最新中考数学选择填空最后一题汇总
中考数学填空选择最后一题
源-于-网-络-收-集中考填空选择习题不管是中考数学最后一题还是其他题,都一样的:从题目条件入手,一般来说最后一问可能会难一点,前两问尤其是第一问从条件出发稍微推理下就能得出答案。
做不出来时,再读一遍题目,留意给的每一个条件,就像我们从一个地方到另一个地方不知道具体的路怎么走,但是我们可以根据路边的提示慢慢的往前摸索,终究能到达终点。
如果题目条件不会运用,那就说明可能是你基础还有问题,初中知识点不是很多,把基础打牢,才能灵活运用。
要坚信:一分耕耘,一分收获! 1. 如图,在Rt ⊿ABC 中,AB=3,BC=4,∠ABC=90°,过B 作BA 1⊥AC ,过A 1作A 1B 1⊥BC ,得阴影Rt ⊿A 1B 1B ;再过B 1作B 1A 2⊥AC ,过A 2作A 2B 2⊥BC ,得阴影Rt ⊿A 2B 2B 1;……如此下去,请猜测这样得到的所有阴影三角形的面积之和为( ) 9A. 1625B. 9625C. 5441D. 96412. 如图△ABC 中,∠A CB =90°,BC =6 cm ,AC =8cm ,动点P 从A 出发,以2 cm / s 的速度沿AB 移动到B ,则点P 出发 s 时,△BCP 为等腰三角形.3.如图,Rt △ABC 的直角边BC 在x 轴正半轴上,斜边AC 上的中线BD的反向延长线交y 轴负半轴于点E,双曲线xky =(x >0)的图像经过点A ,若8=∆EBC S 则k =_____________4.【改编】如图,E 、F 分别是 ABCD 的边AB 、CD 上 的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD 15=2cm ,S△BQC 25=2cm ,则阴影部分的面积为 2cm 。
5. 如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE =60°,BD =3,CE =2,则△ABC 的面积为( )。
(完整版)九年级数学选择、填空压轴题训练(含答案),推荐文档
九年级数学综合训练一、选择题(本大题共9 小题,共27.0 分)1.如图,在平面直角坐标系中2 条直线为l1:y=-3x+3,l2:y=-3x+9,直线l1交x 轴于点A,交y 轴于点B,直线l2交x 轴于点D,过点B 作x 轴的平行线交l2于点C,点A、E 关于y 轴对称,抛物线y=ax2+bx+c 过E、B、C 三点,下列判断中:①a-b+c=0;②2a+b+c=5;③抛物线关于直线x=1 对称;④抛物线过点(b,c);⑤S 四边形ABCD=5,其中正确的个数有()A. 5B. 4C. 3D. 22.如图,10 个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32B.36C.38D.403.如图,直线y= ��x -6 分别交x 轴,y 轴于A,B,M 是反比例函数y=�(x>0)的图象上位于直线上方的一点,MC∥x 轴交AB 于C,MD⊥MC 交AB 于D,AC•BD=43,则k 的值为()A. ‒ 3B. ‒ 4C. ‒ 5D. ‒ 64.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为()(3,0) (2,0) (5,0) (3,0)A. 2B.C. 2D.5.如图,在矩形ABCD 中,AB<BC,E 为CD 边的中点,将△ADE 绕点E 顺时针旋转180°,点D 的对应点为C,点A 的对应点为F,过点E 作ME⊥AF 交BC 于点M,连接AM、BD 交于点N,现有下列结论:35 ①AM =AD +MC ;②AM =DE +BM ;③DE 2=AD •CM ;④点 N 为△ABM 的外心. 其中正确的个数为()A. 1 个B. 2 个C. 3 个D. 4 个6. 规定:如果关于 x 的一元二次方程 ax 2+bx +c =0(a ≠0)有两个实数根,且其中一个根是另一个根的 2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程 x 2+2x -8=0 是倍根方程;②若关于 x 的方程 x 2+ax +2=0 是倍根方程,则 a =±3;③若关于 x 的方程 ax 2-6ax +c =0(a ≠0)是倍根方程,则抛物线 y =ax 2-6ax +c 与 x 轴的公共点的坐标是 (2,0)和(4,0); 4 ④若点(m ,n )在反比例函数 y =x 的图象上,则关于 x 的方程 mx 2+5x +n =0 是倍根方程. 上述结论中正确的有( )A. ①②B. ③④C. ②③D. ②④7. 如图,六边形 ABCDEF 的内角都相等,∠DAB =60°,AB =DE ,则下列结论成立的个数是() ①AB ∥DE ;②EF ∥AD ∥BC ;③AF =CD ;④四边形 ACDF 是平行四边形;⑤六边形 ABCDEF 既是中心对称图形,又是轴对称图形.A. 2B. 3C. 4D. 58. 如图,在 Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A. 4B. 5C. 6D. 79. 如图,矩形 ABCD 中,AE ⊥BD 于点 E ,CF 平分∠BCD ,交 EA 的延长线于点 F ,且 BC =4,CD =2,给出下列结论:①∠BAE =∠CAD ;4②∠DBC =30°;③AE =5 5;④AF =2 ,其中正确结论的个数有( )A. 1 个B. 2 个C. 3 个D. 4 个二、填空题(本大题共 10 小题,共 30.0 分)10.如图,在Rt△ABC 中,∠BAC=30°,以直角边AB 为直径作半圆交AC 于点D,以AD 为边作等边△ADE,延长ED 交BC 于点F,BC=2 3,则图中阴影部分的面积为.(结果不取近似值)11.如图,在6×6 的网格内填入1 至6 的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a×c=.12.如图,正方形ABCD 中,BE=EF=FC,CG=2GD,BG 分别交AE,AF 于M,N.下列结论:4 �M 3 1①AF⊥BG;②BN=3NF;③M G=8;④S 四边形CGNF=2S 四边形ANGD.其中正确的结论的序号是.13.已知:如图,在△AOB 中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB 绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB 的交点D 恰好为AB 的中点,则线段B1D= cm.14.如图,边长为4 的正六边形ABCDEF 的中心与坐标原点O 重合,AF∥x 轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60°.当n=2017 时,顶点A 的坐标为.15.如图,在Rt△ABC 中,BC=2,∠BAC=30°,斜边AB 的两个端点分别在相互垂直的射线OM、ON 上滑动,下列结论:①若C、O 两点关于AB 对称,则OA=2 3;②C、O 两点距离的最大值为4;③若AB 平分CO,则AB⊥CO;�④斜边AB 的中点D 运动路径的长为2;其中正确的是(把你认为正确结论的序号都填上).16.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N(3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB=30°,要使PM+PN 最小,则点P 的坐标为.17.在一条笔直的公路上有A、B、C 三地,C 地位于A、B 两地之间,甲车从A地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地,在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km;③乙车出5发27h 时,两车相遇;④甲车到达C 地时,两车相距40km.其中正确的是(填写所有正确结论的序号).�18.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=x(x>0)的图象经过A,B 两点.若点A 的坐标为(n,1),则k 的值为.19.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(-1,1),B(0,-2),C(1,0),点P(0,2)绕点A 旋转180°得到点P1,点P1绕点B 旋转180°得到点P2,点P2绕点C 旋转180°得到点P3,点P3绕点A 旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为.答案和解析1.【答案】C【解析】解:∵直线l1:y=-3x+3 交x 轴于点A,交y 轴于点B,∴A(1,0),B(0,3),∵点A、E 关于y 轴对称,∴E(-1,0).∵直线l2:y=-3x+9 交x 轴于点D,过点B 作x 轴的平行线交l2 于点C,∴D(3,0),C 点纵坐标与B 点纵坐标相同都是3,把y=3 代入y=-3x+9,得3=-3x+9,解得x=2,∴C(2,3).∵抛物线y=ax2+bx+c 过E、B、C 三点,∴,解得,∴y=-x2+2x+3.①∵抛物线y=ax2+bx+c 过E(-1,0),∴a-b+c=0,故①正确;②∵a=-1,b=2,c=3,∴2a+b+c=-2+2+3=3≠5,故②错误;③∵抛物线过B(0,3),C(2,3)两点,∴对称轴是直线x=1,∴抛物线关于直线x=1 对称,故③正确;④∵b=2,c=3,抛物线过C(2,3)点,∴抛物线过点(b,c),故④正确;⑤∵直线l1∥l2,即AB∥CD,又BC∥AD,∴四边形ABCD 是平行四边形,∴S 四边形ABCD=BC•OB=2×3=6≠5,故⑤错误.综上可知,正确的结论有3个.故选:C.根据直线l1的解析式求出A(1,0),B(0,3),根据关于y 轴对称的两点坐标特征求出E(- 1,0).根据平行于x 轴的直线上任意两点纵坐标相同得出C 点纵坐标与B 点纵坐标相同都是3,再根据二次函数图象上点的坐标特征求出C(2,3).利用待定系数法求出抛物线的解析式为y=-x2+2x+3,进而判断各选项即可.本题考查了抛物线与x 轴的交点,一次函数、二次函数图象上点的坐标特征,关于y 轴对称的两点坐标特征,平行于x 轴的直线上任意两点坐标特征,待定系数法求抛物线的解析式,平行四边形的判定及面积公式,综合性较强,求出抛物线的解析式是解题的关键.2.【答案】D【解析】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1 取得最小值,则a8+a9 应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10 中不能有6,若a7=8、a10=10,则a4=10=a10,不符合题意,舍去;若a7=10、a10=8,则a4=12、a6=4+8=12,不符合题意,舍去;若a7=10、a10=12,则a4=10+2=12、a6=4+12=16、a2=12+6=18、a3=6+16=22、a1=18+22=40,符合题意;综上,a1的最小值为40,故选:D.由a1=a7+3(a8+a9)+a10 知要使a1 取得最小值,则a8+a9 应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10 中不能有6,据此对于a7、a8,分别取8、10、12 检验可得,从而得出答案.本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.3.【答案】A【解析】解:过点D 作DE⊥y 轴于点E,过点C 作CF⊥x 轴于点F,令x=0 代入y= x-6,∴y=-6,∴B(0,-6),∴OB=6,令y=0 代入y= x-6,∴x=2 ,∴(2 ,0),∴OA=2 ,∴勾股定理可知:AB=4 ,∴sin∠OAB= = ,cos∠OAB= =设M(x,y),∴CF=-y,ED=x,∴sin∠OAB= ,∴AC=- y,∵cos∠OAB=cos∠EDB= ,∴BD=2x,∵AC•BD=4,∴- y×2x=4 ,∴xy=-3,∵M 在反比例函数的图象上,∴k=xy=-3,故选(A)过点D 作DE⊥y 轴于点E,过点C 作CF⊥x 轴于点F,然后求出OA 与OB 的长度,即可求出∠OAB 的正弦值与余弦值,再设M(x,y),从而可表示出BD 与AC 的长度,根据AC•BD=4列出即可求出k 的值.本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB 的锐角三角函数值求出BD、AC,本题属于中等题型.4.【答案】C【解析】解:过点B 作BD⊥x 轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO 与△BCD 中,∴△ACO➴△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y= ,将B(3,1)代入y= ,∴k=3,∴y= ,∴把y=2 代入y= ,∴x= ,当顶点A 恰好落在该双曲线上时,此时点A 移动了个单位长度,∴C 也移动了个单位长度,此时点C 的对应点C′的坐标为(,0)故选:C.过点B 作BD⊥x 轴于点D,易证△ACO➴△BCD(AAS),从而可求出B 的坐标,进而可求出反比例函数的解析式,根据解析式与 A 的坐标即可得知平移的单位长度,从而求出 C 的对应点.本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.5.【答案】B【解析】解:∵E 为CD 边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE➴△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME 垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;如图,延长CB 至G,使得∠BAG=∠DAE,由AM=MF,AD∥BF,可得∠DAE=∠F=∠EAM,可设∠BAG=∠DAE=∠EAM=α,∠BAM=β,则∠AED=∠EAB=∠GAM=α+β,由∠BAG=∠DAE,∠ABG=∠ADE=90°,可得△ABG∽△ADE,∴∠G=∠AED=α+β,∴∠G=∠GAM,∴AM=GM=BG+BM,由△ABG∽△ADE,可得= ,而AB<BC=AD,∴BG<DE,∴BG+BM<DE+BM,即AM<DE+BM,∴AM=DE+BM 不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM 是△ABM 的❧➓圆的直径,∵BM<AD,∴当BM∥AD 时,= <1,∴N 不是AM 的中点,∴点N 不是△ABM 的❧心,故④错误.综上所述,正确的结论有2 个,故选:B.根据全等三角形的性质以及线段垂直平分线的性质,即可得出AM=MC+AD;根据△ABG∽△ ADE,且AB<BC,即可得出BG<DE,再根据AM=GM=BG+BM,即可得出AM=DE+BM 不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出EC2=CM×CF,据此可得DE2=AD•CM 成立;根据N 不是AM 的中点,可得点N 不是△ABM 的❧心.本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例进行推导,解题时注意:三角形❧➓圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的❧心,故❧心到三角形三个顶点的距离相等.6.【答案】C【解析】解:①由x2-2x-8=0,得(x-4)(x+2)=0,解得x1=4,x2=-2,∵x1≠2x2,或x2≠2x1,1 1 ∴方程 x 2-2x-8=0 不是倍根方程. 故①错误;②关于 x 的方程 x 2+ax+2=0 是倍根方程,∴设 x 2=2x 1,∴x 1•x 2=2x 2=2,∴x 1=±1,当 x 1=1 时 ,x 2=2,当 x 1=-1 时 ,x 2=-2,∴x 1+x 2=-a=±3,∴a=±3,故②正确;③关于 x 的方程 ax 2-6ax+c=0(a≠0)是倍根方程,∴x 2=2x 1,∵抛物线 y=ax 2-6ax+c 的对称轴是直线 x=3,∴抛物线 y=ax 2-6ax+c 与 x 轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m ,n )在反比例函数 y= 的图象上,∴mn=4,解 mx 2+5x+n=0 得 x 1=- ,x 2=- ,∴x 2=4x 1,∴关于 x 的方程 mx 2+5x+n=0 不是倍根方程;故选:C .①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设 x 2=2x 1,得到 x 1•x 2=2x 2=2,得到当 x 1=1 时,x 2=2,当 x 1=-1 时,x 2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y= 的图象上,得到mn=4,然后解方程mx2+5x+n=0 即可得到正确的结论;本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.7.【答案】D【解析】解:∵六边形ABCDEF 的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA 是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴AF=CD,故③正确,连➓CF 与AD 交于点O,连➓DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC 是平行四边形,故④正确,同法可证四边形AEDB 是平行四边形,∴AD 与CF,AD 与BE 互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF 既是中心对称图形,故⑤正确,故选D.根据六边形ABCDEF 的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【答案】D【解析】解:如图:故选:D.①以B 为圆心,BC 长为半径画弧,交AB 于点D,△BCD 就是等腰三角形;②以A 为圆心,AC 长为半径画弧,交AB 于点E,△ACE 就是等腰三角形;③以C 为圆心,BC 长为半径画弧,交AC 于点F,△BCF 就是等腰三角形;④以C 为圆心,BC 长为半径画弧,交AB 于点K,△BCK 就是等腰三角形;⑤作AB 的垂直平分线交AC 于G,则△AGB 是等腰三角形;➅作BC 的垂直平分线交AB 于I,则△BCI 和△ACI 是等腰三角形.本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.9.【答案】C【解析】解:在矩形ABCD 中,∵∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB,∵∠CAD=∠ADB,∴∠BAE=∠CAD,故①正确;∵BC=4,CD=2,∴tan∠DBC= = ,∴∠DBC≠30°,故②错误;∵BD= =2 ,∵AB=CD=2,AD=BC=4,∵△ABE∽△DBA,∴,即,∴AE= ;故③正确;∵CF 平分∠BCD,∴∠BCF=45°,∴∠ACF=45°-∠ACB,∵AD∥BC,∴∠DAC=∠BAE=∠ACB,∴∠EAC=90°-2∠ACB,∴∠EAC=2∠ACF,∵∠EAC=∠ACF+∠F,∴∠ACF=∠F,∴AF=AC,∵AC=BD=2 ,∴AF=2 ,故④正确;故选C.根据余角的性质得到∠BAE=∠ADB,等量代换得到∠BAE=∠CAD,故①正确;根据三角函数的定义得到tan∠DBC= = ,于是得到∠DBC≠30°,故②错误;由勾股定理得到BD==2 ,根据相似三角形的性质得到AE= ;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°-∠ACB,推出∠EAC=2∠ACF,根据❧角的性质得到∠EAC=∠ACF+∠F,得到∠ACF=∠F,根据等腰三角形的判定得到AF=AC,于是得到AF=2 ,故④正确.本题考查了矩形的性质,相似三角形的判定和性质,三角形的❧角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.10.【答案】3【解析】3 3-2π解:如图所示:设半圆的圆心为O,连➓DO,过D 作DG⊥AB 于点G,过D 作DN⊥CB 于点N,∵在Rt△ABC 中,∠BAC=30°,∴∠ACB=60°,∠ABC=90°,∵以AD 为边作等边△ADE,∴∠EAD=60°,∴∠EAB=60°+30°=90°,可得:AE∥BC,则△ADE∽△CDF,∴△CDF 是等边三角形,∵在Rt△ABC 中,∠BAC=30°,BC=2 ,∴AC=4 ,AB=6,∠DOG=60°,则AO=BO=3,故DG=DO•sin60°=,则AD=3 ,DC=AC-AD= ,故DN=DC•sin60°=×= ,则S 阴影=S△ABC-S△AOD-S 扇形DOB-S△DCF= ×2 ×6- ×3×- - × ×=3 - π.故答案为:3 - π.根据题意结合等边三角形的性质分别得出AB,AC,AD,DC 的长,进而利用S 阴影=S△ABC-S△AOD-S 扇形DOB-S△DCF 求出答案.此题主要考查了扇形面积求法以及等边三角形的性质和锐角三角函数关系等知识,正确分割图形是解题关键.11.【答案】2【解析】解:对各个小宫格编号如下:先看己:已经有了数字3、5、6,缺少1、2、4;观察发现:4 不能在第四列,2 不能在第五列,而2 不能在第六列;所以2 只能在第六行第四列,即a=2;则b 和c 有一个是1,有一个是4,不确定,如下:观察上图发现:第四列已经有数字2、3、4、6,缺少1 和5,由于5 不能在第二行,所以5 在第四行,那么1 在第二行;如下:再看乙部分:已经有了数字1、2、3,缺少数字4、5、6,观察上图发现:5 不能在第六列,所以5在第五列的第一行;4 和6 在第六列的第一行和第二行,不确定,分两种情况:①当4 在第一行时,6 在第二行;那么第二行第二列就是4,如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2 不能在第三列,所以2 在第二列,则6 在第三列的第一行,如下:观察上图可知:第三列少1 和4,4 不能在第三行,所以4 在第五行,则1 在第三行,如下:观察上图可知:第五行缺少1 和2,1 不能在第1 列,所以1 在第五列,则2 在第一列,即c=1,所以b=4,如下:观察上图可知:第六列缺少1 和2,1 不能在第三行,则在第四行,所以2 在第三行,如下:再看戊部分:已经有了数字2、3、4、5,缺少数字1、6,观察上图发现:1 不能在第一列,所以1 在第二列,则6 在第一列,如下:观察上图可知:第一列缺少3 和4,4 不能在第三行,所以4 在第四行,则3 在第三行,如下:观察上图可知:第二列缺少5 和6,5 不能在第四行,所以5 在第三行,则6 在第四行,如下:观察上图可知:第三行第五列少6,第四行第五列少3,如下:所以,a=2,c=1,ac=2;②当6 在第一行,4 在第二行时,那么第二行第二列就是6,如下:再看甲部分:已经有了数字1、3、5、6,缺少数字2、4,观察上图发现:2 不能在第三列,所以2 在第2 列,4 在第三列,如下:观察上图可知:第三列缺少数字1 和6,6 不能在第五行,所以6 在第三行,则1 在第五行,所以c=4,b=1,如下:观察上图可知:第五列缺少数字3 和6,6 不能在第三行,所以6 在第四行,则3 在第三行,如下:观察上图可知:第六列缺少数字1 和2,2 不能在第四行,所以2 在第三行,则1 在第四行,如下:观察上图可知:第三行缺少数字1 和5,1 和5 都不能在第一列,所以此种情况不成立;综上所述:a=2,c=1,a×c=2;故答案为:2.粗线把这个数独分成了6 块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.本题是六阶数独,比较复杂,关键是找出突破口,先推算出一个区域或者一行、一列,再逐步的进行推算.12.