柯布_道格拉斯生产函数及其应用
柯布-道格拉斯生产函数例题
柯布-道格拉斯生产函数例题Y=A·K^α·L^β其中,Y代表产出,A代表全要素生产率,K代表资本投入,L代表劳动力投入,α和β是生产函数的弹性系数。
下面我们通过一个例题来具体说明柯布-道格拉斯生产函数的具体应用。
假设一个工厂使用柯布-道格拉斯生产函数来描述其生产过程。
在其中一时期,该工厂的全要素生产率A为1,资本投入K为100,劳动力投入L为50。
利用柯布-道格拉斯生产函数求出该工厂的产出。
根据柯布-道格拉斯生产函数,将给定的参数代入公式,可以得到:Y=1·100^α·50^β对于具体的弹性系数α和β,我们可以根据实际情况来确定。
假设α为0.5,β为0.5,则可以计算出产出为:Y=1·100^0.5·50^0.5=1·10·7.071=70.71因此,该工厂在给定的资本投入和劳动力投入下,可以获得70.71的产出。
接下来,我们来分析一下这个例题的结果。
首先,从数值上可以看出,产出随着资本和劳动力的增加而增加,但增加的速度逐渐减缓。
也就是说,在资本投入和劳动力投入增加时,每增加一个单位的投入,产出的增加逐渐变小。
这是柯布-道格拉斯生产函数的典型特征。
其次,我们可以通过调整参数来观察产出的变化。
比如,如果我们将资本投入K增加到200,劳动力投入L保持不变,则可以计算出产出为:Y=1·200^0.5·50^0.5=1·14.142=14.142可以看到,当资本投入翻倍时,产出并没有翻倍,而是略微增加了。
这说明随着资本投入的增加,产出的增长速度逐渐减缓,即边际产出递减。
最后,我们还可以通过改变全要素生产率A来观察产出的变化。
比如,如果我们将全要素生产率A增加到2,而资本投入和劳动力投入保持不变,则可以计算出产出为:Y=2·100^0.5·50^0.5=2·10·7.071=141.42可以看到,当全要素生产率增加一倍时,产出也相应增加一倍。
柯布道格拉斯生产函数及其应用
柯布-道格拉斯生产函数及其应用考号:姓名:[内容提要]生产函数是指在一定时期内,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系。
柯布—道格拉斯生产函数是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,它是经济学中使用最广泛的一种生产函数形式,采用的边际分析方法,可用于分析要素投入对产量(产出)的贡献率、规模收益和其他系列问题。
柯布—道格拉斯生产函数模型广泛应用于经济数量分析,运用我国1990-2008年的相关数据,运用应用统计学的方法来验证我国经济增长方式是粗放式的,提出应该加大科技创新投入,进而加快促进技术进步,深化经济和政治体制改革来加快我国省经济增长方式的转变。
[关键词]生产函数柯布道格拉斯经济数量分析经济增长一、生产函数(一)简述生产函数是指在一定时期内,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系。
它可以用一个数理模型、图表或图形来表示。
换句话说,就是一定技术条件下投入与产出之间的关系,在处理实际的经济问题时,生产函数不仅是表示投入与产出之间关系的对应,更是一种生产技术的制约。
例如,在考虑成本最小化问题时,必须要考虑到技术制约,而这个制约正是由生产函数给出的。
另外,在宏观经济学的增长理论中,在讨论技术进步的时候,生产函数得到了很大的讨论。
(二)常见生产函数1、固定投入比例生产函数固定投入比例生产函数是指在每一个产量水平上任何一对要素投入量之间的比例都是固定的生产函数。
2、柯布-道格拉斯生产函数柯布-道格拉斯生产函数是由数学家柯布(C.W.Cobb)和经济学家道格拉斯(PaulH.Douglas)于20世纪30年代提出来的。
柯布—道格拉斯生产函数被认为是一种很有用的生产函数,因为该函数以其简单的形式具备了经济学家所关心一些性质,它在经济理论的分析和应用中都具有一定意义。
柯布—道格拉斯生产函数的改进与应用
The Improvement and Application of Cobb-Douglas
Production Function
作者: 马跃 葛仁东
作者机构: 大连民族学院,辽宁大连116600
出版物刊名: 物流科技
页码: 85-88页
年卷期: 2011年 第7期
主题词: 物流系统 技术进步系数 柯布—道格拉斯生产函数 多元回归分析
摘要:基于带有技术进步系数的柯布—道格拉斯生产函数对物流系统的数学模型进行改进
以及实例验证,得到了当生产技术随时间变动时,能够反映技术进步对物流系统产出影响的函数模型。
然后运用多元线性回归的方法对模型的参数进行检验,同时也对模型本身的显著性进行回归
拟合,效果均为显著。
生产函数及其应用
如何决定输油管道的最佳马力 一条输油管道的产出量是它每天输送的油量, 而两项最重要的投入则是输油管的直径和用来运送 原油的马力。埃克森公司为一条直径为10英寸的输 油管建立了下面的生产函数: Q=286H0.37 这里的Q是每日输送的原油的量,而H是马力。 每天输送额外一单位原油的边际收益是2美元, 输油管道公司能够在每单位马力30美元的价格上增 加它所要增加的全部马力。 问:埃克森公司应该使用多大数量的马力?
米勒公司的案例 在米勒公司,每小时产量Q、工人的数量L和 每小时所用的机器数K之间的关系表示如下: Q=10(LK)0.5 工人的工资是每小时8美元,机器的价格是每 小时2美元。如果米勒公司每小时生产80单位产品, 它应该使用多少工人与多少机器呢?
二、生产过程不同资源投入的最优组合 1、产出最大化-无资源约束
2、产出最大化-资源约束 (1)等成本曲线 (2)两个投入要素的最优利用
产量一定情况下的成本最低问题 给定预算约束下的产量最大问题
3、利润最大化 4、生产扩大路线 朗多公司的案例: 朗多公司是一家袖珍计算器生产商,它的工厂 和设备数量固定不变,但每天雇佣的工人数量是可 变的。每天生产的计算器数量(Q)和每天雇佣的工 人数量(L)之间的关系是:Q=98L-3L2。 朗多公司可以以每只计算器20美元的价格卖出 其(以它现有工厂和设备)能够生产的全部产品, 也能以每天40美元工资雇到任何数量的工人。问: 它每天应当雇用多少工人?
