,则OP=O'P,∠BO'P=∠BOP=90°,∵OB=OA=4,∴△AOB是等腰直角三角形,∴AB=4,∠OAB=45°,由折叠得:∠OBP=∠O'BP,BP=BP,∴△OBP≌△O'BP(AAS),∴O'B=OB=4,∴AO'=4﹣4,Rt△PO'A中,O'P=AO'=4﹣4=OP,∴S△BOP=OB•OP==8﹣8;②如图所示:当P在x轴的负半轴时,由折叠得:∠PO'B=∠POB=90°,O'B=OB=4,∵∠BAO=45°,∴PO'=PO=AO'=4+4,∴S△BOP=OB•OP=×4×(4+4)=8+8;(3)分4种情况:①当BQ=QP时,如图2,点P与点O重合,此时OP=0;②当BP=PQ时,如图3,∵∠BPC=45°,∴∠PQB=∠PBQ=22.5°,∵∠OAB=45°=∠PBQ+∠APB,∴∠APB=22.5°,∴∠ABP=∠APB,∴AP=AB=4,∴OP=4+4;③当PB=PQ时,如图4,此时Q与C重合,∵∠BPC=45°,∴∠PBA=∠PCB=67.5°,△PCA中,∠APC=22.5°,∴∠APB=45+22.5°=67.5°,∴∠ABP=∠APB,∴AB=AP=4,∴OP=4﹣4;④当PB=BQ时,如图5,此时Q与A重合,则P与A关于y轴对称,∴此时OP=4;综上,OP的长是0或4+4或4﹣4或4.24.(特殊三角形综合题)已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°.求证:①△BDF≌△ADC;②FG+DC=AD;(2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.【分析】(1)①要证明△BDF≌△ADC,如图,在△ABD中,∠ABC=45°,AD⊥BC,可证BD=AD,∠BDF =∠ADC;在△ADC中,可证得∠AFE=∠ACD,又∵∠AFE=∠BFD(对顶角相等),∴∠ACD=∠BFD;运用AAS,问题可证.②由△BDF≌△ADC可证得DF=DC;∵AD=AF+FD,∴AD=AF+DC;由GF∥BD,∠ABC=45°,可证得AF=GF;于是问题可证.(2)∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴FG=AF=AD+DF;DF=DC可通过证明△BDF≌△ADC得到,故可得:FG=DC+AD.【解答】解:(1)①证明:∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABC=45°,∴AD=BD;∵∠BEC=90°,∴∠CBE+∠C=90°又∵∠DAC+∠C=90°,∴∠CBE=∠DAC;∵∠FDB=∠CDA=90°,∴△FDB≌△CDA(ASA)②∵△FDB≌△CDA,∴DF=DC;∵GF∥BC,∴∠AGF=∠ABC=45°,∴∠AGF=∠BAD,∴F A=FG;∴FG+DC=F A+DF=AD.(2)FG、DC、AD之间的数量关系为:FG=DC+AD.理由:∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴BD=AD,FG=AF=AD+DF;∵∠F AE+∠DFB=∠F AE+∠DCA=90°,∴∠DFB=∠DCA;又∵∠FDB=∠CDA=90°,BD=AD,∴△BDF≌△ADC(AAS);∴DF=DC,∴FG、DC、AD之间的数量关系为:FG=DC+AD.。
培优专题26 解直角三角形模型-解析版
培优专题26 解直角三角形模型类型一:背靠背型1.(2022·山东聊城·二模)从2019年底以来,新冠疫情一直困扰着我们的日常生活,今年为进一步加强疫情防控工作,某公司决定安装红外线体温检测仪,这种设备的原理是采用非接触式测温法,只要用红外体温测试仪的镜头对准被测对象进行扫描,其体温就可立刻在显示屏上显示出来,从而有效地避免了其他常规测温法所可能造成的交叉感染,测温区域示意图如图所示,已知最大探测角∠PAO=75°,最小探测角∠PBO=30°. 1.414 1.732 2.236)(1)若该设备安装在离水平地面距离为2.2m的P处,即OP=2.2m,请求出图中OB的长度;(结果精确到0.1m)(2)若该公司要求测温区域AB的长度为4 m,请求出该设备的安装高度OP的高度.(结果精确到0.1 m)2.(2021·湖南永州·中考真题)已知锐角ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,边角总满足关系式:sin sin sin a b c A B C==.(1)如图1,若6,45,75a B C =Ð=Ð=°°,求b 的值;(2)某公园准备在园内一个锐角三角形水池ABC 中建一座小型景观桥CD (如图2所示),若,14CD AB AC ^=米,10AB =米,sin ACB Ð=CD 的长度.(2)sin AB ACB ÐQ sin sin AC B AB ´Ð\=3.(2021·甘肃武威·中考真题)如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年(1535年),是明代平凉韩王府延恩寺的主体建筑.宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”.某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:方案设计:如图2,宝塔CD 垂直于地面,在地面上选取,A B 两处分别测得CAD Ð和CBD Ð的度数(,,A D B 在同一条直线上).数据收集:通过实地测量:地面上,A B 两点的距离为58m,42,58CAD CBD Ð=°Ð=°.问题解决:求宝塔CD 的高度(结果保留一位小数).参考数据:sin 420.67,cos 420.74,tan 420.90°»°=°»,sin 580.85,cos580.53,tan 58 1.60°=°=°=.根据上述方案及数据,请你完成求解过程.1254176,\=xx».解得,33.4答:宝塔的高度约为33.4m.【点睛】本题考查的是解直角三角形的应用,掌握利用直角三角形中的锐角三角函数建立边与边之间的关系是解题的关键.4.(2021·云南·模拟预测)如图,我市计划在某工业园区内,为相距4千米的彩印公司、包装公司修一条笔直的公路.点P表示住宅小区,在彩印公司北偏东30°方向与包装公司北偏西60°方向的交点,住宅小区在以P为圆心,0.8千米为半径的范围内,问这条公路是否会穿越这个住宅小区?(参考数据:»)1.414» 1.732答:这条公路不会穿越这个住宅小区.【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.5.(2021·湖北武汉·一模)【问题背景】如图1,在△ABC中,点D在边BC上且满足∠BAD=∠ACB,求证:BA2=BD•BC;【尝试应用】如图2,在△ABC中,点D在边BC上且满足∠BAD=∠ACB,点E在边AB上,点G在AB 的延长线上,延长ED交CG于点F,若3AD=2AC,BE=ED,BG=2,DF=1,求BE的长度;【拓展创新】如图3,在△ABC中,点D在边BC上(AB≠AD)且满足∠ACB=2∠BAD,DH⊥AB垂足为H,若728,927AH ADAD AC==,请直接写出ADAB的值________.【点睛】本题主要考查了相似三角形的判定与性质,等腰三角形的性质,解直角三角形等,解题关键是能通过作合适的辅助线构造相似三角形并最终求得结果.类型二:子母型6.(2022·辽宁鞍山·二模)某数学兴趣小组学过锐角三角函数后,计划测量中原福塔的总高度.如图所示,在B处测得福塔主体建筑顶点A的仰角为45°,福塔顶部桅杆天线AD高120m,再沿CB方向前进20m到达E处,测得桅杆天线顶部D的仰角为53.4°.求中原福塔CD的总度.(结果精确到1m.参考数据:sin53.4°≈0.803,cos53.4°≈0.596.tan53.4°≈1.346)解得:x≈269.0,∴CD=x+120=389.0≈389米,答:中原福塔CD的总高度约为389m.【点睛】本题主要考查了解直角三角形及其应用,明确题意,熟练掌握锐角三角函数关系是解题的关键.7.(2021·辽宁锦州·中考真题)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC//MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1∶3(即坡面上点B处的铅直高度BN与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)8.(2021·北京市第十二中学八年级阶段练习)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.9.(2020·山东青岛·九年级期末)如图,某大楼的顶部竖有一块宣传牌AB ,小明在斜坡的坡脚D 处测得宣传牌底部B 的仰角为45°,沿斜坡DE 向上走到E 处测得宣传牌顶部A 的仰角为31°,已知斜坡DE 的坡度3:4,10DE =米,22DC =米,求宣传牌AB 的高度.(测角器的高度忽略不计,参考数据:sin 310.52°≈,cos310.86°≈,tan 310.6)°»10.(2020·四川凉山·九年级阶段练习)四川省委书记杜青林、国家旅游局副局长张希钦2006年12月16日向获得“中国优秀旅游城市”称号的西昌市授牌,并修建了标志性建筑——马踏飞燕,如图.某学习小组把测量“马踏飞燕”雕塑的最高点离地面的高度作为一次课题活动,制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕”雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B 到地面的高度为BA ,在测点C 用仪器测得点B 的仰角为α,前进一段距离到达测点E ,再用该仪器测得点B 的仰角为β,且点A ,B ,C ,D ,E ,F 均在同一竖直平面内,点A ,C ,E 在同一条直线上.a 的度数b 的度数CE 的长度仪器CD (EF )的高测量数据31°42°3米1.65米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留到十分位).(参考数据:sin 310.52°≈,cos310.86°=,tan 310.60°»,sin 420.67=°,cos420.74=°,tan 420.90=°)【答案】7.1AB =米【分析】在两个直角三角形中,用BG 表示DG 、FG ,进而用 DG−FG =DF =3列方程求出BG 即可.【详解】如图,延长DF 与AB 交于点G ,类型三:拥抱型11.(2020·四川眉山·中考真题)某数学兴趣小组去测量一座小山的高度,在小山顶上有一高度为20米的发射塔AB,如图所示,在山脚平地上的D处测得塔底B的仰角为30°,向小山前进80米到达点E处,测得塔顶A的仰角为60°,求小山BC的高度.12.(2020·山西太原·模拟预测)山西大学主校区内有一座毛主席塑像,落成于1969年12月26日.是山西大学的标志性建筑之一,目前已被列入保护文物.综合与实践小组的同学们开展了测量这一毛主席塑像高度的活动.他们在该塑像底部所在的平地上,选取一个测点,测量了塑像顶端的仰角,调高测倾器后二次测量了塑像顶端的仰角.为了减小测量误差,小组在测量仰角的度数及测倾器高度时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表.课题成员测量工具测量毛主席塑像的高度组长:XXX组员:XXX,XXX,XXX测倾器,皮尺等测量示意图说明:线段AB 的长表示塑像从最高点到地面之间的距离,C 为测点,线段CE ,CD 表示测倾器(点D 在CE 上),点A ,B ,C ,D ,E 都在同一竖直平面内,且AB BC ^,CE BC ^;ADF Ð、AEG Ð表示两次测量的仰角,点G ,F 在AB 上.测量项目第一次第二次平均值ADF Ð的度数35.1°34.9°35.0°AEG Ð的度数33.4°33.6°33.5°测倾器CE 的高 1.68m1.72m1.70m 测量数据测倾器CD 的高1.07m 1.05m1.06m任务:(1)根据以上测量结果,请你帮助该“综合与实践”小组求出毛主席塑像的高度;(参考数据:sin 35.00.57°»,cos35.00.82°»,tan 35.00.70°»,sin33.50.55°»,cos33.50.83°»,tan 33.50.66°»)(2)该综合与实践小组在制定方案时,讨论“用已知高度的侧倾器CD 测出仰角ADF Ð,再测出BC 的长来计算塑像高度AB ”的方案,但未被采纳,你认为其原因可能是什么?