DNA的分子结构

合集下载

第3单元 第1章 第2节 DNA的分子结构

第3单元 第1章 第2节 DNA的分子结构

上一页
返回首页
下一页
3.脱氧核糖核苷酸种类 脱氧核糖核苷酸的含氮碱基有四种,分别是: 腺嘌呤(A)、 鸟嘌呤(G)、 胸腺嘧啶(T) 和 胞嘧啶(C) 。因此脱氧核糖核苷酸也有 四 种。 二、DNA双螺旋结构 1.提出者: 沃森和克里克 。 2.结构特点 (1)由两条脱氧核糖核苷酸 长链,按反向平行方式向右盘绕成双螺旋结构。
上一页
返回首页
下一页
(2)结构
上一页
返回首页
下一页
3.DNA分子的特点 (1)稳定性:DNA分子呈现 右手双螺旋结构 。 (2)多样性:碱基对的 排列方法 在理论上几乎是无限的。 (3)特异性:碱基对的 特定排列顺序 构成了DNA分子的特异性。
上一页
返回首页
下一页
[合作探讨] 探讨1:一分子DNA中,脱氧核糖核苷酸的数量与含氮碱基的数量是否相 等? 提示:相等,因一分子脱氧核糖核苷酸由一分子磷酸、一分子脱氧核糖和一 分子含氮碱基组成。 探讨2:DNA彻底水解会得到几种物质?
上一页
返回首页
下一页
(1)每个DNA片段中有2个游离的磷酸基团,各在两条链的其中一端。 (2)氢键数目计算:A与T间可构成2个氢键,G与C间可形成3个氢键,故G—C 对比例越大的DNA分子,其氢键数目越多,DNA分子越稳定。 (3)氢键:可用解旋酶和加热法将其断裂。
上一页
返回首页
下一页
3.DNA分子中碱基计算常用规律
A1+T1=A2+T2,G1+C1=G2+C2(1、2分别代表DNA分子的两条链,下同)。 规律4:一条链中互补的两种碱基数量之和占该单链碱基数的比例等于DNA
分子两条链中这两种碱基数量之和占总碱基数的比例,即
A1+T1 A1+T1+G1+C1

(完整版)DNA分子的结构详解

(完整版)DNA分子的结构详解
⑷通用性——自然界中的各种 生物共用一套密码子表
⑵转运RNA(tRNA):含有反密码子
tRNA
一个转运RNA 只能携带一种特定的氨基酸!
细胞中的转运RNA至少有 61 种!
UA U
异亮氨酸
UA U 携带什么氨基酸?
A U A mRNA
5.转录 地点:主要在细胞核 模板: DNA的一条链 原料: 4 种核糖核苷酸 条件: RNA聚合酶、ATP
DNA分子是有 2 条链组成,反向平行 盘旋
成 双螺旋 结构。 脱氧核糖和磷酸 交替连接,排列在外侧, 构成基本骨架; 碱基对 排列在内侧。 碱基通过 氢键 连接成碱基对,并遵循
碱基互补配对 原则。
2、DNA的多样性
A
T
C
G
A
T
A
T
C
G
G
C
A
T
G
C
碱基对的排列顺 序是千变万化
A
T
C
G
A
T
A
T
C
G
一个DNA分子的结构
A
T
C
G
A
T
A
T
C
G
G
C
A
T
G
C
T 脱氧核苷酸
磷酸
脱氧
碱基
核糖
脱氧核苷酸的种类
A
腺嘌呤脱氧核苷酸
G
鸟嘌呤脱氧核苷酸
C
胞嘧啶脱氧核苷酸
T
胸腺嘧啶脱氧核苷酸
硫酸二酯键
一条脱氧核苷酸链

DNA 分 子 结 构 主 要 特 点
A
T
C
G
A
T
A
T
C

DNA的分子结构和特点

DNA的分子结构和特点


• • • •
判断下列生物中所含核苷酸的种类与数量: ①噬菌体:( 4 )种,为脱氧(核糖) 核苷酸 ②烟草花叶病毒:( 4 )种,为 核糖 核苷酸 ③烟草细胞:( 8 )种,为4种脱氧(核糖) 核苷酸
4种核糖核苷酸
二、DNA的空间结构
• • • • • 规则的双螺旋结构(要点) DNA分子两条链,反向平行双螺旋 脱氧核糖和磷酸,外侧交替成主干 内侧横档碱基对,碱基连接是氢键 A配T来G配C, 配对原则不会变
=
=1
嘌呤总数=嘧啶总数 A+T = 1 G+C
(A+T)/(G+C) 具有DNA分子的特 异性。
练习1:
• 在双链DNA分子中,有腺嘌呤P个,占全 部碱基的比例为N/M(M>2N),则该 DNA分子中鸟嘌呤的个数为((PM/2N)-P )
A A+T+C+G A=T=P G=C = N M
练习2:
• 某DNA分子一个单链上(A+G)/(T+C) =0.4,则该DNA的另一条单链和整个DNA 分子中同样的碱基比是( B) A、0.4和0.6 B、2.5和1.0 C、0.4和0.4 D、0.6和1.0
20
练习3:
• 某生物遗传物质的碱基的组成成份是嘌呤 碱基占42%,嘧啶碱基占58%,此生物可能 是( C ) A.烟草 B.小麦 C.烟草花叶病毒 D.任何生物
20
练习4:
• 一段mRNA有30个碱基,其中A=G有12个, 则转录成mRNA的一段DNA分子中应有( D ) 个C+T A.12 B.18 C.24 D.30
问题:生物界中的主要遗传物质是?
DNA
作为主要遗传物质的DNA 具有怎样的分子结构和特 点能“担此重任”呢?