【答案】①③【解析】解:①∵四边形ABCD 为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF 和△BCG 中,,∴△ABF➴△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF 和△BCG 中,,∴△BNF∽△BCG,∴ = = ,∴BN= NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF= = ,∵S△ABF= AF•BN=AB•BF,∴BN= ,NF= BN= ,∴AN=AF-NF= ,∵E 是BF 中点,∴EH 是△BFN 的中位线,∴EH= ,NH= ,BN∥EH,∴AH= , = ,解得:MN= ,∴BM=BN-MN= ,MG=BG-BM= ,∴ = ;③正确;④连➓AG,FG,根据③中结论,则NG=BG-BN= ,∵S 四边形CGNF=S△CFG+S△GNF= CG•CF+NF•NG=1+= ,S 四边形ANGD=S△ANG+S△ADG= AN•GN+AD•DG= + = ,∴S 四边形CGNF≠S 四边形ANGD,④错误;故答案为①③.①易证△ABF➴△BCG,即可解题;②易证△BNF∽△BCG,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM 的值,即可解题;④连➓AG,FG,根据③中结论即可求得S 四边形CGNF 和S 四边形ANGD,即可解题.本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边成比例的性质,本题中令AB=3 求得AN,BN,NG,NF 的值是解题的关键.13.【答案】1.5【解析】解:∵在△AOB 中,∠AOB=90°,AO=3cm,BO=4cm,∴AB= =5cm,∵点D 为AB 的中点,∴OD= AB=2.5cm.∵将△AOB 绕顶点O,按顺时针方向旋转到△A1OB1 处,∴OB1=OB=4cm,∴B1D=OB1-OD=1.5cm.故答案为1.5.先在直角△AOB 中利用勾股定理求出AB= =5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD= AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1-OD=1.5cm.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理.14.【答案】(2,2 3)【解析】解:2017×60°÷360°=336…1,即与正六边形ABCDEF 绕原点O 顺时针旋转1 次时点A 的坐标是一样的.当点A 按顺时针旋转60°时,与原F 点重合.连➓OF,过点F 作FH⊥x 轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF 是等边三角形,∴OF=EF=4,∴F(2,2 ),即旋转2017 后点A 的坐标是(2,2 ),故答案是:(2,2 ).将正六边形ABCDEF 绕原点O 顺时针旋转2017 次时,点A 所在的位置就是原F 点所在的位置.此题主要考查了正六边形的性质,坐标与图形的性质-旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.15.【答案】①②③【解析】解:在Rt△ABC 中,∵BC=2,∠BAC=30°,∴AB=4,AC= =2 ,①若C、O 两点关于AB 对称,如图1,∴AB 是OC 的垂直平分线,则OA=AC=2 ;所以①正确;②如图1,取AB 的中点为E,连➓OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE= AB=2,当OC 经过点E 时,OC 最大,则C、O 两点距离的最大值为4;所以②正确;③如图2,同理取AB 的中点E,则OE=CE,∵AB 平分CO,∴OF=CF,∴AB⊥OC,所以③正确;④如图3,斜边AB 的中点D 运动路径是:以O 为圆心,以2 为半径的圆周的,则:=π.所以④不正确;综上所述,本题正确的有:①②③;故答案为:①②③.①先根据直角三角形30°的性质和勾股定理分别求AC 和AB,由对称的性质可知:AB 是OC 的垂直平分线,所以OA=AC;②当OC 经过AB 的中点E 时,OC 最大,则C、O 两点距离的最大值为4;③如图2,根据等腰三角形三线合一可知:AB⊥OC;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.3 316.【答案】(2, 2 )【解析】解:作N 关于OA 的对称点N′,连➓N′M 交OA 于P,则此时,PM+PN 最小,∵OA 垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M 是ON 的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M 是ON 的中点,∴OM=1.5,∴PM= ,∴P(,).故答案为:(,).作N 关于OA 的对称点N′,连➓N′M 交OA 于P,则此时,PM+PN 最小,由作图得到ON=ON′,∠N′ON=2∠AON=60°,求得△NON′是等边三角形,根据等边三角形的性质得到N′M⊥ON,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P 的位置.17.【答案】②③④【解析】解:①观察函数图象可知,当t=2 时,两函数图象相交,∵C 地位于A、B 两地之间,∴交点代表了两车离C 地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5-1)=80(km/h),∵(240+200-60-170)÷(60+80)=1.5(h),∴乙车出发1.5h 时,两车相距170km,结论②正确;③∵(240+200-60)÷(60+80)=2 (h),∴乙车出发2 h 时,两车相遇,结论③正确;④∵80×(4-3.5)=40(km),∴甲车到达C 地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.①观察函数图象可知,当t=2 时,两函数图象相交,结合交点代表的意义,即可得出结论①错误;②根据速度=路程÷时间分别求出甲、乙两车的速度,再根据时间=路程÷速度和可求出乙车出发1.5h 时,两车相距170km,结论②正确;③根据时间=路程÷速度和可求出乙车出发2 h 时,两车相遇,结论③正确;④结合函数图象可知当甲到C 地时,乙车离开C 地0.5 小时,根据路程=速度×时间,即可得出结论④正确.综上即可得出结论.本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.18.【答案】【解析】5 ‒ 1 2解:作AE⊥x 轴于E,BF⊥x 轴于F,过B 点作BC⊥y 轴于C,交AE 于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB ,在△AOE 和△BAG 中,,∴△AOE ➴△BAG (AAS ),∴OE=AG ,AE=BG ,∵点 A (n ,1),∴AG=OE=n ,BG=AE=1,∴B (n+1,1-n ),∴k=n×1=(n+1)(1-n ),整理得:n 2+n-1=0,解得:n= ∴n=,(负值舍去), ∴k=故答案为: ;.作 AE ⊥x 轴于 E ,BF ⊥x 轴于 F ,过 B 点作 BC ⊥y 轴于 C ,交 AE 于 G ,则 AG ⊥BC ,先求得△ AOE ➴△BAG ,得出 AG=OE=n ,BG=AE=1,从而求得 B (n+1,1-n ),根据 k=n×1=(n+1)(1-n )得出方程,解方程即可.本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.19.【答案】(-2,0)【解析】解:如图所示,P 1(-2,0),P 2(2,-4),P 3(0,4),P 4(-2,-2),P 5(2,-2),P 6(0,2),发现 6 次一个循环,∵2017÷6=336…1,∴点 P 2017 的坐标与 P 1 的坐标相同,即 P 2017(-2,0),故答案为(-2,0).画出P1~P6,寻找规律后即可解决问题.本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
最新中考数学选择填空最后一题汇总
欢迎来主页下载---精品文档12.如图,点A 、B 、C 、D 在一次函数y 二-2x 的图象上,它们的横坐标依次为 -1、1、2,分别过这 些点作x 轴与y 轴的垂线,则图中阴影部分的面积这和是冷一2)2第3个数:丄一U+Ti卄(-1厂「1" [十1厂4 12丿 <3丿< 4丿 <5丿 < 6丿那么,在第A .第10个数B .第11个数C .第12个数10、如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中, 事中,从乌鸦看到瓶的那刻起开始计时并设时间为18、若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边 形的一个最小内角是 __________________ 度。
10. 如图,等腰△ ABC 中,底边BC 二a , - A =36 , - ABC 的平分线交 AC 于D , - BCD 的平分线交 BD18.如图,O A 、O B B 同时沿直线I 以每秒 时,O A 运动的时间为 的圆心A 、B 在直线I 2cm 的速度相向移动, 秒&下面是按一定规律排列的一列数: 1 f —1 )—- 1 - 2 . 21 f -1)--1 +——I 3 12丿 第i 个数:第2个数: 1曰3(第18题)圆相切『1+(-1厂 III俨(-1严〕1 2丿<3丿 < 4丿< 2n 丿第n 个数:水位上升后,乌鸦喝到了水。
在这则乌鸦喝水的故 x ,瓶中水位的高度为 y ,下列图象中最符合故事情景的是:B上,两圆半径都为 1cm ,开始时圆心距 AB=4cm ,现O A 、O 则当两 10个数、第11个数、第12个数、第13个数中,最大的数是() D .第13个数 A 10.D 12、B 18、8欢迎来主页下载---精品文档于E ,设k 二善1,则DE = ( ▲16.如图,在直角坐标系中,已知点 A (七,0) , B (0,4),对△ OAB 连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为▲.12•已知图中的每个小方格都是边长为 一条抛物线,问所画的抛物线最多能经过 A . 6B . 7C . 818、30 10. A 16 . (36,0)12、C18.如图,已知Rt A ABC , D 1是斜边AB 的中点, 过D 1作D 1E 1丄AC 于E 1,连结BE 1交CD 1于D ?; 过D ?作D 2E 2丄AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3丄AC 于E 3 ,…,如此继续,可以依次得到点D 4, D 5 ,…,D n ,分别记△ BD 1E 1,A BD Q E Q A BD 3E 3,…,△ BD n E n 的面积为 S , S ?, &,…S ..则&= _______________ S ^ABC (用含 n的代数式表示)1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画 81个格点中的多少个?( )BCXgill ■—1012>• ■IM—17 '7-277nt*A.只有一个交点B-荷阳个愛点‘宜它幻廿别往y输阳海C炳闊个交点.且它D.无交点10、如图4,矩形纸片ABCD中,AB=4 , AD=3,折叠纸片使AD边与重合,折痕为DG,则AG的长为( )对角线BD10.若不等式组f x亠a》0, 一{ 有解,则a的取值范围是()1 -2x x -2(A) a >—1.18.如图,正方形ABCD边长为1, 程为2009时,点P所在位置为_ 数n的式子表示).(C)a < 1. (D)a v 1.动点P从A点出发,沿正方形的边按逆时针方向运动,当它的运动路—;当点P所在位置为D点时,点P的运动路程为 ___________ (用含自然118. 2 10、C10、c10、A18 .点B; 4n + 3(录入者注:填4n —1(n 为正整数)10、(卄1)10.如图,已知△ ABC中,/ ABC=90 °AB=BC,三角形的顶点在相互平行的三条直线l i, I2, b上,且l i, 12之间的距离为2 , 12, 13之间的距离为3 ,则AC的长是 A . 2、17 B. 2.5 C. 4..2 D. 71,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为丄的正三角2形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的1 )后,得图③,④,…,记第n(n > 3)块纸板的周长为P n,则P n-P n-1= ▲16.如图,图①是一块边长为欢迎来主页下载---精品文档10,帳据下吏中的二次甬也的自变金K与函败> 的对应值’可揖亦二次歯敵的啊第与盂柚第18题图1i欢迎来主页下载---精品文档C 第18题图12 .在平面直角坐标系中,对于平面内任一点 a, b ,若规定以下三种变换:① f a , b = —a, b •如,f 〔3 二 一13 ; ② g a, b = b, a .如,g 13 = 3,1 ; ③ h a , b = -a, -b .如,h 1, - -1, -3 .按照以上变换有:f g2,-3二f -3,2 = 3,2,那么f h5,3等于()A. (-5,-3)B . (5,3) C. (5,-3)D . ( -5,3)416. i -10、B 16、3 n 18. 12; 12、B212•如图,△ ABC 和的△ DEF 是等腰直角三角形,・C-F=90: , AB = 2, DE = 4 •点B 与点D 重合,点A, (D ), E 在同一条直线上,将厶ABC 沿D > E 方向平移,至点A 与点E 重合时停止.设 点B , D 之间的距离为x , △ ABC 与厶DEF 重叠部分的面积为 y ,则准确反映y 与x 之间对应关系的图 象是()10、如图5, AB 是O O 的直径,且 AB=10,弦MN 的长为8,若弦 端在圆上滑动时,始终与 AB 相交,记点A 、B 到MN 的距离分别为 ①,h 2,则h 2|等于( )6 8 MN 的两P i (x i , 16、如图7所示, (x >0)的图象上, l A n都在X 轴上,y i )、P 2 (X 2, y 2), ..... P n ( X n , y n )在函△ OP 1A 1 , △ P 2A 1A 2, △ P 3A 2A 3 △ P n A都是等腰直角三角形,斜边 OA i , 9y=—x 贝V y i +y 2+ …y n =A 1A 2An-l A n ,18.如图,已知点A 、B 在双曲线y=— ( x > 0)上,AC 丄x 轴于点xBD 丄y 轴于点D , AC 与BD 交于点P , P 是AC 的中点,若△ ABD 为3,则k =MABNn 图7A1y3的 P欢迎来主页下载---精品文档交L 。
2022届天津市中考数学考前最后一卷及答案解析
2022届天津市中考数学考前最后一卷一、选择题(本大题共12小题,每小题3分:共36分,在每小题给出的四个途项中,只有一项是符合题区要求的)1.计算(﹣18)÷9的值是()A.﹣27B.﹣9C.﹣2D.22.tan60°的值为()A.33B.23C.3D.23.下列图形中,可以看作中心对称图形的是()A.B.C.D.4.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为()A.0.8×1011B.8×1010C.80×109D.800×108 5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.估计40的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.计算2K1−a﹣1的结果为()A.1B.﹣1C.1K1D.22+1K18.方程x(x﹣2)+x﹣2=0的解是()A.x1=0,x2=0B.x1=﹣1,x2=﹣2C.x1=﹣1,x2=2D.x1=0,x2=﹣29.如图,△ABC纸片中,∠A=56°,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD、则∠EDB的度数为()A.76°B.74°C.72°D.70°10.如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM=4,AB =6,则BD的长为()A.4B.5C.8D.10 11.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=1的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3 12.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c =4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分13.计算(2a)3的结果等于.14.计算(3+2)2的结果等于.15.掷两枚质地均匀的骰子,两次出现的点数相同的概率是.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是(写出一个即可).17.如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH的长为.18.如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点.(Ⅰ)MN的长等于.(Ⅱ)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎样画的.(不要求证明).三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.(8分)解不等式组2≥−1①−3(−2)≥4②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.(8分)某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生成绩(单位:分),得到如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图中m的值为;(Ⅱ)求这40个样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生.21.(10分)已知PA与⊙O相切于点A,B、C是⊙O上的两点.(Ⅰ)如图①,PB与⊙O相切于点B,AC是⊙O的直径,若∠BAC=25°;求∠P的大小;(Ⅱ)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小.22.(10分)如图,某校数学兴趣小组要测量大楼AB的高度.他们在点C处测得楼顶B的仰角为30°,再往大楼AB方向前进至点D处测得楼顶B的仰角为48°,CD=96m,其中点A、D、C在同一直线上.求AD的长和大楼AB的高度(结果精确到1m).参考数据:sin48°=0.74,cos48°=0.67,tan48°=1.11.3=1.73.23.(10分)某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表).收费方式月使用费/元包月上网时间/h超时费/(元/min)A30250.05B50500.05设月上网时间为xh(x为非负整数),请根据表中提供的信息回答下列问题:(Ⅰ)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x 的函数关系式;(Ⅱ)当35<x<50时,选取哪种方式能节省上网费?请说明理由.24.(10分)如图(1),在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合.连接OD,PD,得△ABD.(Ⅰ)当t=3时,求DP的长;(Ⅱ)在点P运动过程中,依照条件所形成的△OPD面积为S.①求t>0时,求S与②当t≤0时,要使S=P的坐标.25.(10分)已知抛物线y=ax2+bx+3的开口向上,顶点为P.(Ⅰ)若P点坐标为(4,1),求抛物线的解析式;(Ⅱ)若此抛物线经过(4,﹣1),当﹣1≤x≤2时,求y的取值范围(用含a的代数式表示);(Ⅲ)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值.2022届天津市中考数学考前最后一卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分:共36分,在每小题给出的四个途项中,只有一项是符合题区要求的)1.计算(﹣18)÷9的值是()A.﹣27B.﹣9C.﹣2D.2【解答】解:(﹣18)÷9=﹣2.故选:C.2.tan60°的值为()A.33B.23C.3D.2【解答】解:tan60°=3.故选:C.3.下列图形中,可以看作中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.4.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为()A.0.8×1011B.8×1010C.80×109D.800×108【解答】解:将800亿用科学记数法表示为:8×1010.故选:B.5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:A.6.估计40的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【解答】解:∵36<40<49,即6<40<7,故选:C.7.计算2K1−a﹣1的结果为()A.1B.﹣1C.1K1D.22+1K1【解答】解:原式=2K1−(r1)(K1)K1=1K1故选:C.8.方程x(x﹣2)+x﹣2=0的解是()A.x1=0,x2=0B.x1=﹣1,x2=﹣2C.x1=﹣1,x2=2D.x1=0,x2=﹣2【解答】解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故选:C.9.如图,△ABC纸片中,∠A=56°,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD、则∠EDB的度数为()A.76°B.74°C.72°D.70°【解答】解:∵∠A=56°,∠C=88°,∴∠ABC=180°﹣56°﹣88°=36°,∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,∴∠EDB=180°﹣18°﹣88°=74°.故选:B.10.如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM=4,AB =6,则BD的长为()A.4B.5C.8D.10【解答】解:∵矩形ABCD的对角线AC,BD相交于点O,∴∠BAD=90°,点O是线段BD的中点,∵点M是AB的中点,∴OM是△ABD的中位线,∴AD=2OM=8.∴在直角△ABD中,由勾股定理知:BD=B2+B2=82+62=10.故选:D.11.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=1的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3【解答】解:∵反比例函数y=1中,k=1>0,∴此函数图象的两个分支在一、三象限,∵x1<x2<0<x3,∴A、B在第三象限,点C在第一象限,∴y1<0,y2<0,y3>0,∵在第三象限y随x的增大而减小,∴y1>y2,∴y2<y1<y3.故选:D.12.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c =4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个B.3个C.2个D.1个【解答】解:由图象可知,抛物线开口向下,则a<0,c>0∵抛物线的顶点坐标是A(1,4)∴抛物线对称轴为直线x=−2=1∴b=﹣2a∴b>0,则①错误,②正确;方程ax2+bx+c=4方程的解,可以看做直线y=4与抛物线y=ax2+bx+c的交点的横坐标.由图象可知,直线y=4经过抛物线顶点,则直线y=4与抛物线有且只有一个交点.则方程ax2+bx+c=4有两个相等的实数根,③正确;由抛物线对称性,抛物线与x轴的另一个交点是(﹣1.0)则④错误;不等式x(ax+b)≤a+b可以化为ax2+bx+c≤a+b+c∵抛物线顶点为(1,4)∴当x=1时,y=a+b+c最大∴ax2+bx+c≤a+b+c故⑤正确故选:B.