(写出一条即可)【答案】(1)毛主席塑像的高度为12.26m ;(2)因为塑像下半部分为底座,其底部不可直接到达,不能准确测出BC .【分析】(1)根据题意AB ^BC ,CE ^BC ,AB ^EG ,AB ^DF ,可推得四边形BCEG 与四边形DEGF 都是矩形,其中BG=CE=1.70m ,FG=DE=CE-CD=1.70-1.06=0.64m ,EG=DF ,在Rt △AEG 和Rt △ADF 分别用正切函数写出对应边的式子,即可求得AG 的长度,则AB 的长度可求;(2)因为塑像下半部分为底座,其底部不可直接到达,不能准确测出BC .【详解】解:(1)由题意,得AB ^BC ,CE ^BC ,AB ^EG ,AB ^DF ,13.(2021·河南·九年级专题练习)某数学兴趣小组学过锐角三角函数后,到市龙源湖公园测量塑像“夸父追日”的高度,如图所示,在A处测得塑像顶部D的仰角为45°,塑像底部E的仰角为30.1°,再沿AC方向前进10m到达B处,测得塑像顶部D的仰角为59.1°.求塑像“夸父追日”DE高度.(结果精确到0.1m.参考数据:sin30.1°≈0.50,cos30.1°≈0.87,tan30.1°≈0.58,sin59.1°≈0.86,cos59.1°≈0.51,tan59.1°≈1.67)14.(2018·北京四中九年级期中)如图,一座商场大楼的顶部竖直立有一个矩形广告牌,小红同学在地面上选择了在条直线上的三点(A A 为楼底),,D E ,她在D 处测得广告牌顶端C 的仰角为60°,在E 处测得商场大楼楼顶B 的仰角为45°,5DE =米.已知广告牌的高度 2.35BC =米,求这座商场大楼的高度AB1.41»»,小红的身高不计,结果保留整数).15.(2018·四川眉山·九年级期末)在“双创”活动中,某校将双创宣传牌(AB )放置在教学楼顶部(如图所示).数学兴趣小组成员小明在操场上的点D 处,用高度为1 m 的测角仪CD ,从点C 测得宣传牌的底部B 的仰角为37°,然后向教学楼正方向走了4 m 到达点F 处,又从点E 测得宣传牌顶部A 的仰角为45°.已知教学楼高19m BM =,且点A 、B 、M 在同一直线上,求宣传牌AB 的高度.(参考数据:1.73»,sin 370.60°»,cos370.81°»,tan 370.75°»)【答案】宣传牌AB 的高度为2米【分析】过点C 作CG AM ^于G ,设AB 为x ,根据45AEG °Ð=可得18EG AG x ==+,然后在Rt CBG V 中解直角三角形即可.类型四:12345型16.(2018·广东·深圳市光明区公明中学九年级阶段练习)如图,在平面直角坐标系xOy中,点A(1-,0),B(0,2),点C在第一象限,∠ABC=135°,AC交y轴于D,CD=3AD,反比例函数kyx=的图象经过点C,则k的值为_______.【答案】9∵∠ABC=135°,17.(2018·江苏无锡·九年级期末)如图,在正方形ABCD中,P是BC的中点,把△PAB沿着PA翻折得到△PAE,过C作CF⊥DE于F,若CF=2,则DF=_____.【答案】6.【分析】作辅助线,构建全等三角形,证明△AMD≌△DFC,则DM=FC=2,由折叠和正形的边长相等得:AE=AD,根据等腰三角形三线合一得:DM=EM=2,∠EAM=∠MAD,设∠MAD=α,则∠EAM=α,∠BAP=∠PAE=45°﹣α,可得∠PAM=45°,则△PAH是等腰直角三角形,证明△PGE∽△AMD,列比例式得:GE=1,AM=2PG,设PG=x,则AM=2x,根据AH=PH,得2x﹣1=2+x,求得x的值,即可解决问题;【详解】过A作AM⊥DF于M,∵四边形ABCD是正方形,∵AH=PH,∴2x﹣1=2+x,x=3,∴PG=3,AM=6,∵△DAM≌△CDF,∴DF=AM=6.故答案为6.【点睛】本题考查了正方形的性质、折叠的性质、三角形全等和相似的性质和判定、勾股定理、等腰三角形和等腰直角三角形的性质和判定等知识,有难度,证明∠PAM=45°是关键,设未知数,并确定其等量关系列方程解决问题.18.(2018·山东滨州·中考真题)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE∠EAF=45°,则AF的长为_____.19.(2018·山东泰安·中考真题)如图,在矩形ABCD 中,6AB =,10BC =,将矩形ABCD 沿BE 折叠,点A 落在'A 处,若'EA 的延长线恰好过点C ,则sin ABE Ð的值为__________.20.(2017·浙江丽水·中考真题)(2017丽水)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x 轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是____;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是________.。
与三角形有关角培优知识讲解
与三角形有关的角(培优)知识解说【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行有关的计算,证明问题.小学初中高中各科视频讲义汇总小学初中高中一些书本Word Word 汇总同步培优比赛还能够订做你需要Word三轮复习联系我 468453607微信t442546597【重点梳理】重点一、三角形的内角1.三角形内角和定理:三角形的内角和为 180°.重点解说:应用三角形内角和定理能够解决以下三类问题:①在三角形中已知随意两个角的度数能够求出第三个角的度数;②已知三角形三个内角的关系,能够求出其内角的度数;③求一个三角形中各角之间的关系.2. 直角三角形:假如一个三角形是直角三角形,那么这个三角形有两个角互余 . 反过来,有两个角互余的三角形是直角三角形 .重点解说:假如直角三角形中有一个锐角为45°,那么这个直角三角形的另一个锐角也是45°,且此直角三角形是等腰直角三角形.重点二、三角形的外角1.定义:三角形的一边与另一边的延伸线构成的角叫做三角形的外角.如图,∠ ACD是△ ABC的一个外角 .重点解说:(1)外角的特点:①极点在三角形的一个极点上;②一条边是三角形的一边;③另一条边是三角形某条边的延伸线.(2)三角形每个极点处有两个外角,它们是对顶角.所以三角形共有六个外角,往常每个极点处取一个外角,所以,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于随意一个与它不相邻的内角.重点解说:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明常常使用的理论依照.此外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.重点解说:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是可推出三角形的三个外角和是360°.【典型例题】种类一、三角形的内角和180°,1.在△ ABC中,若∠A=1∠ B=1 ∠C,试判断该三角形的形状.23【思路点拨】由∠ A=1∠ B=1 ∠C,以及∠A+∠ B+∠ C= 180°,可求出∠A、∠ B 和23∠C 的度数,从而判断三角形的形状.【答案与分析】解:设∠ A= x,则∠ B= 2x ,∠ C= 3x.因为∠ A+∠ B+∠C= 180°,即有x+2x+3x =180°.解得 x= 30°.故∠ A= 30°.∠ B= 60°,∠ C= 90°.故△ ABC是直角三角形.【总结升华】此题利用设未知数的方法求出三角形三个内角的度数,解法较为奇妙.贯通融会:【变式 1】三角形中起码有一个角不小于________度.【答案】 60.【变式 2】( 2015 春?新沂市校级月考)如图,BE、CF 都是△ ABC的角均分线,且∠ BDC=110°,则∠ A=.【答案】 40°.解:∵ BE、CF都是△ ABC的角均分线,∴∠ A=180°﹣(∠ABC+∠ ACB),=180°﹣ 2(∠ DBC+∠ BCD)∵∠ BDC=180°﹣(∠D BC+∠BCD),∴∠ A=180°﹣ 2(180°﹣∠ BDC)∴∠ BDC=90°+∠ A,∴∠ A=2(110°﹣ 90°) =40°.2.在△ ABC中,∠ ABC=∠ C, BD是 AC边上的高,∠ ABD=30°,则∠ C 的度数是多少 ? 【思路点拨】按△ ABC为锐角三角形和钝角三角形两种状况,分类议论.【答案与分析】解:分两种状况议论:( 1)当△ ABC为锐角三角形时,以下图,在△ABD中,∵BD 是 AC边上的高 ( 已知 ) ,∴ ∠ADB=90°( 垂直定义) .又∵∠ABD=30°( 已知 ) ,∴ ∠A= 180°- ∠ ADB-∠ ABD= 180° -90 °-30 °=60°.又∵∠ A+∠ ABC+∠ C=180° ( 三角形内角和定理 ) ,∴ ∠ABC+∠ C= 120°,又∵∠ ABC=∠ C,∴∠C= 60°.(2) 当△ ABC为钝角三角形时,以下图.在直角△ABD中,∵∠ABD= 30° ( 已知 ) ,所以∠ BAD= 60°.∴∠BAC= 120°.又∵∠ BAC+∠ABC+∠ C= 180° ( 三角形内角和定理) ,∴∠ABC+∠ C= 60°.∴∠C= 30°.综上,∠ C 的度数为60°或 30°.【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者一定具备依据条件作出图形的能力;要注意考虑图形的完好性和其余各样可能性,双解和多解问题也是我们在学习过程中应当注意的一个重要环节.种类二、三角形的外角【高清讲堂:与三角形有关的角例 4、】3.如图,在△ ABC中, AE⊥ BC于 E, AD为∠ BAC的均分线,∠ B=50o,∠ C=70o,求∠ DAE .【答案与分析】解:∠ A= 180°-∠ B-∠ C=180°- 50°- 70°= 60° ,又AD为∠ BAC的均分线 ,所以∠ BAD=1BAC =30°, 2∠ADE=∠ B+∠ BAD=50o+ 30°= 80° ,又AE ⊥ BC于 E ,所以∠ DAE= 90°-∠ ADE= 90°- 80°= 10° .贯通融会:【变式】如图,在△ABC中, AB> AC, AE⊥ BC于 E,AD 为∠ BAC的均分线,则∠DAE与∠ C -∠ B 的数目关系.【答案】C B DAE.24. 以下图,已知CE是△ ABC外角∠ ACD的均分线, CE交 BA延伸线于点 E. 求证:∠BAC >∠ B.【答案与分析】证明:在△ ACE中,∠ BAC >∠1(三角形的一个外角大于与它不相邻的任何一个内角).同理在△ BCE中,∠ 2 > ∠B,因为∠ 1=∠ 2,所以∠ BAC >∠ B.【总结升华】波及角的不等关系的问题时,常常用到三角形外角性质:“三角形的一个外角大于与它不相邻的任何一个内角” .贯通融会:【变式】以下图,用“<”把∠ 1、∠ 2、∠ A 联系起来 ________.【答案】∠A < ∠ 2 < ∠ 1.种类三、三角形的内角外角综合5.( 2015 春?启东市校级月考)如图, BE与 CD订交于点 A, CF为∠ BCD的均分线, EF为∠ BED的均分线.(1)尝试究:∠ F 与∠ B、∠ D 之间的关系?(2)若∠ B:∠ D:∠ F=2: 4:x.求 x 的值.【思路点拨】( 1)先依据角均分线的定义获得∠1=∠ 2,∠ 3=∠ 4,再依据对顶角相等和三角形内角和定理获得∠D+∠ 1=∠F+∠ 3,∠ B+∠ 4=∠ F+∠ 2,而后把两式相加即可获得∠F 与∠B、∠ D 之间的关系;(2)设∠ B=2a,则∠ D=4a,∠ F=ax,利用( 1)中的结论获得2ax=2a+4a,而后解对于x 的方程即可.【答案与分析】解:( 1)∵ CF为∠ BCD的均分线, EF 为∠ BED的均分线,∴∠ 1=∠ 2,∠ 3=∠ 4,∵∠ D+∠ 1=∠ F+∠ 3,∠B+∠ 4=∠F+∠ 2,∴∠ B+∠ D+∠ 1+∠ 4=2∠ F+∠ 3+∠ 2,∴∠ F= (∠ B+∠D);(2)当∠ B:∠ D:∠ F=2: 4: x 时,设∠ B=2a,则∠ D=4a,∠ F=ax,∵2∠ F=∠ B+∠ D,∴2ax=2a+4a∴2x=2+4 ,∴x=3.