DNA的结构和功能

DNA的结构和功能

DNA的结构和功能DNA,即脱氧核糖核酸,是一种重要的分子,包含了生物体所有的基因信息,其结构和功能对生命的存续和发展至关重要。

一、 DNA的结构DNA分子是由四种碱基、磷酸、脱氧核糖组成的长链,其中四种碱基是腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)、胞嘧啶(C)。

DNA中的两条链结构上彼此相对,形成了双螺旋的形态。

而这个双螺旋的形态,在1953年被James D. Watson和Francis Crick发现。

其结构可以用一把梯子来形象地表示。

把梯子的两个“扶手”相连接的那段就是两条互补的链,其中每个“扶手”的顶部都是一对碱基,是分子链中的功能单元。

每一对碱基中,A和T之间有两个氢键连接,C和G之间有三个氢键连接。

这样的氢键不容易断裂,因而保证了DNA分子在遗传信息传递中的稳定性。

二、DNA的功能DNA的主要功能是负责遗传信息的传递和维护。

正是由于DNA的稳定性,才保证了遗传信息在细胞分裂时可以顺利地保持传递。

在DNA中,信息的存储是以一种特殊的方式进行的,即以三碱基序列的方式来编码一种氨基酸。

在细胞内,每三个碱基组成了一种密码,那么三碱基序列编码的氨基酸就是生物体的基本蛋白质单元。

因此,DNA就是用一个生物语言,来存储生物的所有必要信息。

除此之外,DNA还有一个非常重要的功能,就是DNA修复。

由于DNA分子存在于细胞核中,因此,DNA分子自身容易受到各种因素的破坏,比如化学药物、辐射、自由基、氧化等等,这些外来因素都会引起DNA分子的一些不同程度的损伤。

如果不及时修复,就会导致突变、癌变等,严重威胁生命的安全。

DNA修复的机制在遗传学和生物医学领域中得到了广泛的应用。

三、DNA与遗传DNA和遗传紧密相连。

在父母的体细胞中,每一条染色体都是由一根长长的DNA分子组成。

其中包含了细胞的所有遗传信息。

正是由于DNA的特殊结构和有效的传递方式,使得遗传信息从一个世代流传到另一个世代。

当然,DNA分子本身并不直接做出遗传信息的变化,这是由基因突变等的“偶然事件”所做出的贡献。

DNA的分子结构

DNA的分子结构
11
二. DNA的二级结构
(三) 双螺旋结构模型的基本特征
1. 反向平行 的双链沿中心 轴盘绕成右手螺旋。
10
二. DNA的二级结构
A=T
G≡ C
12
二. DNA的二级结构
(三) 双螺旋结构模型的基本特征
5. 双螺旋直径为2nm,每对脱氧核苷酸残基沿 纵轴旋转36°,上升0.34nm。所以每10个 碱基对形成一个螺旋,螺距3.4nm。
当水合的DNA脱水时,转变为A型。
还有Z型的DNA 。首先在富含GC的DNA短片 段中发现,后来证明天然DNA中也有。
15
二. DNA的二级结构
(五) DNA双螺旋构象的多态性
在体内,B-DNA与Z-DNA可以相互转换,后者
在细胞中可能起着帮助解链和调控基因表达的作用。
类型 旋转方向 螺旋直径
5
6
2003年4月24
日 , Nature 杂 志
发表了纪念文章
6
James Watson (left) and Francis Crick with their model of DNA double helix .
7
分子生物学的新时代 就此开始了!
7
二. DNA的二级结构
(二) 双螺旋结构模型提出的依据
右 右 2.3 2.0
螺距 每转碱基对数 碱基对间距 碱基倾角
2.8 3.4 11 10 0.255 0.34 20 0
A-DNA B-DNA
Z-DNA

1.8
4.5
12
0.37
7
类型 NA Z-DNA
右 2.3 2.8 11
右 2.0 3.4 10
1、DNA的X-射线衍射图

DNA分子的结构

DNA分子的结构

DNA分子的结构特性
DNA分子 的特异性就体 现在特定的碱 基(对)排列 顺序中。
稳定性: 具有规则的双螺旋结 构,两条长链上的脱 氧核糖与磷酸交替排 列的顺序稳定不变, 碱基配对的方式稳定 不变。
长链中的碱基对的 多样性: 排列顺序是千变万 化的。4n
DNA分子的结构小结
★化学元素组成: C、H、O、N、P 一分子含氮碱基
【课堂反馈】
1.下面是DNA的分子结构模式图,说出图中1-10的 名称。
10
1. 胞嘧啶 2. 腺嘌呤 3. 鸟嘌呤 4. 胸腺嘧啶 5. 脱氧核糖 6. 磷酸 7. 胸腺嘧啶脱氧核苷酸 8. 碱基对 9. 氢键 10. 一条脱氧核苷酸链的片段
8
G
1
T
2
C
9
3
A
4 7
5
6
【思考】
1、比较不同组的DNA模型有什么不同? 碱基对的排列顺序不同 2、DNA中的遗传信息蕴藏在哪儿? 碱基对的排列顺序中 3、碱基对数量(n)和碱基对排列方式 的关系? 4n (n代表碱基对数)
C
胞嘧啶脱氧核苷酸
T
胸腺嘧啶脱氧核苷酸
一、DNA模型建构
资料1:20世纪30年代,科学家认识到:组成DNA分子的 基本单位是 脱氧核苷酸 。 资料2:DNA是由许多个脱氧核苷酸连接而成的长链。
【模型建构2】 一条脱氧核苷酸链

一、DNA模型建构
资料1:20世纪30年代,科学家认识到:组成DNA分子的 基本单位是 脱氧核苷酸 。 资料2:DNA是由许多个脱氧核苷酸连接而成的长链。 资料3: 1951年,英国科学家(威尔金斯和富兰克林)提供 了DNA的X射线衍射图谱 。
G1+C1 = 54%, 则 G+C = 46%. = 46% 所以 总 1/2总 C1 = 46%–22%= 24% G1 = 22% 已知 所以 1/2总 1/2总 G2 = 24% 所以 因为G2=C1 1/2总