第6章 生产函数及其应用
第1节 两种典型的生产函数及其特性
一、线性齐次函数 性质1:线性齐次函数代表的生产过程的规模收益不 变。 性质2:线性齐次函数可写为以下形式: Q=Lg1(K/L)=Kg2(L/K) 性质3:dQ/dL,dQ/dK是K/L的函数。 性质4:劳动与资本的平均与边际产出仅取性质1:如果一种投入为0,产出也为0。 性质2:α 和β分别是产出对于劳动和资本的偏弹性。 性质3:其规模收益取决于α +β的值。
微观经济学实验三:估计柯布-道格拉斯生产函数
18
14
• 选择View/Coefficient Tests/Omitted Variables—Likelihood Ration,在打开的 对话框中,列出检验统计量名,用至少一 个空格相互隔开。
15
5.实验结果分析
1) 根据回归结果可知,美国金属行业生产的柯布-道格拉 斯生产函数为: LOG(Y) = 1.168 + 0.607*LOG(L) + 0.372*LOG(K) 劳动的产出弹性α=0.607,资本的产出弹性β= 0.372 。 2)无约束条件的系数估计值α+β=0.607+0.372=0.979, 经Wald检验,无法拒绝原假设,即α+β=1,说明该行业生产 遵循规模报酬不变的假设。 1937年,提出了C-D生产函数的改进型,即取消了 + =1 的假定,允许要素的产出弹性之和大于1或小于1,即承 认研究对象可以是规模报酬递增的,也可以是规模报酬递减 的,取决于参数的估计结果。因而基于C-D生产函数的改进 型,也可以说该行业的生产存在一定程度的规模报酬递减的 情况。
11
4.实验步骤
3)Wald系数检验----有约束条件的检验
利用EViews软件进行Wald检验,结果如下(原假设: 约束条件有效):
EViews显示F统计量和 2 统计量及相应的P值。它们 的P值表明我们可以确定地接受规模报酬不变的原假设。
12
4.实验步骤
4)遗漏变量检验
这一检验能给现有方程添加变量,而且判断添加的变 量对解释因变量变动是否有显著作用,以期完善原有模型 的设计。原假设H0是添加变量不显著。 本实验中,超越对数生产函数模型
柯补道格拉斯生产函数的成本函数
柯布-道格拉斯(Cobb-Douglas)生产函数是描述生产过程中输入与产出关系的数学模型。
在经济学中,柯布-道格拉斯生产函数广泛应用于描述企业的生产过程,并且对于企业的成本分析具有重要的意义。
本文将深入探讨柯布-道格拉斯生产函数的成本函数,分析其在企业经济中的应用和意义。
1. 柯布-道格拉斯生产函数简介柯布-道格拉斯生产函数最初由美国经济学家查尔斯·柯布和保罗·道格拉斯提出,用于描述输入与产出之间的关系。
其一般形式为:Q = A * L^a * K^b,其中Q表示产出,L表示劳动力输入,K表示资本输入,A为总要素生产率(Total Factor Productivity,TFP),a和b分别为劳动力和资本的弹性系数。
该函数表明产出与劳动力和资本的投入量成正比,同时与总要素生产率的影响呈现指数关系。
2. 柯布-道格拉斯生产函数的成本函数在企业经济中,成本是企业经营活动的核心指标之一。
柯布-道格拉斯生产函数可以通过对数变换后转化为成本函数形式,描述企业的生产成本与输入要素之间的关系。
成本函数的一般形式为:C = wL + rK,其中C表示总成本,w表示单位劳动力的工资,L表示劳动力投入量,r表示单位资本的租金,K表示资本投入量。
该成本函数表明总成本与劳动力和资本的投入成本成正比。
3. 柯布-道格拉斯生产函数的应用柯布-道格拉斯生产函数的成本函数在企业经济中具有重要的应用价值。
通过成本函数可以对企业的成本进行有效的管理和控制。
企业可以根据成本函数分析各项要素成本的相对重要性,通过控制劳动力和资本的投入量来实现成本最小化,从而提高生产效率和经济效益。
成本函数还可以为企业的产量规划和定价提供重要依据。
通过成本函数分析企业的生产要素价格和产出水平,可以有效制定合理的产量规划和产品定价策略,以实现企业利润最大化。
4. 柯布-道格拉斯生产函数的意义在现代经济学理论中,柯布-道格拉斯生产函数的成本函数对企业经济管理具有深远的意义。
数据建立柯布—道格拉斯生产函数分析美国某行业的投入产出情况
数据建立柯布—道格拉斯生产函数分析美国某行业的投入产出情况实验目的1.利用数据建立柯布—道格拉斯生产函数分析美国某行业的投入产出情况,并用多种统计方法检验规模报酬不变的假设。
2.利用CES生产函数检验是否使用柯布道格拉斯生产函数建模是较为合适的。
实验报告1、问题提出生产力水平决定了一个国家或者地区的生活水平,因此研究分析产出受那些因素的影响以及是如何被影响对于把握生产规律并进而提高生产效率有着极大的意义。
2、指标选择从经济学原理的课程学习中可以知道,产量Y主要是被这几个因素所决定:技术水平(T),资本量(K),劳动(L),人力资本(H)自然资源(N)。
根据已有的数据资料,为达到实验目的,并且简化实验模型与分析,只分析劳动与资本量这两个因素的投入对产出的影响。
在本次实验中,我们分析美国某行业投入与产出情况。
选择样本容量为27的样本,分析劳动量,资本与产出的关系。
3、数据来源数据由老师提供,详细数据见表14.数据处理将表1中的实验数据化为其对数,方便建模时分析,如表2所示表25.数据分析观察表1数据,可以明显的发现劳动量L与资本K投入越多,产出越多。
而且没有发现明显不符合实际的数据。
但是其中的幂函数关系需要通过进一步的分析发现。
6.建立模型通过数理经济学的学习我们还了解到,生产函数常以柯布-道格拉斯(Cobb-Douglas )幂函数的形式出现。
柯布-道格拉斯生产函数最初是美国数学家柯布(Cobb )和经济学家道格拉斯(Douglas )共同探讨投入生产关系时创立的生产函数,他们根据历史资料,研究了1899-1922年美国资本和劳动对生产的影响,认为在技术不变的情况下产出与投入的劳动力及资本的关系可以表示为:Y AK L βα=,其中Y 表示产量,A 表示技术水平,K 表示投入的资本量,L 表示投入的劳动量,α、β分别表示K 和L 的产出弹性。
由于柯布-道格拉斯(Cobb-Douglas )生产函数是一个非线性模型,对生产函数取对数,可得:ln ln lnL Y A K αβ=++建立线性模型:11220X +X i i Y βββμ=++ 利用样本数据用Eviews 做lnY 对lnK 和lnL 的回归Dependent Variable: LNY Method: Least Squares Date: 10/27/16 Time: 12:46 Sample: 1 27Included observations: 27Variable Coefficient Std. Error t-Statistic Prob. LNK 0.373400 0.087246 4.279838 0.0003 LNL 0.606563 0.129114 4.697887 0.0001 C1.1663130.330983 3.5237830.0017R-squared 0.942420 Mean dependent var 7.443631 Adjusted R-squared 0.937622 S.D. dependent var 0.761153 S.E. of regression 0.190103 Akaike info criterion -0.378063 Sum squared resid 0.867339 Schwarz criterion -0.234081 Log likelihood 8.103847 Hannan-Quinn criter. -0.335249 F-statistic 196.4056 Durbin-Watson stat 1.854054Prob(F-statistic)0.000000得出回归方程:Y=0.373400lnK+0.606563lnL+1.166313 7.模型检验Y 对lnK 与lnL 的回归模型的检验经济检验:α为0.373400,说明产出与资本投入成正相关,且在其他条件保持不变的情况下,资本投入增加1%,产出增加约0.37%β为0.606563,说明产出与劳动量成正相关,且在其他条件保持不变的情况下,资本投入增加1%,产出增加约0.61%,对α与β的估计符合经济理论,故通过经济检验。