【总结升华】此题考察了三角形内角和定理:经过三角形内角和为180°列等量关系.也考查了角均分线的定义.贯通融会:【变式 1】以下图,五角星ABCDE中,试说明∠ A+∠ B+∠ C+∠ D+∠ E=180°.【答案】解:因为∠ AGF是△ GCE的外角,所以∠ AGF=∠ C+∠ E.同理∠ AFG=∠ B+∠ D.在△ AFG中,∠ A+∠ AFG+∠ AGF=180° .所以∠ A+∠ B+∠C+∠ D+∠E=180°.【变式 2】一个三角形的外角中,最多有锐角().A. 1 个B.2个C.3个D.不可以确立【答案】 A (提示:因为三角形最多有一个内角是钝角,故最多有一个外角是锐角.)与三角形有关的角(提升)稳固练习【稳固练习】一、选择题1.( 湖北荆州 ) 以下图,一根直尺 EF 压在三角板 30. 的角∠ BAC上,与两边 AC,AB交于 M,N.那么∠ CME+∠ BNF是 ( )A . 150°B.180°C.135°D.不可以确立2.若一个三角形的三个内角互不相等,则它的最小角必小于A . 30°B.45°C.60°D.55°()3.以下语句中,正确的选项是( )A.三角形的外角大于任何一个内角B.三角形的外角等于这个三角形的两个内角之和C.三角形的外角中,起码有两个钝角D.三角形的外角中,起码有一个钝角4.假如一个三角形的两个外角之和为270°,那么这个三角形是A .锐角三角形B.直角三角形C.钝角三角形D 5.如图,已知AB∥CD,则( )A .∠ 1=∠ 2+∠3 B.∠ 1=2∠2+∠ 3( ).没法确立C.∠ 1= 2∠ 2- ∠ 3D .∠ 1= 180°- ∠ 2- ∠ 36.( 2015 春?泰山区期中)如图, BP 是△ ABC中∠ ABC的均分线, CP是∠ ACB的外角的均分线,假如∠ ABP=20°,∠ ACP=50°,则∠ A+∠ P=()A.70 °°°°二、填空题7.在△ ABC中,若∠ A-2 ∠ B= 70°, 2∠C-∠ B= 10°,则∠ C= ________.8.如图,在△ABC中,∠ ABC、∠ ACB的均分线订交于点O.(1)若∠ A= 76°,则∠ BOC= ________;(2)若∠ BOC= 120°,则∠ A= _______;(3)∠A 与∠ BOC之间拥有的数目关系是 _______.9.已知等腰三角形的一个外角等于100°,则它的底角等于 ________.10. ( 河南 ) 将一副直角三角板以下图搁置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠ 1 的度数为 ________.11.( 2015 春?龙口市期中)如图,已知△D,若∠ A=50°,则∠ D=度.ABC中,∠ABC的均分线与∠ACE的均分线交于点12.如图, O是△ ABC外一点, OB, OC分别均分△ ABC的外角∠ CBE,∠ BCF.若∠ A=n°,则∠ BOC=(用含n的代数式表示).三、解答题13. 如图,求证:∠A+∠ B+∠C+∠ D+∠E=180° .14.( 2015 春?扬州校级期中)如图①,△ABC的角均分线BD、 CE订交于点 P.(1)假如∠ A=80°,求∠ BPC的度数;(2)如图②,过 P 点作直线 MN,分别交 AB和 AC于点 M和 N,且 MN平行于 BC,则有∠ MPB+∠NPC=90°﹣∠A.若将直线 MN绕点 P 旋转,(ⅰ)如图③,尝试究∠ MPB、∠ NPC、∠A 三者之间的数目关系能否依旧成立,并说明原因;(ⅱ)当直线 MN与 AB 的交点仍在线段AB上,而与 AC的交点在 AC的延伸线上时,如图④,试问(ⅰ)中∠ MPB、∠ NPC、∠ A 三者之间的数目关系能否仍旧成立?若不行立,请给出∠ MPB、∠ NPC、∠ A 三者之间的数目关系,并说明你的原因.15.如图,在△ ABC中,∠ ABC的均分线与外角∠ACE的均分线交于点 D.试说明D 1A .216.以下图,在△ABC中,∠ 1=∠ 2,∠ C>∠ B, E 为 AD上一点,且E F⊥BC于 F.(1)尝试究∠ DEF与∠ B,∠ C 的大小关系;(2)如图 (2) 所示,当点 E 在 AD的延伸线上时,其余条件都不变,你在 (1) 中探究到的结论能否还成立 ?【答案与分析】一、选择题1.【答案】 A【分析】 (1) 由∠ A= 30°,可得∠AMN+∠ ANM= 180° -30 °= 150°又∵∠ CME=∠ AMN,∠ BNF=∠ ANM,故有∠ CME+∠ BNF= 150°.2.【答案】C;【分析】若是三角形的最小角不小于60°,则必有大于或等于60°的,因为该三角形三个内角互不相等,所以此外两个非最小角必定大于60°,此时,该三角形的三个内角和必大于180°,这与三角形的内角和定理矛盾,故假定不行能成立,即它的最小角必小于60°.3.【答案】 C ;【分析】因为三角形的内角中最多有一个钝角,所之外角中最多有一个锐角,即外角中起码有两个钝角 .4.【答案】 B;【分析】因为三角形的外角和360°,而两个外角的和为 270°,所以必有一个外角为90°,所以有一个内有为 90° .5.【答案】 A;6.【答案】 C;【分析】解:∵BP是△ABC中∠ABC的均分线,CP是∠ACB的外角的均分线,∵∠ ABP=20°,∠ ACP=50°,∴∠ ABC=2∠ABP=40°,∠ ACM=2∠ACP=100°,∴∠ A=∠ ACM﹣∠ ABC=60°,∠ACB=180°﹣∠ ACM=80°,∴∠ BCP=∠ACB+∠ACP=130°,∵∠ BPC=20°,∴∠ P=180°﹣∠ PBC﹣∠BCP=30°,∴∠ A+∠P=90°,应选 C.二、填空题7.【答案】 20;A-2B=70【分析】联立方程组: 2 C-B10,解得 C 20.A B C1808. 【答案】 128° , 60 °,∠ BOC= 90°+ 1∠ A;29.【答案】 80°或 50°;【分析】 100°的补角为 80°, (1)80 °为三角形的顶角;( 2)80°为三角形底角时,则三角形顶角为20° .10.【答案】 75°;11.【答案】 25°;【分析】解:∵∠ ACE=∠A+∠ ABC,∴∠ ACD+∠ECD=∠ A+∠ ABD+∠DBE,∠ DCE=∠ D+∠ DBC,又BD均分∠ABC,CD均分∠ACE,∴∠ ABD=∠DBE,∠ ACD=∠ ECD,∴∠ A=2(∠ DCE﹣∠ DBC),∠ D=∠ DCE﹣∠ DBC,∴∠ A=2∠ D,∵∠ A=50°,∴∠ D=25°.故答案为: 25.12. 【答案】90 1 n ;2【分析】∵∠ COB=180 - (∠ OBC+∠ OCB),而BO,CO分别均分∠ CBE,∠ BCF,∴∠ OBC=1n1ACB,∠ OCB=1 n1ABC . 2222∴∠ COB=180°- [ n1(180 n ) ]=901n .22三、解答题13.【分析】解:延伸BE,交 AC于点 H,易得∠ BFC=∠ A+∠ B+∠ C再由∠ EFC=∠ D+∠ E,上式两边分别相加,得:∠A+∠B+∠ C+∠ D+∠ E=∠ BFC+∠ EFC= 180° .即∠ A+∠ B+∠ C+∠ D+∠ E=180°14.【分析】解:( 1)如图①∵在△ABC中,∠ A+∠ B+∠ACB=180°,且∠ A=80°,∴∠ ABC+∠ACB=100°,∵∠ 1=∠ ABC,∠ 2=∠ACB,∴∠ 1+∠ 2= (∠ ABC+∠ ACB)= ×100°=50°,∴∠ BPC=180°﹣(∠1+∠2)=180°﹣ 50°=130°.( 2)(ⅰ)如图③,由(1)知:∠ BPC=180°﹣(∠1+∠ 2);∵∠ 1+∠ 2= (180°﹣∠ A)=90°∠ A,∴∠ BPC=180°﹣( 90°﹣∠A)=90°+ ∠ A;∴∠ MPB+∠ NPC=180°﹣∠ BPC=180°﹣( 90°+∠ A)=90°﹣∠ A.(ⅱ)不行立,∠MPB﹣∠ NPC=90°﹣∠ A.如图④,由(ⅰ)知:∠BPC=90°+∠A,∴∠ MPB﹣∠ NPC=180°﹣∠ BPC=180°﹣( 90°+∠A)=90°﹣∠ A.15.【分析】解:∠ D=∠ 4- ∠ 2=1( ∠ ACE-∠ ABC)=1∠ A,22∴∠D=1∠ A.216.【分析】解: (1)∵∠ 1=∠ 2,∴∠1=1∠ BAC.2又∵∠ BAC= 180° -( ∠B+∠ C),∴∠1=1[180 ° -( ∠ B+∠ C)] = 90° -1( ∠ B+∠ C).22∴∠EDF=∠ B+∠ 1=∠ B+90° - 1( ∠ B+∠ C)=90° +1( ∠ B- ∠ C).22又∵EF ⊥ BC,∴∠ EFD=90°.∴∠DEF= 90° - ∠ EDF= 90° -[90 ° + 1( ∠ B-∠ C)] =1( ∠ C-∠ B).22(2)当点 E 在 AD的延伸线上时,其余条件都不变,(1) 中探究所得的结论仍成立.与三角形有关的角(基础)知识解说【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行有关的计算,证明问题.【重点梳理】重点一、三角形的内角1.三角形内角和定理:三角形的内角和为 180°.重点解说:应用三角形内角和定理能够解决以下三类问题:①在三角形中已知随意两个角的度数能够求出第三个角的度数;②已知三角形三个内角的关系,能够求出其内角的度数;③求一个三角形中各角之间的关系.2.直角三角形:假如一个三角形是直角三角形,那么这个三角形有两个角互余. 反过来,有两个角互余的三角形是直角三角形.重点解说:假如直角三角形中有一个锐角为45°,那么这个直角三角形的另一个锐角也是45°,且此直角三角形是等腰直角三角形.重点二、三角形的外角1.定义:三角形的一边与另一边的延伸线构成的角叫做三角形的外角.如图,∠ ACD是△ ABC的一个外角 .重点解说:(1)外角的特点:①极点在三角形的一个极点上;②一条边是三角形的一边;③另一条边是三角形某条边的延伸线.(2)三角形每个极点处有两个外角,它们是对顶角.所以三角形共有六个外角,往常每个极点处取一个外角,所以,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于随意一个与它不相邻的内角.重点解说:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明常常使用的理论依照.此外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于 360°.重点解说:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】种类一、三角形的内角和1.证明:三角形的内角和为180° .【答案与分析】解:已知:如图,已知△ABC,求证:∠ A+∠ B+∠ C= 180° .证法 1:如图 1 所示,延伸 BC到 E,作 CD∥ AB.因为 AB∥ CD(已作),所以∠ 1=∠ A(两直线平行,内错角相等),∠ B=∠ 2(两直线平行,同位角相等).又∠ ACB+∠ 1+∠2=180°(平角定义),所以∠ ACB+∠ A+∠ B=180°(等量代换).证法 2:如图 2 所示,在 BC边上任取一点D,作 DE∥ AB,交 AC于 E,DF∥ AC,交 AB于点F.因为 DF∥ AC(已作),所以∠ 1=∠ C(两直线平行,同位角相等),∠2=∠DEC(两直线平行,内错角相等).因为 DE∥ AB(已作).所以∠ 3=∠ B,∠ DEC=∠ A(两直线平行,同位角相等).所以∠ A=∠ 2(等量代换).又∠ 1+∠ 2+∠ 3=180°(平角定义),所以∠ A+∠ B+∠C=180°(等量代换).证法 3:如图 3 所示,过 A 点任作直线l1,过B点作 l 2∥ l1,过C点作 l 3∥ l1,因为 l1∥ l3(已作).所以∠ l= ∠ 2(两直线平行,内错角相等).同理∠ 3=∠ 4.又 l1∥ l 2(已作),所以∠ 5+∠ 1+∠6+∠ 4=180°(两直线平行,同旁内角互补).所以∠ 5+∠ 2+∠ 6+∠ 3=180°(等量代换).又∠ 2+∠ 3=∠ACB,所以∠ BAC+∠ABC+∠ ACB=180°(等量代换).证法 4:如图 4,将ABC的三个内角剪下,拼成以 C 为极点的平角.证法 5:如图 5- 1 和图 5- 2,在图 5- 1 中作∠ 1=∠ A,得 CD∥ AB,有∠ 2=∠ B;在图 5 -2 中过 A 作 MN∥ BC有∠ 1=∠ B,∠ 2=∠ C,从而将三个内角拼成平角 .