DNA的结构

DNA的结构

C2
C1
G2
3、某双链DNA分子中,A与T之和占整个DNA碱基总数的54%,其
中一条链上G占该链碱基总数的22%。求另一条链上G占其所在链
碱基总数的百分含量。
24%
解析一: 设DNA分子碱基总数为100.
已知:A+T=54,则G+C=46
所以,G1+C1 =G2 +C2 =23
已知:G1 =
1 2
A 腺嘌呤脱氧核苷酸
G 鸟嘌呤脱氧核苷酸 C 胞嘧啶脱氧核苷酸
T 胸腺嘧啶脱氧核苷酸
2、DNA分子的结构
A AT
C CG A AT
T AA
C CG
GC G
AT A
GC
平面结构G图
立体结构图
A
T
C
G
A
T
T
A
C
G
G
C
A
T
G
C
2、DNA分子双螺旋的 空间结构:
(1)DNA分子是由两条反向平行 的脱氧核苷酸长链盘旋而成的。
③ 特异性
每一条DNA分子都有特定的 碱基排列顺序,所以每个特定的 DNA分子中都贮存着特定的遗传 信息。这种特定的碱基排列顺序 就构成了DNA分子的特异性。
巩固练习
1.请说出图中1-11的名称
1.磷酸 2.脱氧核糖 3.鸟嘌呤 4.胞嘧啶 5.氢键 6.腺嘌呤 9.脱氧核苷酸 10.一条脱氧核苷酸 链的片段 11.碱基对
碱基互补配对原则确定另一 立?
GC
成立
条链上的碱基排列顺序?能
TA
规律一:一条链上的碱基A等于 互补链的碱基T;同理:G=C。
规律二:在DNA双链中, A=T,G=CC。 G

DNA分子的结构

DNA分子的结构

∙DNA分子的结构:1、DNA的元素组成:C、H、O、N、P2、DNA分子的结构:DNA的双螺旋结构,两条反向平行脱氧核苷酸链,外侧磷酸和脱氧核糖交替连结,内侧碱基对(氢键)碱基互补配对原则。

3、模型图解:4、DNA分子的结构特性(l)稳定性:DNA分子中脱氧核糖和磷酸交替连接的方式不变;两条链间碱基互补配对的方式不变。

(2)多样性:DNA分子中碱基时排列顺序多种多样。

(3)特异性:每种DNA有别于其他DNA的特定的碱基排列顺序。

∙∙知识点拨:碱基互补配对的规律:∙∙知识拓展:1、两条链之间的脱氧核苷酸数目相等→两条链之间的碱基、脱氧核糖和磷酸数目对应相等。

2、碱基配对的关系是:A(或T)一定与T(或A)配对、G(或C)一定与C(或G)配对,这就是碱基互补配对原则。

其中,A与T之间形成2个氢键,G与C之间形成3个氢键。

3、DNA分子彻底水解时得到的产物是脱氧核苷酸的基本组分,即脱氧核糖、磷酸、含氮碱基。

∙题文生物体内某些重要化合物的元素组成和功能关系如图所示。

其中X、Y代表元素,A、B、C是生物大分子,①、②、③代表中心法则的部分过程。

请据图回答下列问题:(1)紫茉莉细胞中A分子中含有的矿质元素是_______,中学生物学实验鉴定A分子通常用_______试剂,鉴定C分子______(需、不需)要沸水浴加热。

(2)甲型H1N1流感病毒体内含有小分子a_____种,小分子b_____种。

(3)不同种生物经过①合成的各新A生物大分子之间存在着三点差异,这些差异是什么?________,_______ _,________。

(4)在经过①合成的各新A生物大分子中,(C+G):(T+A)的比值与其模板DNA的任一单链________(相同、不相同)。

题型:读图填空题难度:偏难来源:广西自治区模拟题答案(1)N、P 二苯胺不需(2)0 4(3)碱基的数目不同碱基的比例不同碱基排列顺序不同(4)相同题文下图是某种遗传病的家系图(显、隐性基因用A、a表示)。

《DNA分子的结构》说课稿

《DNA分子的结构》说课稿

《DNA分子的结构》说课稿高三生物组柴娜一、说教材《DNA分子的结构》选自高中人教版生物必修2的第3章第2节。

它在教材中起着承前启后的作用,一方面,它是在讲完DNA是主要的遗传物质这一内容的基础上完成的,通过它的学习可以加深学生对遗传物质的认识,使学生从结构方面更加了解为什么DNA是生物主要的遗传物质;另一方面,它又为后面基因的表达、生物的变异和进化教学进行了必要的知识铺垫。

所以说《DNA分子结构》是高中生物教学的重要内容之一。

二、说教学目标根据本教材的结构和内容分析,结合着高二年级学生他们的认知结构及其心理特征,我制定了以下的教学目标:1、知识目标:识记DNA分子的基本单位的化学组成;理解DNA分子的结构特点。

2、能力目标:通过制作DNA平面结构模型,培养学生的动手能力;通过对DNA双螺旋结构模型的观察,提高学生的观察能力、分析和理解能力。

3、情感目标:通过DAN结构的发现历程的教学,使学生认识到与人合作的在科学研究中的重要性,讨论技术的进步在探索遗传物质奥秘中的重要作用。

三、说教学的重、难点本着高二新课程标准,在吃透教材基础上,我确定了以下的教学重点和难点1、教学重点:DNA分子结构的主要特点2、教学难点:DNA分子结构的主要特点四、说教法围绕本节课的教学目标和教学重点,为了“全面提高学生的科学素养”、“培养学生的创新精神和实践能力”“促进学生转变学习方式”,我以计算机辅助教学为手段,采用了观察法、演示法、讨论法、实践法等多种教学方法,积极创设一个可以让学生在轻松愉快的氛围中,去主动探求知识的过程。