柯布道格拉斯的应用原理
柯布道格拉斯的应用原理1. 什么是柯布道格拉斯法柯布道格拉斯法(Cobb-Douglas function)是一种经济学中常用的生产函数形式,用于描述生产过程中产出与投入之间的关系。
该函数最早由美国经济学家柯布(Charles W. Cobb)和道格拉斯(Paul H. Douglas)在1928年提出。
2. 柯布道格拉斯函数的数学表达式柯布道格拉斯函数可以用以下的数学表达式表示:Q = A * (L^a) * (K^b)其中,Q表示产出,A表示全要素生产率(Total Factor Productivity),L表示劳动力投入,K表示资本投入,a和b为可调参数,表示生产函数中各种投入要素的弹性。
3. 柯布道格拉斯函数的应用领域柯布道格拉斯函数广泛应用于经济学研究中,特别在生产函数的分析和经济增长模型中有重要应用。
下面列举几个柯布道格拉斯函数的应用领域:•生产力分析:柯布道格拉斯函数可以用来分析不同投入要素对产出的影响。
通过调整参数a和b的大小,可以评估不同要素对产出增长的贡献程度。
•资源配置优化:柯布道格拉斯函数可以帮助决策者优化资源的分配方式。
通过对不同要素的弹性进行比较,可以确定投入要素的最佳组合,以实现最大的产出。
•经济增长模型:柯布道格拉斯函数是许多经济增长模型的基础。
通过引入技术进步和全要素生产率的概念,可以建立经济增长模型,用来解释不同要素对经济增长的影响。
4. 柯布道格拉斯函数的优缺点柯布道格拉斯函数作为一种常用的生产函数形式,具有以下的优点和缺点:4.1 优点•简单易用:柯布道格拉斯函数的数学表达式简单明了,易于计算和分析。
•灵活性:通过调整参数a和b的值,可以适应不同的实际情况和要求。
•可解释性:柯布道格拉斯函数的参数a和b可以用来解释不同投入要素对产出的影响。
4.2 缺点•缺乏微观基础:柯布道格拉斯函数并没有明确的微观基础,只是一种经验性的数学模型。
•不考虑替代性:柯布道格拉斯函数假设劳动力和资本是不可替代的,但实际上在一些行业中,劳动力和资本是可以相互替代的。
柯布道格拉斯函数历史
1、柯布——道格拉斯生产函数原是创始人—数学家柯布和经济学家道格拉斯想借助它们用经济计量学方法得到的生产函数来分析国民收入在工人和资本家之间的分配,并通过它来证实边际生产率原理的正确性。
因此他们是为了洞察收入分配而考察生产关系的。
后来他们的生产函数的收入分配方面失去了重要意义,现在它已被广泛地用于研究生产的投入产出关系。
随着增长理论的发展,应用的范围得到了进一步的扩大。
柯布一道格拉斯生产函数是使用最为广泛的生产函数。
它是由柯布和道格拉斯根据1899——1922年间美国制造业部门的有关数据构造出来的。
其形式如下:1Q AK Lαα-=该函数形式是由维克塞尔(wicksell)首先使用的。
维克塞尔在《国民经济学讲义》的附注中指出这一函数形式(维克塞尔,1983):αβ=a b rP c一般化:=Q AK Lαβ其中Q是增加值,K是资本存量,L是雇用的劳动。
A为效率参数,表示那些影响产量,但既不能单独归属于资本也不能单独属于劳动的因素。
αβ和为分配参数或投入强度参数(同时也满足生产弹性,αβ(+)是规模弹性参数,反映该函数的齐次的次数。
2、CES函数1961年,由Arrow、chenery,Mihas,Solow四位学者提出了两要素CES生产函数,该函数在数学上相当简化,在统计上容易处理,而且还有固定的替代弹性的特性。
其基本形式为:1[(1)]Q A K L ρρρδδ---=+- 其中A 为效率参数[efficiency Parameter],表示资本和劳动的联合效率,δ为分配参数, ρ为替代参数,A>0,0<δ<1,1ρ-<<-∞,根据不同的ρ参数值,CES 生产函数包含着好几个著名的生产函数作为它的特例。
(l)当ρ=-1,CES 生产函数即为线性生产函数,形式如[(1)]Q A K L δδ=+-(2)当ρ=0,CES 生产函数即柯布道格拉斯函数生产函数,形式如下1Q AK L δδ--= (3)当ρ=+∞,CES 生产函数即为列昂惕夫人技术的生产函数[Leotief production Function](也被称之为投入一产出生产函数),形式如卜:Q=min 【欲,(l 一占)L 」(21)。
柯布-道格拉斯生产函数
柯布-道格拉斯生产函数柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(PaulH.Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的,是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
柯布-道格拉斯生产函数-简介保罗·道格拉斯柯布和道格拉斯研究的是1899年至1922年美国制造业的生产函数。
他们指出,制造业的投资分为,以机器和建筑物为主要形式的固定资本投资和以原料、半成品和仓库里的成品为主要形式的流动资本投资,同时还包括对土地的投资。
在他们看来,在商品生产中起作用的资本,是不包括流动资本的。
这是因为,他们认为,流动资本属于制造过程的结果,而非原因。
同时,他们还排除了对土地的投资。
这是因为,他们认为,这部分投资受土地价值的异常增值的影响较大。
因此,在他们的生产函数中,资本这一要素只包括对机器、工具、设备和工厂建筑的投资。
而对劳动这一要素的度量,他们选用的是制造业的雇佣工人数。
但是,不幸地是,由于当时对这些生产要素的统计工作既不是每年连续的,也不是恰好按他们的分析需要来分类统计的。
因而,他们不得不尽可能地利用有的一些其它数据,来估计出他们打算使用的数据的数值。
比如,用生铁、钢、钢材、木材、焦炭、水泥、砖和铜等用于生产机器和建筑物的原料的数量变化来估计机器和建筑物的数量的变化;用美国一两个州的雇佣工人数的变化来代表整个美国的雇佣工人数的变化等等。
经过一番处理,他们得到关于1899年至1922年间,产出量P、资本C和劳动L的相对变化的数据(以1899年为基准)。
令人佩服的是,在没有计算机的年代里,他们从这些数据中,得到了如下的生产函数公式:P=1.01L3/4C1/4柯布(C.W.Cobb)这一结果虽然与现代计算机统计软件的计算结果不同,但两者无本质上的差别。
柯布道格拉斯生产函数及其应用
柯布-道格拉斯生产函数及其应用考号:姓名:[内容提要]生产函数是指在一定时期内,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系。
柯布—道格拉斯生产函数是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,它是经济学中使用最广泛的一种生产函数形式,采用的边际分析方法,可用于分析要素投入对产量(产出)的贡献率、规模收益和其他系列问题。
柯布—道格拉斯生产函数模型广泛应用于经济数量分析,运用我国1990-2008年的相关数据,运用应用统计学的方法来验证我国经济增长方式是粗放式的,提出应该加大科技创新投入,进而加快促进技术进步,深化经济和政治体制改革来加快我国省经济增长方式的转变。
[关键词]生产函数柯布道格拉斯经济数量分析经济增长一、生产函数(一)简述生产函数是指在一定时期内,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系。
它可以用一个数理模型、图表或图形来表示。