【总结升华】三角形内角和定理的证明方法有好多种,不论哪一种证明方法,都是应用的平行线的性质 .2.在△ ABC中,已知∠ A+∠ B= 80°,∠ C= 2∠ B,试求∠ A,∠ B 和∠ C的度数.【思路点拨】题中给出两个条件:∠A+∠ B=80°,∠ C= 2∠ B,再依据三角形的内角和等于180°,即∠ A+∠ B+∠ C= 180°就能够求出∠A,∠ B 和∠ C 的度数.【答案与分析】解:由∠ A+∠ B= 80°及∠ A+∠ B+∠ C=180°,知∠ C= 100°.又∵∠ C= 2∠B,∴∠B= 50°.∴∠A= 80° - ∠ B= 80° -50 °= 30°.【总结升华】解答此题的重点是利用隐含条件∠ A+∠ B+∠C= 180°.此题能够设∠ B= x,则∠A= 80° -x ,∠ C=2x 成立方程求解.贯通融会:【变式】( 2015 春?安岳县期末)如图,在△ ABC中,∠A=50°,E 是△ ABC内一点,∠BEC=150°,∠ABE的均分线与∠ ACE 的均分线订交于点 D,则∠ BDC的度数为多少?【答案】 100° .解:∵△ ABC 中∠ A=50°,∴∠ ABC+∠ACB=180°﹣ 50°=130°,∵△ BCE中∠ E=150°,∴∠ EBC+∠ECB=180°﹣ 150°=30°,∴∠ ABE+∠ACE=130°﹣ 30°=100°,∵∠ ABE 的均分线与∠ ACE 的均分线订交于点D,∴∠ DBE+∠DCE= (∠ ABE+∠ACE) = ×100°=50°,∴∠ DBE+∠DCE=(∠ DBE+∠DCE)+(∠ EBC+∠ECB)=50°+30°=80°,∴∠ BDC=180°﹣ 80°=100°.种类二、三角形的外角【高清讲堂:与三角形有关的角例 2、】3. (1)如图, AB和 CD交于点 O,求证:∠ A+∠ C=∠ B+∠ D .(2)如图,求证:∠D=∠ A+∠ B + ∠C.【答案与分析】解:( 1)如图,在△ AOC中,∠ COB是一个外角,由外角的性质可得:∠COB=∠ A+∠ C,同理,在△ BOD中,∠ COB=∠ B+∠ D,所以∠ A+∠ C=∠ B+∠ D.(2)如图,延伸线段BD交线段于点E,在△ ABE中,∠ BEC=∠ A+∠ B①;在△ DCE中,∠ BDC=∠ BEC+∠ C②,将①代入②得,∠BDC=∠ A+∠ B+∠ C,即得证.【总结升华】重要结论:( 1)“ 8”字形图:∠ A+∠ C=∠ B+∠ D;( 2)“燕尾形图”:∠ D=∠ A+∠ B + ∠ C.贯通融会:【变式 1】(新疆建设兵团)如图,AB∥ CD,AD和 BC订交于点 O,∠ A=40°,∠ AOB=75°,则∠ C等于().A、40°B、65°C、75°D、115°【答案】 B.【变式 2】如图,在△ ABC中,∠ A= 70°, BO,CO分别均分∠ ABC和∠ ACB,则∠ BOC的度数为.【答案】 125° .种类三、三角形的内角外角综合4.( 2015 春 ?江阴市校级月考)已知如图∠ xOy=90 °,BE 是∠ ABy 的均分线, BE 的反向延伸线与∠ OAB 的均分线订交于点 C,当点 A , B 分别在射线 Ox ,Oy 上挪动时,试问∠ACB 的大小能否发生变化?假如保持不变,请说明原因;假如随点 A ,B 的挪动而变化,恳求出变化范围.【思路点拨】依据角均分线的定义、三角形的内角和、外角性质求解.【答案与分析】解:∠ C 的大小保持不变.原因:∵∠ ABY=90 °+∠ OAB , AC 均分∠ OAB , BE 均分∠ ABY ,∴∠ ABE=∠ ABY=(90°+∠ OAB)=45°+∠ OAB,即∠ ABE=45 °+∠ CAB ,又∵∠ ABE= ∠ C+∠ CAB ,∴∠ C=45°,故∠ ACB 的大小不发生变化,且一直保持45°.【总结升华】此题考察的是三角形内角与外角的关系,掌握“三角形的内角和是180°”是解决问题的重点.贯通融会:【变式】以下图,已知△ ABC中, P 为内角均分线 AD、 BE、 CF 的交点,过点 P 作 PG⊥ BC 于G,试说明∠ BPD与∠ CPG的大小关系并说明原因.【答案】解:∠ BPD=∠ CPG.原因以下:∵ AD 、 BE、 CF分别是∠ BAC、∠ ABC、∠ ACB的角均分线,∴∠1=1∠ ABC,∠ 2=1∠ BAC,∠ 3=1∠ ACB.222∴∠1+∠ 2+∠3=1( ∠ ABC+∠ BAC+∠ACB)= 90°.2又∵∠ 4=∠ 1+∠ 2,∴∠4+∠ 3= 90°.又∵PG ⊥ BC,∴∠3+∠ 5= 90°.∴ ∠ 4=∠ 5,即∠ BPD=∠ CPG.与三角形有关的角(基础)稳固练习【稳固练习】一、选择题1.已知在△ ABC中有两个角的大小分别为40°和 70°,则这个三角形是().A .直角三角形B.等边三角形C.钝角三角形D.等腰三角形2.若△ ABC的∠ A=60°,且∠ B: ∠ C= 2:1 ,那么∠ B 的度数为 ().A . 40°B.80°C.60°D.120°3. ( 云南昆明 ) 以下图,在△ABC中, CD是∠ ACB的均分线,∠A= 80°,∠ ACB=60°,那么∠ BDC= ().A. 80°B.90°C.100°D.110°4.( 2015?绵阳)如图,在△ ABC 中,∠ B、∠ C 的均分线BE,CD 订交于点F,∠ ABC=42 °,∠ A=60 °,则∠ BFC=()°°°°5. ( 山东济宁 ) 若一个三角形三个内角度数的比为2:3:4 ,那么这个三角形是().A .直角三角形B.锐角三角形C.钝角三角形D.等边三角形6.( 山东菏泽 ) 一次数学活动课上,小聪将一幅三角板按图中方式叠放.则∠ α 等于().A . 30°B.45°C.60°D.75°二、填空题7.如图,AD⊥ BC,垂足是点D,若∠ A=32°,∠ B= 40°,则∠ C= _______,∠BFD= _______,∠A EF= ________.8.在△ ABC中,∠ A+∠ B=∠ C,则∠ C=_______.9.依据以下图角的度数,求出此中∠α 的度数.10.以下图,飞机要从 A 地飞往 B 地,因受狂风影响,一开始就偏离航线(AB)38 ° ( 即∠ A =38° ) ,飞到了 C 地.已知∠ ABC= 20°,此刻飞机要抵达 B 地,则飞机需以 _______的角飞翔 ( 即∠ BCD的度数 ) .11.如图,有 _______个三角形,∠ 1 是________的外角,∠ ADB是 ________的外角.12.( 2014 春 ?通川区校级期末)如图中,∠ B=36 °,∠ C=76°, AD 、AF 分别是△ABC 的角均分线和高,则∠DAF=度.三、解答题13.如图,求∠1+∠2+∠ 3+∠4 的度数.14.已知:以下图,在△ABC中,∠ C=∠ ABC=2∠ A, BD是 AC边上的高,求∠ DBC的度数.15.( 2015 春 ?石家庄期末)已知△ABC中,AE均分∠ BAC,(1)如图 1,若 AD ⊥ BC 于点 D,∠ B=72 °,∠ C=36 °,求∠ DAE 的度数;(2)如图 2, P 为 AE 上一个动点( P 不与 A 、E 重合, PF⊥BC 于点 F,若∠ B>∠ C,则∠EPF=能否成立,并说明原因.16.如图是李师傅设计的一块模板,设计要求 BA与 CD订交成 20°角, DA与 CB订交成40°角,现测得∠ B= 75°,∠ C= 85°,∠ D= 55°.可否判断模板能否合格,为何?【答案与分析】一、选择题1.【答案】 D.2.【答案】 B;【分析】设∠B=2x°,则∠C=x°,由三角形的内角和定理可得,2x°+ x°+ 60°= 180°,解得 x°= 40°,∠ B= 2x°= 80°.3.【答案】 D.4.【答案】 C;【分析】解:∵∠ A=60 °,∴∠ ABC+ ∠ ACB=120 °,∵BE, CD 是∠ B、∠ C 的均分线,∴∠ CBE=∠ ABC,∠ BCD=,∴∠ CBE+ ∠BCD=(∠ ABC+∠BCA)=60°,∴∠ BFC=180 °﹣ 60°=120°,应选: C.5.【答案】 B ;【分析】先求出三角形的三个内角度数,再判断三角形的形状.6.【答案】 D;【分析】利用平行线的性质及三角形的外角性质进行解答.二、填空题7.【答案】 58°, 50°, 98°;【分析】在 Rt △ ADC中,∠ A= 32°,∠ C= 58°;在 Rt △ BDF中,∠ B= 40°,∠ BFD=50°;在△ BEC,∠ AEF=∠ B+∠ C= 98°.8.【答案】 90° .9.【答案】 (1)48 °; (2)27 °; (3)85 °;【分析】充足利用:( 1)“ 8”字形图:∠ A+∠ C=∠ B+∠ D;( 2)“燕尾形图”:∠D= ∠A+∠ B + ∠ C.10.【答案】 58° .11.【答案】 8,△ DBC,△ ADE;【分析】考察三角形外角的定义.12.【答案】 20;【分析】解:∵∠ B=36 °,∠ C=76 °,∴∠ BAC=180 °﹣∠ B﹣∠ C=180°﹣ 36°﹣ 76°=68 °,∵AD 是∠ BAC 的均分线,∴∠ BAD= ×68°=34°,∵∠ ADC 是△ABD 的外角,∴∠ ADC= ∠ B+ ∠ BAD=36 °+34°=70°,∵AF ⊥ BC ,∴∠ AFD=90 °,∴∠ DAF=180° ﹣∠ ADC ﹣∠ AFD=180° ﹣ 70°﹣ 90°=20°.三、解答题13.【分析】解:连结AD,在△ ADC中,∠ 1+∠ CAD+∠CDA= 180°,在△ ABD中,∠ 3+∠ BAD+∠ BDA= 180°.∴∠1+∠ 2+∠3+∠ 4=∠ 1+∠ CAD+∠ BAD+∠3+∠ CDA+∠ BDA.=(∠ 1+∠ CAD+∠ CDA)+(∠ 3+∠BAD+∠ BDA)=180° +180°= 360°.14.【分析】解:设∠ A= x°,则∠ ABC=∠ C= 2x°.在△ ABC中,由内角和定理有x+2x+2x = 180°,∴x = 36°.∴∠C= 72°,在△ BDC中,∵BD 是 AC边上的高,∴∠ BDC=90°,∴∠DBC= 90°,∴∠ DBC=90° -∠ C=18°.15.【分析】证明:( 1)如图 1,∵∠ B=72 °,∠ C=36°,∴∠ A=180 °﹣∠ B ﹣∠ C=72°;又∵ AE 均分∠ BAC ,∴∠ 1==72 °,∴∠ 3=∠ 1+ ∠ C=72°,又∵ AD ⊥ BC 于 D,∴∠ 2=90°,∴∠ DAE=180 °﹣∠ 2﹣∠ 3=18°.( 2)成立.如图2,∵ AE均分∠ BAC ,∴∠ 1===90 °﹣,∴∠ 3=∠ 1+ ∠ C=90°﹣+,又∵ PF⊥ BC于F,∴∠ 2=90°,∴∠ EPF=180°﹣∠ 2﹣∠ 3=.16.【分析】解:分别延伸CB、 DA交于点 P.因为∠ C= 85°,∠ D= 55°,由三角形内角和可知∠P= 180° - ∠ C- ∠ D=40°,即 DA与 CB订交成 40°角.同理可得BA与 CD订交成 20°角.所以这个模板是合格的.。
全等三角形培优(含答案解析)
三角形培优练习题1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C AD BCB ACD F2 1 E5已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE6 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
求证:BC=AB+DC。
7已知:AB=CD,∠A=∠D,求证:∠B=∠C8.P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB<AC-ABCDBAB CDA9已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC10.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .11如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B12如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。
P D A C B FA E D CB P E DC BA D CB A求证:AM是△ABC的中线。
13已知:如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F。