在教学过程中,开展师生互动、生生互动,体现出以学生为主体,教师为主导的主动探究式教学理念。

五、说学法在本节课中,学生将通过多种途径,如:观察、阅读、思考、分析、讨论、实践等等,来开展学生之间的协作学习和自主学习,形成以学生为主体的教学模式。

六、教学过程1、导入新课:2004年3月4号,北大生命科学学院,为了迎接世界华人生物学家大会,特地向北京世纪盛典广告公司订制了一个题为“旋律”的DNA雕塑。

dna结构归纳总结

dna结构归纳总结

dna结构归纳总结DNA(Deoxyribonucleic Acid,脱氧核糖核酸)是构成生物遗传信息的基本分子。

它以其特有的双螺旋结构而闻名,这一结构是由四种碱基、磷酸、脱氧核糖和磷酸等部分组成的。

本文将对DNA的结构进行归纳总结,以便更好地理解和应用DNA。

一、碱基配对DNA由四种碱基组成,它们分别是腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。

这些碱基按照一定的规则配对,形成稳定的碱基对。

具体来说,A与T之间形成两个氢键连接,G与C之间形成三个氢键连接。

这种有序的碱基配对保证了DNA的稳定性和准确的复制。

二、螺旋结构DNA的双螺旋结构是其最显著的特征。

DNA的两条链通过碱基间的氢键连接相互缠绕,形成一种右旋的双螺旋结构。

这种结构使得两条链互补,并且具有一定的稳定性。

双螺旋结构的发现不仅揭示了DNA的基本构造,而且对于解读DNA的序列信息具有重要意义。

三、多级结构DNA的结构不仅仅局限于双螺旋,还存在多级结构。

在较小的尺度上,DNA会发生自旋、弯曲和环绕等变形,形成一系列结构,如DNA超螺旋、DNA簇和DNA环等。

在较大的尺度上,DNA会卷曲成染色体的形态,形成复杂的三维结构。

这些多级结构对于调控基因的表达以及维持染色体的稳定性至关重要。

四、特殊结构除了基本的双螺旋结构外,DNA还存在一些特殊的结构。

其中最具代表性的是四链DNA,它由两对碱基通过氢键相互连接而成,形成四条链。

这种结构在某些情况下具有重要的生物学功能,如在基因调控、DNA复制和基因重组等过程中发挥作用。

五、DNA的应用DNA的结构不仅仅是一种科学研究的对象,也有广泛的应用。

例如,在医学上,通过解读DNA序列可以诊断和预测遗传性疾病,指导个体化治疗。

在法医学中,通过DNA检验可以确定犯罪嫌疑人和亲子关系等。

此外,DNA还被应用于基因工程、遗传改良、种子保护和生物信息学等领域。

六、未来展望随着科学技术的不断进步,人们对于DNA结构的认识也在不断深化。

DNA的分子结构和特点

DNA的分子结构和特点

即:磷酸、脱氧核糖、含氮碱基。
磷酸
脱氧 核糖
含氮碱基

线
脱氧核苷酸链。(磷酸二酯键)
一个核苷酸的脱氧核糖 与另一个核苷酸上的磷 酸基团结合,形成主链 的基本骨架。
G
C

两条脱氧核苷酸链组成平面
结构。 ①两条链反向平行。 ②外侧由脱氧核糖和磷酸交 替排列构成基本骨架。 ③内侧由碱基通过氢键连接 且分子数A=T,G=C。
小测试
3、在一个双链DNA分子中,碱基总数为m,腺嘌呤
数为n,则下列有关结构数目正确的是 ( ②碱基之间的氢键数为 ③一个链中A+T的数量为n ④G的数量为m-n A.①②③④ B.②③④ ) ①脱氧核苷酸数=磷酸数=碱基总数=m
C.③④
D.①②③
小测试
5. DNA指纹技术是法医物证学上进行个人认定的主
结构 特点
DNA 特性
分子 结构
DNA
DNA的分子结构和特点
思考
1. DNA的基本组成元素有哪些? 2. DNA分子的基本组成单位? 由哪几部分物质组成? 3. 脱氧核苷酸有几种?分别是?
DNA分子的结构特点

线



DNA 的基本组成单位: 4 种脱氧核苷酸,
每个脱氧核苷酸由 3 种小分子化合物构成,
T
Aห้องสมุดไป่ตู้
C
G
A
T
成碱基对(碱基互补配对),