换句话说,就是一定技术条件下投入与产出之间的关系,在处理实际的经济问题时,生产函数不仅是表示投入与产出之间关系的对应,更是一种生产技术的制约。
例如,在考虑成本最小化问题时,必须要考虑到技术制约,而这个制约正是由生产函数给出的。
另外,在宏观经济学的增长理论中,在讨论技术进步的时候,生产函数得到了很大的讨论。
(二)常见生产函数1、固定投入比例生产函数固定投入比例生产函数是指在每一个产量水平上任何一对要素投入量之间的比例都是固定的生产函数。
2、柯布-道格拉斯生产函数柯布-道格拉斯生产函数是由数学家柯布(C.W.Cobb)和经济学家道格拉斯(PaulH.Douglas)于20世纪30年代提出来的。
柯布—道格拉斯生产函数被认为是一种很有用的生产函数,因为该函数以其简单的形式具备了经济学家所关心一些性质,它在经济理论的分析和应用中都具有一定意义。
生产函数农业的应用
一、农业生产函数模型1、按学科分类农业生产函数模型就是运用数学方法来描述农业生产过程中变量与变量的依存关系,以简化的形式再现农业生产过程。
它是农业生产过程中物质交换关系的数学描述。
应用农业生产函数模型,其目的在于确定在既定的条件下,生产资源合理投入的数量比例,从而达到提高资源转化效率,获得最大赢利和高产量。
农业生产函数表示为:P=BT a LβCγ2、按数学形式分类,主要分为线性生产函数和非线性生产函数线性生产函数:y=a+bx;y=a+b1x1+b2x2+…+b n x n非线性生产函数:y=a+bx+cx2;y=ax b农业生产函数研究是由农业科学家、数学家发起,建立实物生产函数,再经经济学家以此为基础开展经济上的定量研究,使技术的开发利用与经济合理性、生产可行性结合起来。
所以,这一研究领域是科学、技术、经济三者结合的典型。
二、农业生产函数模型在数量分析中的作用1、农业生产函数所描述的产品与生产要素之间的关系,在很大程度上能够反映农业生产过程的客观实际。
2、生产函数模型所反映的经济活动的技术状况和技术发展趋势,在一定范围内具有普遍意义。
3、应用生产函数来研究农业技术经济问题,可以使研究对象数量化、精确化,能够为经济决策提供可靠依据。
4、生产函数模型是建立大型模型的辅助手段。
5、农业生产函数模型在数量分析中将会发生越来越大的作用。
三、农业生产函数选择和应用的原则1、根据研究对象所反映的变量与变量之间的关系及其变化规律来选择和应用生产函数模型。
2、根据研究的目的和内容来选择和应用生产函数模型。
3、根据目标函数和制约农业生产发展的主导因素来选择和应用生产函数模型。
第二节农业生产函数模型在技术经济分析中的应用一、农业生产函数模型建立和应用的一般步骤通过回归建立农业生产函数模型并应用于农业技术经济分析时,其步骤如下:1、初步选定合适的生产函数模型类型2、收集整理数据资料3、将整理后的数据进行回归,建立模型并检验4、运用生产函数模型进行数值计算5、根据计算、分析结果,制订有效的生产措施,提出建议或作出决策例1.根据黑龙江卫岗乳牛场和仙林场的实际资料,成年母牛每头年均饲料费用与成年母牛每头年均产奶量的数据如表7-1所示。
柯布-道格拉斯生产函数
柯布-道格拉斯生产函数柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(PaulH.Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的,是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
柯布-道格拉斯生产函数-简介保罗·道格拉斯柯布和道格拉斯研究的是1899年至1922年美国制造业的生产函数。
他们指出,制造业的投资分为,以机器和建筑物为主要形式的固定资本投资和以原料、半成品和仓库里的成品为主要形式的流动资本投资,同时还包括对土地的投资。
在他们看来,在商品生产中起作用的资本,是不包括流动资本的。
这是因为,他们认为,流动资本属于制造过程的结果,而非原因。
同时,他们还排除了对土地的投资。
这是因为,他们认为,这部分投资受土地价值的异常增值的影响较大。
因此,在他们的生产函数中,资本这一要素只包括对机器、工具、设备和工厂建筑的投资。
而对劳动这一要素的度量,他们选用的是制造业的雇佣工人数。
但是,不幸地是,由于当时对这些生产要素的统计工作既不是每年连续的,也不是恰好按他们的分析需要来分类统计的。
因而,他们不得不尽可能地利用有的一些其它数据,来估计出他们打算使用的数据的数值。
比如,用生铁、钢、钢材、木材、焦炭、水泥、砖和铜等用于生产机器和建筑物的原料的数量变化来估计机器和建筑物的数量的变化;用美国一两个州的雇佣工人数的变化来代表整个美国的雇佣工人数的变化等等。
经过一番处理,他们得到关于1899年至1922年间,产出量P、资本C和劳动L的相对变化的数据(以1899年为基准)。
令人佩服的是,在没有计算机的年代里,他们从这些数据中,得到了如下的生产函数公式:P=1.01L3/4C1/4柯布(C.W.Cobb)这一结果虽然与现代计算机统计软件的计算结果不同,但两者无本质上的差别。
柯布—道格拉斯生产函数的一般形式
到1/3。
1
K=2/3
L=1
K=1/3
Q2=90
L=1 L=1
Q1=75
0
1
2
3
4
5
每月投入劳动
MRTS递减规律
在产量或其它条件不变的情况下,如果不断增 加一种要素以替代另一生产要素,则一单位该 生产要素所能替代的另一种生产要素的数量将 不断减少。
MRTS递减性质的经济含义是:
当大量使用劳动来替代资本时,劳动的生产率会 下降;
边际产出 - 10 20 30 20 15 13 4 0 -4 -8
TP、MP和AP
L1
L2 L3
边际产量递减规律
边际产量(边际投入的报酬)
当包括技术在内的其它投入固定不变时,一种投入数 量增加最终会达到一个临界点,在它以后产出水平会 因为这一投入的增加而减少。
边际产量先递增、后递减 一般来讲,如果前提条件改变,将推迟边际产量递减
等产量线的斜率(绝对值):在固定产出不变 的前提下,一种投入品替代另一种投入品的替 代比率。即MRTS。
边际技术替代率
MRTS LK
K L
MPL MPK
L对Kห้องสมุดไป่ตู้MRTS是其 边际产量的比率
Q f (L, K)
dQ Q dL Q dK L K
Q dQ 0;
Q dL dK 0 L K
大量使用资本来替代劳动时,资本的生产率会下 降;
A代表技术水平,K,L分别代表资本和劳动, α 和 β 分别表示劳动和资本在生产过程中的作用。
短期和长期
长期:所有投入都是可变的
Q=f(K,L)
短期:至少有一种投入是不可变的, 假设资本不变,则:
柯布–道格拉斯生产函数在经济学的应用综述
文章引用: 黄琪, 易欢. 柯布–道格拉斯生产函数在经济学的应用综述[J]. 应用数学进展, 2020, 9(12): 2353-2357. DOI: 10.12677/aam.2020.912274
黄琪,易欢
it studies its application in economics, which mainly involves four aspects of talents, social economy, business management, and tourism. Finally, through the form of literature review, it involves three aspects: the angle of previous research questions, the research questions that involve theoretical differences, the improvement of Cobb-Douglas production function and methods.