二、填空题(本大题共6小题,每小题3分,共18分13.计算(2a)3的结果等于8a3.【解答】解:(2a)3=8a3.故答案为:8a3.14.计算(3+2)2【解答】解:(3+2)2=3+43+4=7+43,故答案为:7+43.15.掷两枚质地均匀的骰子,两次出现的点数相同的概率是16.【解答】解:列表得:∴一共有36种情况,两个骰子的点数相同的有6种情况,∴这两个骰子的点数相同的概率=636=16.故答案为16.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是﹣1(写出一个即可).【解答】解:∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,∴k<0,b<0.故答案为:﹣1.17.如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH【解答】解:如图,连接AC、CF,∵菱形ABCD和菱形CEFG中,BC=1,CE=3,∠ABC=60°,∴AC=BC=1,CF=33,∠ACD=60°,∠GCF=30°,∴∠ACF=90°,由勾股定理得,AF=B2+B2=27,∵H是AF的中点,∴CH=12AF=12×27=7.故答案为:7.18.如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点.(Ⅰ)MN(Ⅱ)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎样画的.(不要求证明)取格点S,T,得点R;取格点A,B,得点E,连接ER交MN于点Q.【解答】解:(1)MN=32+52=34,(2)取格点S,T,得点R;取格点A,B,得点E,连接ER交MN于点Q.则点Q即为所求.故答案为:34;取格点S,T,得点R;取格点A,B,得点E,连接ER交MN于点Q.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.(8分)解不等式组2≥−1①−3(−2)≥4②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x≤1;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣1≤x≤1..【解答】解:2≥−1①−3(−2)≥4②解不等式①,得x≥﹣1;解不等式②,得x≤1;原不等式组的解集为﹣1≤x≤1,不等式组的解集在数轴上表示出来为:故答案为:x≥﹣1;x≤1;﹣1≤x≤1.20.(8分)某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生成绩(单位:分),得到如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图中m的值为25;(Ⅱ)求这40个样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生.【解答】解:(Ⅰ)m%=10÷40×100%=25%,故答案为:25;(Ⅱ)=4×26+8×27+12×28+10×29+6×3040=28.15,众数是28,中位数是28;(Ⅲ)2000×640=300(名),答:该中学九年级2000名学生中,体育测试成绩得满分的大约有300名学生.21.(10分)已知PA与⊙O相切于点A,B、C是⊙O上的两点.(Ⅰ)如图①,PB与⊙O相切于点B,AC是⊙O的直径,若∠BAC=25°;求∠P的大小;(Ⅱ)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小.【解答】解:(Ⅰ)连接OB,∵PA,PB与⊙O相切于点A,B,∴PA=PB,∠PAO=∠PBO=90°,∴∠PAB=∠PBA,∵∠BAC=25°,∴∠PBA=90°﹣∠BAC=65°,∴∠P=180°﹣65°×2=50°;(Ⅱ)连接AB、AD,∵∠ACB=90°,∴AB为⊙O的直径,∴∠ADB=90°,∵PD=DB,∴AP=AB,∵PA与⊙O相切于点A,∴BA⊥AP,∴∠P=∠ABP=45°.22.(10分)如图,某校数学兴趣小组要测量大楼AB的高度.他们在点C处测得楼顶B的仰角为30°,再往大楼AB方向前进至点D处测得楼顶B的仰角为48°,CD=96m,其中点A、D、C在同一直线上.求AD的长和大楼AB的高度(结果精确到1m).参考数据:sin48°=0.74,cos48°=0.67,tan48°=1.11.3=1.73.【解答】解:设大楼AB的高度为xm,在Rt△ABC中,∵∠C=30°,∠BAC=90°,∴AC=B Bz0°=3AB=3xm,在Rt△ABD中,tan∠ADB=tan48°=B B,∴AD=B BA8°=1.11m,∵CD=AC﹣AD,CD=96m,∴3x−1.11=96,解得:x≈116,AD=AB÷tan48°≈105m.答:AD的长为105m,大楼AB的高度约为116m.23.(10分)某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表).收费方式月使用费/元包月上网时间/h超时费/(元/min)A30250.05B50500.05设月上网时间为xh(x为非负整数),请根据表中提供的信息回答下列问题:(Ⅰ)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x 的函数关系式;(Ⅱ)当35<x<50时,选取哪种方式能节省上网费?请说明理由.【解答】解:(Ⅰ)方案A的收费:①当0≤x≤25时,y1=30;②当x>25时,y1=30+0.05×60×(x﹣25),即y1=3x﹣45;方案B的收费:①当0≤x≤50时,y2=50;②当x>50时,y2=50+0.05×60×(x﹣50),即y2=3x﹣100;(Ⅱ)当35<x<50时,选取方式B能节省上网费,理由如下:∵当35<x<50时,y1=3x﹣45,y2=50,∴y1﹣y2=3x﹣45﹣50=3x﹣95,记y=3x﹣95.∵3>0,∴y随x的增大而增大,又x=35时,y=10,∴当35<x<50时,y>10,∴y1>y2,∴当35<x<50时,选取方式B能节省上网费.24.(10分)如图(1),在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合.连接OD,PD,得△ABD.(Ⅰ)当t=3时,求DP的长;(Ⅱ)在点P运动过程中,依照条件所形成的△OPD面积为S.①求t>0时,求S与②当t≤0时,要使S=P的坐标.【解答】解:(Ⅰ)∵A(0,4),∴OA=4,∵P(t,0),∴OP=t,∵△ABD是由△AOP旋转得到,∴△ABD≌△AOP,∴AP=AD,∠DAB=∠PAO,∴∠DAP=∠BAO=60°,∴△ADP是等边三角形,∴DP=AP,∵t=3,∴OP=3,∴DP=AP=B2+B2=19;(Ⅱ)①当t>0时,如图1,BD=OP=t,过点B,D分别作x轴的垂线,垂足于F,H,过点B作x轴的平行线,分别交y轴于点P,交DH于点G,∵△OAB为等边三角形,BP⊥y轴,∴∠ABP=30°,AP=OP=2,∵∠ABD=90°,∴∠DBG=60°,∴DG=BD•sin60°=,∵GH=OP=2,∴DH=2,∴S=12t(2)=2+t(t>0);②当t≤0时,分两种情况:∵点D在x轴上时,如图2在Rt△ABD中,BD=OP=i、当t≤0时,如图3,BD=OP=﹣t,BG,∴DH=GF=BF﹣BG=2﹣()=2+,∴−12t(2)=∴t=−t=−3,∴P(0)或(−3,0),ii、当t≤−4,BD=OP=﹣t,DG=−,∴DH﹣2,∴12(﹣t)(﹣2)=∴t=21−233t=,∴P(−21−233,0).25.(10分)已知抛物线y=ax2+bx+3的开口向上,顶点为P.(Ⅰ)若P点坐标为(4,1),求抛物线的解析式;(Ⅱ)若此抛物线经过(4,﹣1),当﹣1≤x≤2时,求y的取值范围(用含a的代数式表示);(Ⅲ)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值.【解答】解:(I)∵抛物线y=ax2+bx+3的顶点P的坐标是(4,1),∴y=a(x﹣4)2+1=ax2﹣8ax+16a+1,即16a+1=3,解得:a=18,∴抛物线的解析式是y=18x2﹣x+3;(II)∵开口向上∴a>0∵此抛物线经过(4,﹣1),∴﹣1=16a+4b+3,即b=﹣4a﹣1,抛物线的对称轴是直线x=4r12=2+12>2,∴当﹣1≤x≤2时,y随着x的增大而减小,当x=﹣1时,y=a+(4a+1)+3=4+5a,当x=2时,y=4a﹣2(4a+1)+3=1﹣4a,∴当﹣1≤x≤2时,y的取值范围是1﹣4a≤y≤4+5a;(III)∵当a=1时,抛物线的解析式为y=x2+bx+3,∴抛物线的对称轴是直线x=−2,由抛物线图象可知:仅当x=0,x=1或x=−2时,抛物线的点可能离x轴最远.分别代入可得,当x=0时,y=3;当x=1时,y=b+4;当x=−2时,y=−24+3≤3①当−2<0,即b>0时,3≤y≤b+4,则b+4=6解得b=2②当0≤−2≤1,即﹣2≤b≤0时,△=b2﹣12<0,则抛物线与x轴无公共点,且b+4=6解得b=2>1,故舍去③当−2>1,即b<﹣2时,b+4≤y≤3,由b+4=﹣6解得b=﹣10∴终上所述,b=2或﹣10。
中考数学总复习《选择、填空题》专项练习题含有答案
中考数学总复习《选择、填空题》专项练习题含有答案(测试时间:30分钟;总分:45分)一、选择题(每小题3分,共30分) 1. -14的相反数是( )A. -14B. 14C. -4D. 42. 下列图形中,既是轴对称图形,又是中心对称图形的是( )3. 不等式组的解集在数轴上表示为( )4. 下列几何体是由大小相同的小正方体组成,其中主视图和俯视图相同的是( )5. 如图,四个长和宽分别为x +2和x 的矩形拼接成大正方形.若四个矩形和中间小正方形的面积和为4×35+22,则根据题意能列出的方程是( )A. x 2+2x -35=0B. x 2+2x +35=0C. x 2+2x -4=0D. x 2+2x +4=0 第5题图24030x x -<⎧⎨+≥⎩6. 如图,一次函数y 1=-x +1与反比例函数y 2=-2x 的图象都经过A ,B 两点,则当y 1<y 2时,x 的取值范围是( )A. x <-1B. x <-1或0<x <2C. -1<x <2D. -1<x <0或x >2 第6题图7. 某校的5名同学在“国学经典诵读”比赛中,成绩(分)分别是93,96,91,93,87,关于这组数据,下列说法正确的是( )A. 平均数是92.5B. 中位数是91C. 众数是93D. 方差是08. 在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( )A. y =-xB. y =x +2C. y =2xD. y =x 2-2x9. 如图,在▱ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若AE =20,CE =15,CF =7,AF =24,则BE 的长为( )A. 10B. 254C. 15D. 252第9题图10. 如图,Rt △ABC 中,∠C =90°,AC =6,BC =8,以点A 为圆心,BC 的长为半径作弧交AB 于点D ,再分别以点A ,D 为圆心,AB ,AC 的长为半径作弧交于点E ,连接AE ,DE ,若点F 为AE 的中点,则DF 的长为( )A. 4B. 5C. 6D. 8 第10题图 二、填空题(每小题3分,共15分)11. 对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________.12. 方程x 2x -4-12-x=1的解为________.13. 2020年6月21日,第二届全球文旅创作者大会在河南省云台山举行,现从2位文旅大咖,2位文旅创作者中随机抽取2人分享经验,则抽取的2人中,一位是文旅大咖,一位是文旅创作者的概率是________.14. 如图,在扇形OAB 中,∠AOB =90°,C 是OA 的中点,D 是AB ︵的中点,连接CD 、C B.若OA =2,则阴影部分的面积为________.(结果保留π)第14题图15. 如图,已知Rt △ABC 中,∠C =90°,AC =4,AB =a ,点M 在边AB 上,且AM =14a ,点N 是AC上一动点,将△AMN 沿MN 折叠,使点A 的对应点A ′恰好落在BC 上,若△BMA ′是直角三角形,则a 的值为________.第15题图参考答案1. B2. D 【解析】逐项分析如下:3. C 【解析】⎩⎪⎨⎪⎧2x -4<0①x +3≥0②,解不等式①,得x <2,解不等式②,得x ≥-3,∴不等式组的解集为-3≤x <2,表示在数轴上如选项C .4. C 【解析】逐项分析如下:5. A 【解析】依题意,得(x +x +2)2=4×35+22,即x 2+2x -35=0.6. D 【解析】联立⎩⎪⎨⎪⎧y =-x +1y =-2x ,解得⎩⎪⎨⎪⎧x =-1y =2或⎩⎪⎨⎪⎧x =2y =-1.∴A (-1,2),B (2,-1),y 1<y 2即一次函数的图象在反比例函数图象的下方,结合题图可知,当y 1<y 2时,x 的取值范围是-1<x <0或x >2.7. C 【解析】这组数据的平均数=15×(93+96+91+93+87)=92(分),∴A 选项错误;这组数据按从小到大的顺序排列为:87、91、93、93、96,∴这组数据的中位数为93分,∴B 选项错误;∵93出现的次数最多,∴这组数据的众数为93分,∴C 选项正确;∵这组数据有变化,∴方差不为0,∴D 选项错误.8. B 【解析】根据“好点”的定义,好点即为直线y =x 上的点,令各函数中y =x ,x =-x ,解得x =0,即“好点”为(0,0),故A 选项不符合;x =x +2,无解,即该函数图象中不存在“好点”,故B 选项符合;x =2x ,解得x =±2,经检验x =±2是原方程的解,即“好点”为(2,2)和(-2,-2),故C选项不符合;x =x 2-2x ,解得x =0或3,即“好点”为(0,0)和(3,3),故D 选项不符合.9. C 【解析】∵四边形ABCD 是平行四边形,∴∠B =∠D ,∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD =90°,∴△AEB ∽△AFD ,∴BE DF =AE AF =2024=56,设BE =5x ,则DF =6x ,AB =CD =7+6x ,在Rt △ABE 中,(7+6x )2=(5x )2+202,即11x 2+84x -351=0,解得x =3或x =-11711(舍去),∴BE =5x =15.10. B 【解析】由作图可知△ADE ≌△BCA .∴∠ADE =∠C =90°,AE =AB .又∵AC =6,BC =8,∠C =90°,∴AB =10=AE .∵点F 为AE 的中点,∴DF =12AE =12AB =5.11. 2 【解析】由题意得12⊕4=12+412-4=422= 2.12. x =6 【解析】去分母得x -(-2)=2x -4,去括号得x +2=2x -4,移项得x -2x =-4-2,合并同类项得-x =-6,解得x =6,检验:当x =6时,2x -4≠0,2-x ≠0,∴原方程的解为x =6.13. 23【解析】2名文旅大咖记为A 1、A 2,2名文旅创作者记为B 1、B 2,列表如下:由表格可知,共有12种等可能的结果,其中抽到一位文旅大咖,一位文旅创作者的情况有8种,∴P (抽取的2人中,一位是文旅大咖,一位是文旅创作者)=812=23. 14.π2+22-1 【解析】如解图,连接OD ,过点D 作DH ⊥OA 于点H ,∵∠AOB =90°,D 是AB ︵的中点,∴∠AOD =∠BOD =45°,∵OD =OA =2,∴DH =22OD =2,∵C 是OA 的中点,∴OC =1,∴S 阴影=S 扇形DOB +S △CDO -S △BCO =45×π×22360+12×2×1-12×1×2=π2+22-1.第14题解图15. 410或12 【解析】由折叠性质可得A ′M =AM =14a ,分两种情况:①如解图①,当∠BMA ′=90°时,△BMA ′是直角三角形,tanB=A ′M BM =AC BC ,即14a 34a =4BC,解得BC =12,由勾股定理得a =BC 2+AC 2=42+122=410;②如解图②,当∠BA ′M =90°时,△BMA ′是直角三角形,sin B =A ′M BM =ACAB ,即14a 34a =4a,解得a =12,∴a 的值为410或12.第15题解图。
中考数学几何选择填空压轴题精选
中考数学几何选择填空压轴题精选一.选择题(共13小题)1.(2013•蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A.1个B.2个C.3个D.4个2.(2013•连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为()A.B.C.D.3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有( )A.1个B.2个C.3个D.4个4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGE;④图中有8个等腰三角形.其中正确的是()A.①③B.②④C.①④D.②③5.(2008•荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为()A.5:3B.3:5C.4:3D.3:46.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A.B.C.D.7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是( )A.B.6C.D.38.(2013•牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①P M=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个B.2个C.3个D.4个9.(2012•黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①(BE+CF)=BC;②S△AEF≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.(2012•无锡一模)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD 落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有() A.①④⑤B.①②④C.③④⑤D.②③④11.如图,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是()A.①②③B.①②④C.①②⑤D.②④⑤12.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD 于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④13.(2013•钦州模拟)正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为()A.10B.12C.14D.16二.填空题(共16小题)14.如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有_________ .15.(2012•门头沟区一模)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去,可得到△A5B5C5,则其面积为S5= _________ .第n 次操作得到△A n B n C n,则△A n B n C n的面积S n= _________ .(2009•黑河)如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,16.使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_________ .17.(2012•通州区二模)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012= _________ .18.(2009•湖州)如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,D n,分别记△BD1E1,△BD2E2,△BD3E3,…,△BD n E n的面积为S1,S2,S3,…S n.则S n= _________ S△ABC(用含n的代数式表示).19.(2011•丰台区二模)已知:如图,在Rt△ABC中,点D1是斜边AB的中点,过点D1作D1E1⊥AC于点E1,连接BE1交CD1于点D2;过点D2作D2E2⊥AC于点E2,连接BE2交CD1于点D3;过点D3作D3E3⊥AC于点E3,如此继续,可以依次得到点D4、D5、…、D n,分别记△BD1E1、△BD2E2、△BD3E3、…、△BD n E n的面积为S1、S2、S3、…S n.设△ABC的面积是1,则S1= _________ ,S n= _________ (用含n的代数式表示).20.(2013•路北区三模)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_________ .21.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1= _________ ,= _________ .22.(2013•沐川县二模)如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为_________ ;面积小于2011的阴影三角形共有_________ 个.23.(2010•鲤城区质检)如图,已知点A1(a,1)在直线l:上,以点A1为圆心,以为半径画弧,交x轴于点B1、B2,过点B2作A1B1的平行线交直线l于点A2,在x轴上取一点B3,使得A2B3=A2B2,再过点B3作A2B2的平行线交直线l于点A3,在x轴上取一点B4,使得A3B4=A3B3,按此规律继续作下去,则①a=_________ ;②△A4B4B5的面积是_________ .24.(2013•松北区二模)如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC的长等于_________ .25.(2007•淄川区二模)如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于_________ .26.(2009•泰兴市模拟)梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3且S1+S3=4S2,则CD= _________ AB.27.如图,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形,图4中有30个菱形…,则第6个图中菱形的个数是_________ 个.28.(2012•贵港一模)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________ cm2.29.(2012•天津)如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为_________ .30.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,求线段AD的取值范围().参考答案与试题解析一.选择题(共13小题)1.(2013•蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为( )①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A.1个B.2个C.3个D.4个解答:解:作EJ⊥BD于J,连接EF①∵BE平分∠DBC∴EC=EJ,∴△DJE≌△ECF∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22。
中考数学最新真题试题汇编及解析(湖南怀化)
=1+ -1+2-2
=2- .