两条脱氧核苷酸链盘旋成立体双螺旋结构。

下面是DNA的分子结构模式图,你能说出 图中1-10的名称吗?
10 8
或用物理模型展示
G
1
T
9

DNA的分子结构

DNA的分子结构

DNA的分子结构展开全文1 DNA的分子大小:106-1010 :肺鱼1000亿人类30多亿碱基对,约一米长。

2 DNA的碱基组成在绝大多数天然DNA分子中,只含有A、G、C、T四种碱基(但有个别来源的DNA含有其它稀有碱基。

如大肠杆菌噬菌体含有5-羟甲基胞嘧啶代之胞嘧啶;枯草杆菌含有尿嘧啶代之胸腺嘧啶;小牛胸腺DNA含有5-甲基胞嘧啶)。

DNA的碱基组成:指A、T、G、C 这四种碱基在DNA分子中的摩尔比例。

通过对多种生物DNA的碱基分析,发现DNA碱基组成由一定的规律性,即所谓的碱基定律。

这是Chargaff在1950年总结的,也称Chargaff碱基定律。

Chargaff碱基定律。

主要内容如下:在所有DNA中,A=T、G=C,所以A+G=C+T,即嘌呤与嘧啶相等。

不同生物DNA 的碱基组成是不同的。

生物的亲缘关系越近,DNA碱基组成越相似。

所以通过测定生物DNA的序列进行生物的分类。

DNA的碱基组成没有组织器官的特异性。

即同一生物个体的所有组织器官的DNA 碱基组成都是一样的。

年龄、营养条件、环境的改变不影响DNA的碱基组成。

3 DNA的一级结构脱氧多核苷酸链中的脱氧核苷酸排列顺序叫DNA的一级结构。

由于生物的遗传信息储存在DNA的脱氧核苷酸的序列之中,所以了解各种生物的DNA的脱氧核苷酸序列,即一级结构是非常重要的。

如在2003年,经过国际间合作,科学家完成人类基因组计划,即30亿个碱基的测序任务,我国承担1%的任务。

现在测序技术越来先进,水稻的全序列也已经完成,新的微生物出现后,在很短时间就可分析出全序列,如SARS 病毒的基因序列。

DNA分子主要由dAMP、dTMP、dGMP、dCMP四种脱氧核苷酸组成,它们是通过3,5磷酸二酯键连接在一起的。

即一个脱氧核苷酸的脱氧核糖的3位碳原子的羟基与另一个脱氧核苷酸脱氧核糖的5位碳原子的磷酸基形成的磷酸二酯键。

DNA 分子一级结构就是由许多脱氧核苷酸通过3,5磷酸二酯键连接而成的链状结构。

人教版高中生物必修二之3.2DNA分子的结构

人教版高中生物必修二之3.2DNA分子的结构

已知
A+T 总
= 54%,

G+C 总
= 46%
所以
G1+C1 1/2总
= 46%.
已知
G1 1/2总
= 22%
所以
C1 1/2总
= 46%–22%= 24%
因为G2=C1
所以
G2 1/2总
= 24%
(2)DNA分子中的脱氧核 糖和磷酸交替连接,排列 在外侧,构成基本骨架; 碱基在内侧。
(3)两条链上的碱基通 过氢键连结起来,形成碱 基对,且遵循碱基互补配 对原则。
A
T
C
G
A
T
A
T
C
G
G
C
A
T
G
C
你注意到了吗?
两条长链上的脱 氧核糖与磷酸交 替排列的顺序是 稳定不变的。
长链中的碱基对 的排列顺序是千 变万化的。
1. 胞嘧啶 2. 腺嘌呤 3. 鸟嘌呤 4. 胸腺嘧啶 5. 脱氧核糖 6. 磷酸 7. 胸腺嘧啶脱氧
核苷酸 8. 碱基对 9. 氢键 10. 一条脱氧核
苷酸链的片段
10
8
G
1
T
2
C9 3
A
45
6
7
DNA分子的结构小结
★化学元素组成:C、H、O、N、P
一分子含氮碱基
基本组成单位:四种脱氧核苷酸 一分子脱氧核糖
A —腺嘌呤 含氮碱基种类:C —胞嘧啶 因此,脱氧核苷酸也有4种:
A
G —鸟嘌呤 T —胸腺嘧啶
C
腺膘呤脱氧核苷酸
胞嘧啶脱氧核苷酸
G
T
鸟瞟呤脱氧核苷酸
胸腺嘧啶脱氧核苷酸

DNA分子的结构

DNA分子的结构

DNA分子的结构DNA(脱氧核糖核酸)是一种长链分子,它是由四种碱基、磷酸基团和脱氧核糖组成的两栖双螺旋结构。

DNA分子是生物体内存储遗传信息的一种核苷酸聚合物。

DNA的结构解析是科学史上的一个里程碑,它的发现揭示了生物遗传物质的基本单位和遗传信息的传递方式。

DNA分子的结构是由两个互补的链以螺旋双螺旋的形式紧密缠绕而成的。

这种结构被称为B型螺旋。

每一个DNA分子都有两个相反方向的链,这两个链以轴线为中心相互绕绳盘式地结合在一起,形成一个双螺旋。

每个DNA分子由大约100万个核苷酸组成,并被卷绕成一个紧凑的结构。

DNA分子的两个链由四种不同的碱基组成,它们是腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。

这四种碱基通过氢键的方式与对应的碱基结合。

腺嘌呤与胸腺嘧啶之间存在两个氢键,鸟嘌呤与胞嘧啶之间存在三个氢键。

这种特殊的碱基间相互作用使得两个链以互补的方式结合在一起。

在DNA分子中,碱基以一种特定的顺序排列在链上。

这种顺序码决定了遗传信息的编码规则。

DNA分子中的每三个碱基组成一个密码子,每个密码子可以编码特定的氨基酸。

这种链中的顺序码被称为基因组,它是生物体的一部分或全部基因的集合。

通过DNA复制和转录,基因组被转化为功能蛋白质,并且控制着生物体的所有生物化学和生理活动。

除了碱基,DNA分子中还含有磷酸基团和脱氧核糖。

磷酸基团连接在每个核苷酸的碱基和核糖之间,形成链的骨架结构。

磷酸基团以磷酸骨架的形式提供了分子的稳定性和刚性。

脱氧核糖是一种含有五个碳的糖类分子,它与碱基和磷酸基团一起形成了DNA的核苷酸单位。

DNA分子的双螺旋构象具有重要的功能。

它提供了分子的稳定性和刚性,保护了碱基免受外界环境的破坏。

双螺旋结构还允许DNA分子进行复制和转录的过程。

在复制中,两个DNA链通过酶的作用进行分离,形成两个新的DNA分子。

在转录过程中,DNA的信息被转录成RNA,然后被翻译成蛋白质。

DNA分子的结构是由许多科学家通过实验证据和集体努力逐步揭示的。

DNA分子双螺旋结构

DNA分子双螺旋结构

DNA分子双螺旋结构
DNA分子双螺旋结构
一、什么是DNA分子双螺旋结构
DNA(deoxyribonucleic acid)是一种复杂的有机大分子,位于细胞核内,由碱基对组成,形成双螺旋结构,既是遗传信息的载体,又是生物的特性的主要基础。