求证:BE=CD.14在△ABC中,︒=∠90ACB,BCAC=,直线MN经过点C,且MNAD⊥于D,MNBE⊥于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①ADC∆≌CEB∆;②BEADDE+=;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.15如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。
八年级数学全等三角形(培优篇)(Word版 含解析)
八年级数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.3.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B 关于AD 对称的点为点E ,连接BE 交AD 于P 点,那么有PB=PF ,PE+PF=BE 最小,根据正六边形的性质可知三角形APB 是等边三角形,因此可知BE 的长为10,即PE+PF 的最小值为10.故答案为10.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).5.如图,ABC 中,ABC=45∠︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论:BF=AC ①;A=67.5∠︒②;DG=DF ③;ADGE GHCE S S =四边形四边形④,其中正确的有__________(填序号).【答案】①②③【解析】【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断④错误.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠BDC=∠ADC=∠AEB=90°,∴∠A +∠ABE=90°,∠ABE +∠DFB=90°,∴∠A=∠DFB ,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC ,∴BD=DC ,在△BDF 和△CDA 中,∠BDF=∠CDA ,∠A=∠DFB ,BD=CD ,∴△BDF ≌△CDA (AAS ),∴BF=AC ,故①正确.∵∠ABE=∠EBC=22.5°,BE ⊥AC ,∴∠A=∠BCA=67.5°,故②正确,∵BE 平分∠ABC ,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF ,故③正确.作GM ⊥AB 于M .如图所示:∵∠GBM=∠GBH ,GH ⊥BC ,∴GH=GM <DG ,∴S △DGB >S △GHB ,∵S △ABE =S △BCE ,∴S 四边形ADGE <S 四边形GHCE .故④错误,故答案为:①②③.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.6.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.7.如图,在直角坐标系中,点()8,8B -,点()2,0C -,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1/cm s ,设点P 运动时间为t 秒,当BCP ∆是以BC 为腰的等腰三角形时,直接写出t 的所有值__________________.【答案】2秒或46秒或14秒【解析】【分析】分两种情况:PC 为腰或BP 为腰.分别作出符合条件的图形,计算出OP 的长度,即可求出t 的值.【详解】解:如图所示,过点B 作BD ⊥x 轴于点D ,作BE ⊥y 轴于点E ,分别以点B 和点C 为圆心,以BC 长为半径画弧交y 轴正半轴于点F ,点H 和点G∵点B (-8,8),点C (-2,0),∴DC=6cm ,BD=8cm ,由勾股定理得:BC=10cm∴在直角三角形COG中,OC=2cm,CG=BC=10cm,∴OP=OG= 22-=,10246(cm)当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,∴EF=EH=6cm∴OP=OF=8-6=2(cm)或OP=OH=8+6=14(cm),故答案为:2秒,46秒或14秒.【点睛】本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.8.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。
培优专题01 与三角形模型有关的角度计算-解析版
培优专题01 与三角形模型有关的角度计算◎模型一A字模型【条件】△ADE与△ABC.【结论】∠AED+∠ADE=∠B+C.【证明】根据三角形内角和可得,∠AED+∠ADE=180°-∠A,∠B+C=180°-∠A,∠∠AED+∠ADE=∠B+C,得证.1.(2022·湖北咸宁·七年级期中)如图,已知l1∥l2,∠A=45°,∠2=100°,则∠1的度数为()A.50°B.55°C.45°D.60°【答案】B【分析】根据平角的定义得出∠ACB=80°,根据三角形内角和得到∠ABC=55°,再根据平行线的性质即可得解.【详解】解:∠∠2=100°,∠∠ACB =180°−100°=80°, ∠∠A =45°,∠∠ABC =180°−45°−80°=55°, ∠l 1∥l 2,∠∠1=∠ABC =55°, 故选:B .【点睛】此题考查了平行线的性质,熟记“两直线平行,内错角相等”是解题的关键.2.(2022·全国·八年级课时练习)如图,ABC 中,65A ∠=︒,直线DE 交AB 于点D ,交AC 于点E ,则BDE CED ∠+∠=( ).A .180︒B .215︒C .235︒D .245︒【答案】D【分析】根据三角形内角和定理求出ADE AED ∠+∠,根据平角的概念计算即可. 【详解】解:65A ∠=︒,18065115ADE AED ∴∠+∠=︒-︒=︒, 360115245BDE CED ∴∠+∠=︒-︒=︒,故选:D .【点睛】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180︒是解题的关键. 3.(2022·全国·八年级课时练习)如图是某建筑工地上的人字架,若1120∠=︒,那么32∠-∠的度数为_________.【答案】60︒【分析】根据平角的定义求出4,再利用三角形的外角的性质即可解决问题.【详解】解:如图14180∠+∠=︒,1120∠=︒, 460∴∠=︒,324,32460∴∠-∠=∠=︒,故答案为:60︒.【点睛】本题考查三角形外角的性质、平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考基础题.4.(2020·湖南·常德市第二中学九年级期中)如图,在ABC ∆中,90C ∠=︒,6BC =,D ,E 分别在AB 、AC 上,将ADE ∆沿DE 折叠,使点A 落在点A '处,若A '为CE 的中点,则折痕DE 的长为__.DE BC ,故∆BC .【详解】解:ABC ∆沿90DEA =∠'=︒,AED ∆∽,的中点,AE =∴=.ED2故答案为:2.【点睛】本题考查相似三角形的判定和性质,掌握“A ”字形三角形相似的判定和性质为解题关键. 5.(2022·全国·八年级课时练习)如图所示,DAE ∠的两边上各有一点,B C ,连接BC ,求证180DBC ECB A +∠=︒∠+∠.【答案】见解析【分析】根据三角形的外角等于与它不相邻的两个内角的和证明即可. 【详解】解:DBC ∠和ECB ∠是ABC 的外角, ,DBC A ACB ECB A ABC ∴∠=∠+∠∠=∠+∠.又180A ABC ACB ∠+∠+∠=︒,180DBC ECB A ACB ABC A A ∴∠+∠=∠+∠+∠+∠︒=+∠.【点睛】本题主要考查三角形外角的性质,熟知三角形的外角等于与它不相邻的两个内角的和是解题的关键.◎模型二 8字模型【条件】AD 、BC 相交于点O.【结论】∠A +∠B =∠C +∠D.(上面两角之和等于下面两角之和)【证明】在∠ABO 中,由内角和定理:∠A +∠B +∠BOA =180°,在∠CDO 中,∠C +∠D +∠COD =180°, ∠∠A +∠B +∠BOA =180°=∠C +∠D +∠COD ,由对顶角相等:∠BOA =∠COD ∠∠A +∠B =∠C +∠D ,得证.6.(2022·全国·八年级课时练习)如图,AB 和CD 相交于点O ,∠A =∠C,则下列结论中不能完全确定正确的是()A.∠B=∠D B.∠1=∠A+∠D C.∠2>∠D D.∠C=∠D【答案】D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∠∠A+∠AOD+∠D=180°,∠C+∠COB+∠B=180°,∠A=∠C,∠AOD=∠BOC,∠∠B=∠D,∠∠1=∠2=∠A+∠D,∠∠2>∠D,故选项A,B,C正确,故选D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键.7.(2022·全国·八年级课时练习)如图,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=()A.240°B.280°C.360°D.540°【答案】A【分析】根据三角形内角和定理得到∠B与∠C的和,然后在五星中求得∠1与另外四个角的和,加在一起即可.【详解】解:由三角形外角的性质得:∠3=∠A+∠E,∠2=∠F+∠D,∠∠1+∠2+∠3=180°,∠1=60°,∠∠2+∠3=120°,即:∠A+∠E+∠F+∠D=120°,∠∠B+∠C=120°,∠∠A+∠B+∠C+∠D+∠E+∠F=240°.故选A.【点睛】本题考查了三角形的外角和三角形的内角和的相关知识,解决本题的关键是将题目中的六个角分成两部分来分别求出来,然后再加在一起.8.(2022·全国·八年级课时练习)如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=__.【答案】900°【分析】根据多边形的内角和,可得答案.【详解】解:连EF,GI,如图,∠6边形ABCDEFK的内角和=(6-2)×180°=720°,∠∠A+∠B+∠C+∠D+∠E+∠F=720°-(∠1+∠2),即∠A+∠B+∠C+∠D+∠E+∠F+(∠1+∠2)=720°,∠∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,∠∠A+∠B+∠C+∠D+∠E+∠F∠H+(∠3+∠4)=900°,∠∠A+∠B+∠C+∠D+∠E+∠F(∠3+∠4)+∠5+∠6+∠H=720°+180°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=900°,故答案为:900°.【点睛】本题考查了n边形的内角和定理:n边形的内角和为(n-2)×180°(n≥3的整数).9.(2022·全国·八年级课时练习)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数为__.【答案】1080°【分析】连KF,GI,根据n边形的内角和定理得到7边形ABCDEFK的内角和=(7-2)×180°=900°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,由三角形内角和定理可得到∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,即可得到∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数.【详解】解:连KF,GI,如图,∠7边形ABCDEFK的内角和=(7-2)×180°=900°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠K=900°-(∠1+∠2),即∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,∠∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)=900°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K=1080°.故∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数为1080°.故答案为:1080°.【点睛】本题考查了n边形的内角和定理:n边形的内角和为(n-2)×180°(n≥3的整数).10.(2022·全国·八年级课时练习)如图,OAB和OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M(1)如图1,当α=90°时,∠AMD 的度数为 °; (2)如图2,当α=60°时,求∠AMD 的度数;(3)如图3,当OCD 绕O 点任意旋转时,∠AMD 与α是否存在着确定的数量关系?如果存在,请你用α表示∠AMD ,并用图3进行证明;若不确定,说明理由. 【答案】(1)90;(2)120︒;(3)180α︒-【分析】(1)如图1,设OA 交BD 于K ,只要证明△≌△BOD AOC ,推出OBD OAC ∠=∠,由BKO AKM ∠=∠,可得90AMK BOK ∠=∠=︒;(2)如图2,设OA 交BD 于K ,只要证明△≌△BOD AOC ,推出OBD OAC ∠=∠,由BKO AKM ∠=∠,可得60AMK BOK ∠=∠=︒;(3)如图3,设OA 交BD 于K ,只要证明△≌△BOD AOC ,推出OBD OAC ∠=∠,由BKM AKO ∠=∠,可得BMK AOK α∠=∠=,可得180AMD α∠=︒-; 【详解】解:(1)如图1中,设OA 交BD 于K∠OA OB OC OD ==,,90AOB COD ∠=∠=︒ ∠BOD AOC ∠=∠ ∠△≌△()BOD AOC SAS ∠OBD OAC ∠=∠ ∠BKO AKM ∠=∠ ∠90AMK BOK ∠=∠=︒ ∠90AMD ∠=︒ 故答案为90︒(2)如图2,设OA 交BD 于K ,∠OA OB OC OD ==,,60AOB COD ∠=∠=︒ ∠BOD AOC ∠=∠ ∠△≌△()BOD AOC SAS ∠OBD OAC ∠=∠ ∠BKO AKM ∠=∠ ∠60AMK BOK ∠=∠=︒ ∠180120AMD AMK ∠=︒-∠=︒ 故答案为120︒(3)如图3,设OA 交BD 于K ,∠OA OB OC OD ==,,AOB COD α∠=∠= ∠BOD AOC ∠=∠ ∠△≌△()BOD AOC SAS ∠OBD OAC ∠=∠ ∠AKO BKM ∠=∠ ∠BMK AOK α∠=∠=∠180180AMD BMK α∠=︒-∠=︒- 故答案为180α︒-【点睛】本题考查了几何变换综合题,全等三角形的判定,三角形内角和性质,解题的关键是灵活运用所学知识解决问题,学会利用“8字型”证明角相等.◎模型三 飞镖模型【条件】四边形ABDC 如上左图所示.【结论】∠D =∠A +∠B +∠C.(凹四边形凹外角等于三个内角和) 【证明】如上右图,连接AD 并延长到E ,则:∠BDC =∠BDE +∠CDE =(∠B +∠1)+(∠2+∠C )=∠B +∠BAC +∠C.本质为两个三角形外角和定理证明. 11.(2022·全国·八年级课时练习)在社会实践手工课上,小茗同学设计了一个形状如图所示的零件,如果52,25A B ︒︒∠=∠=,30,35,72C D E ︒︒︒∠=∠=∠=,那么F ∠的度数是( ).A .72︒B .70︒C .65︒D .60︒【答案】A【分析】延长BE 交CF 的延长线于O ,连接AO ,根据三角形内角和定理求出,BOC ∠再利用邻补角的性质求出DEO ∠,再根据四边形的内角和求出DFO ∠,根据邻补角的性质即可求出DFC ∠的度数. 【详解】延长BE 交CF 的延长线于O ,连接AO ,如图,∠180,OAB B AOB ∠+∠+∠=︒∠180,AOB B OAB ∠=︒-∠-∠ 同理得180,AOC OAC C ∠=︒-∠-∠ ∠360,AOB AOC BOC ∠+∠+∠=︒ ∠360BOC AOB AOC ∠=︒-∠-∠360(180)(180)B OAB OAC C =︒-︒-∠-∠-︒-∠-∠ 107,B C BAC =∠+∠+∠=︒ ∠72,BED ∠=︒∠180108,DEO BED ∠=︒-∠=︒ ∠360DFO D DEO EOF ∠=︒-∠-∠-∠36035108107110,=︒-︒-︒-︒=︒∠180********DFC DFO ∠=︒-∠=︒-︒=︒, 故选:A .【点睛】本题考查三角形内角和定理,多边形内角和,三角形的外角的性质,邻补角的性质,解题关键是会添加辅助线,将已知条件联系起来进行求解.三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和;邻补角性质:邻补角互补;多边形内角和:180(2)n ︒-.12.(2022·全国·八年级课时练习)如图,已知BE ,CF 分别为△ABC 的两条高,BE 和CF 相交于点H ,若△BAC=50°,则△BHC 为( )A .115°B .120°C .125°D .130°【答案】D【详解】∠BE 为∠ABC 的高,∠BAC=50°, ∠∠ABE=90°-50°=40°, ∠CF 为∠ABC 的高, ∠∠BFC=90°,∠∠BHC=∠ABE+∠BFC=40°+90°=130°.故选D.13.(2022·全国·八年级课时练习)如图,若115∠+∠+∠+∠+∠+∠=EOC∠=︒,则A B C D E F____________.【答案】230°【分析】根据三角形外角的性质,得到∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∠EOC=∠1+∠F=115°,∠1=∠A+∠B,即可得到结论.【详解】解:如图∠∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∠∠E+∠D+∠C=115°,∠∠EOC=∠1+∠F=115°,∠1=∠A+∠B,∠∠A+∠B+∠F=115°,∠∠A+∠B+∠C+∠D+∠E+∠F=230°,故答案为:230°.【点睛】本题主要考查三角形内角和定理和三角形外角的性质,解决本题的关键是要熟练掌握三角形外角性质.14.(2022·山东德州·七年级期末)如图,则∠A+∠B+∠C+∠D+∠E的度数是__.【答案】180°【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.【详解】解:如图可知:∠∠4是三角形的外角,∠∠4=∠A+∠2,同理∠2也是三角形的外角,∠∠2=∠D+∠C,在∠BEG中,∠∠B+∠E+∠4=180°,∠∠B+∠E+∠A+∠D+∠C=180°.故答案为:180°.【点睛】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.15.(2022·全国·八年级课时练习)模型规律:如图1,延长CO交AB于点D,则∠=∠+∠=∠+∠+∠.因为凹四边形ABOC形似箭头,其四角具有“BOC A B C 1BOC B A C B∠=∠+∠+∠”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:∠如图2,60,20,30A B C∠=︒∠=︒∠=︒,则BOC∠=__________︒;∠如图3,A B C D E F∠+∠+∠+∠+∠+∠=__________︒;(2)拓展应用:∠如图4,ABO∠、ACO∠的2等分线(即角平分线)1BO、1CO交于点1O,已知120BOC∠=︒,50BAC∠=︒,则1BO C∠=__________︒;∠如图5,BO、CO分别为ABO∠、ACO∠的10等分线1,2,3,,(,)89i=⋯.它们的交点从上到下依次为1O、2O、3O、…、9O.已知120BOC∠=︒,50BAC∠=︒,则7BO C∠=__________︒;∠如图6,ABO∠、BAC∠的角平分线BD、AD交于点D,已知120,44BOC C∠=︒∠=︒,则ADB=∠__________︒;∠如图7,BAC∠、BOC∠的角平分线AD、OD交于点D,则B、C∠、D∠之同的数量关系为__________.【详解】解:(1)∠∠BOC=∠A+∠B+∠C=60°+20°+30°=110°;◎模型四双垂直模型【条件】∠B=∠D=∠ACE=90°.【结论】∠BAC=∠DCE,∠ACB=∠CED.【证明】∠∠B=∠D=∠ACE=90°;∠∠BAC+∠ACB=90°;又∠ECD+∠ACB=90°;∠∠BAC=∠DCE同理,∠ACB+∠DCE=90°,且∠CED+∠DCE=90°;∠∠ACB=∠CED,得证.16.(2021·青海海东·八年级期中)如图,已知∠ABC∠∠CDE,∠B=90°,点C为线段BD上一点,则∠ACE的度数为()A.94°B.92°C.90°D.88°【答案】C【分析】由全等三角形的性质得出∠ACB=∠CED,则可得出答案.【详解】解:∠∠ABC∠∠CDE,∠∠ACB=∠CED,∠B=∠D=90°,∠∠CED+∠ECD=90°,∠∠ACB+∠ECD=90°,∠∠ACB+∠ECD+∠ACE=180°,∠∠ACE=90°.故选:C.【点睛】本题考查了全等三角形的性质;熟练掌握三角形全等的性质定理是解题的关键.17.(2020·河南·郑州市第八中学模拟预测)如图所示,一副三角尺摆放置在矩形纸片的内部,三角形的三个顶点恰好在矩形的边上,若16FGC ∠=︒,则AEF ∠等于( )A .106︒B .114︒C .126︒D .134︒【答案】D【分析】根据矩形的性质可得∠C=90°,AD∠BC ,利用直角三角形的两个锐角互余求出∠GFC ,从而求出∠EFB ,然后根据平行线的性质可得∠AEF +∠EFB=180°,从而求出结论. 【详解】解:∠四边形ABCD 为矩形 ∠∠C=90°,AD∠BC ∠16FGC ∠=︒∠∠GFC=90°-∠FGC=74° 由三角尺可知:∠EFG=60° ∠∠EFB=180°-∠GFC -∠EFG=46° ∠AD∠BC∠∠AEF +∠EFB=180° ∠∠AEF=180°-∠EFB=134° 故选D .【点睛】此题考查的是矩形的性质、直角三角形的性质和平行线的性质,掌握矩形的性质、直角三角形的两个锐角互余和平行线的性质是解决此题的关键.18.(2022·山东青岛·七年级期末)如图,小虎用10块高度都是4cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ∠=︒),点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离为______.【答案】40 cm【分析】根据题意可得AC=BC,∠ACB=90°,AD∠DE,BE∠DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE =∠DAC ,再证明∠ADC ∠∠CEB 即可,利用全等三角形的性质进行解答.【详解】解:由题意得:AC =BC ,∠ACB =90°,AD ∠DE ,BE ∠DE , ∠∠ADC =∠CEB =90°,∠∠ACD +∠BCE =90°,∠ACD +∠DAC =90°, ∠∠BCE =∠DAC , 在∠ADC 和∠CEB 中,ADC CEB DAC BCE AC BC ∠∠⎧⎪∠∠⎨⎪⎩=== , ∠∠ADC ∠∠CEB (AAS );由题意得:AD =EC =12cm ,DC =BE =28cm , ∠DE =DC +CE =40(cm ), 答:两堵木墙之间的距离为40cm , 故答案为:40 cm .【点睛】此题主要考查了全等三角形的应用,涉及到垂直的定义、直角三角形的性质和连个三角形全等的判定与性质等知识点,解题的关键是正确找出证明三角形全等的条件.19.(2021·江苏盐城·七年级期中)将含有30角的直角三角板(30A ∠=︒)和直尺按如图方式摆放,已知136∠=︒,则2∠=______︒.【答案】24【分析】过点B 作BC //MN ,由平行线传递性,可得BC //KL ,再由平行线的性质可得1=LBC ∠∠ ,2=ABC ∠∠ ,最后由在直角三角形中两锐角互余的关系,求出2=24∠︒ .【详解】解:过点B 作BC //MN ,如图所示:MN //KH∴ BC //KL1LBC ∴∠=∠又1=36∠︒=36LBC ∴∠︒又 BC //MN2=ABC ∴∠∠又=30A ∠︒=60ABL ∴∠︒又=ABL LBC ABC ∠∠+∠603624ABC ∴∠=︒-︒=︒224∴∠=︒故答案为:24【点睛】本题考查了平行线的判定与性质(两直线平行,内错角相等),平行线传递性(如果两条直线都与第三条直线平行,那么这两条直线也互相平行),直角三角形中两锐角互余,角的和差计算等综合知识点.