【点睛】本题考查的是实数的运算,熟知二次根式的性质、负整数指数幂、零指数幂的计算法则是解答此题的关键.
18.解不等式组,并把解集在数轴上表示出来.
【答案】 ,数轴见解析
【解析】
【分析】根据解一元一次不等式组的方法步骤求解,然后在数轴上把解集表示出来即可.
7.一个多边形的内角和为900°,则这个多边形是( )
A.七边形B.八边形C.九边形D.十边形
【答案】A
【解析】
【分析】根据n边形的内角和是(n﹣2)•180°,列出方程即可求解.
【详解】解:根据n边形的内角和公式,得
(n﹣2)•180°=900°,
解得n=7,
∴这个多边形的边数是7,
故选:A.
【点睛】本题考查了多边形的内角和,解题的关键是熟记内角和公式并列出方程.
设CD=x,则BD=2.4-x,
在Rt△ACD中,∠ACD=45°,
∴∠CAD=45°,
∴AD=CD=x.
在Rt△ABD中, ,
即 ,
解得x=0.88,
可知AD=0 88千米=880米,
因为880米>800米,所以公路不穿过纪念园.
【点睛】本题主要考查了解直角三角形的应用,构造直角三角形是解题的关键.
【详解】解:连接OC,
∵AB与⊙O相切于点C,
∴OC⊥AB,即∠OCA=90°,
在Rt△OCA中,AO=3,OC=2,
∴AC= ,
故答案为: .
【点睛】本题考查了切线的性质,勾股定理,熟练掌握切线的性质是解题关键.切线的性质:圆的切线垂直于经过切点的半径.
2023年山东省临沂市中考数学真题(答案解析)
2023年临沂市初中学业水平考试试题数学一、选择题1.【答案】C【解析】解:2(7)(5)()57=----+=-;故选C .2.【答案】C【解析】解:由题意,可得130ABC ∠=︒,故选:C .3.【答案】B【解析】解:最符合视图特点的建筑物的图片是选项B 所示图片.故选:B .4.【答案】A【解析】解:由题意,得:点B 的坐标为(6,2);故选A .5.【答案】C【解析】解:∵在同一平面内,过直线l 外一点P 作l 的垂线m ,即l m ⊥,又∵过P 作m 的垂线n ,即n m ⊥,∴l n ∥,∴直线l 与n 的位置关系是平行,故选:C .6.【答案】D【解析】解:A 选项,32a a a -=,故选项错误,不符合题意;B 选项,222()2a b a ab b -=-+,故选项错误,不符合题意;C 选项,()2510a a =,故选项错误,不符合题意;D 选项,325326a a a ⋅=,故选项正确,符合题意;故选D .7.【答案】B【解析】解:正六边形的中心角的度数为:360606︒=︒,∴正六边形绕其中心旋转60︒或60︒的整数倍时,仍与原图形重合,∴旋转角的大小不可能是90︒;故选B .8.【答案】B【解析】解:m ====-∵=<<∴54-<-<-,即54m -<<-,故选:B .9.【答案】D【解析】解:设两名男生分别记为A ,B ,两名女生分别记为C ,D ,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为82123=,故选:D .10.【答案】A【解析】解:由题意,得:105V t=,∴V 与t 满足反比例函数关系.故选A .11.【答案】C【解析】解:∵一次函数y kx b =+的图象不经过第二象限,∴00k b ><,,故选项A 正确,不符合题意;∴0kb <,故选项B 正确,不符合题意;∵一次函数y kx b =+的图象经过点()20,,∴20k b +=,则2b k =-,∴20k b k k k +=-=-<,故选项C 错误,符合题意;∵2b k =-,∴12k b =-,故选项D 正确,不符合题意;故选:C .12.【答案】A【解析】解:∵0a b +=∴a b =,故①错误,∵0,0a b b c c a +=->->∴b c a >>,又0a b +=∴0,0a b <>,故②③错误,∵0a b +=∴=-b a∵0b c c a ->->∴a c c a -->-∴c c->∴0c <,故④正确或借助数轴,如图所示,故选:A .二、填空题13.【答案】24【解析】解:根据菱形面积等于两条对角线乘积的一半可得:面积168242=⨯⨯=,故答案为:24.14.【答案】()()111n n -++【解析】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++15.【答案】14【解析】解:如图,由题意得13AD AB =,四边形DECF 是平行四边形,∴DF BC ∥,DE AC ∥,∴ ∽ADF ABC ,BDE BAC ∽△△,∴13DF AD BC AB ==,23DE BD AC AB ==,∵69AC BC ==,,∴3DF =,4DE =,∵四边形DECF 平行四边形,∴平行四边形DECF 纸片的周长是()23414+=,故答案为:14.16.【答案】②③④【解析】解:列表,x L 2.5-2-1-0.5-0.512L yL5.4531- 3.75- 4.2535L描点、连线,图象如下,根据图象知:①当1x <-时,x 越小,函数值越大,错误;②当10x -<<时,x 越大,函数值越小,正确;③当01x <<时,x 越小,函数值越大,正确;④当1x >时,x 越大,函数值越大,正确.故答案为:②③④.三、解答题17.【答案】(1)3x >(2)从第①步开始出错,过程见解析【解析】解:(1)1522xx --<,去分母,得:1041x x -<-,移项,合并,得:39x -<-,系数化1,得:3x >;(2)从第①步开始出错,正确的解题过程如下:()()22111111a a a a a a a a +---=----22111a a a a -=---11a =-.18.【答案】(1)见解析(2)①90.5;②测试成绩分布在9195 的较多(不唯一);(3)估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.【解析】(1)解:数据从小到大排列:81、82、83、85、86、87、87、88、89、90、91、92、92、92、93、94、95、96、99、100最大值是100,最小值为81,极差为1008119-=,若组距为5,则分为4组,频数分布表成绩分组8185 8690 9195 96100划记正一频数4673频数分布直方图,如图;;(2)解:①中位数是909190.52+=;故答案为90.5;②测试成绩分布在9195 的较多(不唯一);(3)解:67360048020++⨯=(人),答:估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.19.【答案】渔船没有触礁的危险【解析】解:过点A 作AD BC ⊥,由题意,得:905832ABC ∠=︒-︒=︒,45ACD ∠=︒,6BC =,设AD x =,在Rt ADC 中,45ACD ∠=︒,∴AD CD x ==,∴6BD x =+,在Rt ADB 中,tan 0.6256AD xABD BD x ∠==≈+,∴10x =,∴10AD =,∵109>,∴渔船没有触礁的危险.20.【答案】(1)这台M 型平板电脑的价值为2100元(2)她应获得120m 元的报酬【解析】(1)解:设这台M 型平板电脑的价值为x 元,由题意,得:15003003020x x ++=,解得:2100x =;∴这台M 型平板电脑的价值为2100元;(2)解:由题意,得:2100150012030m m +⋅=;答:她应获得120m 元的报酬.21.【答案】(1)见解析(2)43π【解析】(1)证明:连接AO 并延长交BC 于点F ,∵O 是ABC 的外接圆,∴点O 是ABC 三边中垂线的交点,∵AB AC =,∴AO BC ⊥,∵AE BC ∥,∴AO AE ⊥,∵AO 是O 的半径,∴AE 是O 的切线;(2)解:连接OC ,∵AB AC =,∴75ABC ACB ∠=∠=︒,∴18027530BAC ∠=︒-⨯︒=︒,∴260BOC BAC ∠=∠=︒,∵OB OC =,∴BOC 为等边三角形,∴2===OC OB BC ,∴180120COD BOC ∠=︒-∠=︒,∴ CD的长为120241803ππ⨯=.22.【答案】(1))21AB BD =,(2)见解析(3)见解析【解析】(1)解:∵90,A AB AC ∠=︒=∴2BC =,∵BC AB BD =+2AB BD =+即)21AB BD =;(2)证明:如图所示,∴90,A AB AC ∠=︒=∴=45ABC ∠︒,∵BD AB ⊥,∴45DBC ∠=︒∵CE BC =,12∠=∠,CF DC =∴CBD CEF ≌∴=45E DBC ∠=∠︒∴EF BD ∥∴AB EF⊥(3)证明:如图所示,延长,BA EF 交于点M ,延长CH 交ME 于点G ,∵EF AB ⊥,AC AB ⊥,∴ME AC ∥,∴CGE ACG∠=∠∵CH 是ACE ∠的角平分线,∴ACG ECG ∠=∠,∴CGE ECG ∠=∠∴EG EC =∵CBD CEF ≌,∴EF BD =,CE CB =,∴EG CB =,又∵BC AB BD =+,∴EG AB BD AC EF =+=+,即FG EF AC EF +=+,∴AC EG =,又AC FG ∥,则HAG HFG ∠=∠,在,AHC FHG 中,HAG HFG AHG FHG AC FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AHC FHG ≌,∴AHHF=23.【答案】(1)见解析(2)售价每涨价2元,日销售量少卖4盆(3)①定价为每盆25元或每盆35元时,每天获得400元的利润;②售价定为30元时,每天能够获得最大利润【解析】(1)解:按照售价从低到高排列列出表格如下:售价(元/盆)1820222630日销售量(盆)5450463830【小问2详解】由表格可知,售价每涨价2元,日销售量少卖4盆;(3)①设:定价应为x 元,由题意,得:()()181********x x -⎡⎤--⨯=⎢⎥⎣⎦,整理得:2212017500x x -+-=,解得:1225,35x x ==,∴定价为每盆25元或每盆35元时,每天获得400元的利润;②设每天的利润为w ,由题意,得:()()22120135018155442x w x x x -⎡⎤=--⨯+⎣--=⎢⎥⎦,∴()2221201350230450w x x x -+---+==,∵20-<,∴当30x =时,w 有最大值为450元.答:售价定为30元时,每天能够获得最大利润.。
(完整版)九年级数学选择、填空压轴题训练(含答案)
九年级数学综合训练、选择题(本大题共9小题,共27.0分)1. 如图,在平面直角坐标系中2条直线为11 : y=-3x+3 , 12:y=-3x+9,直线l i交x轴于点A,交y轴于点B,直线12交x轴于点D,过点B作x轴的平行线交12于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c 过E、B、C三点,下列判断中:①a-b+c=0:②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5,其中正确的个数有()A. 5B. 4C. 32. 如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如 A :ci r小表示a1=a2+a3,贝y a1的最小值为()M是反比例函数y=??(x>0)的图象上位于直线上方的A. 32B. 36C. 38D. 403. 如图,直线y= v3x-6分别交x轴,y轴于A, B,一点,MC /x轴交AB于C, MD AMC交AB于D,AC?BD=4,则k 的值为()A. -3B. -4C. -5D. -64.在平面直角坐标系xOy中,将一块含有45。
角的直角三角板如图放置,直角顶点C的坐标为(1, 0),顶点A的坐标为(0, 2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C'的坐标为()3A. (2,0)B. (2,0)5C. (2,0)D. (3,0)5.如图,在矩形ABCD中,AB v BC, E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME丄AF交BC于点M , 连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD?CM ;④点N为△ABM的外心.其中正确的个数为()A. 1个B. 2个C. 3个D. 4个6.规定:如果关于x的一元二次方程ax2+bx+c=0 (a工0有两个实数根,且其中一个根是另一个根的 2 倍,则称这样的方程为“倍根方程” •现有下列结论:①方程X2+2X-8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③ 若关于x 的方程ax 2-6ax+c=0( a ^0是倍根方程,则抛物线y=ax 2-6ax+c 与x 轴的公共点的坐标是 (2, 0)和(4,0);4④ 若点(m , n )在反比例函数y=?的图象上,则关于 x 的方程mx 2+5x+ n=0是倍根方程.12. 如图,正方形 ABCD 中,BE=EF=FC ,CG=2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF 丄BG ;4???? 31② BN =§NF ; 四边形CGNF=[S 四边形ANGD .其中正确的结论的序号是 __________ .13. 已知:如图,在 A AOB 中,ZAOB=90 ° AO=3cm ,BO=4cm .将A AOB 绕顶点 0,按顺时针方向旋转到△A 1OB 1处,此时线段 OB 1与AB 的交点D 恰好为AB 的中点,则线段 B 1D= __________ cm .7. 上述结论中正确的有()A.①②B.③④C.②③D.②④如图,六边形 ABCDEF 的内角都相等,ZDAB=60 ° AB=DE ,则下列结论成立的个数是( ①AB/DE :②EF /AD /BC ;③AF=CD :④四边形 ACDF 是平行 四边形;⑤六边形ABCDEF 既是中心对称图形, 又是轴对称图 形.A. 2B. 3C. 4D. 58. 如图,在Rt A ABC 中,/C=90 °以A ABC 的一边为边画等腰三角形,他边上,则可以画出的不同的等腰三角形的个数最多为()A. 4B. 5C. 6D. 79. 如图,矩形ABCD 延长线于点F ,且中,AE _LBD 于点E ,CF 平分ZBCD ,交EA 的 BC=4,CD=2,给出下列结论:① ZBAE=ZCAD ;②/DBC=30°③AE=4v5;④AF=2需,其中正确结论的个数有(A. 1个B. 2个C. 3个 二、填空题(本大题共 10小题,共30.0分)10. D. 4个如图,在Rt A ABC 中,ZBAC=30 °以直角边AB 为直径作半圆交 AC 于点D , .(结果不取近似值)11. 延长ED 交BC 于点F , BC=2V 3,则图中阴影部分的面积为 1352斗23CS3 ah3如图,在6X 5的网格内填入1至6的数字后,使每行、每列、 每个小粗线宫中的数字不重复,则a>c= )使得它的第三个顶点在 △ABC 的其AB以AD 为边作等边A ADE , D G CB14. 如图,边长为4的正六边形ABCDEF 的中心与坐标原点 0重合,AF 仅轴,将正六边形 ABCDEF 绕原15.如图,在Rt ^ABC 中,BC=2 , /BAC=30 °斜边AB 的两个端点分别在相互垂直的射线OM 、ON 上滑动,下列结论:① 若C 、O 两点关于AB 对称,则OA=2霭; ② C 、O 两点距离的最大值为 4; ③ 若AB 平分CO ,贝U AB ±30;??④ 斜边AB 的中点D 运动路径的长为-?其中正确的是 _______ (把你认为正确结论的序号都填上).16. ____________________________________________________________________ 如图,ZAOB 的边OB 与x 轴正半轴重合,点 P 是OA 上的一动点,点 N ( 3, 0)是OB 上的一定点, 点M 是ON 的中点,Z AOB=30° ,要使PM+PN 最小,则点 P 的坐标为 _________________________________________________ .17.在一条笔直的公路上有 A 、B 、C 三地,C 地位于A 、B 两地之间,甲车从 A 地沿这条公路匀速驶向 C 地,乙车从B 地沿这条公路匀速驶向 A 地,在甲车 出发至甲车到达 C 地的过程中,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间t ( h )之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发 1.5h 时,两车相距170km ;③乙车出发2寸人时,两车 相遇;④甲车到达 C 地时,两车相距40km .其中正确的是 ___________ (填写所 有正确结论的序号) OA=AB , ZOAB=90 °反比例函数y=??(x > 0)的图象经过A , B 两点•若18.如图,在平面直角坐标系中,点0顺时针旋转n 次,每次旋转60°当n=2017时,顶点A 的坐标为点A 的坐标为(n , 1),则19.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A (-1, 1), B (0, -2), C ( 1, 0),点P (0,2)绕点A旋转180。
中考数学填空、选择、解答题最后一题
1、如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为,△APO 的面积为,则下列图象中,能表示与的函数关系的图象大致是()2、如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则弧DE的长度是()3、如图,在平面直角坐标系xOy中,已知直线l:y=-x-1,双曲线,在l上取一点A 1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,An,….记点An的横坐标为an,若a1=2,则a2=________,a2013=________;若要将上述操作无限次地进行下去,则a1不能取的值是=________.4、如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是 ________5、如图,AD 是圆O 的切线,切点为A ,AB 是圆O 的弦。
过点B 作BC//AD ,交圆O 于点C ,连接AC ,过点C 作CD//AB ,交AD 于点D 。
连接AO 并延长交BC 于点M ,交过点C 的直线于点P ,且角BCP=角ACD 。
(1) 判断直线PC 与圆O 的位置关系,并说明理由:(2) 若AB=9,BC=6,求PC 的长。
6、如图,在梯形ABCD 中,AD BC ∥,6cm AD =,4cm CD =,10cm BC BD ==,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(05t <<).解答下列问题: (1)当t 为何值时,PE AB ∥?(2)设PEQ △的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使225PEQ BCD S S =△△?若存在,求出此时t 的值;若不存在,说明理由. (4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.5、解:(1)直线PC 与圆O 相切。
中考数学选择填空最后一题汇总
12.如图,点 A 、 B 、C 、 D 在一次函数 y 2x m 的图象上,它们的横坐标依次为 -1、 1、 2,分别过这些点作 x 轴与 y 轴的垂线,则图中阴影部分的面积这和是 ( ) A . 1B . 3C . 3(m 1)D .3(m 2)218.如图,⊙ A 、⊙ B 的圆心 A 、 B 在直线 l 上,两圆半径都为 B 同时沿直线 l 以每秒 2cm 的速度相向移动, 则当两时,⊙ A 运动的时间为 秒1cm ,开始时圆心距AB=4cm ,现⊙ A 、⊙圆相切8.下面是按一定规律排列的一列数: 第1个数:111 ; 22第2个数:1 11 1 ( 1)21 ( 1)3;3 234第3个数:1 11 1 ( 1)2 1 ( 1)3 1 ( 1)4 1( 1)5 ;4234 56⋯⋯第 n 个数:1111 1 ( 1)2 1 ( 1)31( 1)2 n 1 .n 23 42n那么,在第 10 个数、第 11 个数、第 12 个数、第 13 个数中,最大的数是()A .第 10 个数B .第 11 个数C .第 12 个数D .第 13 个数 10、如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水。
在这则乌鸦喝水的故事中,从乌鸦看到瓶的那刻起开始计时并设时间为x ,瓶中水位的高度为y ,下列图象中最符合故事情景的是:12 、B 18 、 8、 A 10.D18、若将 4 根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是 ______度。