尚荣等研究人口转型、技术进步对农业产出影响的计量分析,最后得出结论:1) 劳动力与农业产出 负相关;2) 人均播种面积与农业产出显著正相关;3) 农机动力与化肥施用量和农业产出正相关;4) 人 口偏好强度与机械化水平正相关;5) 中国农业产业存在大量剩余劳动力[8]。
夏飞等研究向海经济发展动力及其完善路径[9],我国经济发展的蓝色引擎主要是海洋经济:18 年我 国海洋生产总值达到 8.3 万亿元,占国内生产总值的 9.3%,吸纳涉海就业人员 3684 万人[9]。而大部分 研究主要是定性研究,本文针对其他文献的不足进行补充、扩展。本文通过研究发现:1) 资本对向海经
柯布-道格拉斯(Cobb-Douglas)生产函数模型
柯布-道格拉斯(Cobb-Douglas )生产函数模型齐微辽宁工程技术大学理学院,辽宁阜新(123000)E-mail: qiwei1119@摘 要:柯布-道格拉斯生产函数(Cobb-Douglas production function )用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数.本文对大量的生产数据进行处理,建立多项式拟合模型和线性规划模型对数据进行处理完成问题,对生产数据分析我们建立了多项式拟合,通过误差分析,多项式拟合模型是完全符合数据的.但通过使用线性回归方法求得的柯布-道格拉斯生产函数,通过对其进行误差分析我们知道柯布-道格拉斯生产函数与原始数据的误差比多项式拟合模型下的误差小的多.关键词:柯布-道格拉斯生产函数;多项式拟合;线性回归柯布-道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家道格拉斯(P.H.Douglas)共同探讨投入和产出的关系时创造的生产函数,是在生产函数的一般形式上作了改进,引入了技术资源这一因素.他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,认为在技术经济条件不变的情况下,产出与投入的劳动力及资本的关系可以表示为:Y AK L αβ=其中: Y —— 产量;A —— 技术水平;K —— 投入的资本量;L —— 投入的劳动量;,αβ——K 和L 的产出弹性.经济学中著名的柯布-道格拉斯(Cobb-Douglas )生产函数的一般形式为 (,),0,1Q K L aK L αβαβ=<< (1-1)其中,,Q K L 分别表示产值、资金、劳动力,式中,,a αβ要由经济统计数据确定.现有《中国统计年鉴(2003)》给出的统计数据如表(其中总产值取自“国内生产总值”,资金 取自“固定资产投资”,劳动力取自“就业人员”)[3].问题1:运用适当的方法,建立产值与资金、劳动力的优化模型,并做出模型的分析与检验.问题2:建立Cobb-Douglas 优化模型,并给出模型中参数,αβ的解释.问题3:将几个模型做出比较与分析.表0-1 经济统计数据年份 总产值/万亿元 资金/万亿元 劳动力/亿人1984 0.7171 0.0910 4.8179 1985 0.8964 0.2543 4.9873 1986 1.0202 0.3121 5.1282 1987 1.1962 0.3792 5.2783 1988 1.4928 0.4754 5.4334 1989 1.6909 0.4410 5.5329 1990 1.8548 0.4517 6.4749 1991 2.1618 0.5595 6.5491 1992 2.6638 0.8080 6.6152 1993 3.4634 1.3072 6.6808 1994 4.6759 1.7042 6.7455 1995 5.8478 2.0019 6.8065 1996 6.7885 2.2914 6.8950 1997 7.4463 2.4941 6.9820 1998 7.8345 2.8406 7.0637 1999 8.2068 2.9854 7.1394 2000 9.9468 3.2918 7.2085 2001 9.7315 3.7314 7.3025 2002 10.4791 4.3500 7.37401.问题一求解1.1 模型建立假设:有()()()t L t K t Q ,,分别表示产值,资金和劳动力,并假设()t Q 仅与()()t L t K ,有关[1]..由表0-1中的数据拟合出()()()t L t K t Q ,,的关系:用Matlab 画出表1-1中数据的关系图,应用Matlab 中的plot 画出图形如图1-1.图1-1产值、资金和劳动力数据关系图由图1-1可知:选定()t Q 看作是()()t L t K +的一元多项式的优化模型.从而建立模型()()()()t L t K G t Q +=.1.2 模型的求解通过Matlab 计算出()t Q 和()()t L t K + 数据之间拟合误差如表1-1.表1-1 数据拟合次数误差拟合次数 1 2 3 4 5 6 误差 3.0313 2.4294 1.5141 1.2366 1.0898 1.0887由上表得知五次拟合和六次拟合误差已经达到很接近,和四次拟合误差相差很大,所以本文选择五次拟合来求解模型()()()()t L t K G t Q +=.本文选用的是Matlab 中的plotfit 来五次拟合数据求解模型并用rcoplot 来误差分析. 得到的拟合多项式系数p 如表1-2.表1-2 多项式系数多项式次数5 4 3 2 1 0 相应系数 0.0062 -0.2711 4.6074-37.6090 148.3464 -226.4984这样就知道了模型多项式为:()()()()()()()()()()()()()()()54320.00620.2711 4.607437.6090148.3464226.4984Q K t L t K t L t K t L t K t L t K t L t =×+−×++×+−×++×+−(1-1) 多项式模型下,新的产值预测值如表1-3.表1-3 多项式模型的产值预测值年份1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 预测值0.5962 1.0362 1.1860 1.2929 1.3800 1.4008 1.9636 2.1686 2.6129 3.6773年份1994 1995 1996 1997 1998 1999 2000 2001 2002 预测值 4.7428 5.6358 6.5850 7.28598.23048.65859.27909.920810.4620程序运行所得到的残差图如图1-2.图1-2 模型数据的残差图由图1-2可以看到除了第十七个数据点偏离了原点,其他的点均在原点附近.继而得出模型:()()()()()()()()()()()()()()()54320.00620.2711 4.607437.6090148.3464226.4984Q K t L t K t L t K t L t K t L t K t L t =×+−×++×+−×++×+− (1-2)1.3 模型的误差分析 本文在假设的前提下,确定(),()()K t L t Q t 与的关系,即()Q t 可看作是()()K t L t +的一元多项式,从而本文做分析得到,做五次的多项式拟合达到最佳拟合.能从S 的值知道拟合误差,S 中有R 类似于回归中的判别系数、df 自由度、normr 拟合算法中用到的范德孟系数.本文通过预测值Y 值可以看到和原始值y 存在着误差,但是这些误差都是在可接受范围之内的误差[2].2 问题二的线性回归模型2.1模型的建立本文假设的是在1=+βα的情况下,用)(t Q ,)(t K ,)(t L 分别表示某一地区或部门在时刻t 的产值、资金和劳动力,它们的关系可以一般地记作))(),(()(t L t K F t Q =(2-1) 其中F 为待定函数.对于固定的时刻t ,上述关系可写作),(L K F Q =(2-2)为寻找F 的函数形式,引入记号L Q z =,L K y = (2-3) z 是每个劳动力的产值,y 是每个劳动力的投资.如下的假设是合理的:z 随着y 的增加而增长,但增长速度递减.进而简化地把这个假设表示为()z ag y =,αy y g =)(,10<<α (2-4)显然函数)(y g 满足上面的假设,常数0a >可看成技术的作用.