难点是作已知直线的平行线.20.(2022·全国·八年级专题练习)如图1,已知ABC ∆中,90ACB ∠=︒,AC BC =,BE 、AD 分别与过点C 的直线垂直,且垂足分别为E ,D .(1)猜想线段AD 、DE 、BE 三者之间的数量关系,并给予证明.(2)如图2,当过点C 的直线绕点C 旋转到ABC ∆的内部,其他条件不变,如图2所示,∠线段AD 、DE 、BE 三者之间的数量关系是否发生改变?若改变,请直接写出三者之间的数量关系,若不改变,请说明理由;∠若 2.8AD =, 1.5DE =时,求BE 的长. 【答案】(1)DE AD BE =+,证明见解析 (2)∠发生改变,DE AD BE =-;∠1.3【分析】(1)证明ACD CBE ∆≅∆,可得AD CE =,CD =BE , 即可求解;(2)∠证明ACD CBE ∆≅∆,可得AD CE =,CD =BE , 即可求解;∠由∠可得DE AD BE =-,从而得到BE AD DE =-,即可求解.(1)解:DE AD BE =+, 理由如下: ∠BE 、AD 分别与过点C 的直线垂直, ∠90BEC ADC ∠∠=︒=, ∠90ACD CAD ∠∠+︒=, ∠90ACB ∠=︒, ∠90ACD BCE ∠+∠=︒, ∠CAD BCE ∠=∠,在ACD ∆和CBE ∆中,ADC BECCAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴∆≅∆,AD CE ∴=,CD =BE ,∠ DE =EC +CD ,DE AD BE ∴=+;(2)解:∠发生改变.∠BE 、AD 分别与过点C 的直线垂直,∠90BEC ADC ∠∠=︒=,∠90ACD CAD ∠∠+︒=, ∠90ACB ∠=︒, ∠90ACD BCE ∠+∠=︒, ∠CAD BCE ∠=∠,在ACD ∆和CBE ∆中,ADC BEC CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴∆≅∆,AD CE ∴=,CD =BE ,∠ DE =CE -CD , ∠DE AD BE=-; ∠由∠知:DE AD BE =-, ∠ 2.8 1.5 1.3BE AD DE =-=-=, ∠BE 的长为1.3.【点睛】本题主要考查了全等三角形的判定和性质、等角的余角相等,熟练掌握全等三角形的判定和性质是解题的关键.◎模型五 风筝模型【条件】四边形ABPC ,分别延长AB 、AC 于点D 、E ,如上左图所示. 【结论】∠PBD+∠PCE =∠A +∠P .【证明】如上右图,连接AP ,则:∠PBD =∠PAB +∠APB ,∠PCE =∠PAC +∠APC ,∴∠PBD+∠PCE=∠PAB +∠APB+∠PAC +∠APC=∠BAC +∠BPC ,得证.21.(2022·内蒙古赤峰·八年级期末)如图,将ABC 的一角折叠,若12130∠+∠=︒,则B C ∠+∠=()A.50°B.65°C.115°D.130°【答案】C【分析】根据折叠性质证得∠3=∠4,∠5=∠6,再根据平角定义求得∠4+∠5=115°,然后根据三角形的内角和定理求解即可.【详解】解:如图,由折叠性质得:∠3=∠4,∠5=∠6,∠∠1+∠3+∠4=180°,∠5+∠6+∠2=180°,∠∠1+∠2+2∠4+2∠5=360°,∠∠1+∠2=130°,∠2∠4+2∠5=360°-130°=230°,∠∠4+∠5=115°,∠∠4+∠5+∠A=180°,∠A+∠B+∠C=180°,∠∠B+∠C=∠4+∠5=115°,故选:C.【点睛】本题考查三角形折叠中的角度问题,熟练掌握折叠性质是解答的关键.22.(2022·海南海口·七年级期末)如图,把∠ABC纸片沿MN折叠,使点C落在∠ABC内部点C′处,若∠C=36°,则∠1+∠2等于()A .54°B .62°C .72°D .76°【答案】C【分析】根据折叠可知∠C =∠'C ,四边形内角和为360°,即可求出'CMC ∠+'CNC ∠,用平角的定义即可求出∠1+∠2【详解】∠∠CMN 折叠得到'C MN ∠∠C =∠'C∠∠1=180°-'CMC ∠,∠2=180°-'CNC ∠∠∠1+∠2=180°-'CMC ∠+180°-'CNC ∠=360°-('CMC ∠+'CNC ∠) ∠'CMC ∠+'CNC ∠=360°-∠C -'C ∠=360°-36°-36°=288° ∠∠1+∠2=360°-288°=72° 故选:C【点睛】本题主要考查了折叠问题,掌握三角形的内角和定理,四边形的内角和以及平角的定义是解题的关键.23.(2022·山东烟台·七年级期中)如图,在三角形纸片ABC 中65A ∠=︒,75B ∠=︒,将纸片的一角折叠,使点C 落在∠ABC 内,若150∠=︒,则∠2的度数为_________.【答案】30°##30度【分析】根据题意,已知∠A =65°,∠B =75°,可结合三角形内角和定理和四边形内角和求解. 【详解】解:如图,设折痕为DE ;∠65A ∠=︒,75B ∠=︒,∠180180657540C A B ∠=︒-∠+∠=︒-︒+︒=︒()(), ∠180140CDE CED C ∠+∠=︒-∠=︒, 又∠150∠=︒,∠2360(1)36030030A B CED CDE ∠=︒-∠+∠+∠+∠+∠=︒-︒=︒, 故答案为:30°.【点睛】本题主要是考查了三角形、四边形内角和,即三角形的内角和为180°,四边形的内角和为360°;熟练掌握三角形的内角和定理是解题的关键.24.(2022·湖北恩施·一模)图,把等边ABC 沿直线DE 折叠,点A 落在'A 处,若150∠=︒,则2∠=______.【答案】40︒【分析】先求出AED ∠的度数,再根据折叠得到AED A ED '∠=∠,即可求出2∠的度数. 【详解】∠等边ABC 沿直线DE 折叠 ∠60A ∠=︒,AED A ED '∠=∠ ∠150∠=︒∠180170AED A ∠=︒-∠-∠=︒ ∠70AED A ED '∠=∠=︒∠420180AED A ED ∠=︒-'∠-∠=︒ 故答案为:40︒【点睛】此题考查翻折问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.25.(2022·江苏·扬州市竹西中学七年级期末)如图∠,把∠ABC纸片沿DE折叠,使点A落在四边形BCED内部点A′的位置,通过计算我们知道:2∠A=∠1+∠2.请你继续探索:(1)如果把∠ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,如图∠,此时∠A与∠1、∠2之间存在什么样的关系?为什么?请说明理由.(2)如果把四边形ABCD沿EF折叠,使点A、D落在四边形BCFE的内部A′、D′的位置,如图∠,你能求出∠A、∠D、∠1与∠2之间的关系吗?(直接写出关系式即可)(1)解:如图所示,连接AA',◎模型六 两内角角平分线模型【条件】△ABC 中,BI 、CI 分别是∠ABC 和∠ACB 的角平分线,且相交于点I. 【结论】A I ∠+︒=∠2190 【证明】∵BI 是∠ABC 平分线,∴ABC ∠=∠212∵CI 是∠ACB 平分线,∴ACB ∠=∠213 由A →B →I →C →A 的飞镖模型可知: ∠I =∠A +∠2+∠3=∠A +ABC ∠21+ACB ∠21=∠A +)180(21A ∠-︒=A ∠+︒2190. 26.(2022·山东东营·七年级期末)如图,在△ABC 中,BF 平分△ABC ,CF 平分△ACB ,△BFC =125°,则△A 的度数为( )A .60°B .80°C .70°D .45°【答案】C【分析】先根据三角形内角和定理得出CBF BCF ∠+∠的度数,再由角平分线的性质得出ABC ACB ∠+∠的度数,根据三角形内角和定理即可得出结论. 【详解】解:∠125BFC ∠=︒, ∠18012555BCF CBF ∠+∠=︒︒=︒﹣. ∠BF 平分ABC ∠,CF 平分ACB ∠,∠()2110ABC ACB BCF CBF ∠+∠=∠+∠=︒, ∠180A ABC ACB ∠+∠+∠=︒,∠18011070﹣.A∠=︒︒=︒故选:C .【点睛】本题考查的是三角形内角和定理,以及三角形角平分线的定义,熟知三角形内角和是180°是解答此题的关键.27.(2022·福建·泉州五中七年级期末)如图,在四边形ABCD 中,∠A +∠D =α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P =( )A .90°﹣12α B .12αC .90°+12α D .360°﹣α28.(2022·河南鹤壁·七年级期末)已知ABC 中,A α∠=.在图1中B 、C ∠的平分线交于点1O ,则可计算得11902BO C α∠=︒+;在图2中,设B 、C ∠的两条三等分角线分别对应交于2O 、3O ,则3BO C ∠=_______________.【详解】解:Aα∠=,180ACB=︒-B∠、C∠的两条三等分角线分别对应交于332 ( 3CBO BCO ABC ∴∠+=∠3(BO C CBO∴∠=-∠+故答案为:【点睛】本题考查三角形内角和定理,解题的关键是熟练运用三等分角线求解.29.(2022·江苏常州·七年级期中)如图,在∠MBC中,∠ABC、∠ACB的角平分线OB、OC交于点O,若∠O=m°,则∠A的度数是______________________________°(用含m的代数式表示).【答案】(2m-180)【分析】先由角平分线的定义得到∠ABC=2∠OBC,∠ACB=2∠OCB,再利用三角形内角和定理求解即可.【详解】解:∠OB,OC分别是∠ABC和∠ACB的角平分线,∠∠ABC=2∠OBC,∠ACB=2∠OCB,∠∠O+∠OBC+∠OCB=180°,∠∠OBC+∠OCB=180°-∠O=180°-m°,∠∠ABC+∠ACB=2∠OBC+2∠OCB=360°-2m°,∠∠A=180°-∠ABC-∠ACB=2m°-180°,故答案为:(2m-180).【点睛】本题主要考查了三角形内角和定理,角平分线的定义,熟知相关知识是解题的关键.30.(2021·重庆·垫江第八中学校七年级阶段练习)在∠ABC中,BD,CE是它的两条角平分线,且BD,CE相交于点M,MN∠BC于点N.将∠MBN记为∠1,∠MCN记为∠2,∠CMN记为∠3.(1)如图1,若∠A=110°,∠BEC=130°,则∠2= °,∠3-∠1= °;(2)如图2,猜想∠3-∠1与∠A的数量关系,并证明你的结论;(3)若∠BEC=α,∠BDC=β,用含α和β的代数式表示∠3-∠1的度数.(直接写出结果即可)∠BD平分∠ABD,【点睛】本题主要考查了三角形内角和定理,三角形外角的像这种,角平分线的定义,垂直的定义,熟知三角形内角和为180度是解题的关键.◎模型七 两外角角平分线模型【条件】△ABC 中,BI 、CI 分别是△ABC 的外角的角平分线,且相交于点O. 【结论】A O ∠-︒=∠2190. 【证明】∵BO 是∠EBC 平分线,∴EBC ∠=∠212,∵CO 是∠FCB 平分线,∴FCB ∠=∠215 由△BCO 中内角和定理可知:∠O =180°-∠2 -∠5 =180°-EBC ∠21 -FCB ∠21 =180°-)180(21ABC ∠-︒ -)180(21ACB ∠-︒=)(21ACB ABC ∠+∠=)180(21A ∠-︒=A O ∠-︒=∠2190. 31.(2022·江苏·江阴市祝塘第二中学七年级阶段练习)如图,在△ABC 中,设∠A =x °,∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A 2021BC 与∠A 2021CD 的平分线相交于点A 2022,得∠A 2022,则∠A 2022是( )度.A .202012x B .202112x C .202212x D .202312x∠∠A=∠ACD−∠ABC,∠A1=∠A1CD−∠A1BC,∠BA1和CA1分别是∠ABC和∠ACD的角平分线,32.(2022·浙江·八年级专题练习)如图,ABC 中,56A ∠=︒,BD 平分ABC ∠,CD 平分ABC 的外角ACE ∠,BD 、CD 交于点D ,则D ∠的度数( )A .28︒B .56︒C .30D .26︒BD 平分平分ABC 的外角DBC ∴∠=12DCE ACE =∠根据外角性质:DBC D +∠28D DCE α∴∠=∠-=︒.故选:A .33.(2022·陕西·西安博爱国际学校八年级期末)如图,在∠ABC中,∠ABC=75°,∠A=40°,∠ACD是∠ABC的外角,若∠ABC与∠ACD的平分线交于点P,则∠BPC的大小为_____.∠34.(2022·陕西·西安市曲江第一中学八年级期末)如图,在ABC中,ABC的内角CAB∠和外角CBD 的角平分线交于点P,已知42∠=︒,则CAPB∠的度数为____________.【答案】84︒##84度为ABC外角CBD=∠C+∠以求出答案.【详解】解:如下图,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有同学问我:“我听课能听懂,但是不会做题,这是怎么回事?”其实这样的同学大多数问题就出在这里:(1)你只听懂了浅层次的知识,没有深入,所掌握的东西达不到应用的高度;(2)有的同学浅尝辄止,会了一点就认为都会了,比如一个例题老师讲3种方法,他听懂一种就不再听其他解法了;(3)听懂了知识,但是没记住,或没弄明白怎么应用;(4)缺乏数学思想和数学方法的指导,像方程思想、分类讨论思想等都是重要的数学思想和方法;另外,还有些同学因为信心不足,认为数学很难,没有兴趣学,这样就失去了入门的过程,因此更没法深入。