10.如图,等腰△ ABC 中,底边 BCa , A 36 , ABC 的平分线交 AC 于 D , BCD 的平分线交BDA1D E51(▲)于 E,设 k,则 DE2A . k 2 aB . k 3 aC.aD .a k 2k 316.如图,在直角坐标系中,已知点A( 3,0) , B(0,4) ,对△OAB连续作旋转变换,依次得到三角形①、②、③、④⋯,则三角形⑩的直角顶点的坐标为▲.y4B①②③④A O481216x12.已知图中的每个小方格都是边长为 1 的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81 个格点中的多少个?()A. 6B.7C.8D.9(第 12 题)B18 、3010. A 16 .(36,0)12、CD 1D2D 3D4A CE1E2 E3(第 18 题)18.如图,已知Rt△ ABC ,D1是斜边 AB 的中点,过D1作 D1E1⊥ AC 于 E1,连结 BE1交 CD1于 D2;过D2作 D2E2⊥ AC 于 E2,连结 BE2交 CD1于 D3;过D3作 D3E3⊥ AC 于 E3,⋯,如此继续,可以依次得到点 D4, D5,⋯, D n,分别记△BD1E1,△ BD2 E2,△ BD3 E3,⋯,△ BD n E n的面积为 S1,S2, S3,⋯ S n.则 S n=________ S△ABC(用含 n 的代数式表示).210、如图 4,矩形纸片 ABCD 中, AB=4 , AD=3 ,折叠纸片使AD 边与DC对角线 BD 重合,折痕为 DG ,则 AG 的长为( )A .14B .A ′3 3D . 2AGBC .2图 4x≥ 0,10.若不等式组2 x 有解,则 a 的取值范围是 ()1 x 2(A) a >- 1. (B) a ≥- 1. (C)a ≤ 1.(D) a < 1.18.如图,正方形 ABCD 边长为 1,动点 P 从 A 点出发,沿正方形的边按逆时针方向运动,当它的运动路程为 2009 时,点 P 所在位置为 ______ ;当点 P 所在位置为 D 点时,点 P 的运动路程为 ______( 用含自然数 n 的式子表示 ).DCA( P) B1 10 、C10 、c10 、A 18.点 B ;4n + 3(录入者注: 填 4n - 1(n 为正整数 )10 、第 18 题图 18.2n1A10.如图,已知△ ABC 中,∠ ABC =90 °,AB=BC ,三角形的顶点在相互平行的三条直线 l 1,l 2,l 3 上,且 l 1,l 2 之间的距离为 2 , l 2,l 3 之间的距 A离为 3,则 AC 的长是A .2 17B .2 5C .4 2D . 7Cl 1l 2Bl 3(第 10 题)16.如图,图①是一块边长为1,周长记为 P 1 的正三角形纸板,沿图①的底边剪去一块边长为1的正三角2形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的 1)后,得图③,④,⋯,记第n(n ≥ 3) 块纸板的周长为 P ,则P= ▲ .2nn -P n-1⋯3①②(第 16 题)③④10、如图 5,AB 是⊙ O 的直径,且 AB=10 ,弦 MN 的长为 8,若弦MN 的两端在圆上滑动时,始终与 AB 相交,记点 A 、 B到 MN 的距离分别为 h 1,h 2,则 |h 1- h 2| 等于( )A 、5B 、 6C 、 7D 、 8数 y=916、如图 7 所示, P 1( x 1,y 1)、 P 2( x 2, y 2),⋯⋯ P n ( x n , y n )在函x(x > 0)的图象上, △OP 1A 1,△ P 2A 1A 2,△ P 3A 2A 3⋯⋯△ P n A n-1A n ⋯⋯都是等腰直角三角形,斜边OA 1,A 1A 2⋯⋯ A n-1A n ,都在 x 轴上,则 y 1+y 2+⋯ y n =。
大连中考初三填空选择最后一题汇总
下列关系式正确的是A.35.5°=35°50′B.35.5°=35°5′C.35.5°<35°5′D.35.5°>35°5′若关于x 的分式方程1-x 1-m =2的解为非负数,则m 的取值范围是 把分式xyy x 中的x ,y 的值都扩大为原来的5倍,则分式的值 A .不变 B .扩大为原来的5倍 C .扩大为原来的10倍 D .缩小为原来的51-0.000003092用科学计数法表示,可记作从1-9这九个数中任选一个,恰好是偶数的概率是某校合唱队有46名学生,统计这些学生的年龄,结果为:13岁的有5人,14岁的有20人,15岁的有15人,16岁的有6人,则这个合唱队年龄的中位数和众数分别是( )A .14,15B .14,14C .15,15D .15,14解不等式组: 5(x-2)≤3x+6 ,并把解集在数轴上表示出来25-x <1+4x一次函数y=34x-b 与y=34x-1的图象之间的距离等于3,则b 的值为( )一次函数y=kx+b ,当1≤x ≤4时,3≤y ≤6,则k-b 的值是一次函数y=(2m-1)x-1+3m (m 为常数)。
当x <2时,y >0,则m 的取值范围为在平面直角坐标系中,点A 、B 的坐标分别为(a ,4)、(a+2,4),直线y=x+b 与线段AB 有公共点,则b 的取值范围 (用含a 的代数式表示)如图,在平面直角坐标系中,点P (-21,a )在直线y=2x+2与直线y=2x+4之间,则a 的取值范围是.如图,一次函数1y k x b =+的图象与反比例函数2k y x =的图象相交于A (2,3),B (6,1)两点,当1k x b +<2k x 时,x 的取值范围为( )如图,平面直角坐标系xOy 中,点A 是直线y=33x+334上一动点,将点A 向右平移1个单位得到点B ,点C (1,0),则OB+CB 的最小值为.如图,某水渠的横截面成抛物线形,当水面宽8m 时,水深4m ,当水面下降1m 时,水面宽为 m如图,A 是双曲线y=-x1在第二象限上一点,AO 的延长线与双曲线的另一支相交于点B ,点C 在第一象限,且CA=CB=23AB ,设点C 的坐标为(m ,n ),则mn 的值为如图,已知楼AB高36米,从楼顶A处测得旗杆顶C的俯角为60°,又从该楼离地面6米的一窗口E处测得旗杆顶C的仰角为45°,求该旗杆CD的高.(结果保留根号)如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).如图,四边形ABCD中,已知AB=BC,点C关于BD的对称点E恰好落在AD上,若∠BDC=α,则∠ABC的度数为(用含a的代数式表示).(2018大连)如图,矩形ABCD,AB=2,BC=3,点E为AD上一点,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为已知等腰三角形两边长是8cm和4cm,那么它的周长是已知在▱ABCD中,AE⊥CD,且AB=AE,F为AE上一点,且BF平分∠ABC。
中考最后一道选择及填空题荟萃【4】(含答案)
中考最后一道填空及选择题荟萃【4】
1、已知点(x0,y0)是二次函数y=ax2+bx+c(a>0)的一个点,且x0满足关于x的方程2ax+b=0,则下列选项正确的是()
A、对于任意实数x都有y≥ y0
B、对于任意实数x都有y≤y0
C、对于任意实数x都有y>y0
D、对于任意实数x都有y<y0
第6题么标号为100的微生物会出现在()
A.第3天B.第4天C.第5天D.第6天
7、在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2012个正方形的面积为 ( ) A .2010
35()2
B .2011
95()
4
C . 2009
95()4
D .4020
35()
2
C 2
D
A
B
R
P F C G
K
E
第10题
A
123451
M M
2
M M
3
M 4M
P 1
P 2
P 3 P 4
……
答 案
1、A 2.
103 3. 1n n -(2-1,2) 4. 32
5. C (提示:22222222()()AE EF AE EG EF EG AG FG -=---=-,特殊值法)。
中考数学选择题填空题压轴题专题训练
冲刺专题6:第12和18题专题训练一、工具法例1.如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD 于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B. C.D.随H点位置的变化而变化例1 变式1变式1:点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()A.75° B.60° C.45° D.30°二、极值法例2.若对于任意非零实数a,抛物线y=a(x+2)(x﹣1)总不经过点P(x0﹣3,x0﹣5),则符合条件的点P()A.有1个B.有2个C.有3个D.有无穷多个变式2:在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a<0)与线段MN有一个交点,则a的取值范围是()A.a≤﹣1 B.﹣1<a<0 C.a<﹣1 D.﹣1≤a<0三、特殊值法例3.若实数a,b满足ab=1,设M=,N=,则M,N的大小关系是()A.M>N B.M=N C.M<N D.不确定变式3:无论m为何值,二次函数y=x2+(2﹣m)x+m的图象总经过定点.四、特殊位置法:特殊点,特殊线,特殊角,特殊模型例4.如图,已知点A(12,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=8时,这两个二次函数的最大值之和等于()变式4:(1)如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,则=()A. B. C. D.(2)如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是()A.2B.2 C.2D.五、排除法例5.如图,△ABC中,∠ACB=90°,AB=10,tanA=.点P是斜边AB上一个动点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.例5 变式5变式5:如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②④B.①②⑤C.②③④D.③④⑤六、转化法例6.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD 的最小值是.(1)如图,在△ABC中,∠BAC=60°,∠ACB=75°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于点E、F,连接EF,则线段EF长度的最小值为.(2)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最小值是.例6变式6(1)变式6(2)七、综合分析法例7.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个变式7:如图,正方形ABCD的边长为4,点E、F分别从点A、点D以相同速度同时出发,点E从点A向点D运动,点F从点D向点C运动,点E运动到D点时,E、F停止运动.连接BE、AF相交于点G,连接CG.有下列结论:①AF⊥BE;②点G随着点E、F的运动而运动,且点G的运动路径的长度为π;③线段DG的最小值为2﹣2;④当线段DG最小时,△BCG的面积S=8+.其中正确的命题有.(填序号)八、特征分析法例8.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B 两点.若点A的坐标为(n,1),则k的值为()A.B.C.D.变式8:如图,两个反比例函数y=和y=﹣的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为()A.3 B.4 C.D.5例8变式8。
吉林省通化市2024届中考数学考前最后一卷含解析
吉林省通化市2024届中考数学考前最后一卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.在平面直角坐标系中,点P (m ﹣3,2﹣m )不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知:如图是y =ax 2+2x ﹣1的图象,那么ax 2+2x ﹣1=0的根可能是下列哪幅图中抛物线与直线的交点横坐标( )A .B .C .D .3.下列各式计算正确的是( ) A .2223a a +=B .()236b b -=- C .235c c c ⋅=D .()222m n m n -=-4.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x +8=0的一个根,则这个三角形的周长是( ) A .9B .11C .13D .11或135.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( ) A .平均数B .标准差C .中位数D .众数6.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC=5,CD=3,BD=4,则⊙O 的直径等于( )A .5B .C .D .77.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .8.2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为( ) A .0.334B .C .D .9.如图,AB 是O 的直径,弦CD AB ⊥,CDB 30∠=,CD 23=,则阴影部分的面积为( )A .2πB .πC .π3D .2π 310.下列各组数中,互为相反数的是( ) A .﹣2 与2B .2与2C .3与13D .3与3二、填空题(共7小题,每小题3分,满分21分)11.如图,正方形ABCD 和正方形OEFG 中, 点A 和点F 的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.12.已知直线m∥n,将一块含有30°角的直角三角板ABC按如图方式放置,其中A、B两点分别落在直线m、n上,若∠1=20°,则∠2=_____度.13.若式子x2-在实数范围内有意义,则x的取值范围是.14.化简11x-÷211x-=_____.15.函数32xyx=-中,自变量x的取值范围是______16.已知AB=AC,tanA=2,BC=5,则△ABC的面积为_______________.17.计算:.三、解答题(共7小题,满分69分)18.(10分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“…”表示该项数据已丢失)x ﹣1 0 1ax2 (1)ax2+bx+c 7 2 …(1)求抛物线y=ax2+bx+c的表达式(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当△ADM与△BDM的面积比为2:3时,求B点坐标;(3)在(2)的条件下,设线段BD与x轴交于点C,试写出∠BAD和∠DCO的数量关系,并说明理由.(5分)如图,在建筑物M的顶端A处测得大楼N顶端B点的仰角α=45°,同时测得大楼底端A点的俯角为β=30°.已19.知建筑物M的高CD=20米,求楼高AB为多少米?(3≈1.732,结果精确到0.1米)20.(8分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.21.(10分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?22.(10分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米).23.(12分)已知二次函数y=mx2﹣2mx+n的图象经过(0,﹣3).(1)n=_____________;(2)若二次函数y=mx2﹣2mx+n的图象与x 轴有且只有一个交点,求m 值;(3)若二次函数y=mx2﹣2mx+n的图象与平行于x 轴的直线y=5 的一个交点的横坐标为4,则另一个交点的坐标为;(4)如图,二次函数y=mx2﹣2mx+n的图象经过点A(3,0),连接AC,点P 是抛物线位于线段AC 下方图象上的任意一点,求△PAC 面积的最大值.24.(14分)如图,AB是⊙O的直径,点C在⊙O上,CE^ AB于E,CD平分ÐECB,交过点B的射线于D,交AB于F,且BC=BD.(1)求证:BD是⊙O的切线;(2)若AE=9,CE=12,求BF的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】分点P的横坐标是正数和负数两种情况讨论求解.【题目详解】①m-3>0,即m>3时,2-m<0,所以,点P(m-3,2-m)在第四象限;②m-3<0,即m<3时,2-m有可能大于0,也有可能小于0,点P(m-3,2-m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.【题目点拨】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、C【解题分析】由原抛物线与x 轴的交点位于y 轴的两端,可排除A 、D 选项;B 、方程ax 2+2x ﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B 不符合题意;C 、抛物线y =ax 2与直线y =﹣2x +1的交点,即交点的横坐标为方程ax 2+2x ﹣1=0的根,C 符合题意.此题得解. 【题目详解】∵抛物线y =ax 2+2x ﹣1与x 轴的交点位于y 轴的两端, ∴A 、D 选项不符合题意;B 、∵方程ax 2+2x ﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值, ∴B 选项不符合题意;C 、图中交点的横坐标为方程ax 2+2x ﹣1=0的根(抛物线y =ax 2与直线y =﹣2x +1的交点), ∴C 选项符合题意. 故选:C . 【题目点拨】本题考查了抛物线与x 轴的交点以及二次函数的图象与位置变化,逐一分析四个选项中的图形是解题的关键. 3、C 【解题分析】解:A .2a 与2不是同类项,不能合并,故本选项错误; B .应为()236b b -=,故本选项错误;C .235·c c c =,正确;D .应为()2222m n m n mn -=+-,故本选项错误. 故选C . 【题目点拨】本题考查幂的乘方与积的乘方;同底数幂的乘法. 4、C 【解题分析】试题分析:先求出方程x 2-6x +8=0的解,再根据三角形的三边关系求解即可. 解方程x 2-6x +8=0得x=2或x=4当x=2时,三边长为2、3、6,而2+3<6,此时无法构成三角形 当x=4时,三边长为4、3、6,此时可以构成三角形,周长=4+3+6=13 故选C.考点:解一元二次方程,三角形的三边关系点评:解题的关键是熟记三角形的三边关系:任两边之和大于第三边,任两边之差小于第三边.5、B【解题分析】试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为x i,则样本B中的数据为y i=x i+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.故选B.考点:统计量的选择.6、A【解题分析】连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=,,再证明Rt△ABE∽Rt△ADC,得到,即2R==.【题目详解】解:如图,连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D点,AC=5,DC=3,∴∠ADC=90°,∴AD=,∴在Rt△ABE与Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴,即2R = =;∴⊙O 的直径等于.故答案选:A. 【题目点拨】本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法. 7、C 【解题分析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,2AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C .点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式. 8、B 【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解:334亿=3.34×1010 “点睛”此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 9、D 【解题分析】分析:连接OD ,则根据垂径定理可得出CE =DE ,继而将阴影部分的面积转化为扇形OBD 的面积,代入扇形的面积公式求解即可. 详解:连接OD , ∵CD ⊥AB , ∴13,2CE DE CD === (垂径定理), 故OCEODESS,=即可得阴影部分的面积等于扇形OBD 的面积,又∵30CDB ∠=︒,∴60COB ∠= (圆周角定理), ∴OC =2,故S 扇形OBD =260π22π3603⨯=,即阴影部分的面积为2π3. 故选D.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键. 10、A 【解题分析】根据只有符号不同的两数互为相反数,可直接判断. 【题目详解】-2与2互为相反数,故正确;2与2相等,符号相同,故不是相反数; 3与13互为倒数,故不正确; 3与3相同,故不是相反数. 故选:A. 【题目点拨】此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.二、填空题(共7小题,每小题3分,满分21分) 11、(1,0);(﹣5,﹣2). 【解题分析】本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E 和C 是对应顶点,G 和A 是对应顶点;另一种是A 和E 是对应顶点,C 和G 是对应顶点.【题目详解】∵正方形ABCD 和正方形OEFG 中A 和点F 的坐标分别为(3,2),(-1,-1),∴E (-1,0)、G (0,-1)、D (5,2)、B (3,0)、C (5,0),(1)当E 和C 是对应顶点,G 和A 是对应顶点时,位似中心就是EC 与AG 的交点,设AG 所在直线的解析式为y=kx+b (k≠0),∴231k b b =+⎧⎨-=⎩,解得11b k =-⎧⎨=⎩. ∴此函数的解析式为y=x-1,与EC 的交点坐标是(1,0);(2)当A 和E 是对应顶点,C 和G 是对应顶点时,位似中心就是AE 与CG 的交点,设AE 所在直线的解析式为y=kx+b (k≠0),320k b k b +=⎧⎨-+=⎩,解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩, 故此一次函数的解析式为1122y x =+…①, 同理,设CG 所在直线的解析式为y=kx+b (k≠0),501k b b +=⎧⎨=-⎩,解得151k b ⎧=⎪⎨⎪=-⎩, 故此直线的解析式为115y x =-…② 联立①②得1122115y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩解得52x y =-⎧⎨=-⎩,故AE 与CG 的交点坐标是(-5,-2). 故答案为:(1,0)、(-5,-2).12、1【解题分析】根据平行线的性质即可得到∠2=∠ABC+∠1,据此进行计算即可.【题目详解】解:∵直线m ∥n ,∴∠2=∠ABC+∠1=30°+20°=1°,故答案为:1.【题目点拨】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.13、x 2≥.