由(2-3),(2-4)即可得到(2-2)式中F 的具体形式为1Q aK L αα−=,10<<α(2-5)由(2-5)式容易知道Q 有如下性质 0,>∂∂∂∂L Q K Q ,0,2222<∂∂∂∂LQ K Q (2-6) 记L Q Q K ∂∂=,K Q 表示单位资金创造的产值;LQ Q L ∂∂=,L Q 表示单位劳动力创造的产值,则从(2-5)式可得α=Q KQ K ,α−=1QLQ L ,Q LQ KQ L K =+ (2-7) (2-7)式可解释为:α是资金在产值中占有的份额,α−1是劳动力在产值中占有的份额.于是α的大小直接反映了资金、劳动力二者对于创造产值的轻重关系.2.2模型的求解本文求解得出1Q aK L αα−=中的()1b 和α值为:0.7784和0.7833,这样能求得a 的值为:2.1780,β的值为:1-0.7833,即为:0.2167.这样得到模型如下:()()()2167.07833.01780.2t L t K t Q ×= (2-8)利用以上模型求解出一组新的预测值如表2-1.表2-1 多项式模型的产值预测值年份预测值0.5962 1.0362 1.1860 1.2929 1.3800 1.4008 1.9636 2.1686 2.6129 3.6773年份1994 1995 1996 1997 1998 1999 2000 2001 2002 预测值 4.7428 5.6358 6.5850 7.28598.23048.65859.27909.9208 10.4620程序运行所得的残差图如图2-1所示:图2-1 模型数据残差图由图2-1可以看到除了第一个数据点偏离了原点,其他的点均在原点附近,这样可以得到线性回归模型是符合题目的.继而模型可得:()()()0.78330.21672.1780Q t K t L t =× (2-9)程序计算得到的r 和rint 值见表2-2.表2-2 r 和rint 值 r rint 0.4259 0.2705 0.5814-0.1634 -0.4602 0.1334-0.2005 -0.4950 0.0940-0.2001 -0.4979 0.0976-0.1620 -0.4691 0.14510.0175 -0.2999 0.33490.0572 -0.2568 0.37120.0402 -0.2775 0.3580-0.0410 -0.3620 0.2799-0.1575 -0.4687 0.1537-0.0672 -0.3857 0.25130.0284 -0.2901 0.34690.0690 -0.2462 0.38410.0923 -0.2200 0.40470.0387 -0.2747 0.35210.0439 -0.2686 0.35640.1576 -0.1427 0.45780.0347 -0.2737 0.3431-0.0136 -0.3188 0.29172.3 模型α和β的解释通过对柯布-道格拉斯生产函数传递变形后,进行求解得出βα,的值,同样也进行预测数据和原始数据比较.从图上可以知道模型中参数βα,的解释:α是劳动力产出的弹性系数,β是资本产出的弹性系数,从这个模型看出,决定工业系统发展水平的主要因素是投入的劳动力数、固定资产和综合技术水平(包括经营管理水平、劳动力素质、引进先进技术等).根据α和β的组合情况,它有三种类型:①1αβ+>称为递增报酬型,表明按现有技术用扩大生产规模来增加产出是有利的.②1<+βα称为递减报酬型,表明按现有技术用扩大生产规模来增加产出是得不偿失的.③1=+βα称为不变报酬型,表明生产效率并不会随着生产规模的扩大而提高,只有提高技术水平,才会提高经济效益.3 问题三:模型比较分析模型一是通过假设后进行拟合得到模型关系式,模型二是通过变形后线性回归运算得到模型.他们与实际之间都存在误差.五次多项式拟合模型的数据误差数是:1.0898.线性回归模型数据误差:r =[0.4259 -0.1634 -0.2005 -0.2001 -0.1620 0.0175 0.0572 0.0402 -0.0410 -0.1575 -0.0672 0.0284 0.0690 0.0923 0.0387 0.0439 0.1576 0.0347 -0.0136];m=sum(r)得到这个模型的误差数:m=1.0000e-004.可以看出1.0000e-004<1.0898,很明显柯布-道格拉斯(Cobb-Douglas )生产函数比假设的多项式拟合函数更接近实际数据,更加准确.在生产产值上的预测,柯布-道格拉斯(Cobb-Douglas )生产函数预测的结果近似就是准确生产值[4].4 评价和结论4.1 模型缺点一定历史时期的生产函数是反映当时的社会生产力水平的.只有明确一定历史阶段的社会生产力特征才能构造出最能反映当时生产力发展水平的生产函数.在工业时代,生产力水平是以单位量的资本和劳动力的投入所能获得的产成品的数量来衡量的.也就是说工业时代的生产力是以产量、能耗、劳动生产率等针对物质、能量的生产和利用等概念构成的.而对工业时代生产力水平的衡量是以投入产出的数量为依据的,表现在:(1)工业时代的生产是在一个较为稳定的生产技术条件下形成的,是针对某一生产和设计都很成熟的产品进行物质性生产.(2)工业时代衡量生产技术水平的标志是在一定的时间范围内,单位量的资本和劳动力的投人所能获得的产成品的数量.(3)工业时代的生产力水平体现为以某一生产技术组织资本和劳动力的投入,从而获得最接近于该生产技术所能达到的产出极限.柯布—道格拉斯生产函数正是在工业经济时代所构造出的反映工业经济时代生产力特征的函数模型.当人类进入到信息经济时代,由于信息资源的加入、技术的不断进步,导致生产力发展的特征和性能发生了变化,信息时代的经济发展特征是以性能、质量、产品的差异性组合,客户服务和信息管理等为主要竞争手段的.这样也就决定了信息时代这种以非物质,非能量的信息经济的生产力的概念与工业时代截然不同.如果仍然以工业时代测算生产力的方法去考察信息时代中信息技术对生产力的作用的话,肯定无法对其做出准确的判断.同样,原有的柯布——道格拉斯生产函数已经不能再适应新的经济发展形态,在工业时代用以衡量生产力水平的产量,资本投入量和劳动力投入量已经不能完全适应信息时代的生产力发展水平了;在信息经济时代,所投入的生产要素的核心成分从资本、劳动力逐渐转变为以信息技术为代表的高新技术.当信息资源应用于生产中时,对生产人员、资本、流程等形成革命性的影响作用,极大地提高了生产要素生产率,促进了经济发展.综合上述原因,需要对柯布——道格拉斯生产函数做出了一定的修正,使之适用于信息时代的生产力发展水平.4.2 模型改进4.2.1 对投入量的计量对投入的计量应包含:信息技术设备的资本投入,如电脑、数控设备、信息化管理设备、网络设备和其他软件等等;信息技术的劳动力投入,如电脑软件编制人员、硬件安装维护人员、信息化管理人员等等;非信息技术设备的资本投入,如传统的工业技术装备、生产设备、厂房等其他在工业时代类似的资本投入;非信息技术的劳动力投入,比如生产线上的操作工、一般管理人员等,这里需要指出的是“非信息技术的劳动力”既包括一般意义上的蓝领工人,也包括其他一些白领管理人员.4.2.2 对产出量的计量对产出量的计量则不应仅包含单位生产成品数量,而是应该考虑到生产者的盈利水平是否提高.因为从工业时代过渡到信息时代,企业的竞争手段已经从“低成本生产”转向了“全方位的优质服务”.这其实也是竞争发展到一定阶段的必然结果.所以,考察信息技术对生产力具有怎样的影响务必要从一个新的视角出发,不能仅仅衡量其对产成品数量的影响,更应从信息技术是否对提高整体赢利水平,扩大市场份额和增强竞争实力等方面进行综合考察.4.2.3 改进后的模型改进后的柯布—道格拉斯生产函数的表现形式为:0011a b c d Y K L K L =式中: Y —— 产量;0K —— 非信息技术设备的资本投入;0L —— 非信息技术的劳动力投入;1K —— 信息技术设备的资本投入;1L —— 信息技术的劳动力投入;,,,a b c d —— 产出弹性.此模型较原来的模型增加了信息技术设备的资本投入1K 和信息技术的劳动力投入1L ,使得模型成为更贴近时代的生产模型,改进后的柯布—道格拉斯生产函数0011a b c d Y K L K L =是在现代信息工业经济时代构造出的反映了现代信息工业经济时代生产力特征的函数模型.改进后的柯布—道格拉斯生产函数模型更具有时代特色,适用性更广、更具时代感.参考文献[1]唐焕文,贺明峰.《数学模型引论》[M],北京:教育出版社,2005.