当DNA的分子被分解时,可以看到有两条双螺旋链组成的精巧结构。

二、双螺旋两条碱基链的特征
DNA的双螺旋结构的两条碱基链按照五碳骨架的规则松松张张扭绞着,以层
层叠叠的形式,是一种特殊的异构互补结构,结构中仅涉及碱基A,T,G,C四
种碱基,它们分别是腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。

此外,AT和GC连接在一起形成氢键,形成双螺旋结构的碱基链,也就是DNA的双螺旋结构的基础。

三、DNA分子双螺旋结构的科学价值
由于DNA分子拥有双螺旋结构,因此具有丰富、容易操纵和可以记录大量信
息的特点,同时所形成的双螺旋结构相对稳定,被认为是这份记载某种生命特性
的基本结构,是亲子遗传信息传递的重要媒介,也是基因组整合及多样化的主要原因。

四、双螺旋结构的检测
检测双螺旋结构最重要的依据是其中的碱基对结构,通过推导双螺旋的结构位置,观察碱基对是否存在合理的互补情况,判断双螺旋是否存在,或者结构存在异常等,并进行检测与结果验证,同时植入有关碱基对分子标记,从存在的数据中
进行统计,最终来确定双螺旋结构是存在的,也是可以检测出来的。

幼儿园生物基础教学:DNA结构解析 幼儿园生命的密码

幼儿园生物基础教学:DNA结构解析 幼儿园生命的密码

幼儿园生物基础教学:DNA结构解析DNA(脱氧核糖核酸)是构成生命的基本质料,它携带着生物的遗传信息,是生物体内最重要的一种生物分子。

DNA的结构如何?什么是DNA的结构?DNA是如何发现的?DNA又是如何复制的?下面我们将依次解析这些问题。

一、DNA的结构1. DNA的组成DNA是由四种碱基(腺嘌呤A、胸腺嘧啶T、鸟嘌呤G、胞嘧啶C)组成的长链状分子。

这些碱基按不同的顺序排列,构成了DNA的遗传信息。

2. DNA的双螺旋结构DNA分子以双螺旋的形式存在,两条DNA链以氢键连接在一起,形成了一个螺旋结构。

3. DNA的功能DNA经过基因的转录、翻译,编码出对应的蛋白质,从而控制了生物的生长、发育和功能。

可以说,DNA是生命的密码。

二、DNA的发现1. DNA的发现者DNA是由一位美国科学家詹姆斯·沃森和一位英国科学家弗朗西斯·克里克在1953年揭示了它的结构。

他们因此成为了诺贝尔奖得主,而这项发现也是当代最重要的科学发现之一。

2. DNA的发现过程詹姆斯·沃森和弗朗西斯·克里克以及玫瑰·富兰克琳一起研究了X射线晶体衍射照片,他们从中推断出了DNA的双螺旋结构。

三、DNA的复制1. DNA的复制过程DNA的复制是生物细胞分裂过程中的一个重要环节。

在细胞分裂的时候,DNA会进行自我复制,每一条DNA链都会在分裂过程中形成一条新的DNA链,从而保证了遗传信息的传递。

2. DNA复制的意义DNA复制的过程非常精密、准确,它保证了生物在细胞分裂的时候能够准确地传递遗传信息,从而避免了突变和遗传缺陷。

通过以上对DNA结构、发现、复制的解析,我们不难看出,DNA是构成生物体的基础,而对DNA的深入理解也对生命科学的发展起着重要的推动作用。

在幼儿园生物基础教学中,适当引导幼儿了解DNA的基本知识,可以激发幼儿对生命科学的兴趣,为他们未来的学习打下坚实的基础。

四、DNA在生物进化中的作用1. DNA的可变性DNA分子中的碱基序列会因为突变而发生改变,这种可变性使得生物在进化过程中能够适应环境的变化。

23知识讲解DNA、RNA的结构和基因

23知识讲解DNA、RNA的结构和基因

DNA RNA勺结构和基因【学习目标】1、概述DNA分子结构的主要特点。

2、制作DNA分子的双螺旋结构模型。

3、讨论DNA分子的双螺旋结构模型的构建过程。

4、说明基因的概念和遗传信息的含义。

5、说明基因和遗传信息的关系。

【要点梳理】要点一、DNA分子结构1.结构层次(4)化学结构(1级结构):脱氧核糖核苷酸链(5)空间结构(2〜4级结构):①模式图吋:T门匕怀山叫丈汽②主要特点2.结构特点(1 )稳定性:DNA分子双螺旋结构具有相对稳定性。

决定因素:①DNA分子由两条脱氧核苷酸长链盘旋成粗细均匀、螺距相等的规则双螺旋结构。

②DNA分子中脱氧核糖和磷酸交替排列的顺序稳定不变。

③DNA分子双螺旋结构中间为碱基对,对应碱基之间形成氢键,从而维持双螺旋结构的稳定。

④DNA分子之间对应碱基严格按照碱基互补配对原则进行配对。

⑤每个特定的DNA分子中,碱基对的数量和排列顺序稳定不变。

(2)特异性:每种生物的 DNA分子都有特定的碱基数目和排列顺序。

(3)多样性:DNA分子碱基对的数量不同,碱基对的排列顺序千变万化,构成了DNA分子的多样性。

3 •碱基互补配对原则及其应用(1)碱基互补配对原则: A— T、G— C,即& T t G GDNA ! :: rh Ai G G工由此可推知DNA分子碱基比的共性与特性①共性A T T A要点诠释:一 G C - A C A G .1 ; 1 ;1°C G T G T C②特异性A T-一T的比值是不定的,这恰是DNA分子多样性和特异性的体现。