【解题分析】根据二次根式被开方数必须是非负数的条件,x 20x 2-≥⇒≥.故答案为x 2≥14、x+1【解题分析】分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.详解:解:原式=11x -÷1(1)(1)x x +- =11x -•(x+1)(x ﹣1) =x+1,故答案为x+1.点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解.15、x≠1【解题分析】 解:∵32x y x =-有意义, ∴x -1≠0,∴x ≠1;故答案是:x ≠1.16258【解题分析】作CD ⊥AB ,由tanA=2,设AD=x,CD=2x,根据勾股定理,则BD=x ),然后在Rt △CBD 中BC 2=BD 2+CD 2,即52=4x 2+2x ⎡⎤⎣⎦),解得x 2S△ABC=12AB CD⨯=215252x x x⨯⨯==25255+88【题目详解】如图作CD⊥AB,∵tanA=2,设AD=x,CD=2x,∴AC=5x,∴BD=5-1x(),在Rt△CBD中BC2=BD2+CD2,即52=4x2+25-1x⎡⎤⎣⎦(),x2=25+558,∴S△ABC=12AB CD⨯=215252x x x⨯⨯==25255+88【题目点拨】此题主要考查三角函数的应用,解题的关键是根据题意作出辅助线进行求解.17、3+【解题分析】本题涉及零指数幂、负指数幂、绝对值、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【题目详解】原式=2×+2﹣+1,=2+2﹣+1,=3+.【题目点拨】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数、绝对值等考点的运算三、解答题(共7小题,满分69分)18、(1) y=x2﹣4x+2;(2) 点B的坐标为(5,7);(1)∠BAD和∠DCO互补,理由详见解析.【解题分析】(1)由(1,1)在抛物线y=ax2上可求出a值,再由(﹣1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;(2)由△ADM和△BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;(1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合∠ABD=∠NBA,可证出△ABD∽△NBA,根据相似三角形的性质可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互补.【题目详解】(1)当x=1时,y=ax2=1,解得:a=1;将(﹣1,7)、(0,2)代入y=x2+bx+c,得:,解得:,∴抛物线的表达式为y=x2﹣4x+2;(2)∵△ADM和△BDM同底,且△ADM与△BDM的面积比为2:1,∴点A到抛物线的距离与点B到抛物线的距离比为2:1.∵抛物线y=x2﹣4x+2的对称轴为直线x=﹣=2,点A的横坐标为0,∴点B到抛物线的距离为1,∴点B的横坐标为1+2=5,∴点B的坐标为(5,7).(1)∠BAD和∠DCO互补,理由如下:当x=0时,y=x2﹣4x+2=2,∴点A的坐标为(0,2),∵y=x2﹣4x+2=(x﹣2)2﹣2,∴点D的坐标为(2,﹣2).过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,如图所示.设直线BD的表达式为y=mx+n(m≠0),将B(5,7)、D(2,﹣2)代入y=mx+n,,解得:,∴直线BD的表达式为y=1x﹣2.当y=2时,有1x﹣2=2,解得:x=,∴点N的坐标为(,2).∵A(0,2),B(5,7),D(2,﹣2),∴AB=5,BD=1,BN=,∴==.又∵∠ABD=∠NBA,∴△ABD∽△NBA,∴∠ANB=∠DAB.∵∠ANB+∠AND=120°,∴∠DAB+∠DCO=120°,∴∠BAD和∠DCO互补.【题目点拨】本题是二次函数综合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明△ABD∽△NBA是解(1)的关键.19、楼高AB为54.6米.【解题分析】过点C作CE⊥AB于E,解直角三角形求出CE和CE的长,进而求出AB的长.【题目详解】解:如图,过点C作CE⊥AB于E,则AE=CD=20,∵CE=AEtanβ=20tan30=333tan45°33∴3(米),答:楼高AB为54.6米.【题目点拨】此题主要考查了仰角与俯角的应用,根据已知构造直角三角形利用锐角三角函数关系得出是解题关键.20、(1)作图见解析;(2)7,7.5,2.8;(3)见解析.【解题分析】(1)根据图1找出8、9、10℃的天数,然后补全统计图即可;(2)根据众数的定义,找出出现频率最高的温度;按照从低到高排列,求出第5、6两个温度的平均数即为中位数;先求出平均数,再根据方差的定义列式进行计算即可得解;(3)求出7、8、9、10、11℃的天数在扇形统计图中所占的度数,然后作出扇形统计图即可.【题目详解】(1)由图1可知,8℃有2天,9℃有0天,10℃有2天,补全统计图如图;(2)根据条形统计图,7℃出现的频率最高,为3天,所以,众数是7;按照温度从小到大的顺序排列,第5个温度为7℃,第6个温度为8℃,所以,中位数为12(7+8)=7.5;平均数为110(6×2+7×3+8×2+10×2+11)=110×80=8,所以,方差=110[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=110(8+3+0+8+9),=110×28,=2.8;(3)6℃的度数,210×360°=72°,7℃的度数,310×360°=108°,8℃的度数,210×360°=72°,10℃的度数,210×360°=72°,11℃的度数,110×360°=36°,作出扇形统计图如图所示.【题目点拨】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.21、(1)y1=(120-a)x(1≤x≤125,x为正整数),y2=100x-0.5x2(1≤x≤120,x为正整数);(2)110-125a(万元),10(万元);(3)当40<a<80时,选择方案一;当a=80时,选择方案一或方案二均可;当80<a<100时,选择方案二.【解题分析】(1)根据题意直接得出y1与y2与x的函数关系式即可;(2)根据a的取值范围可知y1随x的增大而增大,可求出y1的最大值.又因为﹣0.5<0,可求出y2的最大值;(3)第三问要分两种情况决定选择方案一还是方案二.当2000﹣200a>1以及2000﹣200a<1.【题目详解】解:(1)由题意得:y1=(120﹣a)x(1≤x≤125,x为正整数),y2=100x﹣0.5x2(1≤x≤120,x为正整数);(2)①∵40<a<100,∴120﹣a>0,即y1随x的增大而增大,∴当x=125时,y1最大值=(120﹣a)×125=110﹣125a(万元)②y2=﹣0.5(x﹣100)2+10,∵a=﹣0.5<0,∴x=100时,y2最大值=10(万元);(3)∵由110﹣125a>10,∴a<80,∴当40<a<80时,选择方案一;由110﹣125a=10,得a=80,∴当a=80时,选择方案一或方案二均可;由110﹣125a<10,得a>80,∴当80<a<100时,选择方案二.考点:二次函数的应用.22、(1)坡顶A到地面PQ的距离为10米;()2移动信号发射塔BC的高度约为19米.【解题分析】延长BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由题意BH=PH.设BC=x.则x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根据tan76°=BCAC,构建方程求出x即可.【题目详解】延长BC交OP于H.∵斜坡AP的坡度为1:2.4,∴512 ADPD=,设AD=5k,则PD=12k,由勾股定理,得AP=13k, ∴13k=26,解得k=2,∴AD=10,∵BC⊥AC,AC∥PO,∴BH⊥PO,∴四边形ADHC是矩形,CH=AD=10,AC=DH, ∵∠BPD=45°,∴PH=BH,设BC=x,则x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=BCAC,即14xx-≈4.1.解得:x≈18.7,经检验x≈18.7是原方程的解.答:古塔BC的高度约为18.7米.【题目点拨】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形.23、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)当a=32时,△PAC的面积取最大值,最大值为278【解题分析】(2)将(0,-2)代入二次函数解析式中即可求出n值;(2)由二次函数图象与x轴只有一个交点,利用根的判别式△=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;(2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;(4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标,利用待定系数法可求出直线AC的解析式,过点P作PD⊥x轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q 的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出S△ACP关于a的函数关系式,配方后即可得出△PAC面积的最大值.【题目详解】解:(2)∵二次函数y=mx2﹣2mx+n的图象经过(0,﹣2),∴n=﹣2.故答案为﹣2.(2)∵二次函数y=mx2﹣2mx﹣2的图象与x轴有且只有一个交点,∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,解得:m2=0,m2=﹣2.∵m≠0,∴m=﹣2.(2)∵二次函数解析式为y=mx2﹣2mx﹣2,∴二次函数图象的对称轴为直线x=﹣-2m2m=2.∵该二次函数图象与平行于x轴的直线y=5的一个交点的横坐标为4,∴另一交点的横坐标为2×2﹣4=﹣2,∴另一个交点的坐标为(﹣2,5).故答案为(﹣2,5).(4)∵二次函数y=mx2﹣2mx﹣2的图象经过点A(2,0),∴0=9m﹣6m﹣2,∴m=2,∴二次函数解析式为y=x2﹣2x﹣2.设直线AC的解析式为y=kx+b(k≠0),将A(2,0)、C(0,﹣2)代入y=kx+b,得:3k+b=0 {b=-3,解得:k=1{b=-3,∴直线AC的解析式为y=x﹣2.过点P作PD⊥x轴于点D,交AC于点Q,如图所示.设点P的坐标为(a,a2﹣2a﹣2),则点Q的坐标为(a,a﹣2),点D的坐标为(a,0),∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,∴S△ACP=S△APQ+S△CPQ=12PQ•OD+12PQ•AD=﹣32a2+92a=﹣32(a﹣32)2+278,∴当a=32时,△PAC的面积取最大值,最大值为278.【题目点拨】本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当△=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出S△ACP关于a的函数关系式.24、(1)证明见解析;(2)1.【解题分析】试题分析:(1)根据垂直的定义可得∠CEB=90°,然后根据角平分线的性质和等腰三角形的性质,判断出∠1=∠D,从而根据平行线的判定得到CE∥BD,根据平行线的性质得∠DBA=∠CEB,由此可根据切线的判定得证结果;(2)连接AC,由射影定理可得,进而求得EB的长,再由勾股定理求得BD=BC的长,然后由“两角对应相等的两三角形相似”的性质证得△EFC∽△BFD,再由相似三角形的性质得出结果.试题解析:(1)证明:∵,∴.∵CD平分,BC=BD,∴,.∴.∴∥.∴.∵AB是⊙O的直径,∴BD是⊙O的切线.(2)连接AC,∵AB是⊙O直径,∴.∵,可得.∴在Rt△CEB中,∠CEB=90°,由勾股定理得∴.∵,∠EFC =∠BFD,∴△EFC∽△BFD.∴.∴.∴BF=1.考点:切线的判定,相似三角形,勾股定理。
初三中考数学选择填空压轴题
初三中考数学选择填空压轴题中考数学选择填空压轴题⼀、动点问题1.如图,C 为⊙O 直径AB 上⼀动点,过点C 的直线交⊙O 于D 、E 两点,且∠ACD=45°,DF ⊥AB 于点F,EG ⊥AB 于点G,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表⽰y 与x 的函数关系式的图象⼤致是()2.如图,A ,B ,C ,D 为圆O 的四等分点,动点P 从圆⼼O 出发,沿O —C —D —O 路线作匀速运动,设运动时间为x (s ).∠APB=y (°),右图函数图象表⽰y 与x 之间函数关系,则点M 的横坐标应为. 3.如图,AB 是⊙O 的直径,且AB=10,弦MN 的长为8,若弦MN 的两端在圆上滑动时,始终与AB 相交,记点A 、B 到MN 的距离分别为h 1,h 2,则|h 1-h 2| 等于() A 、5 B 、6 C 、7 D 、84.如图,已知Rt △ABC 的直⾓边AC =24,斜边AB =25,⼀个以点P 为圆⼼、半径为1的圆在△ABC 内部沿顺时针⽅向滚动,且运动过程中⊙P ⼀直保持与△ABC 的边相切,当点P 第⼀次回到它的初始位置时所经过路径的长度是() A.563 B. 25 C. 1123D. 565.在ABC △中,12cm 6cm AB AC BC D ===,,为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B A C →→的⽅向运动.设运动时间为t ,那么当t = 秒时,过D 、P 两点的直线将ABC △的周长分成两个部分,使其中⼀部分是另⼀部分的2倍.6.如图,正⽅形ABCD 的边长为2,将长为2的线段QR 的两端放在正⽅形的相邻的两边上同时滑动.如果Q点从A 点出发,沿图中所⽰⽅向按A→B→C→D→A 滑动到A ⽌,同时点R 从B 点出发,沿图中所⽰⽅向按B→C→D→A→B 滑动到B ⽌,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的⾯积为()A .2B .4π-C .πD .π1-7.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意⼀点,四边形EFGB 也是矩形,且2EFBE =,则AFC S =△()2cm . A .8 B .9 C .8 3 D .9 38.△ABC 是⊙O 的内接三⾓形,∠BAC =60°,D 是的中点,AD =a,则四边形ABDC 的⾯积为.在梯形ABCD 中,9.如图,90614AD BC ABC AD AB BC ∠====∥,°,,,点M 是线BC 上⼀定点,且MC =8.动点P 从C 点出发沿C D A B →→→的段运动,运动到点B 停⽌.在点P 的运动过程中,使PMC △为等腰三路线的点P 有个CQRM DADCE F G B ADP B10.如图在边长为2的正⽅形ABCD 中,E ,F ,O 分别是AB ,CD ,AD 的中点,以O 为圆⼼,以OE 为半径画弧EF .P 是上的⼀个动点,连结OP ,并延长OP 交线段BC 于点K ,过点P 作⊙O 的切线,分别交射线AB 于点M ,交直线BC 于点G . 若3=BMBG,则BK ﹦ . ⼆、⾯积与长度问题1.如图,△ABC 是直⾓边长为a 的等腰直⾓三⾓形,直⾓边AB 是半圆O 1的直径,半圆O 2过C 点且与半圆O 1相切,则图中阴影部分的⾯积是()A .2367a π-B .2365a π- C .2367a D .2365a 2.如图,在x 轴上有五个点,它们的横坐标依次为l ,2,3,4,5.分别过这些点作x 轴的垂线与三条直线y=ax ,y= (a+1)x ,y=(a+2)x 相交,其中a>0.则图中阴影部分的⾯积是( ) A .12.5 B .25 C .12.5a D .25a 3.如图,在反⽐例函数2(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的⾯积从左到右依次为123S S S ,,,则123S S S ++= .4.已知, A 、B 、C 、D 、E 是反⽐例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正⽅形边长为半径作四分之⼀圆周的两条弧,组成如图5所⽰的五个橄榄形(阴影部分),则这五个橄榄形的⾯积总和是(⽤含π的代数式表⽰)5.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点A 1、A 2、A 3、A 4、A 5分别作x 轴的垂线与反⽐例函数()20y x x =≠的图象相交于点P 1、P 2、P 3、P 4、P 5,得直⾓三⾓形(阴影部分)并设其⾯积分别为12345S S S S S 、、、、,则5S 的值为.xyOP 1P 2P 3 P 4 1 234AODBFKE GM CyxO P 1P 2P 3A 1 A 2 A 3 A 4 A 5A DEPBC ABCDNM6.如图,把⼀个棱长为3的正⽅体的每个⾯等分成9个⼩正⽅形,然后沿每个⾯正中⼼的⼀个正⽅形向⾥挖空(相当于挖去了7个⼩正⽅体),所得到的⼏何体的表⾯积是() A .78B .72C .54D .487.如图,平⾏于y 轴的直线l 被抛物线y =2112x +、y =2112x -所截.当直线l 向右平移3个单位时,直线l 被两条抛物线所截得的线段扫过的图形⾯积为平⽅单位.8.如图,在Rt ABC △中,9042C AC BC ===∠°,,,分别以AC 、BC 为直径画半圆,则图中阴影部分的⾯积为.(结果保留π)9.如图,Rt ABC △中,90ACB ∠=o,30CAB ∠=o,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120o到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的⾯积(即阴影部分⾯积)为() A .77π338- B .47π338+C .πD .4π33+ 10.如图,正⽅形ABCD 的⾯积为12,ABE △是等边三⾓形,点E 在正⽅形ABCD 内,在对⾓线AC 上有⼀点P ,使PD PE +的和最⼩,则这个最⼩值为() A .23 B .26D .6在锐⾓ABC △中,11.如图,4245AB BAC =∠=,°,BAC ∠的平分线交BC 于D M N ,、分别是AD 和AB上的动点,则BMMN+点的最⼩值是___________ .12.如图,在矩形ABCD 中,AB =3,AD =4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE +PF 等于()A.75 B.125 C.135 D.145中,E 是BC 边上⼀点,以E 为ABCD 13.正⽅形的半圆与以A 为圆⼼,AB 为半EC 为半径圆⼼、sin EAB ∠的值为()径的圆弧外切,则A .43B .34C .45D .3514.在Rt △ABC 内有边长分别为,,a b c 的三个正⽅形,则,,a b c 满⾜关系式.AH BOC ADBC EFPADFCBOEEFDCBA15.⼀张等腰三⾓形纸⽚,底边长l5cm ,底边上的⾼长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所⽰.已知剪得的纸条中有⼀张是正⽅形,则这张正⽅形纸条是( ) A .第4张 B .第5张 C.第6张 D .第7张16.如图,等腰△ABC 中,底边a BC =,?=∠36A ,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD于E ,设215-=k ,则=DE () A .a k 2B .a k 3C .2k a D .3k a17.如图,直径分别为CD 、CE 的两个半圆相切于点C ,⼤半圆M 的弦AB 与⼩半圆N 相切于点F ,且AB ∥CD ,AB=4,设弧CD 、弧CE 的长分别为x 、y ,线段ED 的长为z ,则z (x+y )= .三、多结论问题1.如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90?后,得到△AFB ,连接EF ,下列结论:①△AED ≌△AEF ;②△ABE ∽△ACD ;③BE DC DE +=;④222BE DC DE +=其中⼀定正确的是() A .②④ B .①③ C .②③ D .①④2.如图,在等腰Rt △ABC 中,∠C =90o ,AC =8,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD=CE ,连接DE 、DF 、EF 。
2023年浙江省宁波市中考数学试卷及答案解析