知识点透析: 一.三角形的有关概念1.三角形的概念包涵三层含义: (1)不在同一条直线上;(2)三条线段;(3)首尾顺次相连.2.平时所说的三角形的角是指三角形的内角。
3.在表示三角形时,三个字母没有先后顺序,只要三个字母相同就表示同一个三角形。
二.三角形的分类1.三角形的两种分类方法是各自独立的,但是同一个三角形可以同属于两种不同类别,例如,等腰直角三角形既是等腰三角形,又是直角三角形。
2.等边三角形是特殊的等腰三角形,等边三角形也叫正三角形。
3.在等腰三角形中,若没有指明腰和底边或顶角和底角,则解题时要分类讨论。
三.三角形的高1.三角形的高是一条线段,即顶点到对边的垂直线段。
2.任意三角形都有三条高。
四.三角形的中线1.三角形的中线是一条线段,即顶点到其对边中点之间的线段。
2.三角形的一条中线将这个三角形分成两个面积相等的三角形。
五.三角形的角平分线1.三角形的角平分线是线段,不是直线,不是射线。
2.一个三角形有三条角平分线,他们在三角形的内部,且交于一点。
六.三角形的稳定性三角形的稳定性说明三角形三条边的长度确定后,其形状和大小也随之确定。
七.三角形的内角和定理1.三角形内角和定理适用于任意三角形。
2.在三角形中,已知任意两个角,可以求出第三个角。
3.已知三角形中三个内角的关系,可以求出各个内角的度数,通常利用方程的知识来解决。
4.直角三角形的两锐角互余。
八.三角形的外角1.在三角形的每个顶点处都有两个外角,这个两个外角相等。
2.三角形的外角等于与它不相邻的两个内角的和,特别注意“不相邻”。
3.三角形的一个外角大于与它不相邻的每一个内角。
九.多边形1.多边形是由不在同一直线上的线段首尾顺次相连接组成的封闭图形,多边形的边数大于等于3,有几条边就是几边形。
2.用大写字母表示多边形时,字母必须按顺/逆时针的顺序排列。
3.正多边形必须具备的两个条件:(1)边相等(2)角相等。
二者缺一不可。
A B C DE 十.多边形的内角和,外角和1. n 边形内角和公式:0180)2(⨯-n2. n 边形外角和公式:0360 常见考点:1.三角形三边关系的应用(1)三角形的三边长为3,8,x ,若x 为偶数,则x 的值有 个。
2.等腰三角形中周长和三边间的关系(2)等腰三角形的周长为10cm ,其中一边长为3cm,则另两边长分别为 3.三角形的中线与面积(3)如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC S ∆= 42cm ,则EBF S ∆等于4.三角形的三边关系与绝对值的综合运用(4)已知a,b,c,为△ABC 的三边长,化简a b c a c b +++--。
5.以三角形为背景的规律探究(5)观察下列图形,则第n 个图形中三角形的个数是6.三角形的内角和(6)如图,∠ABC 的平分线与∠ACB 的平分线交于点O ,∠A=50度求∠BOC 的大小。
7.外角性质的应用(78.直角三角的判定 (8)如图,AB//CD ,直线EF 分别交AB,CD 于E,F ,∠BEF, ∠BDF 的平分线交于点P ,求证:△EPF 为直角三角形。
9.三角形内角与外角平分线的综合运用(9)如图,∠ABC 的平分线与△ABC 的外角平分线交于点O ,探究∠BOC 与∠A 的关系。
A B C D EF…… 第1个 第2个 第3个A B C DE FP A B OABO如果一个人的注意力经常不能集中,那就让他学习数学好了。
因为在证明数学定理时,即使是一刹那的思想不集中,就必须重新开始。
10.多边形的边数与对角线的条数(10)若从多边形的一个顶点出发,最多可以引8条对角线,则该多边形是 边形,其对角线共有条。
11.多边形的内角和与外角和的应用(11)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=基础过关:1. 如图,∠1=750,∠A=∠BCA,∠CBD=∠CDB, ∠DCE=∠DEC, ∠EDF=∠EFD.则∠A 的度数为2. 图中可数出的三角形个数为 个.3. 如图,把一个三角形纸片ABC 顶角向内折叠3次之后,3个顶点不重合,∠1+∠2+∠3+∠4+∠5+∠6的度数为4.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则与和之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是5. 如图,正方形网格中,小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,位置如图形所示,C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形面积为1个平方单位,则点C 的个数为 个。
6.点P 是△ABC 内一点,连结BP 并延长交AC 于D ,连结PC ,则图中∠1、∠2、∠A 的大小关系是7.若三角形的三个内角比为∠A :∠B :∠C =1:3:5,这个三角形为 三角形. 8. 一个多边形的每个内角都等于150°,则这个多边形是_____边形。
9. P 为△ABC 中BC 边的延长线上一点,∠A =50°,∠B =70°,则∠ACP =_____。
10. 七边形共有 条对角线。
A B C D E F G H T1 T2T3 T4 AB A B DP 12T5 T6专题训练一:三角形的内角和与外角性质中的重要问题类型一:与角平分线有关的问题例1.如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1∠A1BC与∠A1CD的平分线相交于点A2,依次类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为()A.19.2°B.8°C.6°D.3°类型二.面积问题例2.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2 B.1cm2 C.12cm2 D.14cm2类型3.折叠问题例3.如图,在三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠(折痕为DE),使点C落在△ABC内的C′处,若∠AEC′=20°,则∠BDC′的度数是()A.30°B.40°C.50°D.60°类型4.实际应用例1.一个大型模板如图,设计要求BA和CD相交成30°角,DA和CB相交成20°角,怎样通过测量∠A、∠B、∠C、∠D的度数来检查模板是否合格.专题针对训练:1.如图,在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依次类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A.56°B.60°C.68°D.94°2. 如图,已知∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠P的度数.3.如图1,线段AB、CD相交于点O,连接AD、CB、如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:_________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间数量关系.(直接写出结论即可)4.如图,在△ABC中,∠ABC的角平分线和∠ACD的角平分线相交于点E,(1)如果已知∠A=60°,∠ABC=50°,求∠E的大小.(2)如果已知∠A=70°,∠ABC=60°,求∠E的大小.(3)根据(1)和(2)的结论,试猜测一般情况下,∠E和∠A的大小关系,并说明理由.5.(1)如图①,在△ABC中,∠ABC、∠ACB的平分线相交于点O,∠A=40°,求∠BOC的度数;(2)如图②,△A′B′C′的外角平分线相交于点O′,∠A′=40°,求∠B′O′C′的度数;(3)上面(1)、(2)两题中的∠BOC与∠B′O′C′有怎样的数量关系若∠A=∠A′=n°,∠BOC与∠B′O′C′是否还具有这样的关系?这个结论你是怎样得到的?6.如图,已知直线m∥n,A,B为直线m上的两点,C,P为直线n上两点.(1)请写出图中面积相等的各对三角形:_______________________________________.(2)如果A,B,C为三个定点,点P在n上移动,那么,无论P点移动到任何位置,总有________与△ABC的面积相等.理由是:_______________7.如图,AD为△ABC的中线,BE为△ABD的中线,(1)若∠ABE=25°,∠BAD=50°,则∠BED的度数是___(2)在△ADC中过点C作AD边上的高CH.(3)若△ABC的面积为60,BD=5,求点E到BC边的距离.8.如图,把△ABC纸片沿DE折叠,点A落在四边形BCDE的内部,则()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)9.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB= _____,∠XBC+∠XCB= ______.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.10.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E.(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化说明你的结论的正确性.(3)把图(2)中的点C向上移到BD上时(1)如图(3)所示,五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有无变化说明你的结论的正确性.11.已知,如图在△ABC中,∠B>∠C,AD是BC边上的高,AE平分∠BAC.(1)若∠B=40°,∠C=30°,则∠DAE= _______;(2)若∠B=80°,∠C=40°,则∠DAE=_________;(3)由(1)、(2)我能猜想出∠DAE与∠B、∠C之间的关系为__________.理由?12.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.能力提升:1.若a,b,c 分别是三角形的三边,化简a b c b a c ca b --+--+-+= 2. 用7跟火柴首位顺次连结摆成一个三角形,能摆成不同的三角形的个数是 3.如图,,BG ,AF 为ABC ∆的高,AD 为中线,若AF=6,BC=10,BG=5,则AC=4.如图,已知0180BAD D ∠+∠=,AC 平分BAD ∠,且025,95CAD ∠=∠=,则DCA ∠=ECA ∠=5.如图,040,60,B C ∠=∠=AD,AF 分别是ABC ∆的角平分线和高,则DAF ∠=6.如图,A B C D E ∠+∠+∠+∠+∠=7.如图,图中三角形的个数为8.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形 个.9.如图,∠ABD ,∠ACD 的角平分线交于点P ,若∠A=50°,∠D=10°,则∠P 的度数为10.如图,已知点A (﹣1,0)和点B (1,2),在坐标轴上确定点P ,使得△ABP 为直角三角形,则满足这样条件的点P 共有 个。