G C(2)碱基计算的一般规律碱基互补配对原则,进行双链DNA中有关含N的碱基数目、比例的计算;根据DNA中碱基种类及配对方式,理解DNA 分子的特性。

在双链DNA中(注意:单链 DNA或 DNA单链中不符合)最基本的公式:A=T G=C 有下列规律:规律一:DNA双链中两互补链的碱基数相等,任意两不互补的碱基之和恒等,占DNA中碱基数的50% 即:A+G=T+C=A+C=T+G=50% (A+Q / (T+C) = (A+C / (G+T) =1规律二:DNA双链中的一条单链上(A+G / (T+C)的值与另一条互补链上( A+G / (T+C 的值互为倒数关系,在 DNA双链中此比值为1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DNA的分子结构教学目的:1、概述DNA分子结构的主要特点。

2、交流课题研究中搜集的分子结构模型建立过程的相关资料,体验建立DNA双螺旋结构模型的艰辛与曲折,体验科学家的奉献精神,形成勇于创新的科学态度与为科学献身的精神。

3、在尝试模拟制作基础上,结合资料分析DNA双螺旋结构模型的科学性,反思建模过程,体会建模的思想,提高建模能力。

教学重点:DNA的双螺旋结构及其特点的分析教学难点:制作DNA结构模型掌握DNA分子的双螺旋结构的特点课前准备:制作DNA分子结构模型的构件若干、DNA双螺旋立体模型、多媒体课件、教学学案教学过程:[导入]同学们请看大屏幕:课件展示:(凶杀案图片)这不只是一个故事------一起凶杀案,案情扑朔迷离,犯罪嫌疑人却提供了不在现场的证据。

这时法医在现场找到了留在被害人指甲中的一些皮肤组织,想一想你应该如何破案?(学生回答)从皮肤细胞中提取到DNA,利用DNA鉴定技术协助破案。

对,DNA鉴定技术现已成为警察破案的得力助手。

那么为什么DNA可以作为破案的依据呢?从上节课的学习我们知道,DNA是人体的遗传物质,同一个人的不同细胞中DNA都是相同的,不同人的DNA则是不同的,这些都与DNA的分子结构有关。

这节课就让我们共同来学习第2节DNA的分子结构。

(课件展示)[新课]自从认识到DNA是遗传物质以后,人们就开始了对它的深入研究,到20世纪中期,人们已经了解了DNA的化学组成。

请同学们回顾必修1,组成DNA分子的基本组成单位是什么?(脱氧核糖核苷酸)一、DNA的基本组成单位(课件展示)脱氧核糖核苷酸结构示意图师生交流:一分子脱氧核糖核苷酸又是由哪三部分构成:(①磷酸、②脱氧核糖、③含氮碱基)好,下面请同学们在桌子上的实验材料中找出脱氧核糖核苷酸模型,看看你能找到几种类型,它们之间有什么区别?(学生回答)4种类型,只在碱基上有区别,有A、G、C、T四种。

下面给同学们2分钟时间,请对照课本识记4种碱基和脱氧核糖核苷酸的名称。

检查提问:好,哪位同学能说一下四种脱氧核糖核苷酸的名称?请学生拿起模型回答。

(课件展示)很好。

脱氧核糖核苷酸共有4种碱基,模型中较长一些的代表的是腺嘌呤和鸟嘌呤两种碱基,这是因为它们具有双环结构,较短一些的是胞嘧啶和胸腺嘧啶两种碱基,二者是单环结构。

这4种类型的脱氧核糖核苷酸仅在碱基上有所差别,所以我们可以根据碱基为其命名。

如果把脱氧核糖核苷酸和RNA的基本组成单位核糖核苷酸相比,二者有什么区别呢?(课件展示)脱氧核糖核苷酸和核糖核苷酸结构图,分析区别:学生回答。

五碳糖不同(脱氧核糖和核糖);碱基的差别(根据课件显示,比较四种脱氧核糖核苷酸和四种核糖核苷酸),引导学生找出尿嘧啶与胸腺嘧啶的区别,并请学生推理说出尿嘧啶核糖核苷酸的名称。

过渡:这四种核糖核苷酸是RNA的基本组成单位,而这四种脱氧核糖核苷酸是DNA的基本组成单位,那么四种脱氧核糖核苷酸是怎样构成DNA-----这一具有复杂空间结构的生物大分子的呢。

它又是具有什么样的结构特点能使其与作为生物的遗传物质相适应呢?下面我们就来一起探索DNA分子的结构——(8分钟)二、DNA双螺旋结构DNA分子的结构是怎样的呢?在上个世纪这一具有伟大科学价值的研究课题吸引了全世界各国科学家的目光。

为揭开这一重要生命物质的神秘面纱,科学家们展开了探索DNA 结构的竞赛。

大家知道是谁率先摘取了这一科学界的桂冠吗?(学生回答沃森和克里克,课件展示图片)对,当时沃森还很年轻,还只是一个刚刚走出校门不久的大学生,而克里克当时也是一个很不得志的物理学家。

那时候有很多来自世界各国的大科学家都在研究这个课题,许多专家并不看好这对组合,甚至嘲笑他们研究条件的简陋。

但就是这两个“小人物”面对嘲笑毫不气馁,他们广泛收集信息,认真分析了鲍林、查伽马、维尔金斯和弗兰克林等科学家们的研究成果,并采用了建立模型的方法进行研究。

终于在1953年4月25日,英国著名的科学杂志——《自然》上发表了沃森、克里克的一篇优美精炼的短文,宣告了DNA分子双螺旋结构模型的诞生,沃森和克里克的成果震惊了整个科学界!DNA双螺旋结构模型的诞生,完美地解释了DNA在遗传、生化和结构上的主要特征,标志着生物学的历史开始从细胞阶段进入了分子阶段。