2023年浙江省宁波市中考数学试卷一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)在﹣2,﹣1,0,π这四个数中,最小的数是()A.﹣2B.﹣1C.0D.π2.(4分)下列计算正确的是()A.x2+x=x3B.x6÷x3=x2C.(x3)4=x7D.x3•x4=x7 3.(4分)据中国宁波网消息:2023年一季度宁波全市实现地区生产总值380180000000元,同比增长4.5%.数380180000000用科学记数法表示为()A.0.38018×1012B.3.8018×1011C.3.8018×1010D.38.018×1010 4.(4分)如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()A.B.C.D.5.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(4分)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环)及方差S2(单位:环2)如下表所示:甲乙丙丁9899 S2 1.20.4 1.80.4根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁7.(4分)如图,一次函数y1=k1x+b(k1>0)的图象与反比例函数y2=(k2>0)的图象相交于A,B两点,点A的横坐标为1,点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>1B.x<﹣2或0<x<1C.﹣2<x<0或x>1D.﹣2<x<0或0<x<18.(4分)茶叶作为浙江省农业十大主导产业之一,是助力乡村振兴的民生产业.某村有土地60公顷,计划将其中10%的土地种植蔬菜,其余的土地开辟为茶园和种植粮食,已知茶园的面积比种粮食面积的2倍少3公顷,问茶园和种粮食的面积各多少公顷?设茶园的面积为x公顷,种粮食的面积为y公顷,可列方程组为()A.B.C.D.9.(4分)已知二次函数y=ax2﹣(3a+1)x+3(a≠0),下列说法正确的是()A.点(1,2)在该函数的图象上B.当a=1且﹣1≤x≤3时,0≤y≤8 C.该函数的图象与x轴一定有交点D.当a>0时,该函数图象的对称轴一定在直线x=的左侧10.(4分)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道()A.△ABE的面积B.△ACD的面积C.△ABC的面积D.矩形BCDE的面积二、填空题(每小题5分,共30分)11.(5分)分解因式:x2﹣y2=.12.(5分)要使分式有意义,x的取值应满足.13.(5分)一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为.14.(5分)如图,圆锥形烟囱帽的底面半径为30cm,母线长为50cm,则烟囱帽的侧面积为cm2.(结果保留π)15.(5分)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O 与BC相切于点D,连结AD,BE=3,BD=3.P是AB边上的动点,当△ADP为等腰三角形时,AP的长为.16.(5分)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC=2BC,△ABE的面积为9,四边形ABDE的面积为14,则a﹣b 的值为,a的值为.三、解答题(本大题有8小题,共80分)17.(8分)计算:(1)(1+)0+|﹣2|﹣;(2)(a+3)(a﹣3)+a(1﹣a).18.(8分)在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).(1)在图1中先画出一个以格点P为顶点的等腰三角形PAB,再画出该三角形向右平移2个单位后的△P′A′B′.(2)将图2中的格点△ABC绕点C按顺时针方向旋转90°,画出经旋转后的△A′B′C.19.(8分)如图,已知二次函数y=x2+bx+c图象经过点A(1,﹣2)和B(0,﹣5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤﹣2时,请根据图象直接写出x的取值范围.20.(10分)宁波象山作为杭州亚运会分赛区,积极推进各项准备工作.某校开展了亚运知识的宣传教育活动,为了解这次活动的效果,从全校1200名学生中随机抽取部分学生进行知识测试(测试满分为100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:合格(60≤x<70),一般(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如下统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为一般的学生人数,并补全频数分布直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等级?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校测试成绩为良好和优秀的学生共有多少人?21.(10分)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P点观察所测物体最高点C,当量角器零刻度线上A,B两点均在视线PC上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式示β.(2)如图3,为了测量广场上空气球A离地面的高度,该小组利用自制简易测角仪在点B,C分别测得气球A的仰角∠ABD为37°,∠ACD为45°,地面上点B,C,D在同一水平直线上,BC=20m,求气球A离地面的高度AD.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(10分)某校与部队联合开展红色之旅研学活动,上午7:00,部队官兵乘坐军车从营地出发,同时学校师生乘坐大巴从学校出发,沿公路(如图1)到爱国主义教育基地进行研学.上午8:00,军车在离营地60km的地方追上大巴并继续前行,到达仓库后,部队官兵下车领取研学物资,然后乘坐军车按原速前行,最后和师生同时到达基地,军车和大巴离营地的路程s(km)与所用时间t(h)的函数关系如图2所示.(1)求大巴离营地的路程s与所用时间t的函数表达式及a的值.(2)求部队官兵在仓库领取物资所用的时间.23.(12分)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形ABCD中,AD∥BC,∠A=90°,对角线BD平分∠ADC.求证:四边形ABCD为邻等四边形.(2)如图2,在6×5的方格纸中,A,B,C三点均在格点上,若四边形ABCD是邻等四边形,请画出所有符合条件的格点D.(3)如图3,四边形ABCD是邻等四边形,∠DAB=∠ABC=90°,∠BCD为邻等角,连结AC,过B作BE∥AC交DA的延长线于点E.若AC=8,DE=10,求四边形EBCD 的周长.24.(14分)如图1,锐角△ABC内接于⊙O,D为BC的中点,连结AD并延长交⊙O于点E,连结BE,CE,过C作AC的垂线交AE于点F,点G在AD上,连结BG,CG,若BC平分∠EBG且∠BCG=∠AFC.(1)求∠BGC的度数.(2)①求证:AF=BC.②若AG=DF,求tan∠GBC的值,(3)如图2,当点O恰好在BG上且OG=1时,求AC的长.2023年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.【分析】正数>0>负数,两个负数比较大小,绝对值大的反而小,据此进行判断即可.【解答】解:∵|﹣2|=2,|﹣1|=1,2>1,∴﹣1>﹣2,∴π>0>﹣1>﹣2,则最小的数为:﹣2,故选:A.【点评】本题考查实数的大小比较,此为基础且重要知识点,必须熟练掌握.2.【分析】根据合并同类项的法则、同底数幂除法、幂的乘方以及同底数幂乘法的运算法则计算即可.【解答】解:A、x2和x不是同类项,不能进行合并,故选项不符合题意;B、x6÷x3=x3,原式计算错误,故选项不符合题意;C、(x3)4=x12,原式计算错误,故选项不符合题意;D、x3•x4=x7,运算计算正确,故选项符合题意.故选:D.【点评】本题考查了合并同类项的法则、同底数幂除法、幂的乘方以及同底数幂乘法的运算法则,解题的关键是熟记相关的运算法则并灵活运用.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:380180000000=3.8018×1011.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据从正面看得到的图形是主视图判断即可.【解答】解:从正面看,上边是一个长方形,下边也是一个长方形,故选:A.【点评】本题考查了简单几何体的三视图,需掌握:从正面看得到的图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图.5.【分析】解出每个不等式,取公共解集,再表示在数轴上即可.【解答】解:,解不等式①得:x>﹣1,解不等式②得:x≤1,∴﹣1<x≤1,解集表示在数轴上如图:故选:C.【点评】本题考查解一元一次不等式组,解题的关键是掌握取公共解集的方法.6.【分析】根据平均环数比较成绩的优劣,根据方差比较数据的稳定程度.【解答】解:由表知甲、丙、丁射击成绩的平均数相等,且大于乙的平均数,∴从甲、丙、丁中选择一人参加竞赛,∵甲、丙、丁三人中,丁的方差较小,∴丁发挥最稳定,∴选择丁参加比赛.故选:D.【点评】本题考查的是方差和算术平均数,掌握方差反映了一组数据的波动大小,方差越大,波动性越大,方差越小,数据越稳定是解题的关键.7.【分析】根据图象即可.【解答】解:由图象可知,当y1<y2时,x的取值范围是x<﹣2或0<x<1,故选:B.【点评】本题主要考查了反比例函数与一次函数的交点问题,不等式的解集就是其所对应的函数图象上满足条件的所有点的横坐标的集合.8.【分析】根据“茶园的面积比种粮食面积的2倍少3公顷”和“茶园的面积与种粮食面积的和为54公顷”列方程组求解.【解答】解:设茶园的面积为x公顷,种粮食的面积为y公顷,由题意得:,故选:B.【点评】本题考查了二元一次方程组的应用,找到相等关系是解题的关键.9.【分析】将点(1,2)代入抛物线的解析式即可对选项A进行判断;将a=1代入抛物线的解析式求出顶点坐标为(2,﹣1),据此可对选项B进行判断;令y=0,则ax2﹣(3a+1)x+3=0,然后判断该方程判别式的符号即可对选项C进行判断;求出抛物线的解析式为:,然后根据a>0得,据此可对选项C进行判断.【解答】解:①对于y=ax2﹣(3a+1)x+3,当x=1时,y=a×12﹣(3a+1)×1+3=2﹣2a∵a≠0,∴y=2﹣2a≠2,∴点A(1,2)不在该函数的图象上,故选项A不正确;②当x=1时,抛物线的解析式为:y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),即当x=2时,y=﹣1<0,故得选项B不正确;③令y=0,则ax2﹣(3a+1)x+3=0,∵Δ=[﹣(3a+1)]2﹣4a×3=(3a﹣1)2≥0,∴该函数的图象与x轴一定有交点,故选项C正确;④∵该抛物线的对称轴为:,又∵a>0,∴,∴该抛物线的对称轴一定在直线的右侧,故选项D不正确.故选:C.【点评】此题主要考查了二次函数的图象和性质,解答此题的关键是熟练掌握求二次函数的顶点、对称轴以及判定与x轴有无交点的方法.10.【分析】作AG⊥ED于点G,交BC于点F,可证明四边形BFGE是矩形,AF⊥BC,可推导出S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF ,所以只需知道S△ABC,就可求出S﹣S1﹣S2的值,于是得到问题的答案.=S△ABC【解答】解:作AG⊥ED于点G,交BC于点F,∵四边形BCDE是矩形,∴∠FBE=∠BEG=∠FGE=90°,BC∥ED,BC=ED,BE=CD,∴四边形BFGE是矩形,∠AFB=∠FGE=90°,∴FG=BE=CD,AF⊥BC,∴S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,,就可求出S﹣S1﹣S2的值,∴只需知道S△ABC故选:C.【点评】此题重点考查矩形的判定与性质、三角形的面积公式、矩形的面积公式、根据转化思想求图形的面积等知识与方法,正确地作出所需要的辅助线是解题的关键.二、填空题(每小题5分,共30分)11.【分析】因为是两个数的平方差,所以利用平方差公式分解即可.【解答】解:x2﹣y2=(x+y)(x﹣y).故答案是:(x+y)(x﹣y).【点评】本题考查了平方差公式因式分解,熟记平方差公式的特点:两项平方项,符号相反,是解题的关键.12.【分析】当分母不等于0时,分式有意义.【解答】解:由题意得:x﹣2≠0,解得:x≠2,故答案为:x≠2.【点评】本题考查了分式有意义的条件,掌握解不等式的方法是解题的关键.13.【分析】根据概率公式可知,用绿球的个数除以球的总数即可.【解答】解:∵袋子里装有3个绿球、3个黑球和6个红球,∴从袋中任意摸出一个球是绿球的概率为.故答案为:.【点评】此题考查了概率公式,熟知概率=所求情况数与总情况数之比是解题的关键.14.【分析】根据扇形面积公式计算即可.【解答】解:烟囱帽的侧面积为:×2π×30×50=1500π(cm2),故答案为:1500π.【点评】本题考查的是圆锥的计算,熟记圆锥的侧面展开图是扇形以及扇形面积公式是解题的关键.15.【分析】连接OD,DE,根据切线的性质和勾股定理求出OD=6,然后分三种情况讨论:①当AP=PD时,此时P与O重合,②如图2,当AP′=AD时,③如图3,当DP′′=AD时,分别进行求解即可.【解答】解:如图1,连接OD,DE,∵半圆O与BC相切于点D,∴OD⊥BC,在Rt△OBD中,OB=OE+BE=OD+3,BD=3.∴OB2=BD2+OD2,∴(OD+3)2=(3)2+OD2,解得OD=6,∴AO=EO=OD=6,①当AP=PD时,此时P与O重合,∴AP=AO=6;②如图2,当AP′=AD时,在Rt△ABC中,∵∠C=90°,∴AC⊥BC,∴OD∥AC,∴△BOD∽△BAC,∴==,∴==,∴AC=10,CD=2,∴AD===2,∴AP′=AD=2;③如图3,当DP′′=AD时,∵AD=2,∴DP′′=AD=2,∵OD=OA,∴∠ODA=∠BAD,∴OD∥AC,∴∠ODA=∠CAD,∴∠BAD=∠CAD,∴AD平分∠BAC,过点D作DH⊥AE于点H,∴AH=P″H,DH=DC=2,∵AD=AD,∴Rt△ADH≌Rt△ADC(HL),∴AH=AC=10,∴AH=AC=P″H=10,∴AP″=2AH=20(E为AB边上一点,不符合题意,舍去),综上所述:当△ADP为等腰三角形时,AP的长为6或2.故答案为:6或2.【点评】此题属于圆的综合题,考查了切线的性质,圆周角定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质,等腰三角形的性质,综合性强,解决本题的关键是利用分类讨论思想.16.【分析】依据题意,设A(m,),再由AE∥x轴,BD∥y轴,AC=2BC,可得B(﹣2m,﹣),D(﹣2m,﹣),E(,),再结合△ABE的面积为9,四边形ABDE 的面积为14,即可得解.【解答】解:设A(m,),∵AE∥x轴,且点E在函数y=上,∴E(,).∵AC=2BC,且点B在函数y=上,∴B(﹣2m,﹣).∵BD∥y轴,点D在函数y=上,∴D(﹣2m,﹣).∵△ABE的面积为9,=AE×(+)=(m﹣)(+)=m••==9.∴S△ABE∴a﹣b=12.∵△ABE的面积为9,四边形ABDE的面积为14,∴S△BDE=DB•(+2m)=(﹣+)()m=(a﹣b)••()•m=3()=5.∴a=﹣3b.又a﹣b=12.∴a=9.故答案为:12,9.【点评】本题考查了反比例函数的图象与性质,解题时需要熟练掌握并能灵活运用方程思想是关键.三、解答题(本大题有8小题,共80分)17.【分析】(1)根据零指数幂的定义、绝对值的代数意义以及二次根式的性质解答即可;(2)根据平方差公式和单项式乘多项式的运算法则计算即可.【解答】解:(1)(1+)0+|﹣2|﹣=1+2﹣3=0;(2)(a+3)(a﹣3)+a(1﹣a)=a2﹣9+a﹣a2=a﹣9.【点评】本题考查了实数的运算以及整式的混合运算,解题的关键是掌握零指数幂的定义、平方差公式以及单项式乘多项式的运算法则.18.【分析】(1)根据等腰三角形的定义,平移变换的性质作出图形即可;(2)根据旋转变换的性质作出图形即可.【解答】解:(1)如图1,△P′A′B′即为所求;(2)如图2,△A′B′C即为所求.【点评】本题考查作图﹣旋转变换,平移变换,等腰三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.【分析】(1)用待定系数法求出函数表达式,配成顶点式即可得顶点坐标;(2)求出A关于对称轴的对称点坐标,由图象直接可得答案.【解答】解:(1)把A(1,﹣2)和B(0,﹣5)代入y=x2+bx+c得:,解得,∴二次函数的表达式为y=x2+2x﹣5,∵y=x2+2x﹣5=(x+1)2﹣6,∴顶点坐标为(﹣1,﹣6);(2)如图:∵点A(1,﹣2)关于对称轴直线x=﹣1的对称点C(﹣3,﹣2),∴当y≤﹣2时,x的范围是﹣3≤x≤1.【点评】本题考查二次函数图象及性质,解题的关键是掌握待定系数法,求出函数表达式.20.【分析】(1)由优秀人数及其所占百分比求出总人数,再根据四个等级人数之和等于总人数求出一般等级人数,从而补全图形;(2)用360°乘以样本中“良好”等级人数所占比例即可;(3)根据中位数的定义求解即可;(4)用总人数乘以样本中良好和优秀人数和所占比例即可.【解答】解:(1)被调查的总人数为40÷20%=200(人),测试成绩为一般的学生人数为200﹣(30+40+70)=60(人),补全图形如下:(2)360°×=126°,答:扇形统计图中“良好”所对应的扇形圆心角的度数为126°;(3)这组数据的中位数是第100、101个数据的平均数,而这2个数据均落在良好等级,所以这次测试成绩的中位数是良好;(4)1200×=660(人),答:估计该校测试成绩为良好和优秀的学生共有660人.【点评】本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是计算出抽取的人数,利用数形结合的思想解答.21.【分析】(1)由已知直接可得答案;(2)设AD=xm,可得CD=AD=xm,BD=(20+x)m,而tan∠ABD=,有0.75=,即可解得答案.【解答】解:(1)根据题意得:β=90°﹣α;(2)设AD=xm,∵∠ACD=45°,∠ADB=90°,∴CD=AD=xm,∵BC=20m,∴BD=(20+x)m,在Rt△ABD中,tan∠ABD=,∴tan37°=,即0.75=,解得:x=60,∴AD=60(m),答:气球A离地面的高度AD是60m.【点评】本题考查解直角三角形﹣仰角俯角问题,解题的关键是掌握锐角三角函数的定义.22.【分析】(1)求出大巴速度为=40(km/h),即得s=20+40t;令s=100得a=2;(2)求出军车速度为60÷1=60(km/h),设部队官兵在仓库领取物资所用的时间为xh,可得:60(2﹣x)=100,即可解得答案.【解答】解:(1)由函数图象可得,大巴速度为=40(km/h),∴s=20+40t;当s=100时,100=20+40t,解得t=2,∴a=2;∴大巴离营地的路程s与所用时间t的函数表达式为s=20+40t,a的值为2;(2)由函数图象可得,军车速度为60÷1=60(km/h),设部队官兵在仓库领取物资所用的时间为xh,根据题意得:60(2﹣x)=100,解得:x=,答:部队官兵在仓库领取物资所用的时间为h.【点评】本题考查一次函数的应用,解题的关键是读懂题意,能从函数图象中获取有用的信息.23.【分析】(1)根据邻等四边形定义证明即可;(2)根据邻等四边形定义利用网格即可画图;(3)先证明四边形AEBC是平行四边形,得AE=BC=DC,设AE=BC=DC=x,得AD =DE﹣AE=10﹣x,过点D作DF⊥BC于点F,得矩形ABFD,得AB=DF,AD=BF=10﹣x,所以CF=BC﹣BF=x﹣(10﹣x)=2x﹣10,根据勾股定理得82﹣x2=x2﹣(2x ﹣10)2,求出x的值,进而可得四边形EBCD的周长.【解答】(1)证明:在四边形ABCD中,AD∥BC,∠A=90°,∴∠ABC=180°﹣∠A=90°,∵对角线BD平分∠ADC,∴∠ADB=∠CDB,∵AD∥BC,∴∠ADB=∠CBD,∴∠CBD=∠CDB,∴CD=CB,∴四边形ABCD为邻等四边形;(2)解:如下3个图,点D′、D、D″即为所求;(3)解:如图3,四边形ABCD是邻等四边形,∴CD=CB,∵∠DAB=∠ABC=90°,∴AD∥BC,∵BE∥AC,∴四边形AEBC是平行四边形,∴EB=AC=8,AE=BC,∴AE=BC=DC,设AE=BC=DC=x,∵DE=10,∴AD=DE﹣AE=10﹣x,过点D作DF⊥BC于点F,得矩形ABFD,∴AB=DF,AD=BF=10﹣x,∴CF=BC﹣BF=x﹣(10﹣x)=2x﹣10,在Rt△ABE和Rt△DFC中,根据勾股定理得:BE2﹣AE2=AB2,CD2﹣CF2=DF2,∴BE2﹣AE2=CD2﹣CF2,∴82﹣x2=x2﹣(2x﹣10)2,整理得x2﹣20x+82=0,解得x1=10﹣3,x2=10+3(不符合题意,舍去),∴CD=CB=10﹣3,∴四边形EBCD的周长=BE+DE+2CD=8+10+2×(10﹣3)=38﹣6.【点评】本题属于四边形的综合题,考查了邻等四边形定义,矩形的判定与性质,勾股定理,一元二次方程,解决本题的关键是理解邻等四边形定义.24.【分析】(1)根据同弧圆周角相等得∠EBC=∠EAC,然后利用直角三角形两个锐角互余即可解决问题;(2)①证明△ACF≌△BGC(ASA),即可解决问题;②过点C作CH⊥EG于点H,设AG=DF=2x,根据勾股定理和锐角三角函数即可解决问题;(3)过点O作OM⊥BE于点M,连结OC交AE于点N,分别证明△EBD≌△NCD(ASA),△COG≌△OBM(AAS),得BM=OG=1,设OB=OC=r,然后由△GON∽△GBE,对应边成比例,求出r的值,进而可求AC的长.【解答】(1)解:∵BC平分∠EBG,∴∠EBC=∠CBG,∵∠EBC=∠EAC,∴∠CBG=∠EAC,∵AC⊥FC,∴∠AFC+∠EAC=90°,∵∠BCG=∠AFC,∴∠BCG+∠CBG=90°,∴∠BGC=90°;(2)①证明:∵∠BGC=90°,D为BC中点,∴GD=CD,∴∠DGC=∠DCG,∵∠BCG=∠AFC,∴∠DGC=∠AFC,∴CF=CG,∵∠ACF=∠BGC=90°,∴△ACF≌△BGC(ASA),∴AF=BC;②解:如图1,过点C作CH⊥EG于点H,设AG=DF=2x,∵△ACF≌△BGC,∴AF=BC=2DG,∴CD=DG=AG+DF=4x,∵CF=CG,∴HG=HF=3x,∴DH=x,AH=5x,∴CH===x,∴tan∠GBC=tan∠CAF==,∴tan∠GBC的值为;(3)解:如图2,过点O作OM⊥BE于点M,连结OC交AE于点N,∵OB=OC,∴∠CBE=∠OBC=∠OCB,∴OC∥BE,∵BD=CD,∠BDE=∠CDN,∴△EBD≌△NCD(ASA),∴BE=CN,∵OC∥BE,∴∠GOC=∠MBO,∵∠CGO=∠OMB=90°,OC=OB,∴△COG≌△OBM(AAS),∴BM=OG=1,∵OM⊥BE,∴CN=BE=2BM=2,设OB=OC=r,∵OC∥BE,∴△GON∽△GBE,∴=,∴=,解得r =或r =(舍去),∴AC=BG=BO+OG=r+1=.∴AC 的长为.【点评】本题属于圆综合题,考查了垂径定理,圆周角定理,相似三角形的判定和性质,全等三角形的判定与性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题。
2020福建省中考填空最后一题
2020福建省中考填空最后一题
听到最多的讲法就是说利用对称性解题,对角线经过原点,这是没有错的。
如果想不清楚的学生该怎么排除对角线不经过原点的情况呢?我们不妨分类讨论一种一种排除掉!