[2]雷功炎.《数学模型讲义》[M],北京:京大学出版社,2002.[3]白其峰.《数学建模案例分析》[M],京:洋出版社,2000.[4]李庆杨,王能超,易大意.《数值分析》[M],京:华大学出版社,2005.Cobb-Douglas production function modelQiweiCollege of Science,Liaoning Technology University,Fuxin (123000)AbstractCobb-Douglas production function used to predict national and regional systems or large industrial enterprises in production and development of the means of production of an economic model, called the production function. In this paper, a large number of production data Process, the establishment of polynomial fitting model and the linear programming model for data processing is complete problems, the production data analysis We have established a polynomial fitting, through error analysis, polynomial fitting model is fully consistent with the data . But through the use of linear regression obtained O'Brien - Douglas production function, through its error analysis we know that O'Brien - Douglas production function with the raw data of error than polynomial fitting model of the small number of errors .Keywords: Cobb-Douglas production function; polynomial fitting; linear regression。
技术(柯布-道格拉斯生产函数)经济学解析
由于 df 0 ,故
Aax x dx1 Abx x dx2
b dx2 Aax1a 1 x2 a x2 0 a b 1 dx1 Abx1 x2 b x1
a 1 b 1 2
a b1 1 2
(a, b, x1 , x2 0)
上式表示:C-D生产函数等产量线的斜率,即劳 动对资本的边际技术替代率为负。
技术的凸性
假设有两种技术,技术A:a1单位的要素1和a2单位的 要素2生产一单位的产出,技术B: b1单位的要素1和b2单位的 要素2生产一单位的产出。 现在我们要得到一百单位的产出,投入要素可以(100 a1,100 a2) 或者是(100 b1,100 b2 ).我们还可以用技术A生 产t单位产出,用B技术生产100-t单位产出,投入要素就是t a1 +(100-t) b1单位要素1和t a2 +(100-t) b2单位要素2. 凸性:如果x 和x’ 都可以生产y 单位产出,则任何加权 平均tx + (1- t)x’至少可以生产y单位的产量。
'' x1' x1
''' x1
x1
四、技术替代率
我们放弃要素1的量∆1,为保持产量不变,需要增加 要素2的量∆2,∆2/∆1恰好是等产量线的斜率,我们称它 为技术替代率(TRS)。
x2
△ x2 TRS △x1
' x x'2 2
A
x' 1
''1 x x 1
B
y x1
技术替代率递减
当增加要素1的投入量并相应调整要素2的投入量以保持产量不变 时,技术替代率会变小。我们把这个与技术密切相关的假定称为技术 替代率递减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
柯布-道格拉斯生产函数及其应用[容提要]生产函数是指在一定时期,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系。
柯布—道格拉斯生产函数是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,它是经济学中使用最广泛的一种生产函数形式,采用的边际分析方法,可用于分析要素投入对产量(产出)的贡献率、规模收益和其他系列问题。
柯布—道格拉斯生产函数模型广泛应用于经济数量分析,运用我国1990-2008年的相关数据,运用应用统计学的方法来验证我国经济增长方式是粗放式的,提出应该加大科技创新投入,进而加快促进技术进步,深化经济和政治体制改革来加快我国省经济增长方式的转变。
[关键词]生产函数柯布道格拉斯经济数量分析经济增长一、生产函数(一)简述生产函数是指在一定时期,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系。
它可以用一个数理模型、图表或图形来表示。
换句话说,就是一定技术条件下投入与产出之间的关系,在处理实际的经济问题时,生产函数不仅是表示投入与产出之间关系的对应,更是一种生产技术的制约。
例如,在考虑成本最小化问题时,必须要考虑到技术制约,而这个制约正是由生产函数给出的。
另外,在宏观经济学的增长理论中,在讨论技术进步的时候,生产函数得到了很大的讨论。
(二)常见生产函数1、固定投入比例生产函数固定投入比例生产函数是指在每一个产量水平上任何一对要素投入量之间的比例都是固定的生产函数。
2、柯布-道格拉斯生产函数柯布-道格拉斯生产函数是由数学家柯布(C.W.Cobb)和经济学家道格拉斯(PaulH.Douglas)于20世纪30年代提出来的。
柯布—道格拉斯生产函数被认为是一种很有用的生产函数,因为该函数以其简单的形式具备了经济学家所关心一些性质,它在经济理论的分析和应用中都具有一定意义。
(三)特点1、生产函数反映的是在既定的生产技术条件下投入和产出之间的数量关系。
如果技术条件改变,必然会产生新的生产函数。
2、生产函数反映的是某一特定要素投入组合在技术条件下能且只能产生的最大产出。
(四)分类生产函数分一种可变投入生产函数和多种可变投入生产函数。
1、一种可变投入生产函数对既定产品,技术条件不变、固定投入(通常是资本)一定、一种可变动投入(通常是劳动)与可能生产的最大产量间的关系,通常又称作短期生产函数。
2、多种可变投入生产函数在考察时间足够长时,可能两种或两种以上的投入都可以变动、甚至所有的投入都可以变动,通常称为长期生产函数。
二、柯布-道格拉斯生产函数(一)概述柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(Paul H. Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的。
它是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型。
它是经济学中使用最广泛的一种生产函数形式,采用的边际分析方法,可用于分析要素投入对产量(产出)的贡献率、规模收益和其他系列问题。
它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
柯布—道格拉斯生产函数的一般形式可以表示为:他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,在技术经济条件不变的情况下,得出了产出与投入的劳动力及资本的关系。
但是柯布-道格拉斯生产函数中把技术水平A 作为固定常数,难以反映出因技术进步而给产出带来的影响。
柯布—道格拉斯生产函数中,如果有任何一种投入品为零,则产出也为零,因此对于生产来说,每种生产要素都是必需的,没有一种要素可以完全替代另一种要素。
根据研究目的和需要,现在有很多在柯布——道格拉斯生产函数基础上变形应用的函数形式。
柯布和道格拉斯研究的是1899年至1922年美国制造业的生产函数。