正是由于这一划时代的贡献,沃森、克里克获得了1962年度诺贝尔医学和生理学奖。

回首这段历史,沃森和克里克的成功给我们留下了哪些启示呢?请学生回答:课件展示,教师总结。

1、创新思维是成功者必备的素质,要敢于向权威挑战。

2、要善于吸收别人的成果,博采众家之长。

3、要有合作探究的意识。

4、要选择科学的研究方法。

(对,创新的思维、虚心吸收别人的成果、合作意识和科学的研究方法使他们走向成功!)想想当时沃森和克里克,在嘲笑声中用铁皮和铁丝构建了世界上第一个DNA分子模型,揭开了DNA分子结构的神秘面纱。

那么现在的同学们,你们是未来的大学生,比沃森更年轻,你们能不能也依据学案上提供的这些信息,利用更普通的泡沫、牙签等材料,象沃森和克里克那样创造性地来构建起DNA分子结构的模型呢?同学们有没有信心?(有)展示材料,教师说明:好,除了刚才看到的脱氧核糖核苷酸模型以外,注意氢键、磷酸二酯键的替代品,有关这两种键的作用请大家注意看学案。

下面就请同学们以小组为单位,首先仔细分析学案上所提供的信息,然后利用所提供的材料来构建一个DNA分子平面结构模型——学生操作,教师巡视:各组操作情况,掌握主要问题,分清类型,适时安排。

(大约控制在10分钟左右)好,现在各组的构建工作已经基本结束。

请同学们根据学案上的资料,分析模型和刚才的操作过程,分析总结一下DNA分子的结构特点,各组中心发言人准备发言。

师生交流总结DNA分子结构特点:(下面请同学们说一说在你构建模型时你发现了DNA分子具有哪些特点?)其实也就是你们在构建模型时都注意了哪些要点?又是从哪些材料中得到了启示?教师点有代表性的几组发言,相互补充教师注意提问原由:如为什么将A与T,C与G相配对等等。

看起来有的组做的不错,还有的组出现了点小问题,请注意修正。

我们现在制作的是DNA分子的平面结构,而实际上DNA分子是规则的双螺旋结构,那么DNA分子是如何螺旋的,又具有什么特点呢?(发放DNA分子双螺旋结构模型)好,下面请同学们结合其它各组的模型和发言,对照所发标准模型,对本组模型进行再修正和进一步的分析。

好,请开始-----从平面结构到立体结构,DNA分子又具有怎样的特点?请各组试做总结发言------ (请学生再试着回答)教师课件总结DNA分子结构特点。

指导学生阅读课本,并结合DNA双螺旋结构模型逐句理解DNA分子结构特点。

①首先是DNA分子含有两条脱氧核糖核苷酸链,两条链按照反向平行方向并向右盘绕成双螺旋。

(螺旋直径为2.0nm,螺距为3.4nm,每个螺距有10个碱基对,两个相邻碱基对平面的垂直距离为0.34nm)②结构的外侧是由脱氧核糖和磷酸通过磷酸二酯键交互连接而成的长链,构成DNA分子的骨架;碱基位于双螺旋结构内侧,遵循碱基互补配对原则形成碱基对,即A与T配对,G 与C配对,A与T间二个氢键相连,G与C间三个氢键相连。

好,我们继续来看:进一步探究:(教师选几组学生成果在前面展示)我们各组做的都是由6对脱氧核糖核苷酸组成的DNA分子,可是大家观察一下我们做的DNA分子都一样吗?(什么区别?---碱基对的顺序不同,即所包含的遗传信息不一样)碱基对的排列顺序不同,就说明DNA分子中所包含的遗传信息是不同的。

(课件展示)同学们分析,每个碱基对的位置最多能有几种碱基对情况,那么6个碱基对的DNA分子碱基排列顺序最有多少种?进一步归纳4n种。

我们知道最小的DNA也要有4000对以上的脱氧核糖核苷酸构成,由此可见DNA具有什么特点?(多样性)对于每一个生物个体来说,它的DNA分子又有其特定的碱基排列顺序,这就又构成了个体DNA分子的特异性。

右手双螺旋结构对DNA分子的稳定性起到重要的作用。

(课件显示)从对DNA分子的结构的分析上我们可以看到DNA分子具有多样性、特异性和稳定性,所以DNA分子从理论上也具备作为遗传物质的条件,这也是DNA分子作为遗传物质的间接证据。

DNA结构之迷的突破不仅在理论研究上开启了一扇门户,而且在实际生活中也迅速有了广泛的应用。

同学们能举出一些例子来吗?学生举例,师扩展:(课件显示图片)像前面提到的DNA分子鉴定技术在刑事侦破上的应用要比传统的指纹鉴定更加准确方便,另外它还在血亲鉴定、遇难尸体辨认和身份识别上有了广泛的应用。

基因身份证的应用也大大减少了信息相同的机率。

[练习]教材P70中的巩固提高只考虑1、2[总结]DNA分子结构是完美的,它蕴藏着生命的无数奥秘,它饱含着人类对科学探索的艰辛。

所以《自然》杂志上登过这样一段话:“没有什么分子像DNA 那样动人。

它让科学家着迷,给艺术家灵感,它向人类社会发出挑战。

从任何意义说,它都是一种现代的标志。

”要我说啊,DNA分子就是我们这个科学时代的“蒙娜·丽莎”,虽然揭开了神秘的面纱,但永远带着迷人的微笑——好,这节课我们共同探究了DNA分子的组成和结构,并通过同学们亲手构建DNA双螺旋结构模型,体验了科学家们研究DNA分子结构的艰辛。

通过学习,同学们还了解了构建结构模型的科研方法,体会了建模的思想,提高了建模能力,相信这对于同学们以后的学习,以及将来的研究工作具有非常重要的作用。

[作业]本节课的作业是完成基础训练的有关习题。

相关文档
最新文档