1.当对角线AC两点在同一支曲线上时,利用对角线互相平分可以确定出平行四边形方法再取一点B发现点D不落在反比例函数图像上。
故排除掉!
2.当对角线AC两点在不同支曲线上时;
(1)如下图AC不过原点时,如下图先确定对角线AC和其中一个点C,根据一组对边平行且相等是平行四边形得到点D位置没有在反比例函数图像上。
故排除掉!
(2)如下图AC过原点O时,这时候就可以直接利用反比例函数关于原点O对称性质解题。
由于OA=OC,OB=OD,所以四边形ABCD是平行四边形。
只要保证OA=OD,这样AC=BD,也就是对角线相等的平行四边形是矩形问题解决!问题2:可以是菱形吗?
根据对角线互相垂直的平行四边形是菱形进行分析发现,对角线BD两个顶点不能落在反比例函数图像上,所以不能是菱形,所以也不能是正方形了!
问题3:还能有哪些特殊四边形
还可以是等腰梯形!。
中考数学选择填空压轴题汇编 最值问题(含解析)-人教版初中九年级全册数学试题
2020年中考数学选择填空压轴题汇编:最值问题1.(2020•某某)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2√5−2 .【解答】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,MN=2,∴BE=12∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.2.(2020•某某)把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A.﹣4B.0C.2D.6【解答】解:∵把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y =﹣a(x﹣1)2+4a,∴原二次函数的顶点为(1,﹣4a),∴原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,∴b=﹣2a,c=﹣3a,∵(m﹣1)a+b+c≤0,∴(m﹣1)a﹣2a﹣3a≤0,∵a>0,∴m﹣1﹣2﹣3≤0,即m≤6,∴m的最大值为6,故选:D.3.(2020•某某)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BB̂于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为6√2+B3.【解答】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′=√BB2+BB′2=√22+22=2√2,BB̂的长l=30B×2180=B3,∴阴影部分周长的最小值为2√2+B3=6√2+B3.故答案为:6√2+B3.4.(2020•某某)如图,已知直线y=−√3x+4与x、y轴交于A、B两点,⊙O的半径为1,P为AB上一动点,PQ切⊙O于Q点.当线段PQ长取最小值时,直线PQ交y轴于M点,a为过点M的一条直线,则点P到直线a的距离的最大值为2√3.【解答】解:如图,在直线y=−√3x+4上,x=0时,y=4,当y=0时,x=4√33,∴OB=4,OA=4√33,∴tan∠OBA=BBBB =√33,∴∠OBA=30°,由PQ切⊙O于Q点可知:OQ⊥PQ,∴PQ=√BB2−BB2,由于OQ=1,因此当OP最小时PQ长取最小值,此时OP⊥AB,∴OP=12OB=2,此时PQ=√22−12=√3,BP=√42−22=2√3,∴OQ=12OP,即∠OPQ=30°,若使点P到直线a的距离最大,则最大值为PM,且M位于x轴下方,过点P作PE⊥y轴于点E,∴EP=12BP=√3,∴BE=√(2√3)2−(√3)2=3,∴OE=4﹣3=1,OP,∵OE=12∴∠OPE=30°,∴∠EPM=30°+30°=60°,即∠EMP=30°,∴PM=2EP=2√3.故答案为:2√3.5.(2020•某某)在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动,A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为()A.2√5B.2√10C.6√2D.3√5【解答】解:设C(m,0),∵CD=2,∴D(m+2,0),∵A(0,2),B(0,4),∴AC+BD=√B2+22+√(B+2)2+42,∴要求AC+BD的最小值,相当于在x轴上找一点P(m,0),使得点P到M(0,2)和N(﹣2,4)的距离和最小,(PM+PN=√B2+22+√(B+2)2+42),如图1中,作点M关于原点O的对称点Q,连接NQ交x轴于P′,连接MP′,此时P′M+P′N的值最小,∵N(﹣2,4),Q(0,﹣2)P′M+P′N的最小值=P′N+P′M=P′N+P′Q=NQ=√22+62=2√10,∴AC+BD的最小值为2√10.故选:B.6.(2020•某某)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为 2 .一动点,点C为弦AB的中点,直线y=34【解答】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD=4,OE=3,∴DE=√32+42=5,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴BBBB =BBBB,∴BB3=35,∴MN=95,当点C与C′重合时,△C′DE的面积最小,最小值=12×5×(95−1)=2,故答案为2.7.(2020•某某)在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为9√2+9 .【解答】解:作△ABC的外接圆⊙O,过C作CM⊥AB于M,∵弦AB已确定,∴要使△ABC的面积最大,只要CM取最大值即可,如图所示,当CM过圆心O时,CM最大,∵CM⊥AB,CM过O,∴AM=BM(垂径定理),∴AC=BC,∵∠AOB=2∠ACB=2×45°=90°,∴OM=AM=12AB=12×6=3,∴OA=√BB2+BB2=3√2,∴CM=OC+OM=3√2+3,∴S△ABC=12AB•CM=12×6×(3√2+3)=9√2+9.故答案为:9√2+9.8.(2020•某某)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=14DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为9√3.【解答】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4√3,∵四边形ECGF是平行四边形,∴EF∥CG,∴△EOD∽△GOC,∴BBBB =BBBB=BBBB,∵DF=14DE,∴BBBB =45,∴BBBB =45,∴BBBB =45,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4√3,∴GO=5√3,∴EG的最小值是9√3,故答案为:9√3.9.(2020•聊城)如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为4+2√5.【解答】解:∵点A(1,1),点C的纵坐标为1,∴AC∥x轴,∴∠BAC=45°,∵CA=CB,∴∠ABC=∠BAC=45°,∴∠C=90°,∵B(3,3)∴C(3,1),∴AC=BC=2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,则EF=BC=2,AF=6﹣2=4,∴AE=√BB2+BB2=√22+42=2√5,∴最小周长的值=AC+BC+AE=4+2√5,故答案为:4+2√5.10.(2020•某某)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.√2+1B.√2+12C.2√2+1D.2√2−12【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=12CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,∵OB=OD=2,∠BOD=90°,∴BD=2√2,∴CD=2√2+1,∴OM=12CD=√2+12,即OM的最大值为√2+12;故选:B.11.(2020•某某)如图,在平面直角坐标系中,直线y =﹣x 与双曲线y =B B交于A 、B 两点,P 是以点C (2,2)为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .−12B .−32C .﹣2D .−14【解答】解:点O 是AB 的中点,则OQ 是△ABP 的中位线,当B 、C 、P 三点共线时,PB 最大,则OQ =12BP 最大,而OQ 的最大值为2,故BP 的最大值为4,则BC =BP ﹣PC =4﹣1=3,设点B (m ,﹣m ),则(m ﹣2)2+(﹣m ﹣2)2=32,解得:m 2=12,∴k =m (﹣m )=−12,故选:A .12.(2020•内江)如图,在矩形ABCD 中,BC =10,∠ABD =30°,若点M 、N 分别是线段DB 、AB 上的两个动点,则AM+MN的最小值为15 .【解答】解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,=10√3,在Rt△ABD中,AB=BBBBB30°∵A′H⊥AB,∴AH=HB=5√3,∴A′H=√3AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.13.(2020•某某)如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为 6 .【解答】解:如图所示,作点A关于BC的对称点A',连接AA',A'D,过D作DE⊥AC于E,∵△ABC中,∠BAC=90°,∠B=60°,AB=2,∴BH=1,AH=√3,AA'=2√3,∠C=30°,CD,即2DE=CD,∴Rt△CDE中,DE=12∵A与A'关于BC对称,∴AD=A'D,∴AD+DE=A'D+DE,∴当A',D,E在同一直线上时,AD+DE的最小值等于A'E的长,×2√3=3,此时,Rt△AA'E中,A'E=sin60°×AA'=√32∴AD+DE的最小值为3,即2AD+CD的最小值为6,故答案为:6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.如图,点A 、B 、C 、D 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积这和是 ( )A .1B .3C .3(1)m -D .3(2)2m -18.如图,⊙A 、⊙B 的圆心A 、B 在直线l 上,两圆半径都为1cm ,开始时圆心距AB=4cm ,现⊙A 、⊙B 同时沿直线l 以每秒2cm 的速度相向移动,则当两圆相切时,⊙A 运动的时间为 秒8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数10、如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水。
在这则乌鸦喝水的故事中,从乌鸦看到瓶的那刻起开始计时并设时间为x ,瓶中水位的高度为y ,下列图象中最符合故事情景的是:12、B 18、 8、 A 10.D18、若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是______度。
10.如图,等腰△ABC 中,底边a BC =,︒=∠36A ,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BDA于E ,设215-=k ,则=DE ( ▲ ) A .a k 2 B .a k 3 C .2k aD .3k a16.如图,在直角坐标系中,已知点)0,3(-A ,)4,0(B ,对△OAB 连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为 ▲ .12.已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个?( ) A .6 B .7 C .8 D .918、30 10.A 16.(360),12、C18.如图,已知Rt ABC △,1D 是斜边AB 的中点, 过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ; 过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则n S =________ABC S △(用含n的代数式表示).(第12题)BCAE 1 E 2 E 3D 4D 1D 2D 3(第18题)10、如图4,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1B .34C .23D .210.若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )(A)a >-1. (B)a ≥-1. (C)a ≤1. (D)a <1.18.如图,正方形ABCD 边长为1,动点P 从A 点出发,沿正方形的边按逆时针方向运动,当它的运动路程为2009时,点P 所在位置为______;当点P 所在位置为D 点时,点P 的运动路程为______(用含自然数n 的式子表示).18.()211n +10、C10、c10、A 18.点B ;4n +3(录入者注:填4n -1(n 为正整数)10、A10.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是 A .172 B .52 C .24 D .716.如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n-1= ▲ .第18题图 BDA (P )CC图4(第10题)l 1l 2 l 3ACB…10、如图5,AB 是⊙O 的直径,且AB=10,弦MN 的长为8,若弦MN 的两端在圆上滑动时,始终与AB 相交,记点A 、B到MN 的距离分别为h 1,h 2,则|h 1-h 2| 等于( ) A 、5 B 、6 C 、7 D 、8数y=x916、如图7所示,P 1(x 1,y 1)、P 2(x 2,y 2),……P n (x n ,y n )在函(x >0)的图象上,△OP 1A 1,△P 2A 1A 2,△P 3A 2A 3……△P n A n-1A n ……都是等腰直角三角形,斜边OA 1,A 1A 2……A n-1A n ,都在x 轴上,则y 1+y 2+…y n = 。
18.如图,已知点A 、B 在双曲线x ky =(x >0)上,ACBD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 为3,则k = .12.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,, ()()()()1331;g a b b a g =如②,=,.,,,()()()()1313h a b a b h --=--如③,=,.,,,. 按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( )A .()53--,B .()53,C .()53-,D .()53-,16.121-⎪⎭⎫⎝⎛n 10、B 16、3n 18.12;12、B12.如图,ABC △和的DEF △是等腰直角三角形,90C F ∠=∠=,24AB DE ==,.点B 与点D 重合,点A B D E ,(),在同一条直线上,将ABC △沿D E →方向平移,至点A 与点E 重合时停止.设点B D ,之间的距离为x ,ABC △与DEF △重叠部分的面积为y ,则准确反映y 与x 之间对应关系的图象是( )第18题图4=1+3 9=3+616=6+10图7…18.如图,1O 和2O 的半径为1和3,连接12O O ,交2O 于点P,128O O =,若将1O 绕点P 按顺时针方向旋转360,则1O 与2O 共相切_______次.12.在直角梯形A B C 中,A D B ∥,90ABC AB BC E ∠==°,,为AB 边上一点,15BCE ∠=°,且AE AD =.连接DE 交对角线AC 于H ,连接BH .下列结论:①ACD ACE △≌△;②CDE △为等边三角形;③2EHBE =; ④EDC EHCS AH S CH =△△. 其中结论正确的是( )A .只有①②B .只有①②④C .只有③④D .①②③④ 16.如图,直线43y x =与双曲线ky x=(0x >)交于点A .将直线43y x =向右平移92个单位后,与双曲线ky x =0x >)交于点B ,与x 轴交于点C ,若2AOBC=,则k = . 12.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻 “三角形数”之和.下列等式中,符 合这一规律的是( ) A .13 = 3+10 B .25 = 9+16 C .36 = 15+21D .49 = 18+3118.3 12、B 16.12 12、C18.如图9,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm ,此时木桶中水的深度是 cm . *10.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,ABP △的面积为y ,如果y关第18题图D CBE AH图9DC B A于x 的函数图象如图2所示,则BCD △的面积是( ) A .3 B .4 C .5 D .6 *16.观察下列等式:221.4135-=⨯; 222.5237-=⨯; 223.6339-=⨯ 224.74311-=⨯;…………则第n (n 是正整数)个等式为________. 17.如图7,在Rt ABC △中,9042C AC BC ===∠°,,,分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为 .(结果保留π)*10.A18.20 *16.22(3)3(23)n n n +-=⨯+ 17.542π- 6.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟 C .25分钟 D .27分钟12.矩形ABCD 的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置1111A B C D 时(如图所示),则顶点A 所经过的路线长是_________.5. 如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个( )12.对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n n A B表示这两图6CAB图7点间的距离,则112220092009A B A B A B +++的值是A .20092008B .20082009C .20102009D .200920108.定义:如果一元二次方程20(0)ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程. 已知20(0)ax bx c a ++=≠ 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是 A .a c = B .a b = C .b c = D . a b c ==16.孔明同学在解方程组2y kx by x=+⎧⎨=-⎩的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为12=-⎧⎨=⎩x y ,又已知直线=+y kx b 过点(3,1),则b 的正确值应该是 .6、B 12.12π5.C 12、D 8、A 16.11-18.若正方形ABCD 的边长为4,E 为BC 边上一点,BE =3,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF =AE ,则BM 的长为 . 15.450的扇形AOB 内部 作一个正方形CDEF ,使点C 在OA 上,点D 、E 在OB 上, 点F 在AB 上,则阴影部分的面积为(结果保留π) .10. 如图6,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于BG=24,点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,则ΔCEF 的周长为( )(A )8 (B )9.5 (C )10 (D )11.510.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为 .18.如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( ) A .32 B .76 C .256D .210.在二行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点),在每一种翻动方式中,骰子不能后退.开始时骰子如图(1)那样摆放,朝上的点数是2;最后翻动到如图(2)所示的位置,此时骰子朝上的点数不可能...是下列数中的( )A .5 (1) (2) (3) …… ……(第10题) A D B C(第18题)10、D20.如图,在等腰梯形ABCD 中,AD BC ∥,BC =4AD=B ∠=45°.直角三角板含45°角的顶点E 在边BC 上移动,一直角边始终经过点A ,斜边与CD 交于点F .若ABE △为等腰三角形,则CF 的长等于 .155182π-10、A 10.32n +18、B 20.52,2,3.11.如图,边长为1的菱形ABCD 中,∠DAB=600,连结对角线AC ,以AC 为边作第二个菱形ACC l D l ,使∠D 1AC=600;连结AC 1,再以AC 1为边作第三个菱形AC l C 2D 2,使∠D 2AC 1=600;……,按此规律所作的第n 个菱形的边长为 .20.如图, ABC △中,CD AB ⊥于D ,一定能确定ABC △为直角三角形的条件的个数是( )①1A ∠=∠,②CD DBAD CD=,③290B ∠+∠=°,④345BC AC AB =∶∶∶∶,⑤AC BD AC CD =··A .1B .2C .3D .48、观察数表1-6151-110A -4-2015653-6-5-4-3-2-11-11111111根据表中数的排列规律,则字母A 所表示的数是 .20、D 20.C 8. 10- 8、A8. 如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD=45°,DF ⊥AB212CD BA20题图于点F,EG ⊥AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是12. 如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点记为A ′,折痕交AD 于点E,若M 、N 分别是AD 、BC 边的中点,则A ′N= ; 若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(2n ≥,且n 为整数),则A ′N= (用含有n 的式子表示) 12.如图,点A 在双曲线6y x=上,且O A =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为()A .B .5C .D16.已知直线1y x =,2113y x =+,2455y x =-+的图象如图所示,若无论x 取何值,y 总取1y 、2y 、3y 中的最小值,则y 的最大值为 。