他们指出,制造业的投资分为,以机器和建筑物为主要形式的固定资本投资和以原料、半成品和仓库里的成品为主要形式的流动资本投资,同时还包括对土地的投资。
在他们看来,在商品生产中起作用的资本,是不包括流动资本的。
这是因为,他们认为,流动资本属于制造过程的结果,而非原因。
同时,他们还排除了对土地的投资。
这是因为,他们认为,这部分投资受土地价值的异常增值的影响较大。
因此,在他们的生产函数中,资本这一要素只包括对机器、工具、设备和工厂建筑的投资。
而对劳动这一要素的度量,他们选用的是制造业的雇佣工人数。
但是,不幸地是,由于当时对这些生产要素的统计工作既不是每年连续的,也不是恰好按他们的分析需要来分类统计的。
因而,他们不得不尽可能地利用有的一些其它数据,来估计出他们打算使用的数据的数值。
比如,用生铁、钢、钢材、木材、焦炭、水泥、砖和铜等用于生产机器和建筑物的原料的数量变化来估计机器和建筑物的数量的变化;用美国一两个州的雇佣工人数的变化来代表整个美国的雇佣工人数的变化等等。
经过一番处理,他们得到关于1899年至1922年间,产出量P、资本C和劳动L的相对变化的数据(以1899年为基准)。
令人佩服的是,在没有计算机的年代里,他们从这些数据中,得到了如下的生产函数公式:P=ACαLβ(A,α,β>0)。
这一结果虽然与现代计算机统计软件的计算结果不同,但两者无本质上的差别。
用严格的统计学术语来说,就是在5%的显著性水平上,不能拒绝这两者相同的原假设。
从这一结果出发,他们计算出资本的边际产出,即产出P对资本C 的导数,为1/4P/C;劳动的边际产出,即产出对劳动L的导数,为3/4P/L。
然后,将这些边际产出乘以相应的生产要素量,得到资本的总产出为1/4P,劳动的总产出为3/4P。
他们显然被自己的结论吓坏了。
因为他们竟然表示他们自己千辛万苦好不容易得到的这样一个结果是值得怀疑的,强调他们的文章不在于给出结论,而在于演示方法。
当然,吓坏他们的,决不是因为他们发现资本也能“创造”价值,而只是因为他们发现产出的大部分,即3/4的产出都应归属于劳动。
继柯布和道格拉斯之后,其他西方学者也对所谓的生产函数进行了实证研究,如霍奇等。
霍奇还根据其研究的结果,计算了所谓的最优生产要素配置。
根据这一配置,要大大降低劳动要素的投入,增加资本要素的投入,好象无限扩大厂房面积,就能够大大增加产出似的。
(二)基本形式柯布-道格拉斯生产函数的基本形式为:Y = A(t)LαKβμ。
式中Y是工业总产值,At 是综合技术水平,L是投入的劳动力数(单位是万人或人),K是投入的资本,一般指固定资产净值(单位是亿元或万元,但必须与劳动力数的单位相对应,如劳动力用万人作单位,固定资产净值就用亿元作单位),α 是劳动力产出的弹性系数,β是资本产出的弹性系数,μ表示随机干扰的影响,μ≤1。
从这个模型看出,决定工业系统发展水平的主要因素是投入的劳动力数、固定资产和综合技术水平(包括经营管理水平、劳动力素质、引进先进技术等)。
根据α 和β的组合情况,它有三种类型:①α+β>1, 称为递增报酬型,表明按现有技术用扩大生产规模来增加产出是有利的。
②α+β<1, 称为递减报酬型,表明按现有技术用扩大生产规模来增加产出是得不偿失的。
③α+β=1, 称为不变报酬型,表明生产效率并不会随着生产规模的扩大而提高,只有提高技术水平,才会提高经济效益。
根据柯布-道格拉斯生产函数可以得到下列经济参数(设μ=1):①劳动力边际生产力表示在资产不变时增加单位劳动力所增加的产值。
②资产边际生产力表示在劳动力不变时增加单位资产所增加的产值。
③劳力对资产的边际代换率表示产值不变时增加单位劳动力所能减少的资产值。
④劳动力产出弹性系数,表示劳动力投入的变化引起产值的变化的速率。
⑤资产产出弹性系数,表示资产投入的变化引起产值变化的速率。
国际上一般取α=0.2~0.4,β=0.8~0.6。
中国根据国家计委测算一般可取α=0.2~0.3,β=0.8~0.7。
(三)斯诺模型美国经济学家R.M.斯诺提出的中性技术模式即斯诺模型属于不变报酬型。
当μ=1时,斯诺模型为:Y = A(t)L1 − εKε或,式中(1-ε)是劳动力产出的弹性系数。
根据弹性系数的经济意义和数学意义,。
这里p是产出价格,q是资本价格。
当p=q时,。
它表示对生产技术水平、经营管理水平和服务水平的综合评价,全面反映企业的适应能力、竞争能力和生存能力。
A(t)值越大,水平越高。
根据柯布-道格拉斯生产函数可以得到下列经济参数(设μ=1):①劳动力边际生产力表示在资产不变时增加单位劳动力所增加的产值。
②资产边际生产力表示在劳动力不变时增加单位资产所增加的产值。
③劳力对资产的边际代换率表示产值不变时增加单位劳动力所能减少的资产值。
④劳动力产出弹性系数,表示劳动力投入的变化引起产值的变化的速率。
⑤资产产出弹性系数,表示资产投入的变化引起产值变化的速率。
国际上一般取α=0.2~0.4,β=0.8~0.6。
中国根据国家计委测算一般可取α=0.2~0.3,β=0.8~0.7。
三、应用柯布-道格拉斯生产函数分析我国经济增长方式(一)实证分析目前国学者对经济增长方式的实证研究主要依据这些模型来展开,如徐现祥提出了经济增长方式的判断标准,对粗放度进行了具体估量;祝孔海对我国经济增长方式的实证研究,认为我国的经济增长方式已经开始向集约型转变。
我国经济增长速度一直较快,高速度掩盖了经济增长方式上存在的问题。
鉴于此,本文拟运用1990―2008年的数据,对我国的经济增长方式做一实证分析。
数据选取及说明1、本文采用的数据主要来源于历年中国统计年鉴,时间跨度为1990 ~2008。
(1)总产出GDP一般而言,衡量国民经济整体产出的指标应该是按可比价格计算的国生产总值或国民生产总值,这两项指标都可以直接从有关统计资料中获得。
本文采用我国国生产总值(GDP) 作为衡量经济增长的基本指标,基础数据取自我国历年统计年鉴。
(2)资本K资本为全社会固定资产投资。
(3)劳动力L劳动力投入一直是经济增长理论强调的一个重要因素之一, 从古典经济增长生产函数模型到现在的模型都离不开劳动力的投入, 劳动力数据,由于现阶段劳动者的工资无法反映劳动投入的真正水平, 所以本文采用以年末就业人数作为观测指标,指从事一定社会劳动并取得劳动报酬或经营收入的人员。
这一指标反映了一定时期全部劳动力资源的实际利用情况。
2、回归方程(1)各年度投入产出数据表1 我国主要投入产出年度数据及经济增长因素分析年份国生产总值GDP(亿元)资本K(亿元)劳动力L(万人)GDP发展速度(环比)GDP发展速度(环比)1990 18667.82 4517.001991 21781.50 5594.50 58360 116.68% 16.68% 1992 26923.48 8080.10 59432 123.61% 23.61% 1993 35333.92 13072.30 60220 131.24% 31.24% 1994 48197.86 17042.94 61470 136.41% 36.41% 1995 60793.73 20019.26 67947 126.13% 26.13% 1996 71176.59 22974.03 68850 117.08% 17.08% 1997 78973.03 13091.72 69600 110.95% 10.95% 1998 84402.28 15369.30 69957 106.87% 6.87% 1999 89677.05 29854.71 70586 106.25% 6.25% 2000 99214.55 32917.73 72085 110.64% 10.64% 2001 109655.17 37213.49 73025 110.52% 10.52% 2002 120332.69 43499.91 73740 109.74% 9.74% 2003 135822.76 55566.61 74432 112.87% 12.87% 2004 159878.34 70477.40 75200 117.71% 17.71%2005 183217.40 88773.60 75825 114.60% 14.60% 2006 211923.50 109998.20 76400 115.67% 15.67% 2007 257305.60 137323.90 76990 121.41% 21.41% 2008 300670.00 172828.4 77480 116.85% 16.85% 注:资料来源于中国历年统计年鉴。